

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Master Course Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Node Forwarding Performance

Packets queue in router / switch buffers

- Packet arrival rate to link exceeds output link capacity
- Packets queue, wait for turn

Background: Sources of Packet Delay

- 1. Processing delay:
 - Sending: prepare data for being transmitted
 - Receiving: interrupt handling
- 2. Queueing delay
 - time waiting at output link for transmission

- 3. Transmission delay:
- L= packet length (bits)
- R= link data rate (bits/sec)
- time to send bits into link = L/R
- 4. Propagation delay:
- d = physical link distance
- s = propagation speed in medium (~2x10⁸ m/sec)
- propagation delay = d/s

- \Box d_{proc} = processing delay
 - typically small a few microseconds (µs) or less
- \Box d_{queue} = queuing delay
 - depends on congestion may be large
- \Box d_{trans} = transmission delay
 - = L/R, significant for low-speed links
- \Box d_{prop} = propagation delay
 - a few microseconds to hundreds of msecs

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

Impact Analysis: Advances in Network Technology

data rate	trans. delay (1bit)	phys. length (1bit)	trans. delay (1kbyte)	phys. length (1kbyte)
1 Mbit/s	1 us	200 m	8 ms	1600 km
10 Mbit/s	100 ns	20 m	0,8 ms	160 km
100 Mbit/s	10 ns	2 m	80 us	16 km
1 Gbit/s	1 ns	0,2 m	8 us	1600 m
10 Gbit/s	100 ps	0,02 m	0,8 us	160 m
100 Gbit/s	10 ps	0,002 m	80 ns	16 m

Assessment

- Transmission delay becomes less important
 ⇒ over time; in the core of the network
- Distance becomes more important
 matters for communication beyond data center
- Network adapter latency less important
 latency of communication software becomes important

Propagation speed: 2x10⁸ m/sec

t = 1 / R = 5000 / 1 Chit/s = 5 us

Transmission of packet with 625 byte (= 5000 bit):

I- L/IX-300	0710003 - 30	10		
distance	propagation delay	equivalent transmission delay (625 byte)	CPU cycles per packet (1 GHz)	CPU cycles per byte (1 GHz)
100 m	500 ns	10 Gbit/s	500	<1
1 km	5 us	1 Gbit/s	5.000	8
10 km	50 us	100 Mbit/s	50.000	80
100 km	500 us	10 Mbit/s		800
1.000 km	5 ms	1 Mbit/s		8.000
10.000 km	50 ms	100 Kbit/s		80.000

□ Suggestion for home exercise: plot graphs

- Transmission delay:
 L=packet length (bits)
 R=link bandwidth (bps)
 time to transmit packet of L bits on to link with R bps = L/R
- Store and forward: entire packet must arrive at router before it can be transmitted on next link:
- \Box Total transmission delay = 3L/R

Example: Large Message L

Store-and-Forward:

- □ L = 7.5 Mbit
- □ R = 1.5 Mbit/s
- □ Transmission delay = 15 s

Circuit Switching:

- □ L = 7.5 Mbit
- □ R = 1.5 Mbit/s
- \Box Transmission delay = 5 s

Packet Switching: Message Segmenting

Now break up the message into 5000 packets

- □ Each packet 1,500 bits
- 1 msec to transmit packet on one link
- Pipelining: each link works in parallel
- Delay reduced from 15 sec to 5.002 sec (as good as circuit switched)
- Advantages over circuit switching?
- Drawbacks (of packet vs. Message)

□ What is the role of header lengths?

□ What is the role of header compression?

□ What is the cost of tunneling?

□ What are the benefits of overprovisioning?

Can you "imagine" a visualisation of packets being transmitted over different types of links?

- □ Why/when is circuit switching expensive?
- □ Why/when is packet switching cheap?
- Is best effort packet switching suitable to carry voice communication?
- What happens if we introduce
 "better than best effort" service?
- How can we charge fairly for Internet services: by time, by volume, or flat?

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Connection-Oriented Network Architectures

Principles of connection oriented networks

Representative connection-oriented technology: ATM

Virtual Private Networks (VPNs)

Connection-Oriented Networks - Connection Setup

- In addition to routing and forwarding, *connection-setup* is 3rd important function in some network architectures:
 - X.25, Frame Relay, ATM, MPLS, GMPLS
- Before datagrams flow, two end hosts and intervening switches establish virtual connection
 - Switches get involved in connection establishment
- □ Network layer vs. transport layer connection-oriented service:
 - Network layer: connection between hosts, or routers
 - Transport layer: connection between two processes

Connection-orientend vs. Connection-less Network Service

- Datagram network provides connection-less network-layer service (example: Internet)
- Virtual Circuit network provides connection-oriented network-layer service (example: MPLS network)
- □ Analogous to the transport-layer services, but:
 - service: host-to-host, or edge-node-to-edge-node
 - no choice: typically, network provides one or the other
 - implementation: typically in the network core

"source-to-destination path behaves much like telephone circuit"

- network actions along source-to-destination path
- performance-wise (this is not a necessary property)
- □ Two-stage process
 - Connection setup before data can flow to establish "connection state" in switches between source and destination hosts
 - Data transfer
- □ Each packet carries VC Identifier (VCI), not destination host address
- Every switch on source-to-destination path maintains "state" for each passing connection
- Link, switch resources (bandwidth, buffers) may be *allocated* to VC (dedicated resources = predictable service)

Alternative approaches to establish connection state

- Network administrator configures state
 - Virtual circuit is permanent (PVC)
 - Network administrator can delete PVC
 - Is long-lived or administratively configured VC
- A host can send messages into the network to cause the state to be established
 - This is referred as signalling and the resulting virtual circuit is said to be switched (SVC)
 - A host may set up and delete such a VC dynamically without involvement of a network administrator

Signaling

Used to setup, maintain, and teardown VC
Used in X.25, Frame-Relay, ATM, MPLS, GMPLS

Q: What *service model* for "channel" (Virtual Circuit) transporting datagrams from sender to receiver?

- Virtual circuits can have specific quality of service (QoS)
- Network can give guarantee ⇒ switches reserve resources
- Example services for individual datagrams:
- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

- Example services for a flow of datagrams:
- □ in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Virtual Circuit Implementation

A VC consists of:

- 1. path from source to destination
- 2. "labels": VC numbers (virtual circuit identifiers VCIs), one number for each link along path
- 3. entries in forwarding tables in switches along path
- Packet belonging to VC carries VC number (rather than destination address)
 - destination address is used in connection setup message of signaling protocol)
- □ VC number can be changed on each link "label swapping"
 - If VCI is changed, new VCI comes from forwarding table
 - VCI is not a globally unique identifier for the connection; rather it has significance only on a given link

Virtual Circuit Implementation

- The combination of VCI of the packets received at the switch and the interface on which they are received uniquely identifies the virtual connection
- When a new connection is created, a new VCI for that connection must be assigned on each link of the connection
 - The chosen VCI on a given link must not be in use on that link by some existing connection

VC node maintain connection state information!

- Connection-oriented packet-switched network
- □ Packets are called cells
 - 5 byte header + 48 byte payload
- □ Fixed length packets are easier to switch in hardware
 - Simpler to design
 - Enables parallelism
- □ Short packets have low transmission delay
 - No queuing of short packets behind long packets currently being transmitted
 - Low per-switch delays possible

ATM Services: transport cells across ATM network

- □ very different services than IP network layer
- □ possible Quality of Service (QoS) Guarantees

	Network	Service	Guarantee				Congestion	
Ar	chitecture	Model	Bandwidth	Loss	Order	Timing	feedback	
Internet best effort no		none	no	no	no	no (inferred via loss)		
	ATM	CBR	constant rate	yes	yes	yes	no congestion	
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion	
	ATM	ABR	guaranteed minimum	no	yes	no	yes	
	ATM	UBR	none	no	yes	no	no	
		CBR: Constant Bit Rate VBR: Variable Bit Rate		ABR: Arbitrary Bit Rate UBR: Unspecified Bit Rate				
	IN2097 - Master Co	ourse Computer Ne	tworks, WS 2013/20)14				

IN2097 - Master Course Computer Networks, WS 2013/2014

□ ATM Cell

Virtual Path Identifiers and Virtual Channel Identifiers

- User-Network Interface (UNI)
 - Host-to-switch format
 - GFC: Generic Flow Control
 - VCI: Virtual Circuit Identifier
 - Type: management, congestion control
 - CLP: Cell Loss Priority
 - HEC: Header Error Check (CRC-8)

4	8	16	3	1	8	384 (48 bytes)
GFC	VPI	VCI	Туре	CLP	HEC (CRC-8)	Payload

- Network-Network Interface (NNI)
 - Switch-to-switch format
 - GFC becomes part of VPI field

- □ Advantages of ATM VC approach:
 - QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)
- Drawbacks of ATM VC approach:
 - Inefficient support of datagram traffic
 - one PVC between each source/destination pair does not scale
 - SVC introduces call setup latency, processing overhead for short lived connections

Physical Medium Dependent (PMD) sublayer

- SONET/SDH: transmission frame structure (like a container carrying bits);
 - bit synchronization;
 - several speeds:
 - OC3: 155.52 Mbps
 - OC12: 622.08 Mbps
 - OC48: 2.45 Gbps
 - OC192: 9.6 Gbps

other physical layers also possible

Classic IP only

- 3 "networks"
 (e.g., LAN segments)
- MAC (802.3) and IP addresses

IP over ATM

- replace "network" (e.g., LAN segment) with ATM network
- ATM addresses,IP addresses

Datagram Journey in IP-over-ATM Network

□ At source host:

- IP layer maps between IP, ATM destination address (using ARP)
- passes datagram to AAL5
- AAL5 encapsulates data, segments cells, passes to ATM layer
- ATM network: moves cell along VC to destination
- □ At destination host:
 - AAL5 reassembles cells into original datagram
 - if CRC OK, datagram is passed to IP

Issues:

- IP datagrams into ATM AAL5 PDUs
- from IP addresses to ATM addresses
 - just like IP addresses to 802.3 MAC addresses!
 - ARP server

- CPCS-PDU payload length
 - can be up to 65,535 octets
 - must use PAD (0 to 47 octets) to align CPCS-PDU length to a multiple of 48 octets
- □ Fields in trailer (CPCS-UU and CPI not relevant in this course)

PAD	Padding
CPCS-UU	CPCS User-to-User Indicator
CPI	Common Part Indicator
Length	CPCS-PDU Payload Length
CRC-32	Cyclic Redundancy Chuck

	0 - 47	1	1	2	4
CPCS-PDU Payload	PAD	CPCS UU	CPI	Length	CRC-32

Classical IP and ARP over ATM (CLIP)

- CLIP: one of several approaches for IP services supported by ATM network
- □ RFC 2225: Classical IP and ARP over ATM
- □ Encapsulation of IP packets into AAL PDUs
- □ Support for large MTU sizes
- □ CLIP uses an ATMARP server in a Logical IP Subnet (LIS)

□ RFC 2225: Classical IP and ARP over ATM

ATMARP Server Operational Requirements

- ATMARP server, after completion of a new VC, will transmit an InATMARP request to determine the IP address of client
- InATMARP reply from client contains information necessary for ATMARP Server to build its ATMARP table
- This table used to reply to ATMARP requests
- InATMARP is the same protocol as the original InARP protocol presented in RFC 1293 but applied to ATM networks: Discover the protocol address of a station associated with a virtual circuit.
- RFC 1293: T. Bradely and C. Brown, "Inverse Address Resolution Protocol", January 1992
 - solution designed for Frame Relay and similar networks

Classical IP and ARP over ATM (CLIP)

- □ RFC 2225: Classical IP and ARP over ATM
- ATMARP Client Operational Requirements
 - 1. Initiate the VC connection to ATMARP server for transmitting and receiving ATMARP and InATMARP packets
 - 2. Respond to ARP_REQUEST and InARP_REQUEST packets received on any VC appropriately
 - Generate and transmit ARP_REQUEST packets to ATMARP server and process ARP_REPLY appropriately.
 ARP_REPLY packets should be used to build/refresh own client ATMARP table entries.
 - Generate and transmit InARP_REQUEST packets as needed and process InARP_REPLY packets appropriately. InARP_REPLY packets should be used to build/refresh its own client ATMARP table entries.
 - 5. Provide ATMARP table aging function to remove own old client ATMARP tables entries after a period of time.

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Virtual Private Networks

- VPNs

Networks perceived as being private networks by customers using them, but built over shared infrastructure owned by a service provider (SP)

- □ Service provider infrastructure:
 - backbone
 - provider edge devices
- □ Customer:
 - customer edge devices (communicating over shared backbone)

- Privacy
- Security
- □ Works well with mobility (looks like you are always at home)
- Cost
 - many forms of newer VPNs are cheaper than leased line VPNs
 - ability to share at lower layers even though logically separate means lower cost
 - exploit multiple paths, redundancy, fault-recovery in lower layers
 - need isolation mechanisms to ensure resources shared appropriately
- □ Abstraction and manageability
 - all machines with addresses that are "in" are trusted no matter where they are

□ all VPN functions implemented by customer

- □ Leased-line VPN
 - configuration costs and maintenance by service provider: long time to set up, manpower
- □ CPE-based VPN
 - expertise by customer to acquire, configure, manage VPN
- Network-based VPN
 - Customer routers connect to service provider routers
 - Service provider routers maintain separate (independent) IP contexts for each VPN
 - sites can use private addressing
 - traffic from one VPN cannot be injected into another VPN

Network-based Layer 3 VPNs

remain separate in PE routers. PE routers receive IP datagrams from CE routers. Each route within a VPN is assigned a MPLS label, which is distributed by BGP. c.f. RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs)