

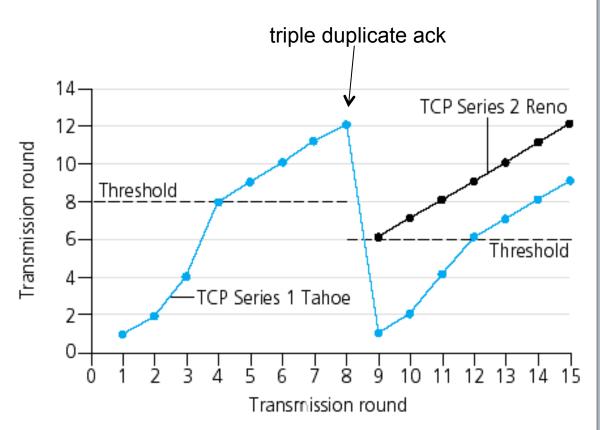
Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Master Course Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

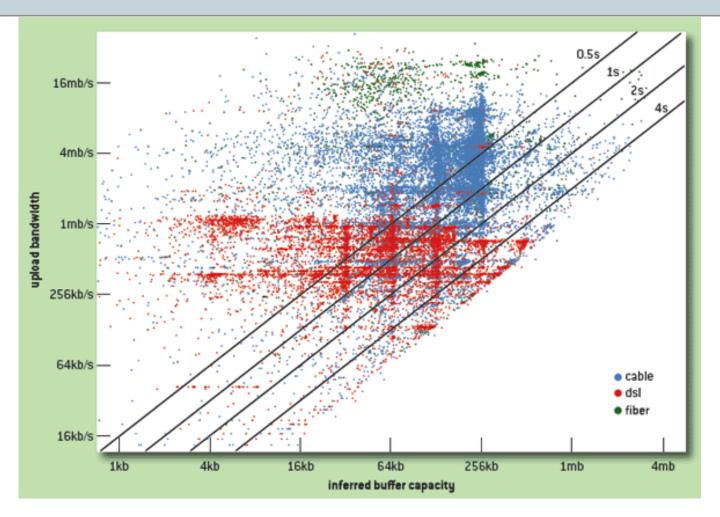
Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München


- Advanced Transport Layer Concepts
- □ Internet Protocol, The Internet

Advanced Transport Layer Concepts

- Buffer bloat
- □ TCP for high bandwidth long distance connections
- **TCP** Throughput Formula
- Overview of Deployment of TCP variants
- Detection of TCP-unfriendly Flows
- Multipath TCP

- Variable Threshold
- At loss event,
 Threshold is set to
 1/2 of CongWin just
 before loss event



- □ TCP Fast Recovery algorithm described in RFC 2581
- □ Implementation introduced 1990 in BSD Reno release
- Behaviour
 - sender only retransmits a packet
 - after a retransmit timeout has occurred
 - or after three duplicate acknowledgements have arrived triggering the Fast Retransmit algorithm.
 - a single retransmit timeout might result in the retransmission of several data packets
 - each invocation of the Fast Retransmit algorithm leads to retransmission of only a single data packet
 - problems may arrive when multiple packets are dropped from a single window

- Capacities of router queues
 - "Large queue = good: Less packet losses at bottlenecks"
 - Do you agree? What would happen to TCP?
- □ Effects of large buffers at bottleneck on TCP connections
 - Once queues are full: Queueing delays increase significantly or even dramatically
 - TCP congestion control gets no early warning
 - No duplicate ACKS ⇒ no Fast Retransmit
 - Instead: Sudden timeouts
 - Congestion windows way too large
 - Many parallel TCP connections over same link get warning way too late
 - Synchronisation: Oscillation between "All send way too much" and "all get frightened by timeouts and send way too little"
 - Huge variations in queueing delays ⇒ DevRTT becomes very large ⇒ Timeout value becomes very large

Buffer bloat - ICSI Netalyzr Measurements

http://www.broadbandreports.com/shownews/The-ICSI-Netalyzr-Explored-113972

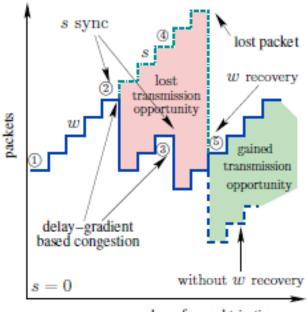
http://www.icir.org/christian/publications/2010-imc-netalyzr.pdf

IN2097 - Master Course Computer Networks, WS 2012/2013

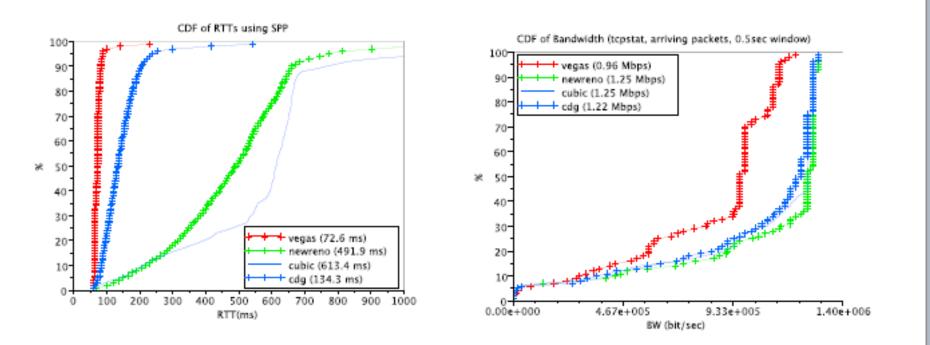
TCP for High Bandwidth Long Distance Connections

- Several transport protocol variants for high bandwidth long distance connections (LFNs - Long Fat Networks) exist
- □ Frequent property
 - Effectively use available bandwidth
 - Unfriendly "doesn't play nicely with others"
 - Unfair to different RTT flows
 - achieves better performance than standard TCP
 - is not fair to standard TCP
- General approaches for congestion control
 - Ioss-based: NewReno, CUBIC
 - delay-based: Vegas, CAIA Delay Gradiant (CDG)

- □ c.f. RFC 3782 April 2004, Proposed Standard
- □ Properties
 - addresses problems that may arrive when multiple packets are dropped from a single window
 - Base algorithm described in RFC 2582 did not attempt to avoid unnecessary multiple Fast Retransmits after timeout.
 - RFC 2582 also defined "Careful" variant that avoids these unnecessary Fast Retransmits
 - "Careful" variant of RFC 2582 NewReno as default


- - Loss-based congestion control optimised for high bandwidth, high latency
- □ Properties
 - modified window-growth-control algorithm
 - window grows slowly around W_{max}
 - fast "probing" growth away from W_{max}
 - Standard TCP outperforms CUBIC's window growth function in short RTT networks.
 - CUBIC emulates standard (time-independent) TCP window adjustment algorithm, select the greater of the two windows (emulated versus cubic)
- □ Implemenation:
 - in Linux since kernel 2.6.19, in FreeBSD 8-STABLE

- □ TCP Vegas
 - by Lawrence Brakmo, Sean W. O'Malley, Larry L. Peterson at University of Arizona
 - published at SIGCOMM 1994
- □ Properties
 - delay-based congestion control
 - uses ith RTT > min RTT + delay threshold, delay measured every RTT
 - Additive Increase Additive Decrease (AIAD) to adjust cwnd
- □ Properties
 - implementations available for Linux and BSD


- D. Hayes, G. Armitage, "Revisiting TCP Congestion Control using Delay Gradients," IFIP/TC6 NETWORKING 2011, Valencia, Spain, 9-13 May 2011 http://caia.swin.edu.au/cv/dahayes/content/networking2011-cdgpreprint.pdf
- □ CDG ("CAIA Delay-Gradient") modified TCP sender behaviour:
 - uses delay gradient as a congestion indicator
 - tolerates non-congestion packet loss, and backoff for congestion related packet loss
 - works together with loss-based congestion control flows, e.g. NewReno

number of round trip times

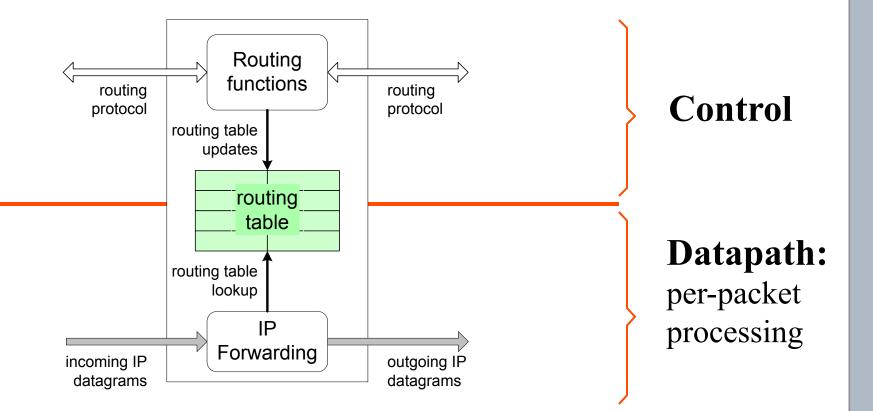
- Grenville Armitage: A rough comparison of NewReno, CUBIC, Vegas and 'CAIA Delay Gradient' TCP (v0.1), CAIA Technical report 110729A, 29 July 2011 http:// caia.swin.edu.au/reports/110729A/CAIA-TR-110729A.pdf
- □ SPP Synthetic Packet Pairs Tool http://caia.swin.edu.au/tools/spp/

IETF Working Group Multipath TCP (mptcp)

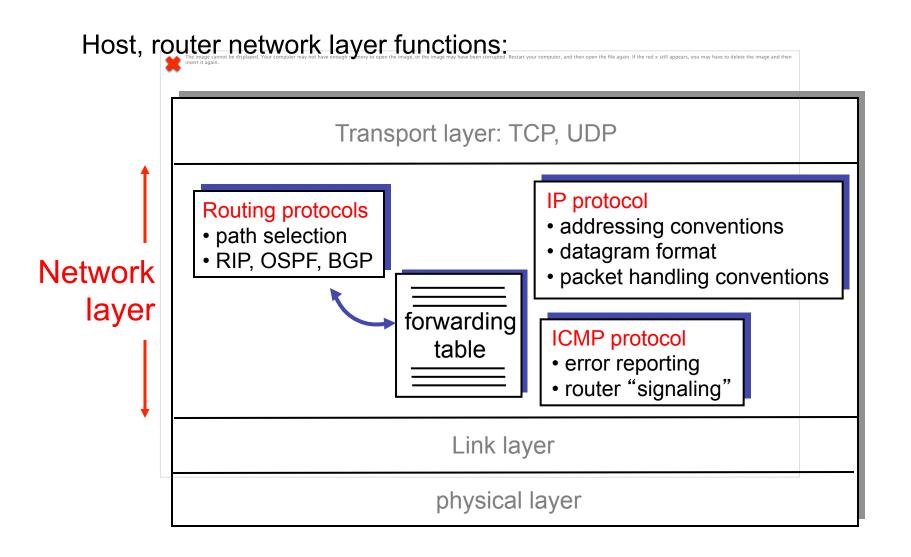
http://datatracker.ietf.org/doc/charter-ietf-mptcp/

- Key goals
 - deployable and usable without significant changes to existing Internet infrastructure
 - usable by unmodified applications
 - stable and congestion-safe, including NAT interactions
- Objectives
 - a. An architectural framework for congestion-dependent multipath transport protocols
 - b. A security threat analysis for multipath TCP
 - c. A coupled multipath-aware congestion control algorithm
 - d. Multi-addressed multipath extensions to current TCP
 - e. Application interface considerations

- □ http://bgp.potaroo.net/ietf/html/ids-wg-mptcp.html
 - TCP Extensions for Multipath Operation with Multiple Addresses, draft-ietf-mptcp-multiaddressed
 - MPTCP Application Interface Considerations, draft-ietf-mptcp-api-06.txt
- Milestones
 - Submit to IESG architectural guidelines and security threat analysis as informational RFC(s)
 - Submit to IESG basic coupled congestion control as an experimental RFC
 - Consensus on what high-level changes are needed to the current MPTCP Experimental document in order to progress it on the standards track
 - Apr 2013 Implementation advice (Informational) to IESG
 - Aug 2013 Use-cases and operational experiences (Informational) to IESG
 - Dec 2013 MPTCP-enabled middleboxes (Informational) to IESG
 - Dec 2013 MPTCP standards track protocol to IESG
 - Jan 2014 Re-charter or close



Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München


Internet Protocol

ICMP: Internet Control Message Protocol

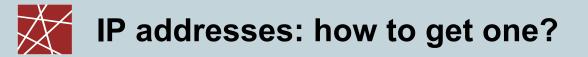
- used by hosts & routers to communicate network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- □ network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

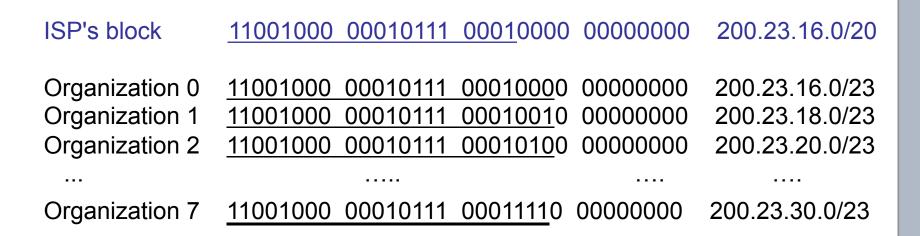
<u>Type</u> 0	<u>Code</u> 0	description echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

- Source sends series of UDP segments to destination
 - First has TTL =1
 - Second has TTL=2, etc.
 - Unlikely port number
- When nth datagram arrives to nth router:
 - Router discards datagram
 - And sends to source an ICMP message (type 11, code 0)
 - Message includes name of router& IP address

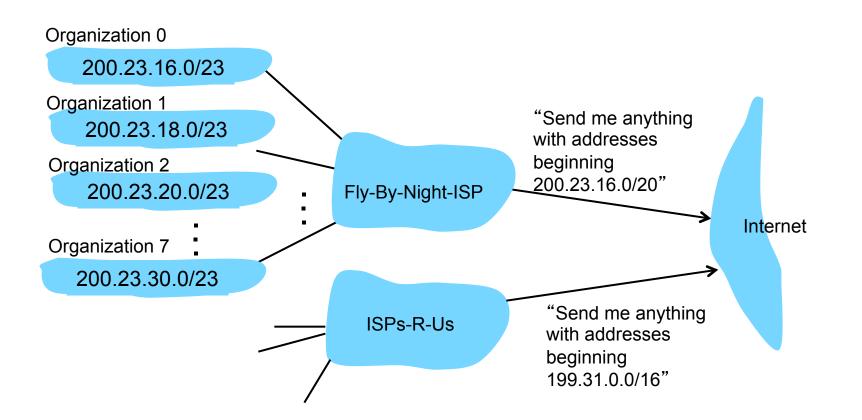
- When ICMP message arrives, source calculates RTT
- □ Traceroute does this 3 times

Stopping criterion

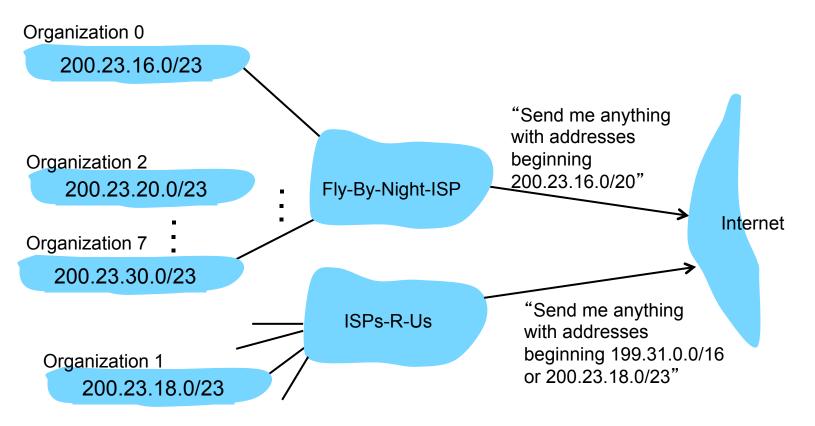

- UDP segment eventually arrives at destination host
- Destination returns ICMP "dest port unreachable" packet (type 3, code 3)
- When source gets this ICMP, stops.


CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address



Q: How does *network* get subnet part of IP addr? A: gets allocated portion of its provider ISP's address space



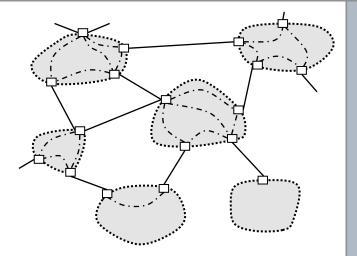
Hierarchical addressing allows efficient advertisement of routing information:

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

IP addressing: the last word...

- Q: How does an ISP get block of addresses?
- A: ICANN: Internet Corporation for Assigned
 - Names and Numbers
 - allocates addresses
 - manages DNS
 - assigns domain names, resolves disputes


- □ Many measures:
 - networks (routed entities)
 - domains, host names (but: several names per host!)
 - directly (continuously) attached hosts ("ping' able")
 - IP-connected hosts (including dialin, e.g. PPP)
 - firewalled hosts
 - e-mail reachable
- What is the German Internet?
 - Entities within Germany
 - Entities operated by Germans / German organisations
 - Entities used by Germans / German organisations

- □ Worldwide
 - > 700.000.000 Hosts
 - > 37.000 Autonomous Systems
 - > 3.000.000.000 Assigned IP Addresses
 - > 2.180.000.000 Reachable IP Addresses

□ Europe

- > 126.600.000 Hosts
- > 19.000 Autonomous Systems
- > 420.000.000 Reachable IP Addresses
- > 500.000.000 Assigned IP Addresses
- Germany
 - > 13.300.000 Hosts
 - > 1.200 Autonomous Systems
 - > 70.700.000 Assigned IP Addresses (5.500 prefixes)
 - > 62.700.000 Reachable IP Addresses

Snapshot 2011