

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Master Course Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle

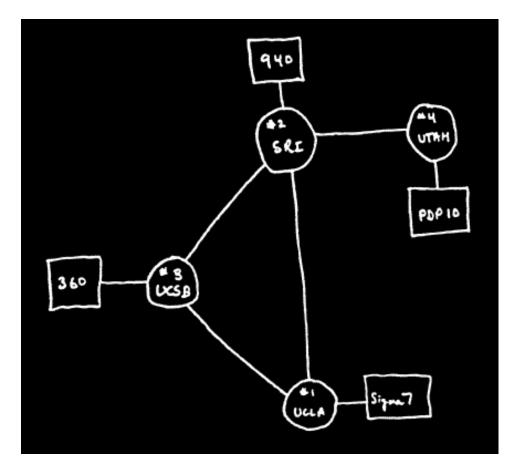
Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

Packet Networks

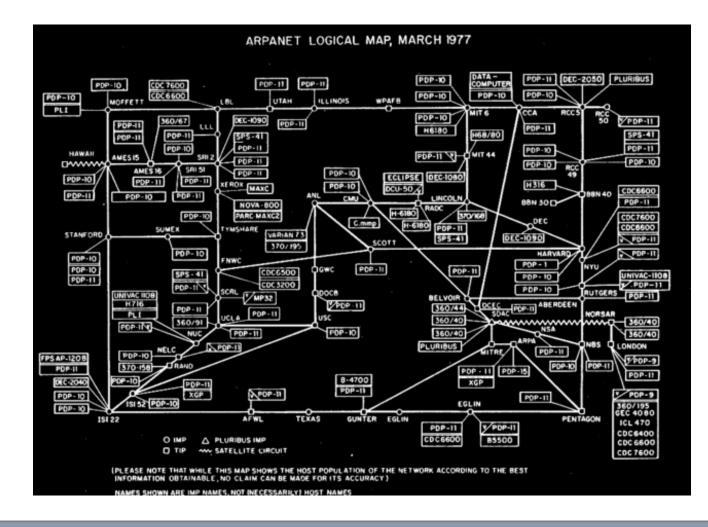
Link Layer

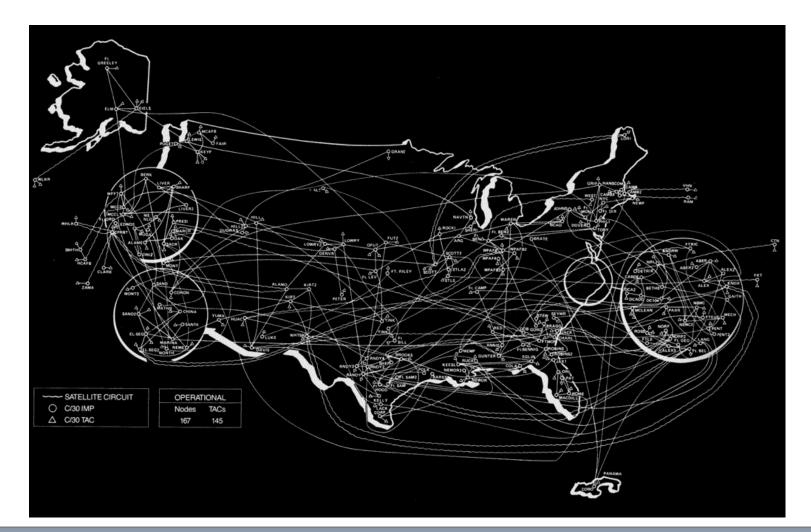
Internet Protocol

The Internet

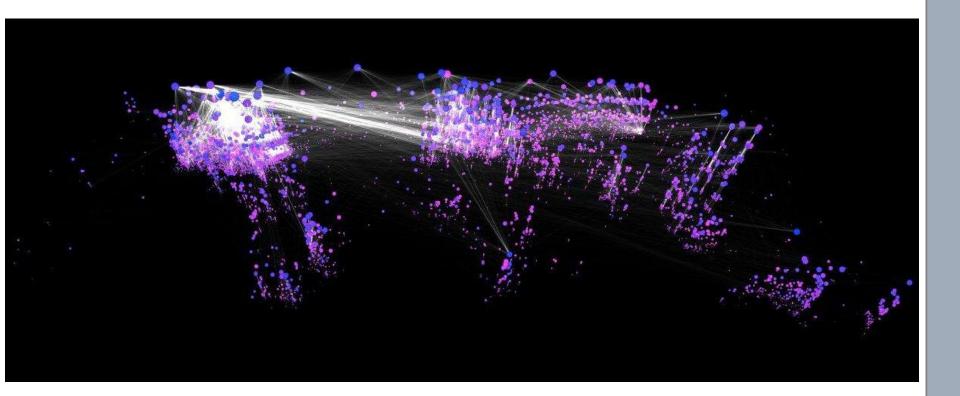

- Acted as Internet chief protocol architect
- Chaired the Internet Activities Board
- Attends meeting of EU Network of Excellence on InterNet Science (EINS) on 25 and 26 November, 2013

- Doctoral Student: Radia Perlman
 - Worked with Digital Equipment, now Intel
 - Author of book Interconnections: Bridges, Routers, Switches, and Internetworking Protocols (2 ed.) Addison-Wesley, 1999



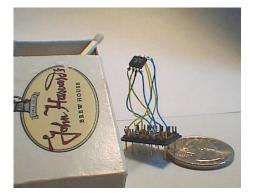

Internet Structure

IN2097 - Master Course Computer Networks, WS 2013/2014


Internet Structure

IN2097 - Master Course Computer Networks, WS 2013/2014

Internet Structure



IN2097 - Master Course Computer Networks, WS 2013/2014

IP picture frame http://www.ceiva.com/ Free invitations for guests to send photos

World's smallest web server in 1999

Web-enabled toaster + weather forecaster

Internet phones

⇒ Who knows other cool internet appliances?

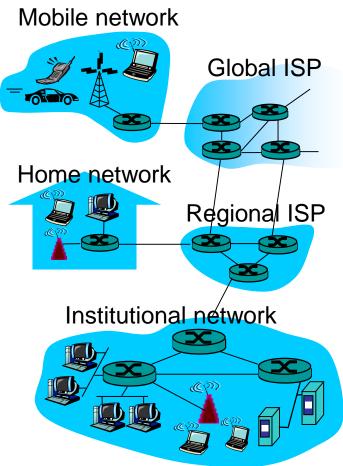
server

wireless

laptop

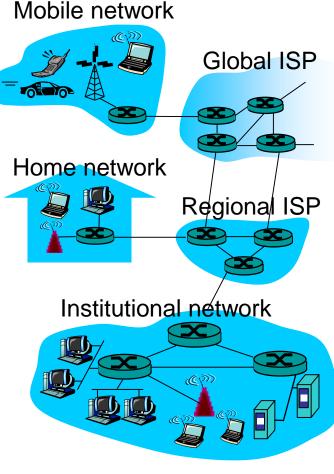
cellular

 millions of connected computing devices: hosts = end systems


> running *network app*s

communication links

links


- fiber, copper, radio, satellite
- transmission rate = bandwidth
- router
- routers: forward packets (chunks of data)

- Protocols control sending, receiving of messages
 - e.g., TCP, IP, HTTP, Skype, Ethernet Mo
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force
 - IANA: Internet Assigned Numbers Authority
- Communication infrastructure enables distributed applications:
 - Web, VoIP, email, games, e-commerce, file sharing
- Communication services provided to applications:
 - reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery

- □ All or some of the following:
 - addressing/naming: manage identifiers
 - fragmentation: divide large message into smaller chunks to fit lower layer
 - re-sequencing: reorder out-of-sequence messages
 - error control: detection and correction of errors and losses
 - retransmission; forward error correction
 - flow control: avoid flooding/overwhelming of slower receiver
 - congestion control: avoid flooding of slower network nodes/links
 - resource allocation: administer bandwidth, buffers among contenders
 - multiplexing: combine several higher-layer sessions into one "channel"
 - compression: reduce data rate by encoding
 - privacy, authentication: security policy (others are listening)

- send side layer N takes protocol data (PDU) from layer N +1, adds header, and passed to N-1
- receive side layer N takes PDU from N –, strips N headers, processes and passes rest to N + 1

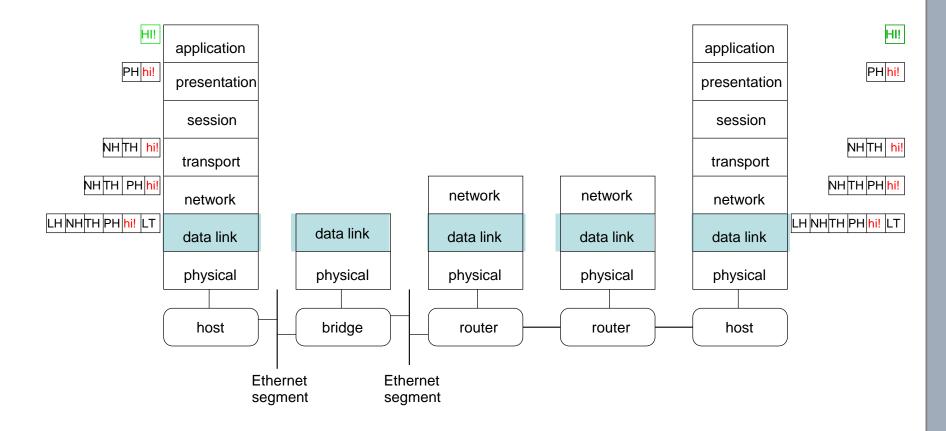
Observation

- Certain protocol mechanisms of layer 3 also used in layer 2
- Same applies to other layers

- True definition of a layer n protocol (by Radia Perlman)
 - Anything designed by a committee whose charter is to design a layer n protocol

Layering Considered Harmful?

- Benefits of layering
 - need layers to manage complexity
 - don't want to reinvent Ethernet-specific protocol for each application
 - common functionality
 - "ideal" network
- □ but:
 - layer N may duplicate lower layer functionality (e.g. error recovery)
 - different layers may need same information
 - layer N may need to peek into layer N+x

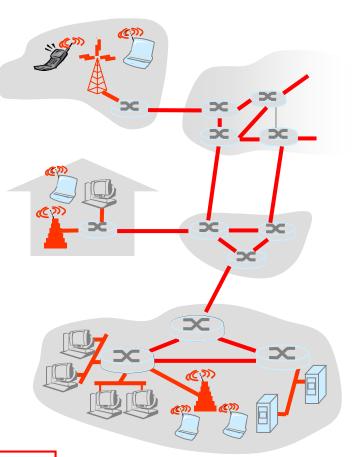


Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

 Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

PR	SFD	DA	SA	Type/Len	Data	PAD	FCS
56 bit	(8 bit) (16/48 bit)	(16/48 bit)	(16 bit)	(≤12.000 bit)	(0-368 bit)	(32 bit)
PR Preamble (1010101010) SFD Start-of-frame Delimiter (10101011)							
DA SA Type Len Data PAD FCS	Destination Address Source Address Protocol type of payload (e.g. IP, ARP,) - in Ethernet II frame format Length of payload in Byte - in Ethernet I and IEEE 802.3 frame format Data Padding (if data length is less than 46 byte) Frame Check Sequence: CRC32						

For Comparison: IPv4 Datagram


- □ Could Ethernet scale up to a very large (global) network?
- □ Scalability problems:
 - Flat addresses
 - No hop count (so loops may lead to desaster)
 - Missing additional protocols (such as ICMP)
 - Perhaps missing features (such as fragmentation, error messages, congestion feedback)

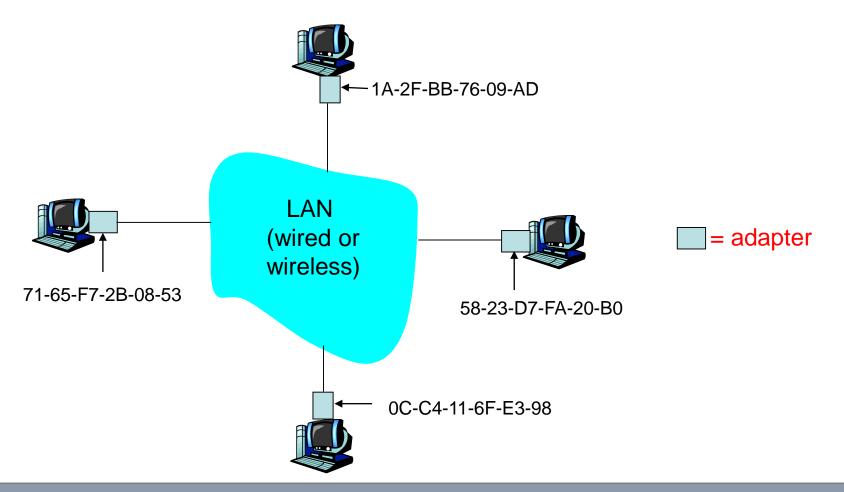
Some terminology:

- Hosts and routers are nodes
- Communication channels that connect adjacent nodes along communication path are links
 - wired links
 - wireless links
 - LANs
- Layer-2 packet is a frame, encapsulates Layer 3 packet datagram

data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

□ Framing, link access:

- encapsulate datagram into frame, adding header, trailer
- channel access if shared medium
- "MAC" addresses used in frame headers to identify source and destination node
 - different from IP address!
- □ Reliable delivery between adjacent nodes
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and end-end reliability?


- □ Flow control:
 - pacing between adjacent sending and receiving nodes
- Error detection:
 - errors caused by signal attenuation, noise
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- Error correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- Half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

- □ 32-bit IP address:
 - network-layer address
 - used to get datagram to destination IP subnet
- □ MAC (or LAN or physical or Ethernet) address:
 - function: transmit frame from one interface to another physically-connected interface (same network)
 - 48 bit MAC address (for most LANs)
 - burned in network adapter ROM, or software settable

□ Each adapter on LAN has unique LAN address

IN2097 - Master Course Computer Networks, WS 2013/2014

- □ Transmission of addresses over the wire
 - Canonical form (also known as "LSB format" and "Ethernet format")
 First bit of each byte on the wire maps to least significant (i.e., right-most) bit of each byte in memory (c.f. RFC 2469)
 - Token Ring (IEEE 802.5) and FDDI (IEEE 802.6) do not use canonical form, but instead: most-significant bit first

 Human-friendly notation for MAC addresses: six groups of two hex digits, separated by "-", in transmission order, e.g. 0C-C4-11-6F-E3-98

- Bit-reversed representation of MAC address
 - corresponds to convention of transmitting *least-significant-bit* of each byte *first* in serial data communications
- Multicast and broadcast
 - Broadcast address: FF-FF-FF-FF-FF
 - Multicast addr.: least-significant bit of first byte has value "1"
- Organisation Unique Identifier (OUI): company_id
 - manufacturer purchases portion of MAC address space from IEEE Registration Authority (assuring uniqueness)
 - OUI: First 3 byte of address in transmission order
 - OUI enforced: 2nd least significant bit has value "0", otherwise: locally administered MAC address
- □ MAC flat address → portability
 - can move LAN card from one LAN to another
- □ IP hierarchical address NOT portable
 - address depends on IP subnet to which node is attached