

Softwarization of Automotive E/E Architectures A Software-Defined Networking Approach

M. Häberle, F. Heimgärtner, H. Löhr, N. Nayak, D. Grewe, S. Schildt, M. Menth

http://kn.inf.uni-tuebingen.de

- Motivation
- Evolution of E/E-Architectures
- Use Case: Trailer Networks
- Architecture
 - Overview
 - Data Plane
 - Management
- Operations
 - TSN Configuration
 - Failover
- Security

Motivation

- In-vehicle networks today
 - Low bandwidth technologies
 - Static configuration, determined during manufacturing
- Future
 - More bandwidth demand
 - Autonomous driving
 - Configuration changes after purchase
 - Plug-and-play add-on components
 - Updates or downloadable features
- Reconfigurable networks required
 - Apply SDN principles

- Distributed ECUs connected to single CAN bus
- Multiple CAN buses connected to central gateway
 - Additional application-specific buses (LIN, MOST, FlexRay)
- Consolidation of functionality into more powerful devices
 - Vehicle computers with virtualization
 - Domain model
 - ECUs separated into Domains (safety, comfort, infotainment,...)
 - One or more buses per domain connected to domain controller
 - Domain controllers connected by backbone network
 - Problem: wiring effort
 - Zone model
 - Zone controllers per location (front left/right, rear left/right,...)
 - ECUs connected to local zone controllers
 - Zone controllers interconnected by backbone network (mesh)
- Automotive Ethernet
- Time Sensitive Networking

Topology with a central gateway

Domain model

Zone model

Use Case: Trailer Networks

- Trailer connection today
 - Electrical connection (5-22 pins)
 - Fixed function set (tail lamps, turn signals, electric brakes)
- Future
 - Switches in car and trailer
 - Ethernet connection
- Benefits from reconfigurable networks
 - Connection of networked components in trailer to vehicle
 - Cameras
 - Sensors (e.g., park distance control)
 - Actuators (e.g., electric brakes with TSN)
 - Sharing of uplink
 - Wi-Fi AP in caravans/camping trailers
 - Monitoring freight trailers

Functionality

- Interconnect components and applications
- Connect components and applications to management system

Traffic classes

- Hard real-time
 - Safety-critical components
 - Fixed deadlines
- Soft real-time
 - Less critical systems
 - Degraded operation possible with missed deadlines
- Configuration
 - Management
 - Device discovery
- Best effort
 - Infotainment
 - All other traffic

Topology

- Two switches (front and rear switch)
- Two backbone links between front and rear
 - Link aggregation during normal operation
 - 1+1 protection for selected critical flows
 - Rescheduling traffic to the operational link in case of link failure

- Data plane configured by network controller
- Controller directly connected to one of the switches
- In-band signaling

EBERHARD KARLS

TÜBINGEN

- Reduced wiring effort
- Extensibility (trailer use case)
- Discovery mechanism
 - Automatic discovery of new devices and newly installed applications
 - Access to discovery channel only at first, other traffic blocked
 - New Device sends signed manifest, triggers reconfiguration
 - Identification
 - Connectivity requirements

- Northbound interface
 - Used to trigger reconfigurations
 - Access restricted by ACLs and permission levels

- Safety-critical components require real-time communication
- ► Updates of Time Sensitive Networking (TSN) configuration
 - Allocation of bandwidth
 - Re-calculation of schedules
 - Path selection for 1+1 protection
- Hybrid scheduling
 - First: In-car controller calculates initial schedule
 - Starts immediately when necessary
 - Not enough computing resources to calculate optimal schedule
 - Non-optimal, with approximations
 - Guarantees for safety-critical systems only
 - Second: Cloud service is triggered for schedule calculation
 - Starts as soon as Internet connection is available
 - Enough computing resources to compute optimal schedule
 - Re-use cached schedule for same constellation
 - Compute optimal schedule if no cached schedule available

- Single backbone link failure
 - Traffic is rerouted trough remaining backbone link
 - Pre-calculated outage schedule for TSN flows
- Controller failure
 - No reconfiguration possible anymore
 - Backup flows and schedules pre-computed for critical systems
 - Switches apply backup configuration if connection to controller lost
- Switch failure or double backbone link failure
 - Components enter fail-safe state
 - Backup systems to ensure safe stop of vehicle

- Devices and Applications
 - New devices can only access network for discovery
 - Manifest signature by trusted manufacturer required
 - Device sends app manifest to controller via northbound API
 - Central CA store contains CA certificates
- Network security
 - Specific flows between devices and applications
 - No wildcard flows
 - Attacker can't attack devices he can't reach
 - Firewall for outside connections
 - Filtering of uplink, V2X, Bluetooth, Wi-Fi
 - MACsec or AUTOSAR SecOc for integrity protection
 - Access restrictions for controller interfaces

- Legacy automotive networks
 - Low bandwidth
 - Static configuration
- New applications and use cases
 - Demand for higher bandwidth
 - Need for more flexibility
- Technology for future automotive networks
 - Automotive Ethernet
 - Time-Sensitive Networking
- SDN concepts for automotive Ethernets
 - Configuration and management
 - Path selection
 - TSN schedules
 - Access control

Marco Häberle

marco.haeberle@uni-tuebingen.de University of Tuebingen, Dept. of Computer Science Chair of Communication Networks Sand 13, 72076 Tuebingen, Germany http://kn.inf.uni-tuebingen.de/