Grundlagen Rechnernetze und Verteilte Systeme

SoSe 2014

Kapitel 0: Überblick und Einführung

Prof. Dr.-Ing. Georg Carle Nadine Herold, M. Sc. Dipl.-Inf. Stephan Posselt Johannes Naab, M. Sc. Marcel von Maltitz, M. Sc. Stephan Günther, M. Sc.

Fakultät für Informatik Lehrstuhl für Netzarchitekturen und Netzdienste Technische Universität München

Kapitel 0: Organisatorisches, Überblick und Schichtenmodelle

- Die Vorlesung im Überblick
 - Organisatorisches zur Vorlesung
 - Zusammenfassung der einzelnen Kapitel
- 2 Geschichte des Internets
 - Von der Entstehung bis zum heutigen Internet
 - Bedeutung des Internets für die Gesellschaft
- 3 Schichtenmodelle
 - Was sind Schichtenmodelle?
 - Wozu sind Schichtenmodelle gut?
 - Das ISO/OSI-Modell

Vorlesungsbetrieb

Termine

- ► Mo 14:15 15:45, MW 0001
- ▶ Di 10:15 11:45, MW 0001

Zentralübung

- Nach Ankündigung findet anstelle einer Vorlesung eine Zentralübung statt
- Inhalte sind Programmieraufgaben sowie Klausurvorbereitung

Übungsbetrieb

Tutorübungen

- Wöchentliche Übungsblätter
- ▶ Bearbeitung während der Tutorübung in Kleingruppen
- Keine Anwesenheitspflicht / Hausaufgaben

Termine und Anmeldung zu den Tutorübungen

- Anmeldung über TUMOnline
- Anmeldung freigeschaltet ab ca. Dienstag, 8. April, 20:30 Uhr
- Übungsbeginn in der 2. Vorlesungswoche (ab 14. April)

Schülerstudenten

► Schülerstudenten melden sich bitte bei der Übungsleitung (grnvs@net.in.tum.de)

Tutoren und (vorläufige) Gruppen

Tutorübungen

- Jonathan Aldag
- ► Tobias Betz
- Jochen Hartl
- Valentin Hauer
- Andre Kohn
- Stanislav Teplizki
- Aleksander Umov
- Tim Wiese
- Stefan Fochler
- Maximilian Weininger

Programmierübungen

 $(\rightarrow$ Details folgen)

- Hieu T. Dao
- Felix Kuperjans

Tag	Start	Ende	Raum	#
Montag	12:00	14:00	MI HS 2	2
Montag	12:00	14:00	00.08.036	3
Montag	12:00	16:00	03.07.023	26
Montag	16:00	18:00	00.08.036	4
Montag	16:00	18:00	03.07.023	23
Dienstag	8:00	10:00	02.08.011	5
Dienstag	12:00	14:00	00.08.036	6
Dienstag	12:00	14:00	01.07.014	20
Dienstag	16:00	18:00	00.08.059	8
Dienstag	16:00	18:00	00.08.059	17
Mittwoch	8:00	10:00	03.07.023	9
Mittwoch	10:00	12:00	03.07.023	10
Mittwoch	11:30	13:30	2408	25
Mittwoch	12:00	14:00	03.07.023	11
Mittwoch	14:00	16:00	00.08.036	24
Donnerstag	8:00	10:00	03.07.023	21
Donnerstag	10:00	12:00	00.08.059	12
Donnerstag	10:00	12:00	00.08.036	18
Donnerstag	12:00	14:00	00.08.059	13
Donnerstag	12:00	14:00	00.08.036	22

Ostern

- In der Woche vor und nach Ostern (14. 18. April und 21. 25.April) wird nur ein Übungsblatt besprochen.
- Es finden daher an folgenden Tagen Tutorübungen statt: 14. - 16. April und 24. - 25. April.
 - Die Übungen am Mittwoch (23. April) entfallen.

Programmieraufgaben

Es gibt semesterbegleitend voraussichtlich 3 Programmieraufgaben:

- Bearbeitung in Gruppen von maximal 2 Personen
- Anmeldung der Teams
 - bis spätestens 14. April
 - ▶ über Moodle (https://www.moodle.tum.de/course/view.php?id=13390)
- Abgabe der Aufgaben über Subversion (Versionsverwaltung; Details folgen)
- Geplante Aufgaben:
 - 1 Implementierung von ARP über RAW-Sockets
 - 2 Implementierung von Traceroute
 - 3 Implementierung eines Client-/Server-Programms
- Bearbeitung der Programmieraufgaben in mehreren Sprachen möglich (C, Java, Python, etc.)
- Abgabe der Programmieraufgaben über Subversion

Die Teilnahme an den Programmieraufgaben

- ist freiwillig
- ▶ aber Bestandteil der Bonusregelung. (→ Details folgen gleich)

Tutorgruppen zu den Programmieraufgaben

Infolge des unterschiedlichen Vorwissens der einzelnen Vorlesungsteilnehmer bieten wir zusätzlich 4 spezielle Tutorgruppen an:

Tag	Raum	Start	Ende	#
Montag	16:00	18:00	00.08.059	30
Dienstag	12:00	14:00	00.08.059	31
Mittwoch	12:00	14:00	00.08.053	33
Mittwoch	14:00	16:00	00.08.053	32

- Keine Anmeldung notwendig
- Konkrete Fragen / Probleme zu den Programmieraufgaben
- Kein regulärer Tutorbetrieb (keine Tutoraufgaben)
- Die Übungen finden nur dann statt, wenn auch gerade eine Programmieraufgabe zu bearbeiten ist

Anerkennung der Programmieraufgaben aus Vorjahren

- ▶ Es können Programmierleistungen aus den Vorjahren SS13 und SS12 anerkannt werden.
- ► Hierfür müssen Sie die notwendige Mindestpunktzahl erzielt haben.
- Die Midterm-Klausur muss in jedem Fall dieses Semester nochmals geschrieben werden.
- Zur Anerkennung der Programmierleistungen melden Sie sich bitte bis 11.04.2014 bei der Übungsleitung (grnvs@net.in.tum.de), sodass Ihr Anliegen geprüft werden kann.

Modulprüfung

- schriftlich, 90 Minuten, voraussichtlich 85 Punkte
- zugelassene Hilfsmittel:
 - 1 beidseitig handschriftlich beliebig beschriebenes A4-Blatt (Kopien sind nicht zulässig)
 - nicht-programmierbarer Taschenrechner
 - ▶ Wörterbuch für Muttersprache ⇔ Deutsch
- voraussichtlich am 22.07.2014 (Wiederholung voraussichtlich am 22.09.2014)
- Anmeldung über TUMOnline

Bonusregelung (voraussichtlich)

- Erfolgreiche Bearbeitung der Programmieraufgaben
 - ► In jeder Aufgabe können 0 2 Punkte erreicht werden
 - Die Programmieraufgaben gelten als bestanden, wenn mind. 3/6 Punkten erreicht wurden
- Teilname an der Midterm-Prüfung
 - ▶ 45 Minuten, 15 Bonus-Punkte
 - Hilfsmittel wie in der Modulprüfung
 - voraussichtlich am Freitag, 06.06.2014 von 16:30 17:15Uhr
 - Anmeldung über TUMOnline
- Die in der Midterm erzielten Punkte werden nur dann auf das Ergebnis der Endterm angerechet, wenn in den Programmieraufgaben mindestens 3/6 Punkte erzielt wurden.
- Der Bonus wird auch auf die Wiederholung angerechnet

Checkliste für die Anmeldungen

- Anmeldung zur Vorlesung im TUMOnline
- Anmeldung zu den Tutorübungen im TUMOnline
- Anmeldung zum Moodle-Kurs der Vorlesung im Moodle (entfällt bei Anmeldung im TUMOnline)
- Anmeldung zu den Programmiergruppen im Moodle
- Anmeldung zur Midterm im TUMOnline
- Anmeldung zur Endterm im TUMOnline (entfällt, bei Anmeldung zur Midterm)
- Gegebenenfalls Anmeldung zur Wiederholungsklausur im TUMOnline

Hinweis: Aktuelle Informationen zur Vorlesung erhalten Sie ausschließlich über das Moodle, dies beinhaltet Informationen zum Stand der Vorlesung oder Updates zu Klausuren.

Hinweis: Bitte beachten Sie zudem die gesetzten Fristen für die Anmeldungen. Noch nicht gesetzte Fristen werden über das Moodle bekannt gegeben, sobald sie feststehen.

Zusammenfassung der einzelnen Kapitel (Stand 07. April 2014)

Kapitel 1: Physikalische Schicht

- 1 Signale, Information und deren Bedeutung
 - Was sind Signale?
 - Entropie und Information
- 2 Klassifizierung von Signalen
 - Zeit- und Frequenzbereich
 - Abtastung, Rekonstruktion und Quantisierung
- 3 Übertragungskanal
 - Einflüsse des Übertragungskanals auf Signale
 - Kapazität eines Übertragungskanals (Modell)
- 4 Nachrichtenübertragung
 - Quellen- und Kanalkodierung
 - Impulsformung
 - Modulation
- 5 Übertragungsmedien
 - Elektromagnetisches Spektrum
 - Koaxialleiter
 - Twisted-Pair-Kabel
 - Lichtwellenleiter

Kapitel 2: Sicherungsschicht

- 1 Darstellung von Netzwerken als Graphen
 - Netztopologien
 - Adjazenz- und Distanzmatrix
 - ► Shortest Path Tree und Minimum Spanning Tree
- 2 Verbindungscharakterisierung, Mehrfachzugriff und Medienzugriffskontrolle
 - Serialisierungs- und Ausbreitungsverzögerungen
 - Nachrichtenflussdiagramme
 - ALOHA und Slotted ALOHA
 - CSMA, CSMA/CD und CSMA/CA
 - Token Passing
- 3 Rahmenbildung, Adressierung und Fehlerkennung
 - Erkennung von Rahmengrenzen und Codetransparenz
 - Adressierung und Fehlererkennung
 - ► Fallstudie: IEEE 802.3u (FastEthernet)
 - ► Fallstudie: IEEE 802.11a/b/g/n (Wireless LAN)
- 4 Verbindungen auf Schicht 1 und 2
 - Hubs, Bridges und Switches
 - Collision und Broadcast Domains

Kapitel 3: Vermittlungsschicht

- 1 Vermittlungsarten
 - Leitungsvermittlung
 - Nachrichtenvermittlung
 - Paketvermittlung
- 2 Adressierung im Internet
 - ► Internet Protocol (IP)
 - Adressauflösung (ARP)
 - Internet Control Message Protocol (ICMP)
 - Adressklassen (für Classful Routing)
 - Subnetting und Präfixe (für Classless Routing)
- 3 Routing
 - Statisches Routing
 - Longest Prefix Matching
 - Dynamisches Routing
 - ► Algorithmen von Bellman-Ford und Dijkstra
 - ► Routingprotokolle (Distance Vector und Link State)
 - Autonome Systeme
- 4 Nachfolge von IPv4: IPv6

Kapitel 4: Transportschicht

- 1 Aufgaben der Transportschicht
- 2 Multiplexing durch Port-Nummern
- 3 Verbindungslose Übertragung: UDP
 - Case-Study: UDP
 - ► Code-Study: SOCK_DGRAM (C)
- 4 Verbindungsorientierte Übertragung: TCP
 - Sliding-Window-Protokolle (Go-Back-N und Selective Repeat)
 - Case-Study: TCP (Fluss- und Staukontrolle)
 - ► Code-Study: SOCK_STREAM (C)
- 5 Network Address Translation (NAT)

Kapitel 5: Die Schichten 5 - 7

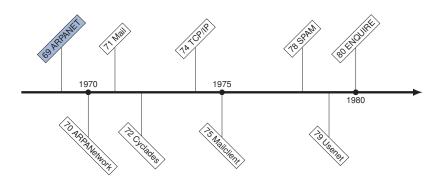
- 1 Schichten
 - Vor- und Nachteile verschiedener Schichtenmodelle
- 2 Sitzungsschicht
 - Dienste
 - ► Funktionseinheiten
 - Synchronisation
 - Quality of Service
 - Performance Parameter
- 3 Darstellungsschicht
 - Datenkompression (Huffman Code)
 - Einheitliche Syntax (ASN.1, BER)
- 4 Anwendungsschicht
 - Namensauflösung im Internet (DNS)
 - ▶ HTTP
 - SMTP

Kapitel 6: Netzsicherheit (voraussichtlich)

- 1 Motivation
 - Schutzziele
 - Begriffe
- 2 Kryptografische Grundlagen
 - Verschlüsselung
 - ► RC4
 - Diffie-Hellman
 - Signaturen
- 3 Sichere e-Mail
 - Zertifikate
 - PKI und PGP
- 4 Sichere Anwendungsprotokolle
 - ▶ HTTPS
 - DNSSEC

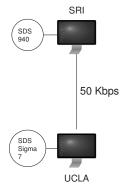
Kapitel 7: Verteilte Systeme

- 1 Homogene, skalierbare Paradigmen
 - Message Passing Interface (MPI)
 - MapReduce
 - Pipes, netcat, DUP
- 2 Remote Procedure Call
 - Funktionsaufrufe und Parameterkodierung
 - Stubs, IDL, Binding
 - Java RMI
 - ► RPC/RMI
- 3 Shared Memory
 - NUMA (Non-Uniform Memory Access)
 - Virtueller Speicher
 - Auslagerung
 - Distributed Shared Memory
 - Konsistenz in parallelen Programmen
- 4 Einbettung in Programmiersprachen
 - Erlang
 - Actor Model

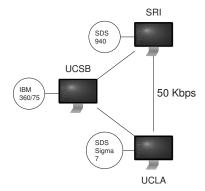

Zurück zu Kapitel 0:

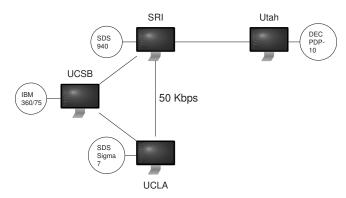
- 1 Die Vorlesung im Überblick
 - Organisatorisches zur Vorlesung
 - Zusammenfassung der einzelnen Kapitel
- 2 Geschichte des Internets
 - Von der Entstehung bis zum heutigen Internet
 - Bedeutung des Internets für die Gesellschaft
- 3 Schichtenmodelle
 - Was sind Schichtenmodelle?
 - Wozu sind Schichtenmodelle gut?
 - Das ISO/OSI-Modell

Von der Entstehung bis zum heutigen Internet


Geschichte des Internets: Übersicht bis 1980

ARPANET mit den ersten 4 Knoten


- ▶ University of California, Los Angeles (UCLA) 1.9.1969
- Stanford Research Institute (SRI) 1.10.1969


ARPANET mit den ersten 4 Knoten

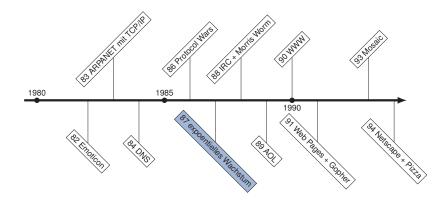
- ▶ University of California, Los Angeles (UCLA) 1.9.1969
- Stanford Research Institute (SRI) 1.10.1969
- ▶ UC Santa Barbara (UCSB) 1.11.1969

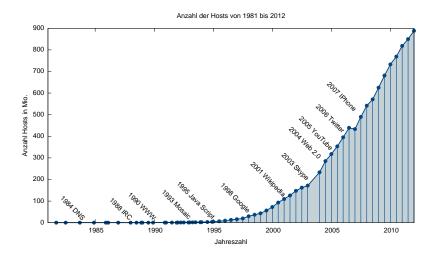
ARPANET mit den ersten 4 Knoten

- University of California, Los Angeles (UCLA) 1.9.1969
- Stanford Research Institute (SRI) 1.10.1969
- ▶ UC Santa Barbara (UCSB) 1.11.1969
- University of Utah 12.1969

ARPANET von 1969 bis 1977

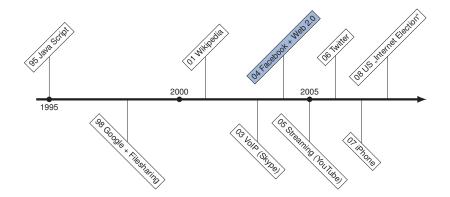
ARPANET 1969, 4 Knoten


ARPANET 1970, 9 Knoten



ARPANET 1972, 25 Knoten

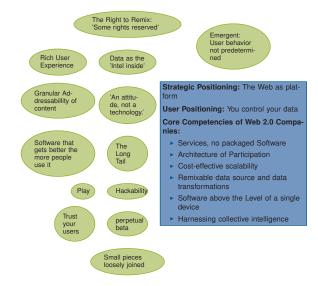
ARPANET 1977, 58 Knoten


Geschichte des Internets: Übersicht von 1980 bis 1994

Geschichte des Internets: Übersicht ab 1994

Web 2.0 Meme Map, by Tim O'Reilly [2]

Strategic Positioning: The Web as platform


User Positioning: You control your data

Core Competencies of Web 2.0 Companies:

- ► Services, no packaged Software
- Architecture of Participation
- ► Cost-effective scalability
- Remixable data source and data transformations
- Software above the Level of a single device
- ► Harnessing collective intelligence

Web 2.0 Meme Map, by Tim O'Reilly [2]

Web 2.0 Meme Map, by Tim O'Reilly [2]

The Right to Remix: 'Some rights reserved' Emergent: RitTorrent: User behavior Radical Denot predetermicentralization: Rich User Data as the ned Service gets Experience 'Intel inside' better the more people use it Strategic Positioning: The Web as plat-Granular Ad-'An attitudressabillity of de, not a User Positioning: You control your data content technology.' Flickr: Tagging, not taxonomy Core Competencies of Web 2.0 Companies: Software that Services, no packaged Software The gets better the Wikipedia: Ra-Long Architecture of Participation dical Trust more people Tail use it Cost-effective scalability Remixable data source and data transformations Plav Hackability Page Rank, Software above the Level of a single eBay Reputadevice tions. Amazon Reviews: User Trust Harnessing collective intelligence perpetual as contributor vour beta users Blogs: Parti-Google AdSencipation. Not Small pieces se: customer publishing self-service loosely joined

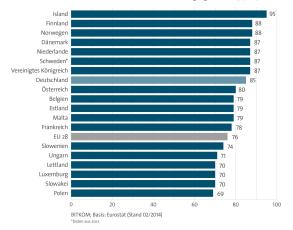

Das Internet Heute

Quelle: chrisharrison.net, [1], 2007

Das Internet Heute

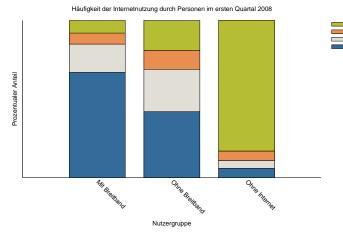
Blau: seit langem existierende Autonome Systeme

Haushalte mit Breitbandzugang



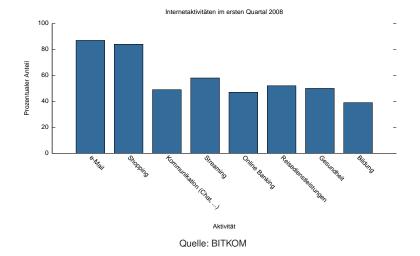
Quelle: BITKOM: Markt & Statistik - ITK-Ausstattung - Internetzugang, 2014

Haushalte mit Breitbandzugang



Quelle: BITKOM: Markt & Statistik - ITK-Ausstattung - Internetzugang, 2014

Wöchentlich Täglich


Bedeutung des Internets für die Gesellschaft

Quelle: BITKOM

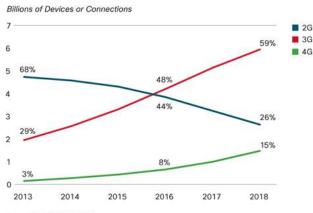
Bedeutung des Internets für die Gesellschaft

Wachstum des globalen Internet-Verkehrs

Table 1. The VNI Forecast Within Historical Context

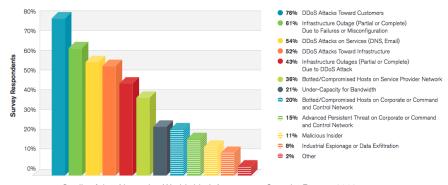
Year	Global Internet Traffic
1992	100 Gigabytes per Day
1997	100 Gigabytes per Hour
2002	100 Gigabytes per Second
2007	2,000 Gigabytes per Second
2012	12,000 Gigabytes per Second
2017	35,000 Gigabytes per Second

Quelle: Cisco Visual Networking Index, 2013


Wachstum des globalen Internet-Verkehrs

CAGR: Compound Annual Growth Rate
Quelle: Cisco Visual Networking Index, The Zettabyte Era - Trends and Analysis, 2013

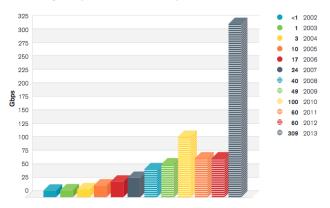
Wachstum mobiler Endgeräte


Source: Cisco VNI Mobile, 2014

Quelle: Cisco Visual Networking Index, Global Mobile Data Traffic Forecast Update, 2014

Bedrohungen der Dienstverfügbarkeit

Most Significant Operational Threats Experienced

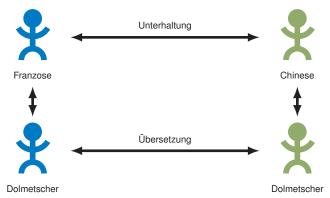


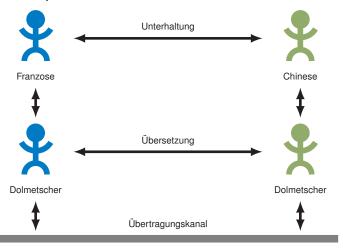
Quelle: Arbor Networks, Worldwide Infrastructure Security Report, 2012

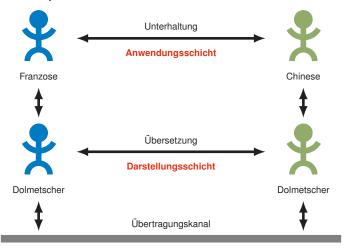
Größte berichtete Datenrate eines DDoS-Angriffs

Size of Largest Reported DDoS Attack (Gbps)

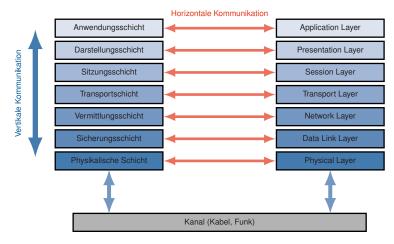
Quelle: Arbor Networks, Worldwide Infrastructure Security Report, 2014

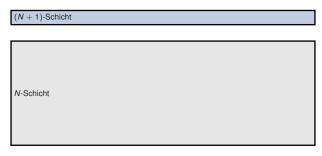

Inhalt


- 1 Die Vorlesung im Überblick
 - Organisatorisches zur Vorlesung
 - Zusammenfassung der einzelnen Kapitel
- 2 Geschichte des Internets
 - Von der Entstehung bis zum heutigen Internet
 - Bedeutung des Internets für die Gesellschaft
- 3 Schichtenmodelle
 - Was sind Schichtenmodelle?
 - Wozu sind Schichtenmodelle gut?
 - Das ISO/OSI-Modell

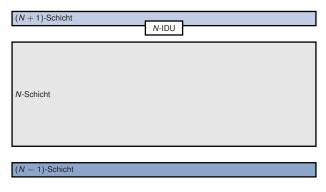


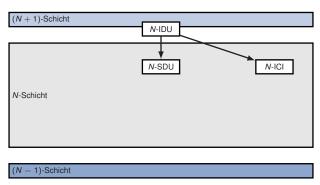
Wozu sind Schichtenmodelle gut?


- Unterteilung des komplexen Kommunikationsvorgangs
 - Niedrigere Schichten bieten h\u00f6heren Schichten Dienste an
 - ► Höhere Schichten nehmen Dienste der jeweils niedrigeren Schicht in Anspruch
- Abstraktion von der Implementierung einer Schicht
 - Festlegung, welche Dienste angeboten werden, aber nicht wie sie erfüllt werden
 - Austauschbarkeit einzelner Implementierungen
- Anwendbar auf beliebige Kommunikationsvorgänge

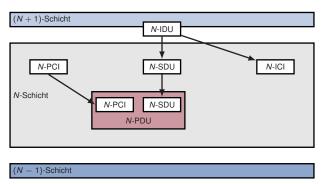

Das ISO/OSI-Modell

- Entwickelt zwischen 1979 und 1983 von der International Organization for Standardization (ISO)
- OSI = Open Systems Interconnect
- Unterteilt den Kommunikationsvorgang in 7 Schichten
- Jede Schicht erbringt bestimmte Dienste (z. B. Aufteilen einer Nachricht in kleinere Pakete)
- Keine Aussage, wie diese Dienste zu erbringen sind

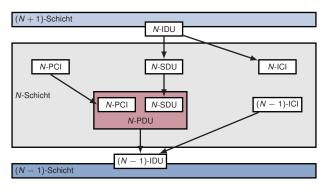

Schematische Darstellung des OSI-Modells:


IN0010, SoSe 2014, Kapitel 0: Schichtenmodelle – Das ISO/OSI-Modell

N - 1)-Schicht


Die (N + 1)-Schicht nimmt Dienste der N-Schicht in Anspruch:

▶ Die *N*-Schicht erhält eine Interface Data Unit (IDU) von der (*N* + 1)-Schicht.


N-IDU enthält aus Sicht der N-Schicht

- Nutzdaten (Service Data Unit (SDU)) und
- Kontrollinformationen (Interface Contorl Information (ICI)), welche zum Erbringen des Dienstes notwendig sind (z. B. Adressinformationen).

Die N-Schicht

- erbringt auf der N-SDU die angeforderten Dienste,
- ▶ fügt sog. Protocol Control Information (PCI) für die N-Schicht der Gegenseite hinzu und
- erzeugt so aus PCI und SDU die Protocol Data Unit (PDU).

Die N-Schicht nutzt den Dienst der (N-1)-Schicht.

- ▶ Sie erzeugt eine (N 1)-ICI, und
- lacktriangle übergibt diese zusammen mit der N-PDU als (N-1)-IDU der nächst niedrigeren Schicht

Üblich ist der Begriff Protocol Data Unit (PDU), welcher auf der N-Schicht

- ▶ die (ggf. bearbeiteten) Nutzdaten der (N − 1)-Schicht sowie
- ► Protokollsteuerungsinformationen (Protocol Control Information PCI) der N-Schicht

bezeichnet. Die PCI wird dabei häufig in Form eines Headers den Nutzdaten vorangestellt.

PDUs einiger Schichten haben eigene Bezeichnungen. Man spricht von

- ► Segmenten auf der Transportschicht,
- Paketen auf der Vermittlungsschicht bzw.
- Rahmen (engl. Frames) auf der Sicherungsschicht.

Diese Unterscheidungen ermöglichen es, implizit die gerade betrachtete Schicht anzugeben. Die Verwendung der Begriffe in der Literatur ist allerdings nicht immer einheitlich.

Schwächen des ISO/OSI-Modells

- Die Trennung der Schichten widerspricht manchmal anderen Interessen (z. B. der Effizienz)
- Einige Protokolle sind nicht klar einer bestimmten Schicht zuzuordnen, bzw. arbeiten sogar auf mehreren Schichten (Cross Layer)
- Die Zuordnung von Protokollen auf einzelne Schichten kann vom konkreten Einsatz der Protokolle abhängen

Modellvorstellung Anwendungsschicht Darstellungsschicht Sitzungsschicht Transportschicht Vermittlungsschicht Sicherungsschicht Physikalische Schicht

Eine kurze Übersicht zum ISO/OSI-Modell finden Sie u.a. in [3].

Literaturhinweise und Quellenangaben

- Harrison, C.: World City-to-City Connections. http://www.chrisharrison.net/index.php/Visualizations/InternetMap.
- [2] O'Reilly, Tim: O'Reilly Network: What Is Web 2.0, September 2005. http://www.oreillynet.com/lpt/a/6228.
- [3] Stein, E.: Taschenbuch Rechnernetze und Internet, Kapitel Das OSI-Modell, Seiten 22–28. Fachbuchverlag Leipzig, 2. Auflage, 2004. Auszug s. Moodle/SVN.