

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Master Course Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

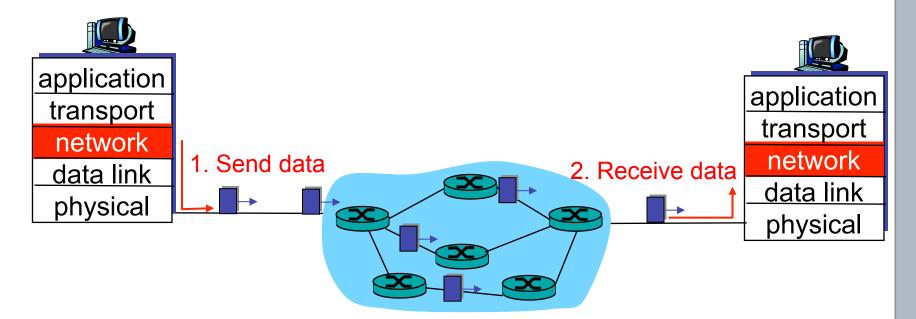
Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

□ Lectures

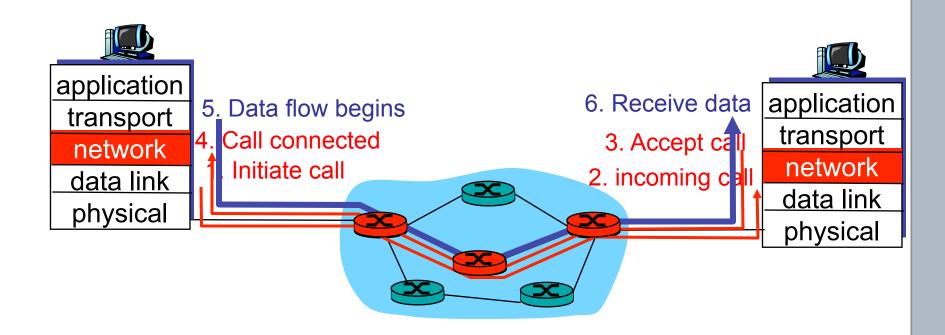
- No lecture this week Friday 18.1.2013
- \Rightarrow time for you to work on the project

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Connection-Oriented Networking


- Network Service Model
- Virtual Circuits
 - Addresses vs. labels
 - Address lookup vs. label lookup
- Connection / flow state in nodes
- □ Quality-of-Service (QoS) properties for flows

□ no call setup at network layer


□ routers: no state about end-to-end connections

- no network-level concept of "connection"
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths

Virtual Circuits: Signaling Protocols

used to setup, maintain teardown VC
 used in X.25, frame-relay, ATM

Datagram or VC network: why?

Internet (datagram)

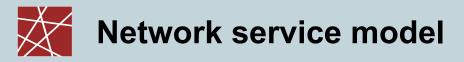
□ data exchange among computers

 "elastic" service, no strict timing req.

"smart" end systems (computers)

- can adapt, perform control, error recovery
- simple inside network, complexity at "edge"

many link types


- different characteristics
- uniform service difficult

ATM (VC)

evolved from telephony

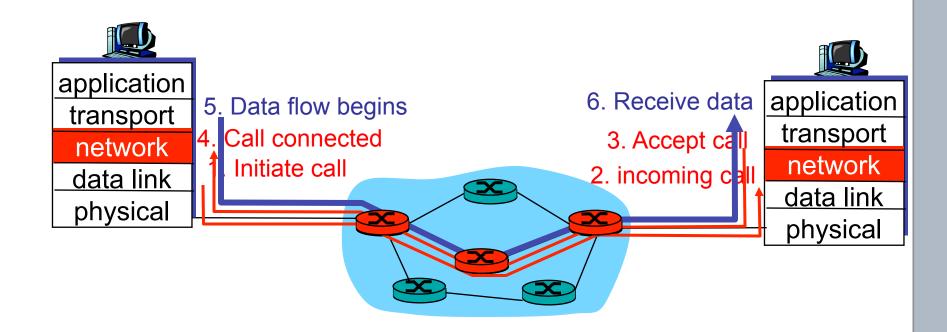
□ human conversation:

- strict timing, reliability requirements
- need for guaranteed service
- □ "dumb" end systems
 - telephones
 - complexity inside network

Q: What *service model* for "channel" transporting datagrams from sender to receiver?

- Example services for individual datagrams:
- guaranteed delivery
- guaranteed delivery with less than 40 msec delay
- Example services for a flow of datagrams:
- □ in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network layer service models


Network	Service	Guarantees ?				Congestion
Architecture	Model	Bandwidth	Loss	Order	Timing	feedback
Internet	best effort	none	no	no	no	no (inferred via loss)
ATM	CBR	constant rate	yes	yes	yes	no congestion
ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
ATM	ABR	guaranteed minimum	no	yes	no	yes
ATM	UBR	none	no	yes	no	no

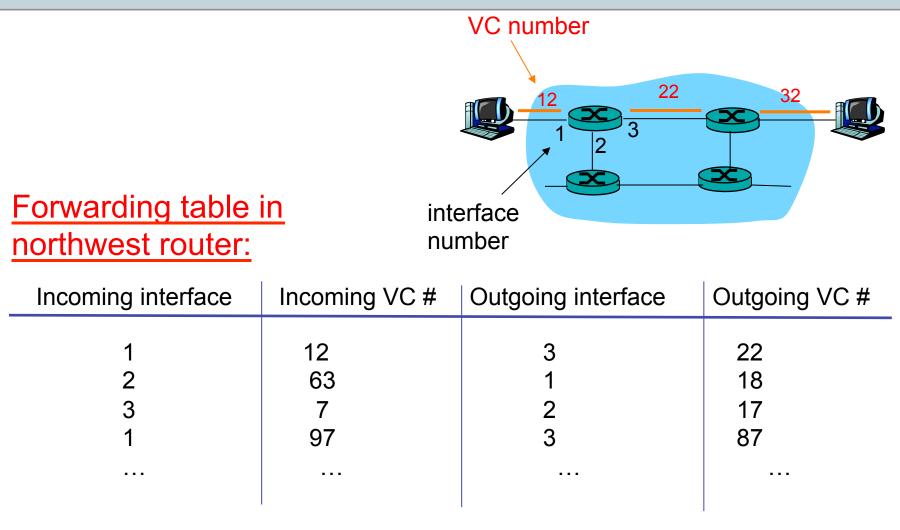
Connection-Oriented Networks - Connection Setup

- in addition to routing and forwarding, *connection-setup* is 3rd important function in some network architectures:
 - ATM, frame relay, X.25
- before datagrams flow, two end hosts and intervening switches/ routers establish virtual connection
 - switches/routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening switches/routers in case of VCs)
 - transport: between two processes

Virtual circuits: signaling protocols

used to setup, maintain teardown VC
 used in ATM, frame-relay, X.25
 not used in today's Internet

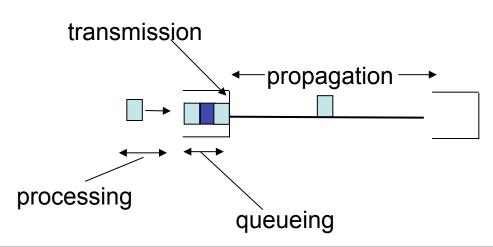
Virtual circuits


'source-to-destination path behaves much like telephone circuit"

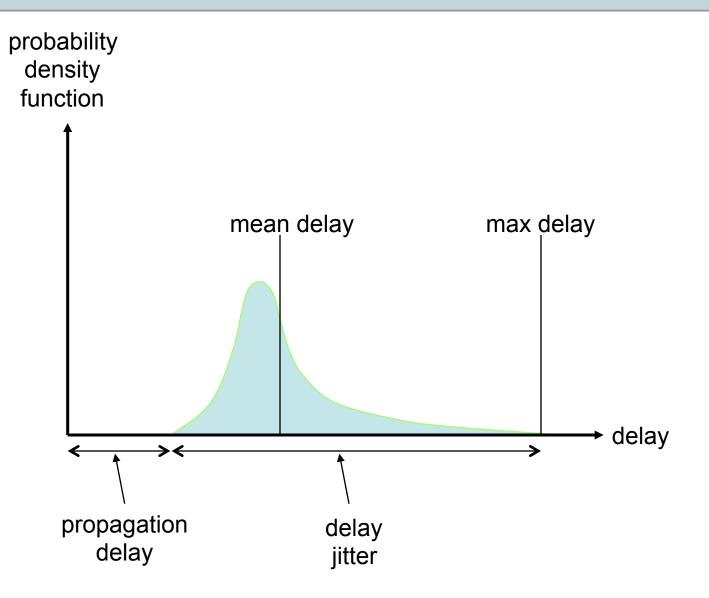
- performance-wise
- network actions along source-to-destination path
- □ call setup, teardown for each call *before* data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-to-destination path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be *allocated* to VC (dedicated resources = predictable service)

- □ VC consists of:
 - path from source to destination
 - VC numbers, one number for each link along path
 - entries in forwarding tables in routers along path
- packet belonging to VC carries VC number (rather than destination address)
- □ VC number can be changed on each link
 - New VC number comes from forwarding table

Routers maintain connection state information!


state: information *stored* in network nodes by network protocols

- □ stored in multiple nodes
- □ often associated with end-system generated call or session
- □ updated when network "conditions" change
- □ examples:
 - ATM switches maintain lists of VCs: bandwidth allocations, VCI/VPI input-output mappings
 - RSVP routers maintain lists of upstream sender IDs, downstream receiver reservations


QoS: Sources of packet delay

- 1. Processing delay:
 - Sending: prepare data for being transmitted
 - Receiving: interrupt handling
- 2. Queueing delay
 - time waiting at output link for transmission

- 3. Transmission delay:
- L=packet length (bits)
- R=link bandwidth (bps)
- time to send bits into link = L/R
- 4. Propagation delay:
- d = length of physical link
- s = propagation speed in medium (~2x10⁸ m/sec)
- propagation delay = d/s

- Resource reservation for flows
 - routing at connection set-up
 - resource allocation (buffer, bandwidth, CPU)
 - Connection admission control
 - flow policing / shaping (e.g. average rate, burst size limits)
 - buffer bounds
 - bandwidth allocation by scheduling
 - packet size bounds

⇒QoS guarantees possible (latency bounds, ...)

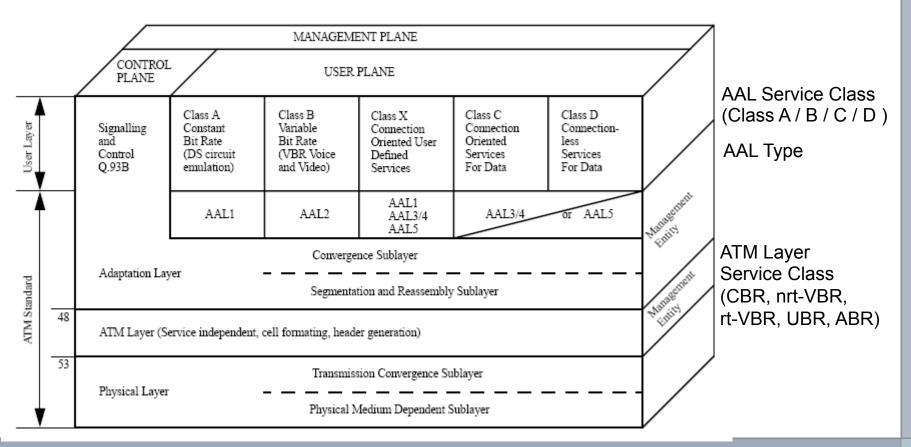
Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Link virtualization: ATM

- □ Broadband ISDN (1990)
 - Worldwide consistently build high-performance network
 - Transmission of data, audio, video
 - Standardization via ITU (CCITT)
- ATM (Asynchronous Transfer Mode) was selected as the base technology for B-ISDN
- □ ATM is part of the ITU specification of B-ISDN
- Additional specifications have been published by the ATM Forum

- □ ATM: Asynchronous Transfer Mode
- Based on standardized protocols
- Integrated technology for multiple services
 - Data
 - Speech / Audio
 - Video
- Usable in LAN and WAN areas
- Highly scalable
- Support for different connection qualities
- Employment of asynchronous time multiplex technologies for flexibility, supporting various transmission bandwidths

- □ Data packets of fixed size, named cells
 - ATM cells have a length of 53 byte (5 byte header, 48 byte payload)
 - This allows a high speed processing including massive parallel hardware operations
 - At a payload length of 48 byte, the packetisation delay (time to fill a cell with 64 Kbit/s digitized voice samples)
- Connection oriented
 - point-to-point
 - point-to-multipoint
- Connections may have a fixed (reserved) bandwidth and guaranteed quality of service characteristics
 - Centralized coordination of permissions to send
 - Dedicated bandwidth


- ITU-T: International Telecommunications Union Telecommunications Standards Section (formerly CCITT) http://www.itu.ch/
- □ ATM-Forum

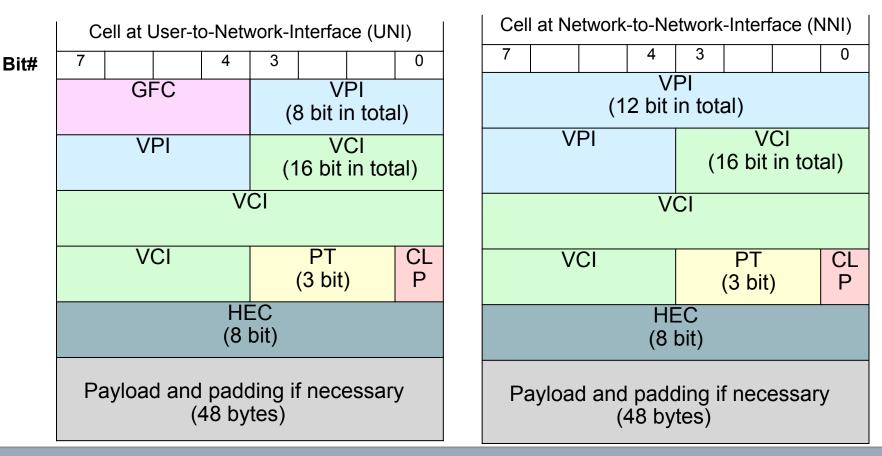
Development of industry standards allowing a fest development of new products http://www.atmforum.com/

- ETSI: European Telecommunications Standards Institute http://www.etsi.fr/
- ANSI: American National Standards Institute http://web.ansi.org/

- □ User plane: information flow between the layers
- Control plane: connection setup, maintenance and termination
- Management plane: meta-signaling and OAM (Operation and Maintenance) information flow

IN2097 - Master Course Computer Networks, WS 2012/2013

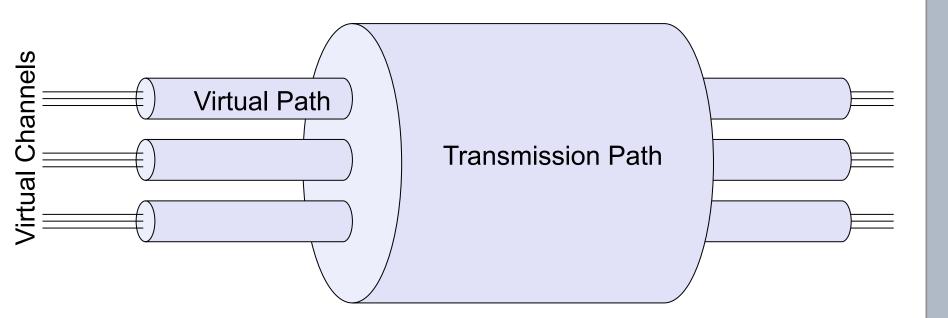
- Physical layer
 - maps ATM cells received from the ATM layer to the bit stream required by the physical layer
 - PDH (Plesiochronous Digital Hierarchy)
 - Europe: 2,048 / 8,448 / 34,368 / 139,264 Mbit/s
 - USA: 1,544 / 6,312 / 44,736 / 254,176 Mbit/s
 - SONET (Synchronous Optical NETwork) USA SDH (Synchronous Digital Hierarchy) - Europe
 - OC-3/STM-1 155,520 Mbit/s
 - OC-12/STM-4 622,080 Mbit/s
 - OC-48/STM-16 2,48832 Gbit/s
 - OC-192/STM-64 9,953280 Gbit/s
 - OC-768/STM-256 39,813120 Gbit/s



- □ Transport of ATM cells between the communication end points
- Tasks of the user and control plane
 - Connection setup, multiplexing/de-multiplexing and maintaining ATM connections
 - Generation of ATM cell headers (exception: HEC)
 - Negotiation of QoS (Quality of Service) parameters
 - Traffic and overload control
- □ OAM cells
 - cells of the management plane
- Meta-signalling
 - initial signalling to set up signalling VCs (Virtual Channels)

□ 53 Byte

- 5 Byte Header
- 48 Byte Payload
 - small payload \Rightarrow short cell-creation delay for digitized voice
 - halfway between 32 and 64 (compromise!)

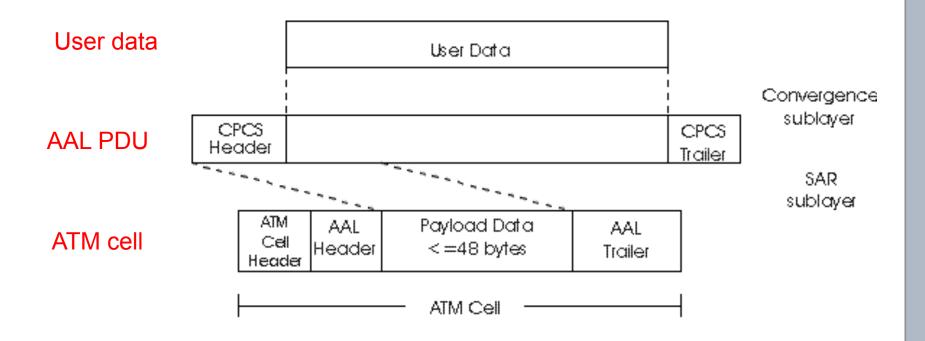

IN2097 - Master Course Computer Networks, WS 2012/2013

- □ ATM header fields
 - GFC
 - Generic Flow Control (default: set to "0000")
 - only at user-to-network interface (UNI)
 - VPI: Virtual Path Identifier
 - 8 bit at user-to-network interface
 - 12 bit at network-to-network interface (NNI)
 - VCI: Virtual Circuit Identifier 16 bit
 - PT: Payload Type
 - 1st bit: user data or management
 - 2nd bit: Explicit Forward Congestion Indication
 - 3rd bit: indicates last cell in AAL5 user data
 - CLP: Cell Loss Priority
 - CLP = 1 implies low priority cell, can be discarded
 - HEC: Header Error Checksum (CRC-8)

□ 2 Hierarchies: paths and channels

- □ Start and end at higher layer functions
- □ Have associated service parameters (e.g. cell loss ratio, latency)
- Negotiation of transmission parameters by signalling before a connection is set up (provision of QoS)
- Preservation of the transmission order
- Unidirectional or bidirectional
- Symmetric or asymmetric bandwidth
- Permanent
 - PVC: Permanent Virtual Channel
- Dynamic
 - SVC: Switched Virtual Channel
 - Signaling: connection setup and tear down (Two signalling variants specified by ATM Forum: UNI 3.1, UNI 4.0)
 - Routing Protocols (ATM-Forum: P-NNI)
 - Addressing of end points using E.164 addresses

Service: transport cells across ATM network

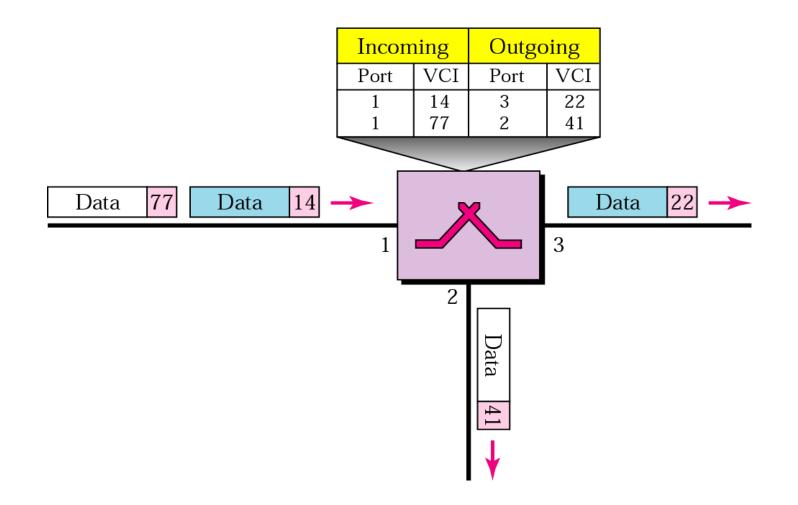

- □ analogous to IP network layer
- very different services than IP network layer
- possible Quality of Service (QoS) Guarantees

	Network	Service	Guarantee				Congestion
Architecture	Model	Bandwidth	Loss	Order	Timing	feedback	
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR CBR: Constar VBR: Variable		NOyesNOABR: Arbitrary Bit RateUBR: Unspecified Bit Rate			no

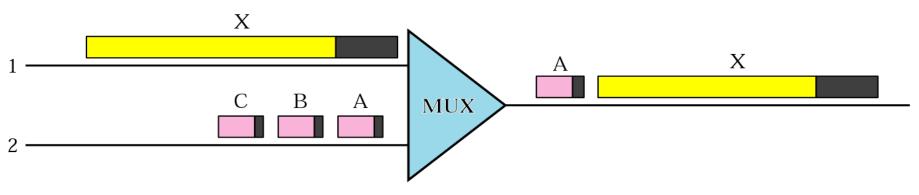
IN2097 - Master Course Computer Networks, WS 2012/2013

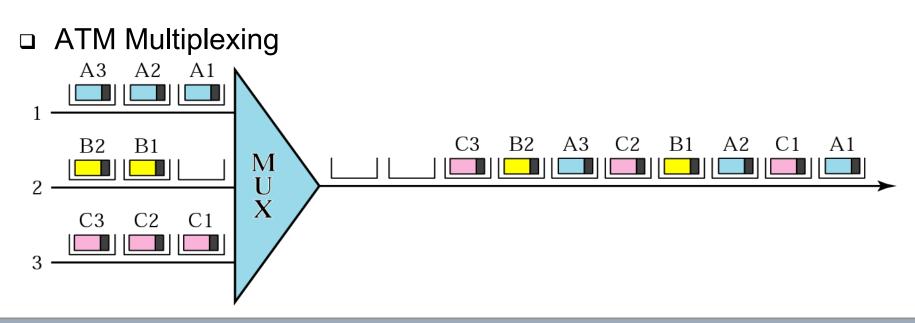
ATM Adaptation Layer (AAL)

Different versions of AAL layers, depending on ATM service class:
AAL1: for CBR (Constant Bit Rate) services, e.g. circuit emulation
AAL2: for VBR (Variable Bit Rate) services, e.g., MPEG video
AAL5: for data (e.g., IP datagrams)

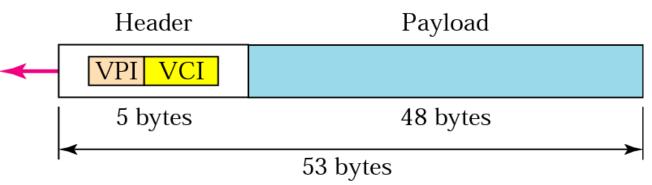


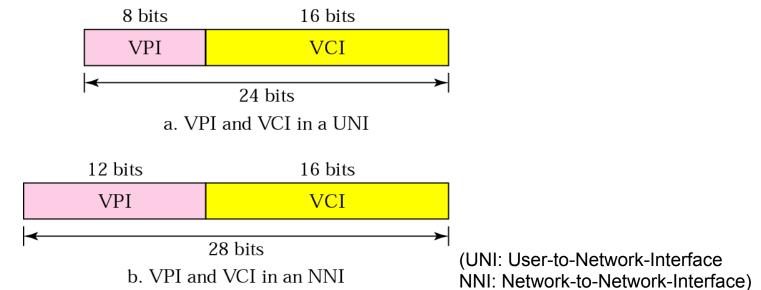
□ Advantages of ATM VC approach:

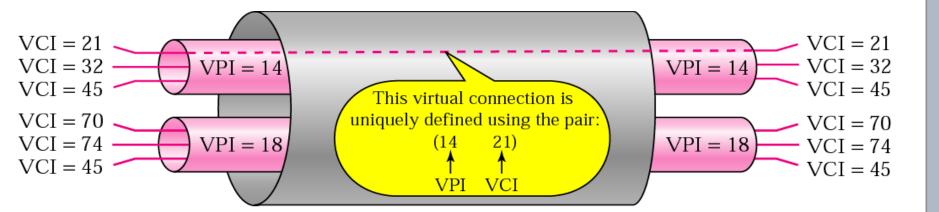

- QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)
- Low per-switch transmission latency
- □ Drawbacks of ATM VC approach:
 - Inefficient support of datagram traffic
 - one PVC between each source/destination pair does not scale
 - SVC introduces call setup latency, processing overhead for short lived connections



Multiplexing of Variable vs. Fixed Size Packets


□ Multiplexing of variable size packets




□ ATM Cell

Virtual Path Identifiers and Virtual Channel Identifiers

