
 Chair for Network Architectures and Services
Department of Informatics
TU München – Prof. Carle

Software Defined
Networking

2014

Cornelius Diekmann

Software Defined Networking 2

Contents

 Motivation
 Software Defined Networking – The Idea
 Implementation

– A Network Operating System
– OpenFlow
– The Hardware

 Programming the Controller
 Programming Languages for Software

Defined Networks
 Conclusion

Software Defined Networking 3

Motivation

Software Defined Networking 4

Mastering Complexity and Extracting Simplicity

A thought experiment

 How would you develop a tool to manage data on an USB stick? On a
bare metal machine!

1) Write Input/Output function in assembly

2) Write some operating system kernel in C that calls your assembly
routines. Implement a file system.

3) Add an operating system kernel API that allows to start userland
processes that can access the file system

4) Write userland tools such as cat, cp, mv, to manage data on your
USB stick.

Software Defined Networking 5

Mastering Complexity and Extracting Simplicity

The thought experiment, conclusion.
 Assembly

– Low level machine language, you must be a of master complexity

 Languages such as C

– Easier to program the hardware than in Assembly

– Is translated to Assembly by a compiler

 Operating systems

– Provide abstraction of hardware, processes, file systems, …

 Languages such as C or Java

– You can simply write your program

– The operating system manages (most of) your resources

– Some environments even manage your memory for you

Software Defined Networking 6

Mastering Complexity and Extracting Simplicity

Another thought experiment

 How do you manage a network on the link layer?

1) Configure all the forwarding tables

2) Configure all the Access Control Lists

3) … set up state in every device ...

4) Check the connectivity, test, test, ping, traceroute, nmap, ….
debug, fix, test, …

Compared to the first thought experiment, this is like writing everything
 in Assembly and debugging it by manually inspecting all the memory!

Software Defined Networking 7

Mastering Complexity and Extracting Simplicity

How is link layer connectivity computed?

 E.g. Spanning Tree Protocol (IEEE 802.1D)
 A distributed protocol that deals with distributed state
 May not result in the global optimal solution
 Defines its own protocol format, ...
 Must deal with packet loss, …

 Where are the abstractions?
 How do we influence the resulting connectivity structure?
 Can't we manage it centrally?

Software Defined Networking 8

A possible SDN use-case (1)

 In your datacenter, you know your traffic flows. It is your datacenter!
 How can you optimize your traffic flows?

– VM1 to VM3 should flow via W → X → Y

– VM2 to VM 4 should flow via W → Z → Y

Hypervisor1

VM1

VM2

Switch Z

VM2 Switch Y

Switch X

Hypervisor2

VM3

VM2VM4
Switch W

Software Defined Networking 9

A possible SDN use-case (2)

 You want a load balancer at a switch

Switch

Step 1:
throw away

Switch

Now with
NEW

features

Network Boxes
 Shop

Step 2:
Buy new

Switch

Now with
NEW

features

Switch

Now with
NEW

features

Switch

Now with
NEW

features
Switch

Now with
NEW

features

Step 3:
Deploy

Step 4:
Repeat until the feature is standardized and understood by all your boxes

Software Defined Networking 10

Conclusion - The Problem

 The use cases
– A centrally managed network

– With scenario-specific requirements
i.e. plugging together some switches is not enough, we have
specific requirements that should be implemented by the switches

 The problem:
– No abstractions or layers

– No easy-to-use high-level APIs

– No comfortable way to centrally manage your network

– Slow innovation

 The idea to solve the problem

– Software defined networking

Software Defined Networking 11

Preliminaries

Software Defined Networking 12

Forwarding Plane and Data Plane

 Forwarding plane: Forwards packets
– E.g. according to rules

 Control plane: Makes the decision what to do with packets
– E.g. sets up forwarding plane rules

Example Switch

Packet IN Packet OUT

Lookup table
Control Plane

Forwarding Plane

forward

decide Spanning Tree Protocol

Software Defined Networking 13

Software Defined Networking

The Idea

Software Defined Networking 14

Software Defined Networking (SDN)

 What is SDN?

A network in which the control plane is [...] separate
from the forwarding plane

and

A single control plane controls several forwarding
devices.

[Keown13]
 Forwarding plane: Forwards packets

– E.g. according to rules

 Control plane: Makes the decision what to do with packets
– E.g. sets up forwarding plane rules

Software Defined Networking 15

Single Control Plane

● Logically single control plane

● Not logically distributed

● Can be physically distributed

– Resilience ...

Software Defined Networking 16

Example

Hypervisor1

VM1

VM2

Switch Z

VM2 Switch Y

Switch X

Hypervisor2

VM3

VM2VM4
Switch W

forwarding plane

control plane

VM1 to VM3: W → X → Y
VM2 to VM4: W → Z → Y

Software Defined Networking 17

SDN Benefits

 Why the term `Software Defined'?
– The control plane is just software.

 Abstraction
– No distributed state, there is a global network view centrally at

the control plane

– No need to configure each forwarding plane device manually.
Everything can be managed centrally at the control plane

– Simple forwarding plane device configuration. A forwarding plane
device model (like a high-level API) can be used to configure the
devices. No need to develop a separate protocol, deal with packet
loss, integrity of transferred data, distributed state, ...

Software Defined Networking 18

SDN Benefits (1): State Abstraction

 No distributed State
 At a central point with a global view is programmed

– Complex protocols such as the Spanning Tree Protocol are no
longer necessary

– E.g.: A simple Dijkstra algorithm suffices

● No more 10k LOC to implement link state routing protocol

– Globally optimal solutions can be computed

 Complexity is removed from the control plane

Software Defined Networking 19

SDN Benefits (2): Specification Abstraction

 Control program should express desired behavior

 It should not be responsible for implementing that behavior on
physical network infrastructure

 Natural abstraction: simplified model of network

Also called: “network virtualization”

[Shenker11]

Software Defined Networking 20

Switch

SDN Benefits: Specification Abstraction - Example

Access Control
Desired behavior: VM1 cannot talk to VM3

VM1

VM2

VM3

VM4

VM1

Switch Z

VM2

Switch Y

Switch X
VM3

VM4Switch W

Abstract
network
model

Real
network
topology

[Shenker11]

Software Defined Networking 22

SDN Benefits (3): Forwarding Abstraction

 Control plane needs flexible forwarding model
 Abstraction should not constrain control program

– Should support whatever forwarding behaviors needed

 It should hide details of underlying hardware
– Crucial for evolving beyond vendor-specific solutions

 The same interface for switches from different vendors

 Current standard and realization: OpenFlow

[Shenker11]

Software Defined Networking 23

Sum up: Abstractions

 State abstraction
– Global network view

 Specification abstraction
– High level API to express desired behavior

 Forwarding abstraction
– Simple model of forwarding `boxes'

Software Defined Networking 24

SDN: The Big Picture

VM1

Switch Z

VM2

Switch Y

Switch X
VM3

VM4Switch W

Real
network
topology

Box Z

Box Y

Box X

Box W

Forwarding
abstraction

control plane

Global
Network
View

Switch

Specification
Abstraction

Control Program 2Control Program 1

Z

Y

X

W

VM1

VM2

VM3

VM4

OpenFlow

Software Defined Networking 25

SDN: The Big Picture

Bottom-Up
 All forwarding plane devices (switches) are connected to the single

control plane
 A common standard (OpenFlow) provides an abstraction such that all

forwarding plane devices can be uniformly managed
 Instead of distributed state in the forwarding plane devices, one global

network view is available
 Appropriate abstractions (specification abstraction), depending on the

desired view, can be utilized to preprocess the global network view
– E.g. one-big-switch for access control,

– Complete topology and link speeds for spanning tree calculation

– Complete topology and link utilization for load balancing

 The control program finally only defines the desired behavior

Software Defined Networking 26

SDN: The Big Picture

Top-Down
 The control program defines the desired behavior

 The specification abstraction is reversed and maps the control
program's output to the global network view / the global state

 A common standard is used to configure the forwarding devices
according to the global state

Software Defined Networking 27

Implementation

A Network Operating System
And

OpenFlow

Software Defined Networking 28

Disclaimer

We are discussing an idea and scientific
prototypes.

There currently exists no network operating system that is as
widely used and comparable to common operating systems

such as Linux.

Recommended reading (1 screen page):
Lee Doyle, The return of the network operating system (NOS), Network World
(US), Jan 2013
http://news.idg.no/cw/art.cfm?id=564A6F1B-EF7B-6318-5F43DCBF4BADE856

Software Defined Networking 29

Recap: What is a `normal' Operating System?

An operating system
 Manages the hardware resources

– Coordinate access to shared hardware resources.
E.g. if there is only one printer, print document1 first, then
document2, don't try to print them interleaved

– Manage the hardware
E.g. put hard disk to sleep if idle, put packets from the NIC to
memory, ...

 Ennobles the hardware
– E.g. you can access /dev/sda as if it were a simple block device.

You don't have to care about whether it is a SSD, HDD, or raid
system

 Provides a standardized API to the hardware resources
– E.g. you normally don't open /dev/sda, you have a file system to

store and access data

Software Defined Networking 30

What is a Network Operating System?

A network operating system
 Manages the hardware resources

– E.g. all your switches in the network

 Ennobles the hardware
– The global network view is a central place where all the state is

stored and managed. As if there were no distributed state.

 Provides a standardized API to the hardware resources
– Forwarding abstraction: Simple model of forwarding `boxes'

– Specification abstraction: High-level API to express desired
behavior

Software Defined Networking 31

Operation of the hardware

 Recap: In a normal operating system
– A device driver operates the hardware

– For example via memory mapped areas, I/O instructions, ...

 In a network operating system
– One needs to deploy the global network view to all the forwarding

plane devices

– The network operating system (control plane) is connected to all
forwarding plane devices

– Via a common protocol, the forwarding plane devices are
programmed

– This protocol is OpenFlow

Software Defined Networking 32

Network Operating System: The Big Picture

VM1

Switch Z

VM2

Switch Y

Switch X
VM3

VM4Switch W

Real
network
topology

Box Z

Box Y

Box X

Box W

Forwarding
abstraction

Global
Network

View and
state

Specification
Abstraction

Control Program 2Control Program 1

VM1

VM2

VM3

VM4

Hardware Interface: OpenFlow

Network Operating System

APIAPI

Software Defined Networking 33

Implementation details

The hardware

Software Defined Networking 34

Recap: today's common switches

 Forwarding plane
– Fast ASIC (application-specific integrated circuit)

– I.e. special forwarding hardware

 Control plane

– A (more or less) common CPU

Example

Packet IN Packet OUT

Lookup
table

Control
Plane

Forwarding
Plane

Software Defined Networking 35

Recap: today's common switches

Hypervisor1

VM1

VM2VM2

Hypervisor2

VM3

VM2VM4

Forwarding plane and control plane distributed across the network

Software Defined Networking 36

SDN switches

 Forwarding plane
– Fast ASIC (application-specific integrated circuit)

– I.e. special forwarding hardware

– Behavior programmed via flow tables

 Control plane: Not in the switch!

– Connected to Forwarding
Plane via OpenFlow over ssl

Packet IN Packet OUT

Flow table

Control
Plane

Forwarding
Plane

OpenFlow
ssl

Software Defined Networking 37

An open switch - Discussion

A switch as open, programmable, forwarding-only platform
 Pros

– Cheap, simple, fast but stupid devices

– Allows innovation at software speed

– Allows experimenting in real-world environments

– Vendor independence

 Cons (possible vendor point of view)

– Reveal switch internals

– Open platforms lower the barrier-to-entry for new competitors

– Opens the market, price pressure

– Can sell less added value in their hardware
Just stupid forwarding devices

Software Defined Networking 38

An open switch - Discussion

Why not use commodity x86 PCs with Linux as open switches
 Pros

– Open, available, well-tested

 Cons

– Low port density.
Did you recently see a PC with 100+ Ethernet ports?

– Slow.
Your memory bus is approximately completely jammed at 10 GB/s

We can forward 10 GB/s at line speed on a common PC, but not between
100+ ports

→ Special forwarding hardware needed

Software Defined Networking 39

An open switch - Discussion

Why not use a commodity x86 PC as controller
 Pros

– Open, available, well-tested

 Cons

– Reliability, but there are means to conquer this

→ You can use a simple x86 PC as your controller!

Software Defined Networking 40

SDN Hardware: The Big Picture

Hypervisor1

VM1

VM2VM2

Hypervisor2

VM3

VM2VM4

Flow
table
Flow
table

Flow
table
Flow
table

Flow
table
Flow
table

Flow
table
Flow
table

Controller
E.g. a common x86 PC

OpenFlow
ssl

Software Defined Networking 41

A comparison: Progress in the Software Industry

Slide borrowed from [Keown13]

Software Defined Networking 42

The future of Networking?

Slide borrowed from [Keown13]

Software Defined Networking 43

Programming the forwarding plane

OpenFlow
(version 1.0)

Software Defined Networking 44

OpenFlow Switch Overview

Packet IN

Controller

OpenFlow / ssl

Does it
match?

Update
counters

Apply
actions

yes

no Consult
Controller

Match Counters Actions

Match Counters Actions

Match Counters Actions

Match Counters Actions

Software Defined Networking 45

OpenFlow Switches

An OpenFlow Switch consists of three components
 A Flow Table

– Associates actions with a matching flow table entry

– E.g. Match(src=1 and dst=2) Action(Forward(Port4))

 A Secure Channel that connects the switch to the controller

– SSL

 The OpenFlow Protocol
– An open and standardized way for a controller to program the

switch

– I.e. set up the flow table entries

[OFwp08]

Software Defined Networking 46

OpenFlow Actions

If a packet matches a flow table entry, the following basic actions can be
performed
 Forward

– Forward packet to a switch's given port(s)

– Used to move packets through network

 Drop

 Encapsulate

– Encapsulate packet and send it via the secure channel to the
controller

– The controller decides what to do

– Sane default setting if packet does not match a flow table entry

– Controller can install appropriate flow table entry after the first
packet of a flow was sent to it

[OFwp08]

Software Defined Networking 47

The Encapsulate Action

Is the encapsulate action a good choice? Discussion
 Observation

– There may be many packets in a network but very few flows

– A flow table entry is installed after the first packet of a flow has
been observed

– Afterwards, all packets that belong to the flow are forwarded by
the switch directly

 Possible problems
– When to delete old flow table entries?

– How many flow table entries can a switch store? Is it enough?

– What about attacks?
Can an attacker send our arbitrary packets that match no flow
table entry and thus congest the secure channel or overwhelm the
controller?
Think of port scanning!

Software Defined Networking 48

OpenFlow Performance

CPU: 1 x Intel Core i7 930 @ 3.33ghz, 4 physical cores, 8 threads

RAM: 9GB

OS: Ubuntu 10.04.1 LTS x86_64

NOX, Beacon, and Maestro are controllers

http://archive.openflow.org/wk/index.php/Controller_Performance_Comparisons 05/17/2011

Software Defined Networking 49

A Real-World Test

● Analyzing our firewall

● More than 95% of all packets belong to established* connections

● September 2014

● More than 19T of real-world traffic

*
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 16G 19T ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED,UNTRACKED

http://archive.openflow.org/wk/index.php/Controller_Performance_Comparisons

Software Defined Networking 50

Reminder

Always keep in mind: OpenFlow is just one tiny aspect of SDN and better
alternatives may be thought of. But, you can buy OpenFlow switches!

Software Defined Networking 51

Flow Table Entries

OpenFlow (first generation)
 Match

– If a packet matches multiple entries, a priority decides the match

– Only one match can apply to a packet but multiple actions can be performed
per match

 Counters
– Statistics: Byte and packet counter per flow

 Actions
– Zero or more

Match Counters Actions

In
Port

VLAN
ID

Ethernet IPv4 TCP #pkts
#bytes

Fwd
Drop
Encap
...

Src
addr

Dst
addr

Type Src
addr

Dst
addr

Proto Src
port

Dst
port

Software Defined Networking 52

Matching in Detail

based loosely on [of10]

Eth type
0x8100

VLAN tagged

Eth type
0x0806

ARP

Eth type
0x0800

IPv4

Proto
0x06

TCP

Proto
0x17

UDP

Proto
0x01

ICMP

Inspect l4 ports Inspect l4 ports
Inspect type

and code

Software Defined Networking 53

Programming a Controller

Using POX

https://github.com/noxrepo/pox

https://openflow.stanford.edu/display/ONL/POX+Wiki

Software Defined Networking 54

A Test Network

● sudo mn --topo single,3 --mac --switch ovsk --controller remote
● Hosts: h1 h2 h3

● Switch: s1

h1

h2

s1

h3

Software Defined Networking 55

POX – Switch Identification

● DPID – Data Path IDentifier

● A switch is called a Data Path in the OpenFlow standard

● It has a unique 64 Bit ID

● In the following, dpid uniquely defines a switch in the network

Software Defined Networking 56

POX – Matches

● in_port

– Switch port number the packet
arrived on

● dl_src

– Ethernet source address

● dl_dst

– Ethernet destination address

● dl_vlan

– VLAN ID

● dl_type

– Ethertype (e.g. 0x0800 = IPv4)

● nw_proto

– IP protocol (e.g., 6 = TCP) or lower
8 bits of ARP opcode

● nw_src

– IP source address

● nw_dst

– IP destination address

● tp_src

– TCP/UDP source port

● tp_dst

– TCP/UDP destination port

● Terminology: data link (dl), network (nw), transport (tp)

Software Defined Networking 57

POX – Callbacks

● Called when the switch sends OpenFlow messages to the controller

● Important callbacks

– _handle_PacketIn
An encapsulated packet is sent from the switch to the controller

– _handle_ConnectionUp
A (new) switch connected

– _handle_ConnectionDown
A switch disconnected or restarted or lost OpenFlow connection to controller

– Other events include: PortStatus, FlowRemoved, ErrorIn, Statistics, ….

Software Defined Networking 58

A Simple Repeater

Forwards input packets out of all ports
 We react to encapsulated packets
 Step1)

print debugging output for all received packets

def _handle_PacketIn(event):
 dpid = event.dpid
 packet = event.parsed
 print "Switch %s received a packet: %s" % (dpidToStr(dpid), packet.dump())

h1

h2

s1

h3

Software Defined Networking 59

A Simple repeater

Forwards input packets out of all ports
 Step2)

The controller instructs the switch to
FLOOD all incoming packets to all ports

 FLOOD means “send to every port, except
the one where the packet was received”

def _handle_PacketIn(event):
 dpid = event.dpid
 packet = event.parsed
 print "Switch %s received a packet: %s" % (dpidToStr(dpid), packet.dump())

 msg = of.ofp_packet_out()
 # construct this message from the received event
 msg.data = event.ofp
 msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD))
 event.connection.send(msg)

h1

h2

s1

h3

Software Defined Networking 60

A Simple Repeater – Test

Forwards input packets out of all ports
 All hosts are pairwise reachable
 All packets are seen by the controller

h1

h2

s1

h3

Software Defined Networking 61

A Simple Repeater - Discussion

 This setup is extremely inefficient
 All packets that are received from the switch

are forwarded to the controller.
 The controller decides the action
 This is no better than using a common x86 PC

as network switch!

h1

h2

s1

h3

h1

h2

s1

h3

Controller

Software Defined Networking 62

An Efficient Repeater

 We install a flow table entry when the switch connects

def _handle_ConnectionUp (event):
 print "installing flowtable entries on %s" % dpidToStr(event.dpid)
 msg = of.ofp_flow_mod()
 msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD))
 event.connection.send(msg)

“of.ofp_flow_mod()”

● Construct a new OpenFlow message for the switch
● Default: add new flow table entry
● All unspecified match fields are set to wildcards
● We only specify the actions here

Software Defined Networking 63

An Efficient Repeater – Test

Forwards input packets out of all ports
 All hosts are pairwise reachable
 No packets are seen by the controller

h1

h2

s1

h3

h1

h2

s1

h3

Controller

Software Defined Networking 64

An Efficient Repeater – Discussion

 Now that we have flow table entries, can we delete _handle_PacketIn?
 No!
 Packets may arrive before the flow table entry is installed
 OpenFlow messages do not guarantee any strict order
 Installing flow tables and switch initialization may take a while
 The switch may already send encapsulated packets the controller
 Test: delaying installation of flow table entries by 10 seconds
def hubify (event):
 print "installing flowtable entries on %s" % dpidToStr(event.dpid)
 msg = of.ofp_flow_mod()
 msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD))
 event.connection.send(msg)

def _handle_ConnectionUp (event):
 print "switch connected"
 core.callDelayed(10, hubify, event)

 The first packets are processed in software by the controller

Software Defined Networking 65

An Efficient Repeater - Discussion

 The efficiency is still not very satisfying
 Incoming packets are flooded to all output ports
 This strategy resembles more to hubs than switches

 Next, we will build a learning switch
 Forwarding strategy:

– When a packet with src MAC address A arrives at switch port n,
we know that packets for device A should henceforth only be
forwarded to port n.

Software Defined Networking 66

A Simple Learning Switch

#map source_MAC_address -> switch_port
known_ports = dict()

def _handle_PacketIn (event):
 packet = event.parsed

 # Learn
 known_ports[packet.src] = event.port

 dst_port = known_ports.get(packet.dst)

 if dst_port is None:
 # destination port unknown, flood
 action = of.ofp_action_output(port = of.OFPP_FLOOD)
 else:
 print("Learned: %s <-> %s" % (packet.src, packet.dst))
 action = of.ofp_action_output(port = dst_port)

 msg = of.ofp_packet_out()
 msg.data = event.ofp
 msg.actions.append(action)
 event.connection.send(msg)

Based on pox/forwarding/l2_pairs.py

Software Defined Networking 67

A Simple Learning Switch - Discussion

h1

h2

s1

h3

Controller

PING h1 → h3

h1

h2

s1

h3

Controller

PONG h3 → h1

● If the destination is unknown, a packet is flooded

● If the destination is known, the packet is sent only to one port

● All packets traverse the controller

Software Defined Networking 68

Towards an Efficient Learning Switch

● Need to prevent that every packet is send to the controller

→ Install flow table entries

● Can we install them in _handle_ConnectionUp?

– No, we don't know where the hosts are

Software Defined Networking 69

Towards an Efficient Learning Switch

● A first attempt

● If we receive a packet

– The source address is at the input port

– Install a flow table entry

● Send everything for src to this port

 print "installing %s -> %s" % (packet.src, event.port)
 msg = of.ofp_flow_mod()
 msg.match.dl_dst = packet.src
 msg.actions.append(of.ofp_action_output(port = event.port))
 event.connection.send(msg)

● Where is the problem?

Software Defined Networking 70

Towards an Efficient Learning Switch

● Example

1) PING h1 → h3

We install if dst=h1 then output:h1.port

Flood packet

2) PONG h3 → h1

Directly forwarded by flow table entry
● The Problem:

● We never see the PONG packet at the controller
● We cannot learn h3's port
● All further packets from h1 to h3 are send to the

controller and flooded

Software Defined Networking 71

An Efficient Learning Switch

● Solution

– Only install flow table entries if source and destination
port are known

– This strategy requires about n² entries for n hosts

● A helper function

– Install a rule which outputs packets from src MAC
address to dst MAC address at port

def install_l2_rule (conn, src, dst, port):
 msg = of.ofp_flow_mod()
 msg.match.dl_src = src
 msg.match.dl_dst = dst
 msg.actions.append(of.ofp_action_output(port = port))
 conn.send(msg)

Software Defined Networking 72

An Efficient Learning Switch

#map source_MAC_address -> switch_port
known_ports = dict()

def _handle_PacketIn (event):
 packet = event.parsed

 # Learn
 known_ports[packet.src] = event.port

 dst_port = known_ports.get(packet.dst)

 if dst_port is None:
 # destination port unknown, flood
 action = of.ofp_action_output(port = of.OFPP_FLOOD)
 else:
 print("Learned: %s <-> %s" % (packet.src, packet.dst))
 action = of.ofp_action_output(port = dst_port)
 install_l2_rule(event.connection, packet.src, packet.dst, dst_port)
 install_l2_rule(event.connection, packet.dst, packet.src, event.port)

 msg = of.ofp_packet_out()
 msg.data = event.ofp
 msg.actions.append(action)
 event.connection.send(msg)

Software Defined Networking 73

An Efficient Learning Switch - Discussion

h1

h2

s1

h3

Controller

PING h1 → h3

h1

h2

s1

h3

Controller

PONG h3 → h1

● If the destination is unknown, a packet is flooded

● If the destination is known, the packet is sent only to one port

Software Defined Networking 74

An Efficient Learning Switch - Discussion

h1

h2

s1

h3

Controller

PING h1 → h3

h1

h2

s1

h3

Controller

PONG h3 → h1

● ...

● Once both destinations are known, a rule is installed

dl_src=h1 dl_dst=h3 .. [Port 3]

dl_src=h3 dl_dst=h1 .. [Port 1]

dl_src=h1 dl_dst=h3 .. [Port 3]

dl_src=h3 dl_dst=h1 .. [Port 1]

Software Defined Networking 75

Problems Not Addressed

● Multiple switches

● Loops

● Layer 2 broadcast

● Learned output port = packet's input port?

● Host mobility

Software Defined Networking 76

Programming Languages for
Software Defined Networks

Software Defined Networking 77

Introduction

Recall our hub example
 The controller code and the flow tables need to be written
 This is comparable to writing your C code and writing the same

program in assembly again – by hand
 Programming languages for SDNs (such as frenetic) help out

The examples are taken from
https://github.com/frenetic-lang/frenetic/wiki/Frenetic-Tutorial

let hub =
 if inPort = 1 then fwd(2,3,4)
 elsif inPort = 2 then fwd(1,3,4)
 elsif inPort = 3 then fwd(1,2,4)
 elsif inPort = 4 then fwd(1,2,3)
in hub

 This pseudo code can be compiled to a
SDN controller and flow table entries

Software Defined Networking 78

Composition

 Composition of flow table entries is also a non-trivial task
 Recall:

– A packet matches at most one flow table entry

– An entry can specify multiple actions

– If multiple entries apply, a priority decides

– If multiple entries with the same priority apply, we assume the first
one (and only the first one) is applied

Software Defined Networking 79

Composition: Example

dl_type=0x800 nw_src=A .. [count]

dl_type=0x800 nw_dst=B .. [Port 2]

dl_type=0x800 nw_src=A nw_dst=B .. [count, Port 2]

dl_type=0x800 nw_src=A .. [count]

dl_type=0x800 nw_dst=B .. [Port 2]

 How do you apply both rules together (parallel composition)?

 Problem: all packets with srcIP A and dstIP B are counted and lost
afterwards as the first matching rule only counts them.

 Together: First statistics, then forwarding (sequential composition)

 Also, you want to statically forward all packets with dstIP B to Port 2

 You want to count all packets with a srcIP A, using the packet counter

dl_type=0x800 nw_src=A .. [count]

dl_type=0x800 nw_dst=B .. [Port 2]

Software Defined Networking 80

Composition

 Using composition operators, policies can be combined
– Parallel composition `|'

– Sequential Composition `>>'

 Assume we wrote a controller app that collects statistics and one that
does firewalling

 We want to collect the statistics in parallel with applying the firewalling.
Afterwards, our learning switch should forward all packets the firewall
let through

 Code:
 (statistics | firewall) >> learning_switch

[pyretic13]

Software Defined Networking 81

Composition: Examples

[pyretic13]
Warning: this example does not test for the Ethernet type

dstip rewriting

Software Defined Networking 82

Conclusion

Software Defined Networking 83

Conclusion

 Software Defined Networking is an idea that focuses on
– Centralized management

– Abstractions

– Innovation at software speed

 Implementation

– Controller, allows programming the network behavior

● special programming languages (an active research area) provide
easy-to-use means to program it

● The controller runs on a

– Network Operating System

● provides easy-to-use API, keeps central state
● and manages the hardware (forwarding plane) using

– OpenFlow

● an open standard which allows programming the forwarding plane
devices

Software Defined Networking 84

Comparison to Traditional Networks

● Traditional networks
(simplified, idealized)

– Autonomous boxes

– Works “out of the box”

– Decentralized

– No single point of failure

– General use case

● Software-defined networks
(simplified, idealized)

– Dumb boxes

– Requires configuration and
controller

– Logically centralized

– Single point of failure
(control plane)

– Specific scenarios

Software Defined Networking 85

Bibliography

[Shenker11] Scott Shenker, The Future of Networking, and the Past of
Protocols. Open Networking Summit 2011
http://www.youtube.com/watch?v=YHeyuD89n1Y

[Keown13] Nick McKeown, Forwarding Plane Correctness, Summer
School on formal methods and networks, Cornell, 2013
http://www.cs.cornell.edu/conferences/formalnetworks/

[OFwp08] Nick McKeown et al., OpenFlow: Enabling Innovation in
Campus Networks, ACM SIGCOMM Computer
Communication Review, Apr 2008

[of10] Open Networking Foundation, OpenFlow Switch
Specification, Version 1.0.0 (Wire Protocol 0x01), Dec 2009
https://www.opennetworking.org/images/stories/downloads/s
dn-resources/onf-specifications/openflow/openflow-spec-
v1.0.0.pdf

[pyretic13] C. Monsanto et al., Composing Software-Defined Networks,
10th USENIX conference on Networked Systems Design
and Implementation, 2013

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Bibliography

