
Technische Universität München
Lehrstuhl Informatik VIII
Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.
Stephan M. Günther, M.Sc.

Master Course Computer Networks

Homework 3
(submission until December 3rd into INBOX located in front of 03.05.052)

dr
af

t
so

lu
ti
on

Note: Subproblems marked by * can be solved without preceding results.

SYN Cookies
The lecture introduced a DoS attack referred to as SYN flooding. Without additional precautions, TCP
is especially susceptible to this form of attack. In this exercise you will investigate a countermeasure
against SYN flooding for TCP, called SYN Cookies. A reference to start with for this homework is
RFC4987.

a)* Briefly describe the problem of SYN flooding and argue whether UDP can be affected as well.

When performing a SYN-flooding attack, a client (or group of clients) send SYN-packets to a server,
accept the returning SYN/ACK but to not complete the three-way handshake by sending the final
ACK. Instead, the client silently discards the SYN/ACK and starts a new handshake.
However, the server cannot know whether the final packet of the initial handshake is delayed or will
never arrive. Thus, it has to keep state (the socket in half-open state) until some timeout expires.

If a server is flooded with thousands of connection attempts within a short time period, it may exceed
its maximum number of concurrent connections and thus become unresponsive.

Also see RFC4987 Section 2.2.

b)* Describe the concept of TCP SYN cookies in your own words. Sketching the TCP handshake
and explaining the values being exchanged might be helpful.

See RFC4987 Section 3.6.

c)* Have a look at RFC2960 and sketch the SCTP handshake and describe the cookie mechanism
used by SCTP.

See RFC2960 Section 5, in particular Section 5.1.3 – 5.1.6.

TCP Congestion Avoidance
In contrast to UDP, TCP offers a congestion avoidance algorithm that tries to dynamically adapt the
sender’s rate to the available capacity on the link. Furthermore, TCP allows a receiver to throttle the
sender’s rate if necessary. Read RFC2581 and answer the following short questions.

a)* What is the difference between congestion control and flow control?

Congestion control tries to avoid congestion along the path from sender to receiver, i. e., controls

1



overload within the network. Flow control allows the receiver to throttle the sender when necessary,
i. e., controls overload at the receiver.

b)* Sketch a typical development of the TCP sender window for both variants Tahoe and Reno over
time, starting at the time when the TCP connection is established. Mark and name the different
phases.

See Figure 1: The main difference between both TCP versions is that Tahoe treats three duplicate
ACKs like a timeout, i. e., a slow start is performed up to the actual slow start threshold (which is
half of the congestion window when the duplicate ACKs occurred).
In contrast, Reno performs a fast recovery when three duplicate ACKs are detected, i. e., it starts
with a congestion avoidance phase at the new slow start threshold. Only in case of a timeout event,
Reno starts over with a new slow start.

Now assume a TCP connection over a satellite link. The average RTT is 800ms and the link’s available
bandwidth is 24Mbit/s. Assume that there is no packet loss before the link’s bandwidth is achieved
by the TCP connection.

c) Estimate the minimum amount of time necessary until an ordinary TCP connections fully utilizes
the available bandwidth.

Full utilization means that the sender can continuously transmit at 24Mbit/s for at least one RTT
without receiving an acknowledgement. Thus, the congestion window must be

cwin ≥ 24Mbit/s · 0.8ms = 2.4MB.

The very first problem is that, by default, TCP’s maximum window size is limited by the 16 bit value
in the header. The maximum congestion window is thus cwin,max = 65535Byte. As a result, the
congestion window will never reach the necessary size.

d) Describe how TCP window scaling can help to mitigate the problem.

Also see RFC1323: Window scaling is a TCP option which allows to interpret the window in multiples
of 2x Byte. This way the window can be scaled such that it can indeed receive the minimum required
size of 2.4MB. The value x can be calculated as follows:(

216 − 1
)
· 2x ≥ 2.4 · 106

x ≥ log2

(
2.4 · 106

216 − 1

)
≈ 5.19

⇒ x = 6

However, there remains a problem: Although the congestion window now may reach the desired size, it
still grows slowly because its increments are not affected by the scaling. This means, during congestion
avoidance it still grows by 1mss per RTT only.
Assuming that the window was just cut in half due to a lost segment, i. e., cwin = 1.2MB, and given
MSS = 1460Byte (1500Byte− IPHeader− TCPHeader), we obtain

∆t =
1.2MB

1460Byte
· 0.8 s ≈ 658 s

until the window is fully utilized again. Consequently, window scaling just enlarges the maximum
window but does not reduce the time until some window size is reached – except for the case the
desired window size is unreachable without scaling.

2



t [RTT]

cwin [MSS]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

. . .

3 DUP ACKs / Timeout

3 DUP ACKs / Timeout

(a) TCP Tahoe

t [RTT]

cwin [MSS]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

. . .

3 DUP ACKs

3 DUP ACKs

Timeout

(b) TCP Reno

Figure 1: Congestion window of TCP Tahoe (a) and TCP Reno (b). The red line indicates the slow start threshold.

3


