Chair for Network Architectures and Services – Prof. Carle Department of Computer Science <u>TU München</u>

Master Course Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle
Oliver Gasser
Lukas Schwaighofer
Florian Wohlfart
Johann Schlamp

Chair for Network Architectures and Services

Department of Computer Science
Technische Universität München
http://www.net.in.tum.de

□ Oliver Gasser: gasser@net.in.tum.de

- □ Why participate in the exercises?
 - Preparation for the exam
 - 0.3 bonus
 - It's fun!!1!

Successful exercise participation

- □ 0.3 bonus for successful participation
- □ Successfully solve each exercise sheet
 - **=** >= 50 %
- Each subtask gives max 2 points
 - 2 points: initial submission was good, no correction
 - 1 point: initial submission was not completely correct, solution was corrected by student
 - O points: none of the above

Submission schedule

- Every 2 weeks a new exercise
- 2 submissions per exercise
 - Initial submission
 - Corrected submission
- Example: Exercise 1
 - Released: October 29 (Tuesday)
 - Initial submission: November 4 (Monday)
 - Draft solution & discussion: November 5 (Tuesday)
 - Corrected submission: November 7 (Thursday)

Submission process

- Submission via SVN
- □ svn co https://projects.net.in.tum.de/svn-tum/mccnw13
- Authentication via MWN ID and password
 - E.g. ca42ffe
- □ mccnw13/
 - pub/
 - s_ca42ffe/
 - submission1/
 - corr_submission1/

<- public files

- <- initial submission
 - <- corrected submission

Correcting submissions

- □ YOU correct your own submissions
- Sample question:
 - How long are addresses for IPv4 and IPv6?
- Initial submission:
 - IPv4 addresses are 32 bits long, IPv6 addresses have 132 bits.
- □ Corrected submission:
 - IPv4 addresses are 32 bits long, IPv6 addresses have 132 bits. IPv6 addresses have 128 bits.

First exercise sheet

- Available now
- □ Layer 2
- Ethernet, Wireshark
- Spanning Tree Protocol
- Additional material available in SVN pub/
 - from "Computer Networks" by Peterson and Davie, 5e