
Private Computing on Public Blockchains

Hugo Krawczyk

Algorand Foundation

Is Algorand…

▪ Scalable?

▪ Yes!

▪ Decentralized?

▪ Yes (Decentralizable)

▪ Secure?

▪ Yes!

▪ Private?

▪ Nope! Except for some pseudonymity

▪ Do not panic – neither are other L1 chains (with limited privacy in special cases, e.g., Zcash)

Blockchains are non-private…

▪ … by definition

▪ They are first and foremost transparent (and immutably so)

▪ All data smart contracts carry is in the clear (it can be encrypted data,

but the smart contract itself cannot decrypt it)

▪ Smart contracts cannot say: Hey, here is a secret signature key, use it to sign

these messages if the SC logic is satisfied.

But we know how to make blockchain private, don’t we?

▪ Hmm… We know, partially, with Zero-Knowledge (ZK) Proofs, in some cases

▪ For example, can prove my balance is about some limit (w/o disclosing the balance)

▪ I own the output of a previous bitcoin transaction (w/o pointing to the precise transaction)

▪ I carry a certificate vowing for being 21 or older (w/o disclosing my exact age)

▪ The output of a given private computation is y (w/o disclosing private information)

(Note: “ZK” often used, wrongly, when referring to compact verification SNARKs)

But can a smart contract carry a secret it can use?

For example:

▪ A SC that carries an encrypted will and only discloses it to the heirs and only

upon death of the subject

▪ A SC equipped with a bitcoin wallet key, that upon some logic, generates a bitcoin

transaction (the SC runs on Algorand!)

▪ A SC that with an authorizing multi-signature can move funds from account A to

account B (for pre-established accounts A and B, in the same or different chain)

Wouldn’t it be wonderful if we could…

▪ A SC that carries an encrypted will and only discloses it to the heirs and only

upon death of the subject

▪ Running general purpose private contracts

▪ A SC equipped with a bitcoin wallet key, that upon some logic, generates a bitcoin

transaction (the SC runs on Algorand!)

▪ SC’s in Bitcoin, running on… Algorand! Or, Ethereum SCs with Algorand speed/cost!

▪ A SC that with an authorizing multi-signature can move funds from account A to

account B (for pre-established accounts A and B)

▪ On-chain social recovery, for any chain!

YES, WE CAN

▪ We know how. Implementation is feasible but requires a non-trivial engineering

effort

▪ Let me tell you more…

----- COULD

Major example: State proofs

▪ Every 250 blocks a compact proof is published allowing to verify these blocks

▪ Enables smart contracts running in other chains to verify transactions in Algorand

▪ Much better than a trusted oracle that ingests and checks all Algorand blocks

▪ Still non-trivial computation on the non-Algorand SC and verification depends on

validity of all previous SP’s (also needs to wait to next SP to validate current blocks)

Major example: State proofs (cont.)

▪ We can do better! A service that answers any query to the Algorand blockchain

with full consensus authority – namely, as trustful as the consensus itself!

▪ Anyone can authenticate the answer with a single standard signature against

a known Algorand public key (no other work on the verifying chain needed)

▪ Queries can range from individual transaction to a block hash to any statement

about the state of the blockchain

➔ Simplified and secure (“trustless”) bridges

And many more applications (let your imagination fly…)

▪ Carrying private medical data within a SC (controlling the data, using it selectively,

and keeping it private!)

▪ Note: policy/logic needs transparency, not of the data

▪ Enabling “tunable privacy” (for auditing and regulations, managed by SC)

▪ Cryptography for the end user. Key management for:

▪ Decentralized social networks, messaging systems

▪ User-protected storage, including backed-up wallets!

▪ More: trustless randomness beacons, auctions, voting, defenses against MEV, …

Threshold Cryptography to the Rescue

▪ It is easy to do all the above with a trusted third party, say a server, that

keeps signature and encryption keys and follows faithfully the logic of a SC

▪ So “all we need” is to decentralize that trusted server

▪ Enter: Threshold cryptography (a branch of secure multi-party computation)

▪ Cryptographic keys shared among a set of servers

▪ Needs a threshold of them to produce a signature (or decryption in encryption applications)

▪ Breaking to less than a threshold achieves nothing for the attacker

▪ Traditionally, a small-to-moderate number of servers, say 2 to 50

▪ But here we want security in a network of many thousands to millions parties

Scalability

▪ 100,000 servers, 1M eventually? That is a lot of work, and communication

▪ We want that total work/communication be independent of total # participants

▪ Sounds familiar?

▪ Algorand: Many participants but only a small committee active at any given time

▪ Work is proportional to committee size, independent of the total number of participants

▪ Committees are unpredictable and short lived to prevent targeted corruption

▪ They are chosen in proportion to their stake!

That’s exactly what Algorand consensus does!

Committee-based computation (à la Algorand)

▪ Many participants but only a small committee is active at any given time (work is

proportional to committee size, independent of the total number of participants)

▪ We can do that too!

▪ At each epoch, a committee runs the threshold signature for multiple apps (SCs)

▪ Committee chosen via a Threshold VRF so that <n/3 stake is adversarial

▪ Stake-weighted trust in the committee = trust for consensus

▪ When their work is done (can last for a few rounds depending on network conditions)

they re-share their keys to the next committee

Compromise of participants in one committee is

useless for attacking shares from another committee

Recap

▪ Blockchains are natively non-private

▪ Smart contracts cannot act on private data

▪ Ability to perform secret-key operations (by SCs) on the blockchain opens a world

of otherwise impossible (decentralized) applications

▪ We developed an architecture and solution to enable such applications

▪ Is this practical? Yes, though details vary by application.

▪ Is it implemented? Not yet. A serious but feasible engineering effort

▪ Best suited for Algorand since it works in tandem with consensus hence providing same

security level as the consensus itself

Thank you!

▪ Paper with the design of threshold signatures in the above setting/approach

SPRINT: High-Throughput Robust Distributed Schnorr Signatures,

F. Benhamouda, S. Halevi, H. Krawczyk, Y. Ma, T. Rabin, https://ia.cr/2023/427

▪ Inspired in prior work on the “YOSO model”

▪ Can a Public Blockchain Keep a Secret? F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H.

Krawczyk, C. Lin, T. Rabin, L. Reyzin, TCC 2020, https://ia.cr/2020/464

▪ You Only Speak Once: Secure MPC with Stateless Ephemeral Roles, C. Gentry, S. Halevi, H.

Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, S. Yakoubov, Crypto 2021, https://ia.cr/2021/210

▪ Threshold Cryptography as a Service (in the multi-server and YOSO models), F. Benhamouda,

S. Halevi, H. Krawczyk, A. Miao, T. Rabin, CCS 2022

https://ia.cr/2023/427
https://ia.cr/2020/464
https://ia.cr/2021/210

	Slide 1
	Slide 2: Is Algorand…
	Slide 3: Blockchains are non-private…
	Slide 4: But we know how to make blockchain private, don’t we?
	Slide 5: But can a smart contract carry a secret it can use?
	Slide 6: Wouldn’t it be wonderful if we could…
	Slide 7: YES, WE CAN
	Slide 8: Major example: State proofs
	Slide 9: Major example: State proofs (cont.)
	Slide 10: And many more applications (let your imagination fly…)
	Slide 11: Threshold Cryptography to the Rescue
	Slide 12: Scalability
	Slide 13: Committee-based computation (à la Algorand)
	Slide 14: Recap
	Slide 15: Thank you!

