TSN Support for Quality of Service in Space

Marc BOYER, Pierre-Julien CHAINE, Claire PAGETTI, Franck WARTEL

Context	Ethernet as a next step ?	
0000	0000	
Outline		

- 2 Ethernet as a next step ?
- Insuring low jitters with TSN

Context		
0000		
\cap .	+13	-
Οl	τII	ne

0000

Low jitter

00

2 Ethernet as a next step ?

Insuring low jitters with TSN

3/18

M. BOYER, P.-J. CHAINE - Oct. 13, 2021 - TUM/TSN Oct. 2021

0000

Low jitter

Conclusio

00

Current Satellite Architecture Introduction

Platform

- Performances: Low latency, low jitter, guarantee of arrival
- <u>RAMS</u>: Link and device redundancy
- Technologies: 1553, CAN, (SpaceWire)

Payload

- Performances: High average throughput
- RAMS: Link and device redundancy
- Technologies: SpaceWire, HSSL, (SpaceFibre)

0000

Low jitter

Conclusio

00

Current Satellite Architecture

Strengths

- Mature
- Suited for space environment
- Simple and reliable
- AOCS friendly

Weaknesses

- Lack of bandwidth
- Lack of flexibility
- Niche market (few customers and few users)
- Few interactions with academics or other industrials

0000

Low jitter

Conclusio

00

Problem Statement

Where to go?

Is it possible to find a unique Ethernet technology, that:

- ➡ is able to fulfil both platform and payload needs ?
- ➡ has better performances ?
- is easy to analyse/configure ?
- eases development and integration ?

Context	Ethernet as a next step ?	
0000	0000	
Outline		

Insuring low jitters with TSN

Opportunities

- High bandwidth with Quality of Service
- Large ecosystem with COTS
- Easier integration
- Looked at in other industry verticals

Threats

- Complex behaviour and configuration
- Most COTS not qualified for space (yet)
- Risk of redesigning "legacy" devices

Ethernet as a next step ?

Low jitt

Conclusio

00

Introduction of Ethernet Technologies

Ethernet

- "Full Duplex Switched Ethernet"
- ISO L2 based on IEEE 802.3 and 802.1Q-2008
- Network = switches + end-stations
- Ethernet frame
- Used worldwide at home and in ISP core networks

0000

Low jitte

Conclusio

00

Introduction of Ethernet Technologies

Ethernet

- "Full Duplex Switched Ethernet"
- ISO L2 based on IEEE 802.3 and 802.1Q-2008
- Network = switches + end-stations
- Ethernet frame
- Used worldwide at home and in ISP core networks

ARINC 664

- Avionic bus
- Based on Ethernet
- Adds determinism capability
- Adds fault tolerance capability
- Used at Airbus (AFDX), Boeing, etc.

0000

Low jitte

00

Introduction of Ethernet Technologies

Ethernet

- "Full Duplex Switched Ethernet"
- ISO L2 based on IEEE 802.3 and 802.1Q-2008
- Network = switches + end-stations
- Ethernet frame
- Used worldwide at home and in ISP core networks

ARINC 664

- Avionic bus
- Based on Ethernet
- Adds determinism capability
- Adds fault tolerance capability
- Used at Airbus (AFDX), Boeing, etc.

TTEthernet

- Standardized by SAE and ESA
- Based on Ethernet, extends ARINC
- Adds synchronous communications capability
- Used at Ariane, NASA, Airbus,

etc.

9/18

Ethernet as a next step ?

0000

Low jitter

00

Introduction of Ethernet Technologies

M. BOYER, P.-J. CHAINE - Oct. 13, 2021 - TUM/TSN Oct. 2021

Ethernet

- "Full Duplex Switched Ethernet"
- ISO L2 based on IEEE 802.3 and 802.1Q-2008
- Network = switches + end-stations
- Ethernet frame
- Used worldwide at home and in ISP core networks

ARINC 664

- Avionic bus
- Based on Ethernet
- Adds determinism capability
- Adds fault tolerance capability
- Used at Airbus (AFDX), Boeing, etc.

TTEthernet

- Standardized by SAE and ESA
- Based on Ethernet, extends ARINC
- Adds synchronous communications capability
- Used at Ariane, NASA, Airbus, etc.

Time Sensitive Networking

- Developed by the IEEE TSN WG
- State of the art of Ethernet
- Adds mixed QoS and fault tolerance capabilities
- Receives attention in several industry verticals

AIRBUS

ONERA

 Context
 Ethernet as a next step ?
 Low jitter
 Conclusion

 0000
 0000
 00
 00

 TSN: a good candidate
 000000
 00

TSN faufil requirements

- high bandwidth
- fault tolerance (FRER)
- time guarantees
- low jitter with TAS

Context	Ethernet as a next step ?	Low jitter	
0000	0000	•00000	
Outline			

Ensuring low jitters with TSN

 Conclusio

00

802.1Qbv: Time Aware Shaper – TAS

- "Enhancements for Scheduled Traffic"
- A gate is associated to each queue
- The gate is either open or closed
- A global cyclic schedule (Gate Control List GCL), w.r.t local clock
- Building schedule is out of standard
- \bullet "Exclusive gating" \approx one gate opened at a time
- Integration with GCL: update of credit evolution rules
- End-to-end TT schedule requires
 - global build of local schedules
 - synchronisation of local clocks (eg. 802.1AS)

Principles

- one TT queue
- exclusive access
- gate opening built in a "smart" way

ES1-SW1 closed ES2-SW1 closed SW1-SW2 closed cl. в c SW2-ES3 closed closed в SW2-ES4 closed closed C

Nominal case

- The slaves have very low reaction time (from 4μ s to 12μ s)
- Each app must write data before time slot

- TSN TAS is based on queues
- \implies require ordering at emission
- \implies A buffer app? Synch. between Apps?

- Frames may be lost
- \implies next frame in queue is send
- \implies out of schedule frame

Context	Ethernet as a next step ?	Low jitter	
0000	0000	000000	
1553 vs TA	AS schedule		

Context	Ethernet as a next step ?	Conclusion
0000	0000	
Outline		

Insuring low jitters with TSN

Conclusion

Ethernet as a next step ?

0000

Low jitter

TSN is a solution, but...

• TSN is able to guarantee very low jitter using Time-Triggered mechanisms

Conclusion

Ethernet as a next step ?

0000

Low jitter

- TSN is able to guarantee very low jitter using Time-Triggered mechanisms
 - but it uses queue not white board

Conclusion

Ethernet as a next step ?

0000

Low jitter

- TSN is able to guarantee very low jitter using Time-Triggered mechanisms
 - but it uses queue not white board
- the synchronisation issue was expected

Conclusion

Ethernet as a next step ?

Low j

- TSN is able to guarantee very low jitter using Time-Triggered mechanisms
 - but it uses queue not white board
- the synchronisation issue was expected
 - but not the impact on applications

Conclusion

Ethernet as a next step ?

0000

Low jitter

- TSN is able to guarantee very low jitter using Time-Triggered mechanisms
 - but it uses queue not white board
- the synchronisation issue was expected
 - but not the impact on applications
- several solutions exist

Conclusion

Ethernet as a next step

0000

Low jitter

- TSN is able to guarantee very low jitter using Time-Triggered mechanisms
 - but it uses queue not white board
- the synchronisation issue was expected
 - but not the impact on applications
- several solutions exist
 - but each increases the complexity of the architecture

Conclusion

Ethernet as a next step

0000

Low jitter

- TSN is able to guarantee very low jitter using Time-Triggered mechanisms
 - but it uses queue not white board
- the synchronisation issue was expected
 - but not the impact on applications
- several solutions exist
 - but each increases the complexity of the architecture
- current work: evaluating several solutions

Conclusion

Ethernet as a next step

0000

Low jitter

- TSN is able to guarantee very low jitter using Time-Triggered mechanisms
 - but it uses queue not white board
- the synchronisation issue was expected
 - but not the impact on applications
- several solutions exist
 - but each increases the complexity of the architecture
- current work: evaluating several solutions
 - publication under submission soon

- Pierre-Julien Chaine, Marc Boyer, Claire Pagetti, and Franck Wartel. Suitability of time sensitive networking for space. Technical report, TSN-A Conference, 2019.
- Pierre-Julien Chaine, Marc Boyer, Claire Pagetti, and Franck Wartel. Formal specification of satellite on-board networks requirements. working paper or preprint, September 2020.
- Pierre-Julien Chaine, Marc Boyer, Claire Pagetti, and Franck Wartel.
 TSN Support for Quality of Service in Space.
 In 10th European Congress on Embedded Real Time Software and Systems (ERTS 2020), Toulouse, France, January 2020.

