

 Chair for Network Architectures and Services – Prof. Carle

Department of Computer Science
TU München

Master Course
Computer Networks

IN2097

Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.

Stephan Günther

Chair for Network Architectures and Services
Department of Computer Science
Technische Universität München

http://www.net.in.tum.de

Network Security, WS 2008/09, Chapter 9 2 IN2097 - Master Course Computer Networks, WS 2012/2013 2

Roadmap

q  Chapter: Transport Layer

§  Transport Layer Functions
§  UDP
§  TCP

Network Security, WS 2008/09, Chapter 9 3 IN2097 - Master Course Computer Networks, WS 2012/2013 3

Internet Transport-layer Protocols

q  Unreliable, unordered
delivery: UDP
§  simple extension of

“best-effort” IP
q  Reliable, in-order delivery

(TCP)
§  congestion control
§  flow control
§  connection setup

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

Network Security, WS 2008/09, Chapter 9 4 IN2097 - Master Course Computer Networks, WS 2012/2013 4

Multiplexing/Demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2 host 3

= process = socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Network Security, WS 2008/09, Chapter 9 5 IN2097 - Master Course Computer Networks, WS 2012/2013 5

Demultiplexing

q  Host receives IP datagrams
§  each datagram has

source IP address,
destination IP address

§  each datagram carries
1 transport-layer segment

§  each segment has
source port number,
destination port number

q  Host uses IP five tuple
<Src/Dst IP address, Protocol,
Src/Dst Port number>
to direct segment to appropriate
socket

source port # dest port #
32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Network Security, WS 2008/09, Chapter 9 6 IN2097 - Master Course Computer Networks, WS 2012/2013 6

Connectionless Demultiplexing

q  Create sockets with specific port numbers:
 DatagramSocket mySocket1 = new DatagramSocket(12534);

 DatagramSocket mySocket2 = new DatagramSocket(12535);

q  UDP socket identified by two-tuple:
 (dest IP address, dest port number)

q  When host receives UDP segment:
§  checks destination port number in segment
§  directs UDP segment to socket with that port number

q  IP datagrams with
 different source IP addresses and/or
 different source port numbers

directed to same socket

Network Security, WS 2008/09, Chapter 9 7 IN2097 - Master Course Computer Networks, WS 2012/2013 7

Connectionless Demultiplexing

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
 IP: A

P1 P1 P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

Source Port (SP) provides “return address”

Network Security, WS 2008/09, Chapter 9 8 IN2097 - Master Course Computer Networks, WS 2012/2013 8

Connection-Oriented Demultiplexing

q  TCP socket identified by 4-tuple:
§  source IP address
§  source port number
§  dest IP address
§  dest port number

q  Receiving host uses all four values to direct segment to
appropriate socket

q  Server host may support many simultaneous TCP sockets:
§  each socket identified by its own 4-tuple

q  Web servers have different sockets for each connecting client
§  non-persistent HTTP (TCP connection closed after transfer

of requested object) have different socket for each request

Network Security, WS 2008/09, Chapter 9 9 IN2097 - Master Course Computer Networks, WS 2012/2013 9

Connection-Oriented Demultiplexing

Client
IP:B

P1

client
 IP: A

P1 P2 P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Network Security, WS 2008/09, Chapter 9 10 IN2097 - Master Course Computer Networks, WS 2012/2013 10

Connection-Oriented Demultiplexing

q  Threaded Web Server

Client
IP:B

P1

client
 IP: A

P1 P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Network Security, WS 2008/09, Chapter 9 11 IN2097 - Master Course Computer Networks, WS 2012/2013 11

UDP: User Datagram Protocol [RFC 768]

q  “no frills,” “bare bones”
Internet transport protocol

q  “best effort” service, UDP
segments may be:
§  lost
§  delivered out of order to

app
q  connectionless:

§  no handshaking between
UDP sender, receiver

§  each UDP segment
handled independently of
others

Why is there a UDP?
q  no connection establishment
 (which can add delay)
q  simple: no connection state
 at sender, receiver
q  small segment header
q  No congestion control: UDP
 can send as fast as desired

Network Security, WS 2008/09, Chapter 9 12 IN2097 - Master Course Computer Networks, WS 2012/2013 12

UDP

q  often used for streaming
multimedia applications
§  rate sensitive

q  other UDP uses
§  DNS
§  SNMP

q  reliable transfer over
UDP: add reliability at
application layer
ð application-specific

error recovery

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

q  UDPlite: RFC 3828, Protocol Number 136
§  allows a potentially damaged data payload to be delivered to

an application rather than being discarded
§  checksum coverage instead of length field

Network Security, WS 2008/09, Chapter 9 13 IN2097 - Master Course Computer Networks, WS 2012/2013 13

Section TCP - Outline

q  Connection-oriented transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

Network Security, WS 2008/09, Chapter 9 14 IN2097 - Master Course Computer Networks, WS 2012/2013 14

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

q  full duplex data:
§  bi-directional data flow in

same connection
§  MSS: maximum segment

size
q  connection-oriented:

§  handshaking (exchange of
control msgs) init’s sender,
receiver state before data
exchange

q  flow controlled:
§  sender will not overwhelm

receiver
q  Congestion controlled:

§  Will not overwhelm network socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

q  point-to-point:
§  one sender, one receiver

q  reliable, in-order byte steam:
§  no “message

boundaries”
q  pipelined:

§  TCP congestion and flow
control set window size

q  send & receive buffers

Network Security, WS 2008/09, Chapter 9 15 IN2097 - Master Course Computer Networks, WS 2012/2013 15

TCP Header

0 31

Packet
Header

16

Source Port Destination Port

Sequence Number

Acknowledgement

4 bit TCP
header
length

6 bit
unused

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent Pointer

Options (0 or more 32bit words)

Data ...

Network Security, WS 2008/09, Chapter 9 16 IN2097 - Master Course Computer Networks, WS 2012/2013 16

TCP seq. #’s and ACKs

Seq. #’s:
§  byte stream

“number” of first
byte in segment’s
data

ACKs:
§  seq # of next byte

expected from
other side

§  cumulative ACK

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

time

simple telnet scenario

Network Security, WS 2008/09, Chapter 9 17 IN2097 - Master Course Computer Networks, WS 2012/2013 17

TCP Round Trip Time and Timeout

Q: how to set TCP timeout
value?

q  longer than RTT
§  but RTT varies

q  too short: premature timeout
§  unnecessary

retransmissions
q  too long: slow reaction to

segment loss

Q: how to estimate RTT?
q  SampleRTT: measured time

from segment transmission
until ACK receipt
§  ignore retransmissions

q  SampleRTT will vary, want
estimated RTT “smoother”
§  average several recent

measurements, not just
current SampleRTT

Network Security, WS 2008/09, Chapter 9 18 IN2097 - Master Course Computer Networks, WS 2012/2013 18

TCP Round Trip Time and Timeout

q  exponential weighted moving average
q  influence of past sample decreases

(more weight on recent samples than on older samples)
q  typical value: α = 0.125

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Network Security, WS 2008/09, Chapter 9 19 IN2097 - Master Course Computer Networks, WS 2012/2013 19

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

Network Security, WS 2008/09, Chapter 9 20 IN2097 - Master Course Computer Networks, WS 2012/2013 20

TCP Round Trip Time and Timeout

Setting the timeout
q  EstimtedRTT plus “safety margin”

§  large variation in EstimatedRTT -> larger safety margin
q  Estimate of how much SampleRTT deviates from EstimatedRTT

(DevRTT is an EWMA of the difference between SampleRTT and
EstimatedRTT)

q  Set timeout interval

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
 β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Network Security, WS 2008/09, Chapter 9 21 IN2097 - Master Course Computer Networks, WS 2012/2013 21

Section TCP - Outline

q  Connection-oriented transport: TCP
§  segment structure
§  reliable data transfer
§  flow control
§  connection management

Network Security, WS 2008/09, Chapter 9 22 IN2097 - Master Course Computer Networks, WS 2012/2013 22

TCP Reliable Data Transfer

q  TCP creates reliable data transfer (rdt) service
on top of IP’s unreliable service

q  Pipelined segments
q  Cumulative acks
q  TCP uses single retransmission timer
q  Retransmissions are triggered by:

§  timeout events
§  duplicate acks

Network Security, WS 2008/09, Chapter 9 23 IN2097 - Master Course Computer Networks, WS 2012/2013 23

TCP Sender Events

Data rcvd from app:
q  Create segment with seq #
q  seq # is byte-stream number

of first data byte in segment
q  start timer if not already

running (think of timer as for
oldest unacked segment)

q  expiration interval:
TimeOutInterval

Timeout:
q  retransmit segment that

caused timeout
q  restart timer
 Ack rcvd:
q  If acknowledges previously

unacked segments
§  update what is known to

be acked
§  start timer if there are

outstanding segments

Network Security, WS 2008/09, Chapter 9 24 IN2097 - Master Course Computer Networks, WS 2012/2013 24

TCP sender (simplified)
 NextSeqNum = InitialSeqNum
 SendBase = InitialSeqNum
 loop (forever) {
 switch(event)

 event: data received from application above
 create TCP segment with sequence number NextSeqNum
 if (timer currently not running)
 start timer
 pass segment to IP
 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer }
 } /* end of loop forever */

Comment:
•  SendBase-1: last
cumulatively
ack’ed byte
Example:
•  SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Network Security, WS 2008/09, Chapter 9 25 IN2097 - Master Course Computer Networks, WS 2012/2013 25

TCP: Retransmission Scenarios

Host A

Seq=100, 20 bytes data

time
premature timeout

Host B

Seq=92, 8 bytes data

Seq=92, 8 bytes data

S
eq

=9
2

tim
eo

ut

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

S
eq

=9
2

tim
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Network Security, WS 2008/09, Chapter 9 26 IN2097 - Master Course Computer Networks, WS 2012/2013 26

TCP Retransmission Scenarios (more)

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

Network Security, WS 2008/09, Chapter 9 27 IN2097 - Master Course Computer Networks, WS 2012/2013 27

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte
(which is lower end of gap)

Immediate send ACK, provided that
segment starts at lower end of gap

Network Security, WS 2008/09, Chapter 9 28 IN2097 - Master Course Computer Networks, WS 2012/2013 28

Fast Retransmit

q  Time-out period often
relatively long:
§  long delay before

resending lost packet
q  Detect lost segments via

duplicate ACKs.
§  Sender often sends many

segments back-to-back
§  If segment is lost, there

likely will be many
duplicate ACKs

q  If sender receives 3 ACKs for
the same data, it supposes
that segment after ACKed
data was lost:
§  fast retransmit:

resend segment
before timer expires

Network Security, WS 2008/09, Chapter 9 29 IN2097 - Master Course Computer Networks, WS 2012/2013 29

Host A

ti
m

eo
ut

Host B

time

X

resend 2nd segment

Resending a segment after triple duplicate ACK

Network Security, WS 2008/09, Chapter 9 30 IN2097 - Master Course Computer Networks, WS 2012/2013 30

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }
 else {
 increment count of dup ACKs received for y
 if (count of dup ACKs received for y = 3) {
 resend segment with sequence number y
 }

Fast Retransmit Algorithm

a duplicate ACK for
already ACKed segment

fast retransmit

Network Security, WS 2008/09, Chapter 9 31 IN2097 - Master Course Computer Networks, WS 2012/2013 31

Chapter Outline

q  Transport-layer services
q  Multiplexing and demultiplexing
q  Connectionless transport: UDP
q  Principles of reliable data transfer
q  Connection-oriented transport: TCP

§  segment structure
§  reliable data transfer
§  flow control
§  connection management

q  Principles of congestion control
q  TCP congestion control

Network Security, WS 2008/09, Chapter 9 32 IN2097 - Master Course Computer Networks, WS 2012/2013 32

TCP Flow Control

q  Receive side of TCP connection
has a receive buffer:

q  Application process may be slow at
reading from buffer

q  Speed-matching service:
matching the send rate to the
receiving app’s drain rate

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

Network Security, WS 2008/09, Chapter 9 33 IN2097 - Master Course Computer Networks, WS 2012/2013 33

TCP Flow control

(Suppose TCP receiver discards
out-of-order segments)

q  spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

q  Rcvr advertises spare room by
including value of RcvWindow in
segments

q  Sender limits unACKed data to
RcvWindow
§  guarantees receive buffer

doesn’t overflow

Network Security, WS 2008/09, Chapter 9 34 IN2097 - Master Course Computer Networks, WS 2012/2013 34

Chapter Outline

q  Transport-layer services
q  Multiplexing and demultiplexing
q  Connectionless transport: UDP
q  Principles of reliable data transfer
q  Connection-oriented transport: TCP

§  segment structure
§  reliable data transfer
§  flow control
§  connection management

q  Principles of congestion control
q  TCP congestion control

Network Security, WS 2008/09, Chapter 9 35 IN2097 - Master Course Computer Networks, WS 2012/2013 35

TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

q  initialize TCP variables:
§  seq. #s
§  buffers, flow control info (e.g.
RcvWindow)

q  client: connection initiator
 Socket clientSocket = new

Socket("hostname","port number");
q  server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP SYN
segment to server

§  specifies initial seq #
§  no data

Step 2: server host receives SYN,
replies with SYNACK segment

§  server allocates buffers
§  specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment, which may
contain data

Network Security, WS 2008/09, Chapter 9 36 IN2097 - Master Course Computer Networks, WS 2012/2013 36

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends
TCP FIN control segment to
server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

tim
ed

 w
ai

t

Network Security, WS 2008/09, Chapter 9 37 IN2097 - Master Course Computer Networks, WS 2012/2013 37

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

§  Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t
closed

Network Security, WS 2008/09, Chapter 9 38 IN2097 - Master Course Computer Networks, WS 2012/2013 38

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

Network Security, WS 2008/09, Chapter 9 39 IN2097 - Master Course Computer Networks, WS 2012/2013 39

Chapter outline

q  Transport-layer services
q  Multiplexing and demultiplexing
q  Connectionless transport: UDP
q  Principles of reliable data transfer
q  Connection-oriented transport: TCP

§  segment structure
§  reliable data transfer
§  flow control
§  connection management

q  Principles of congestion control
q  TCP congestion control

Network Security, WS 2008/09, Chapter 9 40 IN2097 - Master Course Computer Networks, WS 2012/2013 40

Principles of Congestion Control

Congestion:
q  informally: “too many sources sending too much data too fast

for network to handle”
q  different from flow control!
q  manifestations:

§  lost packets (buffer overflow at routers)
§  long delays (queueing in router buffers)

Network Security, WS 2008/09, Chapter 9 41 IN2097 - Master Course Computer Networks, WS 2012/2013 41

Causes/Costs of Congestion: Scenario 1

q  two senders, two receivers
q  one router, infinite buffers
q  no retransmission

q  per-connection throughput, delay:

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

q  large delays
when congested

q  maximum
achievable
throughput: C/2

Network Security, WS 2008/09, Chapter 9 42 IN2097 - Master Course Computer Networks, WS 2012/2013 42

Causes/Costs of Congestion: Scenario 2

q  one router, finite buffers
q  sender retransmission of lost packets

finite shared output link
buffers

Host A λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Network Security, WS 2008/09, Chapter 9 43 IN2097 - Master Course Computer Networks, WS 2012/2013 43

Causes/Costs of Congestion: Scenario 2

q  always: (goodput)

q  “perfect” retransmission when loss:

q  retransmission of delayed (not lost) packet makes larger (than
perfect case) for same

λ	

in

λ	
out =

λ	

in

λ	
out >

λ	

in λ	
out

“costs” of congestion:
q  more work (retransmissions) for given “goodput”
q  unneeded retransmissions: link carries multiple copies of packet

R/2

R/2
λin

λ o
ut

b.

R/2

R/2
λin

λ o
ut

a.

R/2

R/2
λin

λ o
ut

c.

R/4

R/3

Network Security, WS 2008/09, Chapter 9 44 IN2097 - Master Course Computer Networks, WS 2012/2013 44

Causes/Costs of Congestion: Scenario 3

q  four senders
q  multihop paths
q  timeout/retransmit

λ	

in

Q: what happens as and
 increase ? λ	

in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Network Security, WS 2008/09, Chapter 9 45 IN2097 - Master Course Computer Networks, WS 2012/2013 45

Causes/Costs of Congestion: Scenario 3

Another “cost” of congestion:
q  when packet dropped, any “upstream transmission capacity used
 for that packet was wasted!

H
o
st
A

H
o
st
B

λ
o
u
t

Network Security, WS 2008/09, Chapter 9 46 IN2097 - Master Course Computer Networks, WS 2012/2013 46

Congestion Control

q  Goals and problems hereby
§  Reasonable behavior in case of network (over)load
§  Without controlling the outgoing amount of data, the capacity may drop to

zero because of deadlocks
§  Fair ressource sharing
§  Criteria: effective, simple, robust, end-host driven

Load of the system

Without control

Flow and congestion control
ideal

deadlock ca
pa

ci
ty

max.

Network Security, WS 2008/09, Chapter 9 47 IN2097 - Master Course Computer Networks, WS 2012/2013 47

Approaches Towards Congestion Control

End-end congestion control:
q  no explicit feedback from

network
q  congestion inferred from

end-system observed
loss, delay

q  approach taken by TCP

Two broad approaches towards congestion control:
Network-assisted congestion

control:
q  routers provide feedback to

end systems
§  single bit indicating

congestion (SNA, DECbit,
TCP/IP ECN, ATM)

§  explicit rate sender should
send at

Network Security, WS 2008/09, Chapter 9 48 IN2097 - Master Course Computer Networks, WS 2012/2013 48

Chapter Outline

q  Transport-layer services
q  Multiplexing and demultiplexing
q  Connectionless transport: UDP
q  Principles of reliable data transfer
q  Connection-oriented transport: TCP

§  segment structure
§  reliable data transfer
§  flow control
§  connection management

q  Principles of congestion control
q  TCP congestion control

Network Security, WS 2008/09, Chapter 9 49 IN2097 - Master Course Computer Networks, WS 2012/2013 49

Congestion Control (Van Jacobson)

q  Problem: the end host does not know a lot about the
network.
§  It only knows if a packet has been delivered successfully or not

q  Self clocking:
§  for every segment that leaves the network we can send a new one

q  Assumption:
§  packet loss only because of congestion
§  Not true for wireless networks

Network Security, WS 2008/09, Chapter 9 50 IN2097 - Master Course Computer Networks, WS 2012/2013 50

TCP congestion control: additive increase,
 multiplicative decrease

time co
ng

es
tio

n
w

in
do

w
 s

iz
e

Saw tooth
behavior: probing

for bandwidth

q  Approach: increase transmission rate (window size), probing
 for usable bandwidth, until loss occurs

§  additive increase: increase CongWin by 1 MSS every
RTT until loss detected

§  multiplicative decrease: cut CongWin in half after loss

8 Kbytes

16 Kbytes

24 Kbytes
congestion

window

Network Security, WS 2008/09, Chapter 9 51 IN2097 - Master Course Computer Networks, WS 2012/2013 51

TCP Congestion Control: Details

q  sender limits transmission:
 LastByteSent-LastByteAcked
 ≤ CongWin
q  Roughly,

q  CongWin is dynamic, function of
perceived network congestion

rate =
CongWin

RTT
Bytes/sec

How does sender perceive
congestion?

q  loss event = timeout or 3
duplicate acks

q  TCP sender reduces rate
(CongWin) after loss
event

three mechanisms:
§  AIMD
§  slow start
§  conservative after

timeout events

Network Security, WS 2008/09, Chapter 9 52 IN2097 - Master Course Computer Networks, WS 2012/2013 52

TCP Slow Start

q  When connection begins, CongWin = 1 MSS
§  Example: MSS = 500 bytes & RTT = 200 msec
§  initial rate = 20 kbps

q  available bandwidth may be >> MSS/RTT
§  desirable to quickly ramp up to respectable rate

q  When connection begins, increase rate exponentially
fast until first loss event

Network Security, WS 2008/09, Chapter 9 53 IN2097 - Master Course Computer Networks, WS 2012/2013 53

TCP Slow Start (more)

q  When connection begins,
increase rate exponentially
until first loss event:
§  double CongWin

every RTT
§  done by incrementing
CongWin for every ACK
received

q  Summary: initial rate is slow
but ramps up exponentially
fast

Host A

one segment

R
TT

Host B

time

two segments

four segments

Network Security, WS 2008/09, Chapter 9 54 IN2097 - Master Course Computer Networks, WS 2012/2013 54

Refinement: Inferring Loss

q  After 3 dup ACKs:
§  CongWin is cut in half
§  window then grows linearly

q  But after timeout event:
§  CongWin instead set to 1

MSS;
§  window then grows

exponentially
§  to a threshold, then grows

linearly

q  3 dup ACKs indicates
network capable of
delivering some segments
q  timeout indicates a
“more alarming”
congestion scenario

Philosophy:

Network Security, WS 2008/09, Chapter 9 55 IN2097 - Master Course Computer Networks, WS 2012/2013 55

Refinement

q  Q: When should the
exponential increase
switch to linear?

q  A: When CongWin
gets to 1/2 of its
value before timeout.

Implementation:
q  Variable Threshold
q  At loss event,

Threshold is set to
1/2 of CongWin just
before loss event

Network Security, WS 2008/09, Chapter 9 56 IN2097 - Master Course Computer Networks, WS 2012/2013 56

TCP Congestion Control Without Fast Retransmit

4

8

12

16

20

24

28

32

36

40

44

0

C
W

N
D

 s
iz

e

2 4 6 8 10 12 14 16 18 20 22 24

Slow start algorithm of TCP

Threshold

Threshold
SSTHRESH

Timeout

Round-trips

Slow-Start
+ 1 per ACK

Congestion-Avoidance
+ per ACK

(1 per RTT)

windowsize
1

Here the window size is measured in number of packets
Real TCP uses bytes.

Network Security, WS 2008/09, Chapter 9 57 IN2097 - Master Course Computer Networks, WS 2012/2013 57

Slow Start

q  Basic idea: packet loss indicates congestion
q  Algorithm slowly approaches the limit

t in RTTs t in RTTs

CWND
in

Segments

1. Segment 1 is sent
2. The ACK for segment 1 is received, CWND+=1 (now 2)
 Segments 2 and 3 are sent out
3. The ACK for segments 2+3 are received, CWND+=2
 (now 4), Segments 4-7 are sent out
4. The ACK for segments 4-7 are received, CWND+=4
 (now 8), Segments 8-15 are sent out
5. The ACK for segments 8 and 9 are received,
 Packets 10-15 got lost on their way
 CWND+=2 (now 10), segments 16-19 are sent and get lost
 No more ACKs are received è Timeout.

Network Security, WS 2008/09, Chapter 9 58 IN2097 - Master Course Computer Networks, WS 2012/2013 58

Congestion Avoidance

Situation:
CWND was 10 è set SSTHRESH = 10 / 2 = 5
last acked segment 9 è continue with 10
1. Slow Start till CWND = SSTHRESH
2. Afterwards CWND is increased by 1 per Round-Trip time.

t in RTTs

CWND
in

Segments

Network Security, WS 2008/09, Chapter 9 59 IN2097 - Master Course Computer Networks, WS 2012/2013 59

Fast Retransmit

t in RTTs

Situation:
Segment 39 was lost. CWND is 8, segments 40-46 (7 packets)
can be sent without waiting for the ACK for segment 39

1. Segment 40 arrives at the receiver and is buffered. Since it is
waiting for 39, the receiver resends the ACK for packet 39

2. Segments 41 and 42 arrive. The receiver sends the ACK for 39
two times

3. Now the sender received 4 ACKs for packet 39 (1x original for
packet 38, 3x duplicate). It assumes that segement 39 is missing
but all other packets made their way (no complete congestion).
Thus it retransmits segment 39 without waiting for a timeout

CWND
in

Segments

Network Security, WS 2008/09, Chapter 9 60 IN2097 - Master Course Computer Networks, WS 2012/2013 60

Fast Recovery I

t in RTTs

CWND
in

SMSS

Situation:
Segment 39 was lost and re-transmitted, it will take a
whole RTT until it‘s ACK arrives à stall!

Segments 40-46 were already sent. CWND is 8, so with
the regular rules, the sender would have to wait for the
right ACK before being allowed to send any more data.

3 duplicate ACKs were received so far
(corresponding to packet 40, 41, 42). As the sender
still receives ACKs it can tell that the congestion is
not too bad – at least the line is not so congested
that nothing comes through. Hope: Maybe only a
single segment was lost.

Each arriving duplicate ACK means, that one packet has
arrived at the receiver, so there is one less packet
currently in transit.

Idea of fast Recovery:

-  Congestion is there but not too bad à Reduce the Window by 50%

-  Then keep the number of segments in transit equal to the new window size even though there are no
 new ACKs (Compare Jacobson’s Self-Clocking).

Network Security, WS 2008/09, Chapter 9 61 IN2097 - Master Course Computer Networks, WS 2012/2013 61

Fast Recovery II

t in RTTs

CWND
in

SMSS

1. The sender reduces the congestion window by
 50% (window size: 4, segments: 39-42). This is
 the amount of data that we want to have in transit
 for now.
2. It adds 3 for the 3 duplicate ACKs it has received
 è those packets have already left the network.
 (window size: 7, segments: 39-45)
3. The next duplicate ACK arrives. CWND is
 increased by 1 (window size: 8, segments: 39-46).
4. Another duplicate ACK arrives. CWND is
 increased by 1 (window size: 9, segments: 39-47).
 The sender is allowed to send a new segment!
5. One more duplicate ACK arrives. CWND is
 increased by 1 (window size: 10, segments: 39-48).
 The sender is allowed to send a new segment!

7. The ACK for segment 39 arrives (actually it is a cummulative ACK for segment 46).
 The sender remembers the value of CWND before starting fast retransmit. CWND is set to half of
 the old value.
8. The sender continues with Congestion Avoidance.
 (window size: 4, segments 47-50)

Network Security, WS 2008/09, Chapter 9 62 IN2097 - Master Course Computer Networks, WS 2012/2013 62

Summary: TCP Congestion Control

q  When CongWin is below Threshold, sender in slow-start phase,
window grows exponentially.

q  When CongWin is above Threshold, sender is in congestion-
avoidance phase, window grows linearly.

q  When a triple duplicate ACK occurs, Threshold set to CongWin/2
and CongWin set to Threshold.

q  When timeout occurs, Threshold set to CongWin/2 and CongWin is
set to 1 MSS.

Network Security, WS 2008/09, Chapter 9 63 IN2097 - Master Course Computer Networks, WS 2012/2013 63

TCP Sender Congestion Control

State Event TCP Sender Action Commentary

Slow Start (SS) ACK receipt for
previously
unacked data

CongWin = CongWin + MSS,
If (CongWin > Threshold)
set state to “Congestion Avoidance”

Resulting in a doubling of
CongWin every RTT

Congestion
Avoidance (CA)

ACK receipt for
previously
unacked data

CongWin = CongWin+MSS * (MSS/
CongWin)

Additive increase, resulting in
increase of CongWin by 1
MSS every RTT

SS or CA Loss event
detected by
triple duplicate
ACK

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery, implementing
multiplicative decrease.
CongWin will not drop below 1
MSS.

SS or CA Timeout Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

SS or CA Duplicate ACK Increment duplicate ACK count for
segment being acked

CongWin and Threshold not
changed

Network Security, WS 2008/09, Chapter 9 64 IN2097 - Master Course Computer Networks, WS 2012/2013 64

TCP summary

q  Connection-oriented: SYN, SYNACK; FIN
q  Retransmit lost packets; in-order data: sequence no., ACK no.
q  ACKs: either piggybacked, or no-data pure ACK packets if no

data travelling in other direction
q  Don’t overload receiver: rwin

§  rwin advertised by receiver
q  Don’t overload network: cwin

§  cwin affected by receiving ACKs
q  Sender buffer = min { rwin, cwin }
q  Congestion control:

§  Slow start: exponential growth of cwin
§  Congestion avoidance: linear groth of cwin
§  Timeout; duplicate ACK: shrink cwin

q  Continuously adjust RTT estimation

Network Security, WS 2008/09, Chapter 9 65 IN2097 - Master Course Computer Networks, WS 2012/2013 65

TCP throughput

q  What’s the average throughout of TCP as a function of window
size and RTT?
§  Ignore slow start

q  Let W be the window size when loss occurs.
q  When window is W, throughput is W/RTT
q  Just after loss, window drops to W/2, throughput to W/2RTT.
ð Average throughout: 0.75 W/RTT

Network Security, WS 2008/09, Chapter 9 66 IN2097 - Master Course Computer Networks, WS 2012/2013 66

TCP Fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

Network Security, WS 2008/09, Chapter 9 67 IN2097 - Master Course Computer Networks, WS 2012/2013 67

Why is TCP fair?

Two competing sessions:
q  Additive increase gives slope of 1, as throughout increases
q  multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Network Security, WS 2008/09, Chapter 9 68 IN2097 - Master Course Computer Networks, WS 2012/2013 68

Fairness (more)

Fairness and UDP
q  Multimedia apps often do not

use TCP
§  do not want rate throttled

by congestion control
q  Instead use UDP:

§  pump audio/video at
constant rate, tolerate
packet loss

q  Research area: TCP friendly

Fairness and parallel TCP
connections

q  nothing prevents app from
opening parallel connections
between 2 hosts.

q  Web browsers do this
q  Example: link of rate R

supporting 9 connections;
§  new app asks for 1 TCP,

gets rate R/10
§  new app asks for 11 TCPs,

gets R/2 !

Network Security, WS 2008/09, Chapter 9 69 IN2097 - Master Course Computer Networks, WS 2012/2013 69

Advanced Topics

q  TCP for high bandwidth long distance connections

q  TCP Throughput Formula
q  Overview of Deployment of TCP variants
q  Detection of TCP-unfriendly Flows

Network Security, WS 2008/09, Chapter 9 70 IN2097 - Master Course Computer Networks, WS 2012/2013 70

TCP for High Bandwidth Long Distance Connections

q  Several transport protocol variants for high bandwidth long
distance connections (LFNs - Long Fat Networks) exist

q  Frequent property
§  Effectively use available bandwidth
§  Unfriendly – “doesn’t play nicely with others”
§  Unfair to different RTT flows
§  achieves better performance than standard TCP
§  is not fair to standard TCP

q  General approaches for congestion control
§  loss-based: NewReno, CUBIC
§  delay-based: Vegas, CAIA Delay Gradiant (CDG)

Network Security, WS 2008/09, Chapter 9 71 IN2097 - Master Course Computer Networks, WS 2012/2013 71

TCP Reno

q  TCP Fast Recovery algorithm described in RFC 2581
q  Implementation introduced 1990 in BSD Reno release
q  Behaviour

§  sender only retransmits a packet
•  after a retransmit timeout has occurred
•  or after three duplicate acknowledgements have arrived

 triggering the Fast Retransmit algorithm.
§  a single retransmit timeout might result in the retransmission

of several data packets
§  each invocation of the Fast Retransmit algorithm leads to

retransmission of only a single data packet
§  problems may arrive when multiple packets are dropped

from a single window

Network Security, WS 2008/09, Chapter 9 72 IN2097 - Master Course Computer Networks, WS 2012/2013 72

TCP NewReno

q  c.f. RFC 3782 - April 2004, Proposed Standard
q  „careful“ variant of Experimental RFC 2582 NewReno as default
q  Properties

§  addresses problems that may arrive when multiple packets
are dropped from a single window

§  with multiple packet drops, acknowledgement for
retransmitted packet acks some but not all packets
transmitted before the Fast Retransmit
ð „partial acknowledgment“

Network Security, WS 2008/09, Chapter 9 73 IN2097 - Master Course Computer Networks, WS 2012/2013 73

TCP Vegas

q  TCP Vegas
§  by Lawrence Brakmo, Sean W. O'Malley, Larry L. Peterson

at University of Arizona
§  published at SIGCOMM 1994

q  Properties
§  delay-based congestion control
§  uses ith RTT > min RTT + delay threshold,

delay measured every RTT
§  Additive Increase Additive Decrease (AIAD) to adjust cwnd

q  Properties
§  implementations available for Linux and BSD

Network Security, WS 2008/09, Chapter 9 74 IN2097 - Master Course Computer Networks, WS 2012/2013 74

TCP CUBIC

q  CUBIC
§  Loss-based congestion control

optimised for high bandwidth, high latency
q  Properties

§  modified window-growth-control algorithm
§  window grows slowly around Wmax
§  fast “probing” growth away from Wmax

§  Standard TCP outperforms CUBIC’s window growth function
in short RTT networks.

§  CUBIC emulates standard (time-independent) TCP window
adjustment algorithm, select the greater of the two windows
(emulated versus cubic)

q  Implemenation:
§  in Linux since kernel 2.6.19, in FreeBSD 8-STABLE

Network Security, WS 2008/09, Chapter 9 75 IN2097 - Master Course Computer Networks, WS 2012/2013 75

Delay Gradient TCP

q  D. Hayes, G. Armitage, "Revisiting TCP Congestion Control
using Delay Gradients," IFIP/TC6 NETWORKING 2011,
Valencia, Spain, 9-13 May 2011
http://caia.swin.edu.au/cv/dahayes/content/networking2011-cdg-
preprint.pdf

q  CDG (“CAIA Delay-Gradient”) modified TCP sender behaviour:
§  uses delay gradient as a congestion

indicator
§  has average probability of back off

independent of RTT
§  works with loss-based congestion

control flows, eg NewReno
§  tolerates non-congestion packet loss,

and backoff for congestion related
packet loss

Network Security, WS 2008/09, Chapter 9 76 IN2097 - Master Course Computer Networks, WS 2012/2013 76

Comparison of TCP Variants

q  Grenville Armitage: A rough comparison of NewReno, CUBIC,
Vegas and ‘CAIA Delay Gradient’ TCP (v0.1),
CAIA Technical report 110729A, 29 July 2011 http://
caia.swin.edu.au/reports/110729A/CAIA-TR-110729A.pdf

