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Problem 1 Maximum flow problem

We consider the wired network with n = 6 nodes and m = 7 arcs that is described by the incidence matrix

M =



1 1 0 0 0 0 0
0 0 1 1 0 0 0
−1 0 −1 0 1 0 0
0 0 0 0 −1 1 1
0 −1 0 0 0 −1 0
0 0 0 −1 0 0 −1

 .

Arcs are enumerated in lexicographic order as known from the lecture, e.g. (1, 2) < (2, 1).

a)* Draw the network described by M and label both nodes and arcs.
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b)* What is the rank M?

rankM = n− 1 = 5 since one row is linear dependent.

c)* Determine a basis B of nullM .

B =





1
−1
0
0
1
1
0


,



0
0
1
−1
1
0
1




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The arc capacities are given by z = [2 2 2 2 1 2 2]. We consider a single unicast between nodes 1 and 6
described by d = [1 0 0 0 0 − 1].

d)* Determine the capacity between nodes 1 and 6 using the min-cut / max-flow theorem. (A bit tedious to
enumerate all the cuts . . . )

Set containing s Set containing t cut capacity

{1} {2, 3, 4, 5, 6} 2 + 2 = 4
{1, 3} {2, 4, 5, 6} 2 + 1 = 3
{1, 5} {2, 3, 4, 6} 2
{1, 3, 4} {2, 5, 6} 2 + 2 + 2 = 6
{1, 3, 5} {2, 4, 6} 1
{1, 3, 4, 5} {2, 6} 2
. . . . . . . . .

The maximum value for flow (1, 6) is the minimum of all cut capacities and thus 1.

The maximum flow problem is formally expressed as linear program

max
r,x

r s. t. Mx = rd, (1)

x ≥ 0, (2)

x ≤ z. (3)

The demand vector d is chosen such that its elements are zero except for ds = 1 and dt = −1.
In order to solve this problem using Matlab we have to rewrite it as

min
x

fTx s. t. Ax ≤ a, (4)

Bx = b, (5)

x ≥ 0, (6)

x ≤ z. (7)

e)* Express the scalar rate r by means of M , x, and d.

Multiplying both sides of (1) by dT /(dTd) gives

Mx = rd,

dTMx

dTd
= r

dTd

dTd
,

r =
dTMx

dTd
.

f) Determine B such that Bx = 0 is equivalent to Mx = rd.
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Using the result for r we obtain:

Mx = rd

Mx =
dTMx

dTd
d

Since dTMx is a scalar value, we can rearrange the equation:

Mx = d
dTMx

dTd

Mx− d
dTMx

dTd
= 0(

I − ddT

dTd

)
Mx = 0

⇒ B =

(
I − ddT

dTd

)
M

g) Determine f such that fTx = r.

fTx = r

fTx =
dTM

dTd
x

⇒ f =
MTd

dTd

h) State the revised optimization problem and solve it using Matlab.

min
x
−fTx s. t. Bx = 0,

x ≥ 0,

x ≤ z.

An alternative solution to e) – h)

We consider an s-t flow problem so that ds = 1, dt = −1, and di = 0 for all i 6= s, t. Let mT
s and mT

t denote
the rows of the incidence matrix M corresponding to nodes s and t, respectively, and let Mst denote the matrix
M with those two rows removed. For example if s = 1 and t = 6, then Mst is the matrix M with its first and
last row removed.
Since The matrix 1TM = 0T and 1Td = 0, one of the n−1 constraints comprised by Mx = rd is redundant
and can be dropped. We choose to drop the flow conservation constraint at node t, i.e., we remove the row mT

t

from M and the element dt = −1 from d. Furthermore, since s is the unique source node in this problem,
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only the flow conservation constraint at node s involves r. That is,

mT
s x = rds = r

since ds = 1. Therefore, we can substitute the objective function of the maximization r by mT
s x and remove

the flow conservation constraint at node s from the set of constraints. The remaining flow conservation
constraints independent of r and given by

Mstx = 0.

This yields the problem

max
x

mT
s x s. t. Mstx = 0,

x ≥ 0,

x ≤ z.

This problem can be equivalently posed as the minimization problem

min
x
−mT

s x s. t. Mstx = 0,

x ≥ 0,

x ≤ z.

This problem is in a form suitable for Matlab and has the significant advantage (from the perspective of
numerical stability) that Mst has full row rank, which is not the case with M and in particular (I− 1

‖d‖2dd
T)M .

Now we consider the case of a second flow, i. e., we have two demand vectors

d1 = [1 0 0 0 0 − 1]T and

d2 = [0 1 0 0 − 1 0]T .

If we want to maximize the joint rate r = r1 + r2, the optimization problem becomes

max
r1,r2

r1 + r2 s. t. Mx1 = r1d1,

Mx2 = r2d2,

x1,x2 ≥ 0,

x1 + x2 ≤ z.

We now restate this problem to solve it in Matlab. To this end, we define

N =

[
M 0
0 M

]
, x =

[
x1

x2

]
, r =

[
r1
r2

]
, and D =

[
d1 0
0 d2

]
.

i) Express r by N , D, and x.

Using the definitions above, the equality constraint in (1) now reads as

Nx = Dr.

Note that DTD gives a 2× 2 matrix where only the diagonal elements are non-zero. Therefore,
(
DTD

)−1
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exists and we can determine r as follows:

Nx = Dr

DTNx = DTDx

r =
(
DTD

)−1
DTNx

j) Determine B such that Bx = 0 is equivalent to Nx = Dr.

Using the result for r we obtain:

Nx = Dr

Nx = D
(
DTD

)−1
DTNx

Nx−D
(
DTD

)−1
DTNx = 0(

I −D
(
DTD

)−1
DT
)
Nx = 0

⇒ B = I −D
(
DTD

)−1
DT

k) Determine A such that Ax ≤ z describes the joint capacity constraint.

We are looking for A such that

A



x11
...

x17
x21

...
x27


=

x11 + x21
...

x17 + x27

 ,

and therefore A = [I7 I7] where I7 denotes a 7× 7 unit matrix.

l) Determine f such that fTx = r1 + r2.

r1 + r2 = 1Tr

= 1T
(
DTD

)−1
DTNx

⇒ fT = 1T
(
DTD

)−1
DTN

⇒ f = NTD
(
DTD

)−T
1

m) State the final problem and solve it in Matlab.
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min
x
−fTx s. t. Bx = 0,

Ax ≤ z,

x ≥ 0.

A Matlab script that finds an optimal solution to that problem is found in the git repository. Note that the script
finds just one of an infinite number of possible solutions since the optimization problem does not specify how
the sum rate r should be achieved. There is no constraint that demands an equal contribution of r1 and r2.

n) Sketch the achievable rate region.

The blue region marks the feasible set of solutions (r1, r2). The thick blue line marks the set of optimal
solutions that maximize r = r1 + r2:
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1
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2

3
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Each transmitter (nodes 1 and 2) may transmit at rates ri = 2 without having any influence on the transmit
rate of the other source, i.e., without utilizing the shared link (3, 4). Without loss of generality let node 1
fully utilize that shared link, which allows to transmit at rate r1 = 3. The second node may still transmit at
rate r2 = 2. For 2 < r1 ≤ 3 the residual capacity on the shared link may be utilized by node 2 such that
r1 + r2 = 5.

The solution found by Matlab is some point along the line of optimal solutions, i.e., any rate vector x such that
r1 + r2 = 5.
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