
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Information Systems

A Digital Wallet Implementation for
Anonymous Cash

Oliver R. Broome

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Information Systems

A Digital Wallet Implementation for Anonymous Cash

Implementierung eines digitalen Wallets for anonyme
Währungen

Author Oliver R. Broome
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Sree Harsha Totakura, M. Sc.
Date October 15, 2015

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, October 15, 2015

Signature

Abstract

GNU Taler is a novel approach to digital payments with which payments are performed
with cryptographically generated representations of actual currencies. The main goal
of GNU Taler is to allow taxable anonymous payments to non-anonymous merchants.

This thesis documents the implementation of the Android version of the GNU Taler
wallet, which allows users to create new Taler-based funds and perform payments with
them.

Zusammenfassung

GNU Taler ist ein neuartiger Ansatz für digitales Bezahlen, bei dem Zahlungen mit
kryptographischen Repräsentationen von echten Währungen getätigt werden. Das
Hauptziel von GNU Taler ist es, versteuerbare, anonyme Zahlungen an nicht-anonyme
Händler zu ermöglichen.

Diese Arbeit dokumentiert die Implementation der Android-Version des Taler-Portemonnaies,
der es Benutzern erlaubt, neues Taler-Guthaben zu erzeugen und mit ihnen Zahlungen
zu tätigen.

I

Contents

1 Introduction 1
1.1 GNU Taler . 2
1.2 Goals of the thesis . 2
1.3 Outline . 3

2 Implementation prerequisites 5
2.1 Native libraries . 5

2.1.1 Libgcrypt . 5
2.1.2 GNU unistring . 6
2.1.3 GNUnet utility library . 6
2.1.4 Taler utility library . 7
2.1.5 JNI dispatch library / Java Native Access 7

2.2 Android integration . 7
2.2.1 Data Persistence . 8
2.2.2 Cross-compilation . 8
2.2.3 Native code interface . 10

3 Architecture 13
3.1 Application model . 13

3.1.1 Communication . 13
3.1.2 Persistence . 14
3.1.3 Native library wrappers . 15
3.1.4 Android-speci�c code . 15

3.2 Application data storage . 16
3.3 Communication . 17
3.4 Cryptography . 17
3.5 Testing . 18

4 Functionality 19
4.1 User interface . 19
4.2 Enabling mobile payments . 22

4.2.1 Existing payment method . 22

II Contents

4.2.2 Proposed mobile payment method 22

5 Security 25
5.1 Application security . 25
5.2 Communications security . 27

6 Conclusion 29
6.1 Transformative e�ects of Taler and wallet 29
6.2 Future work . 30

Bibliography 33

1

Chapter 1

Introduction

Today’s payment market is in a state of upheaval - there is a discernible trend towards
digital payment in commerce; this can be witnessed in several areas of the payment
sector: Google [1], Apple [2] and Samsung [3] have all launched their own proprietary
mobile payment systems coupled to their respective platforms; eBay and their now-
independent subsidiary PayPal have been involved for several years already [4]; and
German banks scramble to introduce their own digital payment system [5].

Bitcoin [6] and its various derivatives have also established themselves as alternatives
to traditional payment systems and are gaining support in sectors that would have
dismissed cryptocurrencies only a few years earlier [7].

However, a major drawback of the aforementioned proprietary payment systems is
that they trade o� anonymity for convenience. Users must have user accounts or other
means of identifying themselves to third parties, usually the payment service provider,
the merchant and any other parties the �rst two have data sharing deals with. Payments
are performed via non-anonymous channels and are traceable with little to no e�ort.

Even if the design of the payment system itself provides a certain degree of safety, such
as Bitcoin (or the more privacy-minded derivatives, such as Zerocoin [8]), there are
other drawbacks to be considered. To continue the example of Bitcoin, blockchain-
based cryptocurrencies that keep a centralised record of all transactions made over the
network are already starting to show signs of not being able to scale well with large
numbers of users simultaneously making transactions or the high amount of processing
power required to "mine" new Bitcoins. Additionally, the amount of energy invested into
this mining process is increasing at similar rates to the increased demand for computing
power.

Cryptocurrencies also su�er from an uncertain legal standing. Unlike traditional pay-
ment methods, they are often seen as commodities instead of currencies, for example,
enabling law enforcement to auction them o� after seizing them. The most prominent

2 Chapter 1. Introduction

case of this was in the aftermath of the Silk Road shutdown [9].

GNU Taler [10] seeks to make an improvement on several of the aforementioned short-
comings. Based on Chaum-style blind signatures [11], it does not require vast computa-
tional resources to operate its infrastructure and has privacy by design. Given enough
users, payments can be made in a manner that does not enable merchants to link pay-
ments to people (when using the GNU Taler system by itself) and outside observers to
determine the parties involved in a transaction.

The GNU Taler system is, in contrast to cryptocurrencies, very forthcoming towards
states seeking to implement it: payments are taxable and income generated through it
can be linked to the merchant receiving the funds.

In order to enable users the use of GNU Taler in an ubiquitous fashion and for GNU
Taler to gain adoption, clients for popular mobile electronic devices are necessary. It is
out of this need that the Android wallet and the accompanying thesis have been written.

1.1 GNU Taler

The GNU Taler payment system functions through the interactions between three
parties: the customer, the mint and the merchant.

The customer is the party willing to make a payment in exchange for a service or
product from a merchant. Payment is performed by transferring deposit permissions for
coins they have created earlier.

These coins are created from reserves that the customer creates at a Taler mint. In order
to create a reserve, the customer transfers money to the mint via a bank transfer.

Once the mint has registered the arrival of the funds intended for the customer’s reserve,
the customer can request coins of di�erent values and currencies from the mint.

With these coins, the customer can pay the merchant by creating a deposit permission
from the contract the merchant sends them. This permission is then sent to the mint. If
the mint can validate the permission’s correctness, it sends the equivalent value of the
deposited coins to the merchant’s bank account.

These processes are secured through the use of cryptography; for a full explanation of
its use in the GNU Taler payment system, refer to the paper by Dold, et al. [10].

1.2 Goals of the thesis

To enable its use on the currently most popular mobile platform - Android - this thesis
presents a functioning wallet for the GNU Taler payment system. This implies the

1.3. Outline 3

ability of the application to create reserves at a mint, withdraw coins from a reserve and
generate deposit permissions for merchants so that they can, in turn, request the funds
required for the ful�lment of the payment contract from the mint.

To enable the use of GNU Taler on Android, it was necessary to bring the cryptographic
library libgcrypt, the GNUnet utility library and the GNU Taler utility library into a state
that enables them to be used from inside of the Android operating system’s ecosystem.
This involves cross-compilation of the existing code to di�erent architectures (mainly
ARMv7, but also x86 and its 64-bit variant) and creating a Java-to-native interface for
the libraries in addition to the implementation of core functionality.

Thus, an additional, yet essential goal was to implement the necessary prerequisites for
the use of GNU Taler functionality on platforms other than the standard Linux-on-x86.

1.3 Outline

The thesis is structured as follows:

In chapter 2 the existing code base and the necessary steps taken to adapt them to the
Android platform will be examined. An overview of the application architecture will
be given in chapter 3 and the o�ered functionality shown in chapter 4. An overview
of potential security risks and their mitigations will be given in chapter 5. Finally, the
thesis is concluded in chapter 6, where the �ndings of this thesis will be summarised
and an outlook to the future of the GNU Taler wallet will be given.

4 Chapter 1. Introduction

5

Chapter 2

Implementation prerequisites

The Android Taler wallet reuses several frameworks for its implementation of the
cryptographic primitives and their applications within the Taler payment system.

The three main components are Libgcrypt for the primitives and the GNUnet and Taler
utility libraries for the implementation of the necessary data formats and cryptographic
routines.

By using these libraries, a signi�cant amount of code is shared between the Android wal-
let and existing implementations, thus preventing, in the long term, maintenance issues
and redundancy, which would be introduced by a reimplementation of the respective
libraries.

2.1 Native libraries

2.1.1 Libgcrypt

GNUnet and Taler both rely on libgcrypt [12] for its implementation of cryptographic
primitives. In particular, the two former libraries make use of RSA for blind signing,
EdDSA signatures for other signing purposes and a combination of ECDH, AES and
Two�sh for symmetric encryption. Hashing is performed via SHA-512 and key deriva-
tion functionality relies on SHA-256.

While there are comparable cryptography libraries that are more accessible to Android,
such as Spongy Castle [13], or the Android-provided 1implementation of java.security,
Bouncy Castle [14]; using libgcrypt reduces the overhead necessary for transferring
data from the Dalvik VM (which is the Android project’s implementation of a Java VM)
back to the native components. Additionally, GNUnet and Taler are tightly coupled
to libgcrypt due to their use of its S-Expressions, which are used in several critical

6 Chapter 2. Implementation prerequisites

locations, such as the de- and encoding of RSA keys [15].

Another aspect that tilted the decision in favour of using an external library was the
fact that the Android platform has a reputation for a lack of updates, even on fairly
new devices. Devices usually receive updates for 2 years at most, rendering devices
that remain on older Android API Levels2 inherently vulnerable to exploitation. The
recently discovered �aw [17] in the random number generation of Bouncy Castle that
a�ected the Android API levels up to 19 is a good example of this phenomenon [18].
Devices that have reached the end of their commercial shelf life and no longer receive
updates from their manufacturer are left with a broken randomiser.

The main drawback of using libgcrypt on Android, however, is that it is not the main
focus of libgcrypt’s development. While the library will compile under most conditions,
there are certain aspects that can hinder its compilation and usage; these will be de-
scribed in Section 2.2.2. Also, libgcrypt is not widely used on Android, possibly because
of the added di�culty in the use of native code on the platform.

Due to the e�orts of the Guardian Project, an existing, albeit somewhat outdated build
script [19] could be adapted for use under the application’s development environment,
which enables the execution of tests for the libgcrypt code in an Android environment.

2.1.2 GNU unistring

In order to be able to compile GNUnet for Taler wallets, it is necessary to compile GNU
unistring. This proved to be a straightforward matter, as it was possible to cross-compile
the library without any issues.

GNU unistring is a comparatively large code dependency, requiring roughly 3 MiB
of storage alone. Unfortunately, the library is not an optional dependency and must,
therefore be included in the wallet project �les. It may be possible to reduce the size
of the compiled library by removing functionality from the library, such as support for
unused feature sets of Unicode.

2.1.3 GNUnet utility library

The GNUnet project is a modular approach to enhancing communications security and
has, in order to provide that security, implemented many convenience functions that
wrap around libgcrypt. The Taler utility library is tightly coupled with the GNUnet
library, making it essential for the operation of the wallet. In particular, the Taler library

1This is no longer entirely true, Google are currently migrating to their fork of OpenSSL, BoringSSL [16]
2The numbers used in conjunction with API Levels represent the revision number of the API. API Level

21 is, for example, more commonly known as Lollipop.

2.2. Android integration 7

relies on the data structures and the cryptographic routines for SHA-512 hashing, RSA,
RSA blind signing, EdDSA signatures, and ECDH.

Due to its modular nature, however, the e�ort involved in order to make the wallet-only
functionality cross-compile to Android was not an issue and swiftly performed by the
maintainers. There were some initial problems that prevented cross-compilation, such
as checks in the build phase of the project, where code was compiled and executed
before the actual library was created. This test code was, due to the nature of the
build scripts, already compiled with the Android compilers, and would, therefore, not
run on machines with di�erent con�gurations and processor architectures. A patch
that removes these checks from the con�guration scripts is present in the source code
repository of the Android wallet.

2.1.4 Taler utility library

The Taler utility library, taken from what is currently maintained as the Taler mint [20],
provides us with additional cryptographic functions related to the various tasks that
arise from the procedures dictated by the Taler protocol. It has also been modi�ed by
the maintainers to include only the codebase necessary for the wallet itself.

Also speci�ed by this library are the various data structures that are used when com-
municating with a Taler mint.

2.1.5 JNI dispatch library / Java Native Access

In the course of the implementation of the Android wallet application, a decision was
made to use the Java Native Access framework [21] to delegate calls to native function-
ality from the parts of the application written in Java.

In order to enable the use the JNA, an additional component was necessary: the JNI
dispatch library or libjnidispatch. This library allows the Java VM executing the applica-
tion code to use a minimalistic JNI wrapper around lib� (the Foreign Function Interface
library) to call native-only code without the need for glue code around every single
native library and function (more on this subject in Section 2.2.3).

2.2 Android integration

Porting the functionality of the existing implementation of a Taler wallet in Python can
be broken down into several distinct �elds, as will be described in the following.

8 Chapter 2. Implementation prerequisites

2.2.1 Data Persistence

The currently existing Python- and JavaScript-based wallets use an SQLite database for
persistence. On Android, applications can store their data in the same format, making
the adaptation of the existing table structures fairly straightforward. This also allows
for the sharing of the database schema across platforms, which in turn is useful for
possible later changes and allows users to migrate from one wallet client to another
with a comparatively small amount of e�ort.

The Android framework allows its applications to access its own databases in two ways,
either directly via a SQLiteDatabaseHelper or indirectly via a ContentProvider. In order to
keep the scope of the project within reasonable boundaries, the current implementation
forgoes the Content Provider approach for the simplicity of the database helper.

2.2.2 Cross-compilation

Build environment

In order to be able to use C code with the desired processor architecture and API Level
combinations, the code must be compiled with the appropriate tooling. Android o�ers
the NDK or Native Development Kit for this task. It gives developers many di�erent
toolchain combinations covering various host architectures, platforms and targets.

Development of the wallet so far has focused on ARMv7, due to its broad market share,
but the NDK allows for an easy expansion to x86 and MIPS, if the need arises. Most
non-ARM devices feature a compatibility layer that allows them to emulate the ARM
instruction set, which should make cross-platform use a non-issue, even if no native
versions are compiled for the other platforms.

While the Android operating system is based on Linux, it does not, however, o�er a
complete implementation of all the regular APIs one might expect from a Linux kernel.
Not all APIs of the Linux kernel are included or considered stable and are also subjected
to changes across di�erent API Levels.

In the process of cross-compiling the libraries mentioned in Section 2.1, there were
several problems that could be encountered, depending on which Android API Level
was targeted:

• on API Levels 7 and below, there is no implementation of regular expressions

• API Levels 8 and below lacked an implementation for the pthread_rwlock functions

• API Levels below 13 do not have a pthread_atfork implementation

2.2. Android integration 9

The latter two examples demonstrate that the Android APIs di�er in their implementa-
tion of what can be considered "basic" functionality, such as multi-threading. In practice,
this means that C developers that wish to have their code ported to Android must work
around these limitations.

With the given set of libraries for the wallet, the only problems so far were caused by
libgcrypt and one of its tests. The t-lock test requires a C type by the name of pthread_t,
which is also omitted from the API header �les. Currently, the solution to this issue is
to simply prevent the test from being compiled, since this is the only instance of the
pthread_t type to be used within the libgcrypt source when compiling for Android. A
patch for this issue has been added to the wallet source code repository.

Build automation

To actually compile the required libraries for Android, the NDK o�ers a framework
with a set of conventions with which native code is supposed to be integrated into an
Android project. For simple projects the process looks like this:

1. Add the C source �les to the jni/ folder in the project folder

2. De�ne which �les to compile:

• De�ne the library source �les

• De�ne which �les represent JNI wrapper code

3. Automatically compile the library source �les to a static library

4. Compile the static library and the compiled wrapper code into a shared library.

This procedure makes several assumptions about the code that should be compiled,
most notably:

• the project uses the JNI for native code access

• the code is already adapted for use with the Android platform and the NDK’s
automatic building scripts

While it was possible to include pre-built shared libraries with the NDK (by simply
copying them to the appropriate location in the project structure), this approach still
assumes the manual creation of JNI wrappers. These are not used for the wallet; the
reasoning for this is described in Section 2.2.3.

None of the libraries’ sources are pre-con�gured for the Android platform; they all
require (automated) con�guration via standard GNU tools before they can be compiled.
It is, theoretically, possible to introduce changes to the NDK build scripts, since they
are based on those tools as well, but the resulting modi�cations would be subjected to

10 Chapter 2. Implementation prerequisites

future updates of the Android NDK and thus harder to maintain. Therefore, these steps
must be performed manually outside of the Android build scripts.

The building issues aren’t limited to di�erences in the building process itself, they can
also be seen in the existence of di�erent conventions, e.g. the organisation of shared
libraries: a typical Linux kernel will expect shared libraries to be versioned (i.e. have
their respective version numbers appended to their �le name, like so: libgcrypt.so.1.6.3),
while Android systems expect their shared objects to be unversioned. In addition to this,
these versioned �les aren’t usually real �les, but symbolic links to the actual library,
which is located elsewhere. Since Android applications do not, by default, have access
to locations outside of their owned directories, this scheme is not useful in an Android
environment.3 Since all included libraries originate from the GNU/Linux operating
system, their build scripts do not account for this quirk and have to be manually adjusted.

These factors led to the decision that the given Android infrastructure should be com-
pletely ignored. A considerable amount of work has already been done by the Guardian
Project and their customised version of the Android build scripts for libgcrypt, upon
which the wallet’s build scripts are based.

2.2.3 Native code interface

During the early planning phase for the wallet, the Java Native Interface was used
for accessing the native parts of the application. This approach is encouraged by the
Android documentation, which fails to mention that there are alternative methods to
call native methods from Java [22].

The Java Native Interface is a low-level approach to foreign function interfacing, allow-
ing access to code written in C(++) from Java objects and vice versa. It has been part of
Java speci�cations since Java 2 [23]. This approach requires the creation of specialised
wrapper code which must be integrated into the library during compilation in order to
be functional.

As a consequence of this close connection between the library code and the interface
code, changes to the signatures of methods, the memory layout or Java objects require
re-implementation of the wrapper layer, which can be particularly cumbersome while
a library is still under development. An automatic generation of the wrapper code is,
therefore, more practical.

For JNI code, there exists a framework called SWIG [24], which is able to produce the
necessary code by means of a custom script, which is similar to a C-language header �le.
It has a fairly complicated syntax and several caveats that need to be observed when
compiling the libraries.

3This is a result of Android’s security policy, which mandates that each application has its own user
account assigned to it.

2.2. Android integration 11

For the actual implementation of the wrapper, a di�erent approach was selected. Instead
of the JNI, the native code is now accessed through the Java Native Access framework
(JNA), which dynamically accesses the shared library without the use of custom wrapper
code. Instead, the libraries and their expected data structures need to be described within
the Java code.

The developers of the JNA framework also o�er an automatic generator for this Java-
based wrapper code, called JNAerator. Its approach to code generation is similar to
the way SWIG handles C code: it parses the C header �les of the native library and (in
theory) produces Java-based de�nitions ready for consumption within the application.

Although the JNAerator project can be considered mature, it still had issues with the
GNUnet code.

For example, fairly simple C structure de�nitions such as

Listing 2.1: GNUnet, src/include/gnunet_crypto_lib.h
/**
* @brief A 512-bit hashcode

*/
struct GNUNET_HashCode
{
uint32_t bits[512 / 8 / sizeof (uint32_t)]; /* = 16 */

};

will not be interpreted correctly by JNAerator due to the use of the sizeof() function,
instead resulting in conversion errors that have to be resolved manually.

While other, more modern alternatives to the combination of JNA and JNAerator exist
[25], it was ultimately decided to stay with these tools as they are the most mature of
their kind, thus possibly reducing the probability of unforeseen programming errors or
incompatibilities in the framework.

12 Chapter 2. Implementation prerequisites

13

Chapter 3

Architecture

3.1 Application model

3.1.1 Communication

Figure 3.1: Communication package

The wallet application models its communication functionality around the Taler REST
APIs. [26, 27] Each endpoint is represented as its own class in its respective package:
mint or merchant.

An abstract Endpoint class handles all communication basics such as connection es-
tablishment and management, while implementing classes take care of handling the
contents of messages sent to and from the API endpoints. This encompasses serialisa-
tion and deserialisation, veri�cation of messages and the creation of signatures over
values that should be sent.

Figure 3.1.1 shows an exemplary inheritance chain for the /keys endpoint of the mint

14 Chapter 3. Architecture

API. It inherits an additional abstract function, verify() from the FunctionalEndpoint
class, which is responsible for determining the validity of a response from the mint.
This is veri�ed by checking that the signatures added to a response by the mint actually
sign the data they are supposed to sign. The wallet can determine whether the mint is
behaving dishonestly by checking these results of the signature veri�cation, or, in some
cases, o�ering veri�cation results to the end user for comparison with other wallet
users.

Similar classes for other endpoints are contained within the other packages shown
within the mint package.

3.1.2 Persistence

Figure 3.2: Database package

The persistence infrastructure shown above is a result of the way the Android APIs
handle database access. All the classes representing the di�erent database tables (e.g.
CoinsDatabase) de�ne their own SQLiteOpenHelper. It is for this reason that they are
all accessed from a singleton instance of a DatabaseFactory. The Factory is responsible
for all database installation, con�guration and access tasks, supplying the class speci�c
to a certain table of the database when needed.

If necessary, a database implementation class may choose to implement aDatabaseReader,

3.1. Application model 15

which handles the conversion of rows from a database query into a Descriptor object of
their choosing. These objects can be found in their respective model subpackages.

3.1.3 Native library wrappers

All code necessary for access to the native libraries is contained within the nativeLibs
package. Complex data structures are stored in separate class �les, while constant
values, native function bindings and data structures that simply wrap pointers to other
data types are contained within a monolithic library class.

When applicable, native functions that take variable-length arguments (or varargs) have
been moved to their own correspondingly named classes, since JNA does not permit the
use of statically bound native functions and variable-argument functions in the same
class.

3.1.4 Android-speci�c code

User interface

All user-interface related code is kept in the ui package. This includes Android Activities
and Fragments.

Tasks

(Async)Tasks [28] are a convenience feature for Android applications in which com-
putationally expensive code can be executed without a�ecting the main UI thread.
AsyncTasks are, as the name implies, performed asynchronously and in the order they
are called.

The wallet uses these tasks for generating cryptographic keys, hashing, database access
and other expensive functionality.

Services

The services package contains Android Services [29] that are used to provide application-
wide functions that can run even when there are no visible activities belonging to the
application running. Currently, this package only contains the KeyCachingService,
which will be used to cache the encryption key used for securing private keys when
they are stored in the application database.

16 Chapter 3. Architecture

3.2 Application data storage

Because Android o�ers built-in support for SQLite databases [30] and the original Taler
wallet written in Python uses it, too, the adaptation of the existing database schema
was fairly straightforward. Most of the existing code could be reused, but changes had
to be made in the way the data is accessed, because the Android guidelines encourage
an encapsulated approach over raw SQL queries.

An SQL statement such as

Listing 3.1: Sample SQL INSERT statement
INSERT INTO

mints (name, url, pubkey)
VALUES

(?, ?, ?)

would translate to this:

Listing 3.2: Taler Android wallet, MintsDatabase.java
/**
* Adds a new mint to the database

*
* @param mintName the mint’s name

* @param mintUrl the mint’s URL

* @param publicKey the mint’s public EdDSA key

* @return the row id of the newly inserted mint

*/
public long addMint(String mintName, URL mintUrl, EdDSAPublicKey publicKey) {

ContentValues content = new ContentValues(3);

content.put(COLUMN_NAME, mintName);
content.put(COLUMN_URL, mintUrl.toExternalForm());
content.put(COLUMN_MASTER_PUB, publicKey.getStruct().q_y);

try (SQLiteDatabase database = databaseHelper.getWritableDatabase()) {
return database.insert(TABLE_NAME, null, content);

}
}

While there are more sophisticated approaches available in the Android ecosystem,
such as ContentProviders that would enable cross-application sharing of data (e.g. to a
�nance application, such as GNUcash [31] or a banking application for allowing bank
transfers to a mint), they were not implemented for this iteration of the wallet in order
to enable basic functionality �rst.

To protect the private keys of reserves and coins in the application’s database, it is
essential that this data is not simply accessible to third parties so that these cannot use
the coins stored by the wallet. To this e�ect, either the private keys themselves, or -
ideally - the entire database should be encrypted.

3.3. Communication 17

For the initial iteration of the wallet, the former approach was selected. This leaves
meta-data, such as payment amounts, the existence of reserves, coins, etc. open to
access if another application has elevated privileges. For more information on security
considerations of the wallet, see Chapter 5.

The main problem of integrating a fully-encrypted database is the absence of a ready-
to-use solution that is compatible with free software (due to the constraints set by the
licensing of the Taler project). The makers of SQLite o�er an extension to their product
in the form of the SEE (SQLite Encryption Extension), but it is proprietary [32] and
therefore ineligible.

A second alternative is the SQLCipher project [33], which is Open Source, but - like
the SEE - requires manual integration and compilation of the source code into the
application and replacing of Android’s existing SQLite implementation. This approach
had to be abandoned due to time constraints but will be added in future revisions.

3.3 Communication

The wallet application communicates with Taler mints via Android’s standard HTTP(S)
APIs, namely the HttpURLConnection classes [34].

Parsing and generation of JSON data is performed with the Google GSON library [35],
which o�ers more performance and �exibility than the built-in JSON processing li-
braries.

The communication protocol is de�ned by the mint and merchant REST API speci�ca-
tions provided by the Taler documentation [26].

3.4 Cryptography

The critical cryptography implementations are all provided by the libgcrypt [12] library,
which is used instead of the built-in Spongy Castle framework o�ered by Android [13].

In order to allow the high-level Java code to interact with the cryptographic underpin-
nings of the application and to use the resulting data, the inputs and outputs of the
libgcrypt and GNUnet libraries have been wrapped to conform with object-oriented
paradigms. Because using native code with the JNA exposes memory management
intricacies to the normally garbage-collected upper levels, the wrapper objects also have
methods to call low-level functions that free the underlying memory areas. These must
be triggered manually, since the Java garbage collector is not usually aware of memory
allocated outside of its own heap [36].

18 Chapter 3. Architecture

3.5 Testing

In order to account for the di�erent processor architectures that can run the Android
operating system, all testing is currently performed on-device. It is equally possible
to perform these tests from within an emulator, should this be necessary (e.g. for
continuous integration). The tests are written using the custom JUnit 4 implementation
provided by Android [37]. For advanced testing, the Mockito library [38] is used, which
provides facilities such as mocking and spies.

Currently, the tests cover the communication classes and the wrapper code for the
shared libraries.

19

Chapter 4

Functionality

4.1 User interface

Due to time constraints, the user interface for the wallet is incomplete. Images here show
a preliminary state that does not mark the �nal state of the wallet. Future iterations
will have improved and fully functional versions of what is depicted in this thesis.
These images are mainly intended to give the reader a general idea of the layout of the
application.

The Taler wallet is launched by tapping on an icon on the home screen (also known as
the launcher) of an Android device. (Figure 4.1)

The entry screen prompts the user for their passphrase to the wallet database. (Figure 4.2)

After having entered the wallet passphrase, the user has access to their wallet balance,
the mints section and their payment history. (Figure 4.3)

From the mint detail screen (�gure 4.4), which is accessed by opening a mint from the
mints section, the user can create a new reserve for a mint. Once the user has entered
the desired amount, the wallet generates a new keypair for the reserve and displays the
information necessary for a bank transfer to the mint.

Figure 4.1: Launcher icon on an Android launcher

20 Chapter 4. Functionality

Figure 4.2: Passphrase prompt

Figure 4.3: Navigation menu

4.1. User interface 21

Figure 4.4: Mint detail screen with "�oating action button" for adding reserves

Figure 4.5: Wire transfer details for a reserve

22 Chapter 4. Functionality

Figure 4.6: QR code scanning activity. The large button starts the camera.

In the case of an already existing reserve, which can be opened from the details of a
mint, the wallet displays the current value of funds remaining in a reserve.

In order to enable payments, the wallet lets users scan a specialised QR code which
contains or links to a contract from a merchant (Figure 4.6). For more information on
how this interaction should behave, see chapter 4.2.2.

4.2 Enabling mobile payments

As of writing, the Taler merchant does not provide a method for mobile wallets to
perform purchases directly. Therefore, the author proposes a new payment process
based on the use of QR codes [39].

4.2.1 Existing payment method

The current method for a merchant to supply a wallet with a contract is based entirely
on the interaction of a merchant-hosted website and the Taler browser add-on [27].
Through a series of interactions with the add-on, the merchant implementation is made
to generate a contract, which the wallet can then use to generate a deposit permission
for the merchant, which is subsequently sent to a mint for processing.

4.2.2 Proposed mobile payment method

In order to allow the processing of payments without necessitating the inclusion of a web
browser into a mobile Taler wallet (thus introducing more complexity and additional
attack surface), a di�erent approach is necessary. Instead of directly communicating

4.2. Enabling mobile payments 23

with a browser add-on, the merchant should generate a QR code with the necessary
data for the wallet, which can be interpreted by a specialised QR code reader application
and then passed on to the actual wallet application.

Because the merchant API is still under development, the following proposal should not
be regarded as a de�nite solution to the matter of transferring contracts from a merchant
to a mobile wallet, but as a suggestion. Implementation details are intentionally left
vague, as they may become unnecessary or con�ict with future changes.

A merchant could accommodate for mobile wallets as follows:

• collect items to be purchased, as usual

• o�er a mobile Taler payment option in addition to the regular one

• upon selection of this option, generate a QR code containing either the link to
the contract URL or the contract itself

The mobile wallet can then, using the device’s camera, scan the generated QR code and
then access the contract. Should the user not be able or willing to trust the camera or
code reader applications, the merchant could introduce an additional factor, such as a
code in form of a number or a sequence of colours which could then be used by the
wallet to decrypt the contents of the scanned QR code.

The wallet made during the course of this thesis contains stubbed code for interpret-
ing encoded URLs, which can be extended in response to the implementation of the
functionality mentioned above into the merchant.

24 Chapter 4. Functionality

25

Chapter 5

Security

5.1 Application security

The key security risk of any wallet application is that of attackers gaining access to
the user’s reserve and coin key pairs, which would enable them to spend existing coins
and withdraw new ones from existing reserves, while pretending to be the user. An
additional threat to the user is loss of anonymity via meta-data leakage.

Assuming no errors in the implementation of the cryptographic functionality of the
wallet, there are several avenues of attack to be considered. The wallet’s security is
compromised when the attacker

• gains access to the database while the data is not encrypted

• learns the passphrase of the wallet

• can brute-force the key used for encryption of the private keys

In order to prevent an attacker from gaining access to unencrypted keys in memory, the
wallet relies on the operating system to prevent access to its own memory [40]. It does
not protect itself against attacks that enable attackers to access memory regions in an
unprivileged manner, such as direct hardware access. Should the key exist in memory
in an unencrypted form and its location is known to the attacker, it is currently not
possible to protect the key material. This attack is somewhat mitigated by keeping the
derived key for the wallet in memory for a limited time only. When the set time limit
expires, the memory containing the key material is cleared and should no longer be
recoverable.

When a password manager such as Keepass2Android or LastPass is used or the user
saves their passphrase elsewhere on the phone and copies it to the Android operating
system’s clipboard, it is possible for an attacker to retrieve the passphrase from said
clipboard. Access to the clipboard is not secured by the operating system, and any

26 Chapter 5. Security

application running on an Android device can monitor the clipboard for changes [41].
To mitigate this attack vector, users of password managers should use (if available)
specialised software keyboards that are distributed along with their password manager
and refrain from copying sensitive information to the operating system’s clipboard
altogether. A positive side-e�ect of using such specialised keyboards is keylogger
protection. It is for this reason that password manager use is encouraged. The wallet
will warn users against using insecure methods of passphrase entry.

Normally, when an Android device is set up without any modi�cations, administrative
("root") access to the phone is prohibited. Each application - by default - is run under an
individual Linux user account which has access only to its own code and resources and
external storage, if present [40]. Foreign applications should therefore not have access
to the wallet’s database. This protection can, however, be removed. There are several
factors responsible for the granting of root privileges on Android:

• advanced users wishing to access to features such as advertisement blockers or
the removal of unwanted provider-supplied applications installed to the system
partition

• accidentally installed malicious software

• exploited security vulnerabilities

The same kind is, within certain limitations, possible with developer access to the device
via the Android Debug Bridge. While access to the database alone does not immediately
present a threat to the user in terms of �nancial loss, it can result in meta-data leakage.

With access to the database �les it is also possible to brute-force the encryption key.
This should not, assuming current processing power, prove to be a problem if the key
derivation function used for the key was set up to use secure parameters, such as a high
amount of iterations and a secure passphrase, as recommended by the standard de�ning
the scrypt key derivation function [42].

Access to the �les of the application is not the only avenue attackers can take to access
the application. With access to the Linux underpinnings of the Android operating
system, it is - for example - possible to access the device’s frame bu�er directly and
create an image of any application currently visible on the screen [43]. The same applies
for many other methods of accessing the hardware of the device running the wallet
directly, e.g. keyloggers or custom code that can access the device’s memory [44].

There is no direct mitigation for attacks based on privileged access. The Taler wallet will,
therefore, warn users about the dangers of having root access on the device running
the wallet in order to make the user aware of the risks involved, but will not prevent
them from using it.

5.2. Communications security 27

5.2 Communications security

To protect the customer from meta-data leakage, it is important for the mints and
merchants to implement HTTPS encryption. While the Taler protocol and the use of
blind signatures do not necessitate the use of additional encryption, possibly sensitive
information such as a reserve’s transaction history are transmitted in the clear. The
contents of this communication, depending on the user and their situation, may be
useful to active observers and could be used against the user. The decision of enabling
additional encryption lies outside of the scope and responsibility of the wallet, but
should be an important consideration for both merchants and mints.

One of the main aspects of the Taler payment system is the anonymity of the customer.
This can, however, only be guaranteed if the user is able to perform transactions over a
channel that itself provides both con�dentiality and anonymity.

At present, the most viable option for achieving both of these goals would be Tor project,
which provides network level anonymity by routing data through several intermedi-
aries and ensures con�dentiality during transmission through its network by repeated
application of encryption. It does not provide con�dentiality for data leaving the net-
work. [45–47]

By using the Tor network for communicating with mints and merchants (assuming the
merchant or mint do and can not save additional personally identifying information),
the origin of communications from the wallet are obscured, preventing their association
with an IP address that is tied to the customer.

28 Chapter 5. Security

29

Chapter 6

Conclusion

6.1 Transformative e�ects of Taler and wallet

Much of the potential of GNU Taler hinges on its taxability and auditability. These
properties make it more likely to be adopted as an o�cially accepted form of payment
by states, possibly even becoming an accepted equivalent to physical currency. There is
also a �nancial incentive - physical currency is expensive. This, of course, varies from
country to country, depending on a variety of factors. Shifting entirely to electronic
forms of payment may, however, according to Humphrey, et al. [48], save a country up
to 1% of its GDP every year.

The lowered transaction costs caused by a shift to non-traditional forms of payment
could also contribute to the acceptance of Taler by merchants. Provided that a Taler mint
can be operated with acceptable costs for the withdrawal, deposit and refreshing proce-
dures, it should be able to easily compete against traditional payment providers such as
credit card companies or services like PayPal. Transaction costs of these providers are
signi�cantly higher than those of direct payments [49].

Having a mobile form of a Taler wallet can act as a catalyst for the adoption of Taler,
because it enables payments not only on websites and services on the Internet, but also
allows users to perform transactions in places where they would normally use cash or
resort to privacy-infringing payment payment methods, such as shops or restaurants.

Lowered transaction costs also open avenues to new forms of services which would
otherwise appear infeasible: payments for small "services" such as a �xed amount per
tweet or blog article could become more common, since the small units of payment (mi-
cropayments) would not be dwarfed by much higher �xed costs for payment providers.
An example for such a service would be Patreon [50], which provides regular payments
to artists and other content producers in monthly instalments or per work unit, based
on the donations given by users.

30 Chapter 6. Conclusion

Taler’s anonymity properties are also useful for donating funds to otherwise "risky"
recipients, such as WikiLeaks. While it may not illegal to donate to such an organisation,
it can be made di�cult [51]. Using Taler replaces a centralised middle man (in this case,
payment providers like MasterCard, Visa or PayPal) with a mint. Customers can, for
instance, choose a mint in a di�erent jurisdiction and thus avoid restrictions imposed
by outside in�uences. Additionally, the anonymity preserving properties of Taler may
encourage more donations of this kind, since privacy-concious users need not worry
about being connected to such a donation.

6.2 Future work

Due to the unexpectedly high amount of work necessary to port the necessary compo-
nents to the Android platform in a satisfactory manner, there are several areas in which
the Wallet application could be improved.

First and foremost is the integration of the refreshing protocol for Taler coins. Without
it, the coins in the wallet can be used only within the initial expiration time frame.
Coins that have been partially spent can, without refreshing, be used to deanonimise
their users.

With the refreshing protocol in place, the wallet should be extended with an optimisation
routine to enable cost-e�cient payment, refreshing and withdrawals, all of which can
incur fees for the wallet owner when performed. This feature was planned for the initial
release of the wallet but had to be postponed in favour of basic functionality.

Another important feature to be implemented is the use of a wholly encrypted database.
This allows the wallet to protect its meta-data from outside access, such as the payment
history, coin withdrawals and what mints and merchants are frequently used. To this
end, the wallet will include the Guardian Project’s SQLCipher library.

Making the database accessible from other applications in a controlled manner (e.g. via
authentication codes) is an optional feature that may be useful in the future, depending
on user demand.

Currently, the code for accessing the native libraries is supplied via a pre-compiled
binary library. This is not desirable, since it is not possible to easily con�rm whether the
source code provided by the author and the sorce code used to create the compiled library
are identical. Therefore, the source code for the Java Native Access framework (and the
underlying lib� library) will be integrated into the Taler wallet. The build process for
this library is outdated and incompatible with the rest of the current implementation,
making further e�orts necessary to enable compilation from scratch.

When the important features are rolled out, the user interface code will require a
complete overhaul in order to conform with modern usability standards. While it is

6.2. Future work 31

entirely functional in its current state, there is space for improvement.

The user interface overhaul will also require a reimplementation of the multi-threading
and service infrastructure - this will allow the wallet to be more reliable when handling
sudden changes in con�guration and improve performance.

32 Chapter 6. Conclusion

33

Bibliography

[1] Various, Android Pay, Google Inc., 2015, accessed: 2015-10-10. [Online]. Available:
https://www.android.com/pay/

[2] Various, Apple Pay, Apple Inc., 2015, accessed: 2015-10-10. [Online]. Available:
https://www.apple.com/apple-pay/

[3] Various, Samsung Pay - Safe and Simple Mobile Payments, Samsung Group,
2015, accessed: 2015-10-13. [Online]. Available: http://www.samsung.com/us/
samsung-pay/

[4] Various. (2015) Paypal: Pay, send money & accept payments. PayPal Holdings, Inc.
Accessed: 2015-10-10. [Online]. Available: https://www.paypal.com/uk/webapps/
mpp/personal

[5] Various, Paydirekt, paydirekt GmbH, 2015, accessed: 2015-10-10. [Online].
Available: https://www.paydirekt.de/mehr-informationen-zu-paydirekt.html

[6] S. Nakamoto. (2008, October) Bitcoin: A peer-to-peer electronic cash system.
Accessed: 2015-10-10. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[7] Various, Bitcoin HowTo, Microsoft Inc., 2015, accessed: 2015-10-10. [Online]. Avail-
able: https://commerce.microsoft.com/PaymentHub/Help/Right?helppagename=
CSV_BitcoinHowTo.htm

[8] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” in Security and Privacy (SP), 2013 IEEE Symposium
on. IEEE, 2013, pp. 397–411, accessed: 2015-10-14. [Online]. Available:
https://isi.jhu.edu/~mgreen/ZerocoinOakland.pdf

[9] U. N. Y. Southern, Manhattan U.S. Attorney Announces Forfeiture Of
$28 Million Worth Of Bitcoins Belonging To Silk Road, 2014, ac-
cessed: 2015-10-14. [Online]. Available: http://www.justice.gov/usao-sdny/pr/
manhattan-us-attorney-announces-forfeiture-28-million-worth-bitcoins-belonging-silk

[10] F. Dold, S. H. Totakura, B. Müller, and C. Grotho�, Taler: Taxable
Anonymous Libre Electronic Reserves, GNUnet e.V., 2015, accessed: 2015-10-11.

https://www.android.com/pay/
https://www.apple.com/apple-pay/
http://www.samsung.com/us/samsung-pay/
http://www.samsung.com/us/samsung-pay/
https://www.paypal.com/uk/webapps/mpp/personal
https://www.paypal.com/uk/webapps/mpp/personal
https://www.paydirekt.de/mehr-informationen-zu-paydirekt.html
https://bitcoin.org/bitcoin.pdf
https://commerce.microsoft.com/PaymentHub/Help/Right?helppagename=CSV_BitcoinHowTo.htm
https://commerce.microsoft.com/PaymentHub/Help/Right?helppagename=CSV_BitcoinHowTo.htm
https://isi.jhu.edu/~mgreen/ZerocoinOakland.pdf
http://www.justice.gov/usao-sdny/pr/manhattan-us-attorney-announces-forfeiture-28-million-worth-bitcoins-belonging-silk
http://www.justice.gov/usao-sdny/pr/manhattan-us-attorney-announces-forfeiture-28-million-worth-bitcoins-belonging-silk

34 Bibliography

[Online]. Available: http://www.git.taler.net/?p=mint.git;a=tree;f=doc/paper;h=
a273a642c281bc7eee21a26427ea32e81e0b630e;hb=HEAD

[11] D. Chaum, “Blind signatures for untraceable payments,” in Advances in cryptology.
Springer, 1983, pp. 199–203.

[12] Various, The Libgcrypt Reference Manual, g10code GmbH and the Free
Software Foundation, September 2015, accessed: 2015-10-11. [Online]. Available:
https://www.gnupg.org/documentation/manuals/gcrypt/

[13] R. Tyley, SpongyCastle, 2015, accessed: 2015-10-11. [Online]. Available:
https://rtyley.github.io/spongycastle/

[14] Various, Google Android sources, external modules, Google Inc., 2015, accessed:
2015-10-11. [Online]. Available: https://android.googlesource.com/platform/
external/bouncycastle/

[15] S. H. Totakura and C. Grotho�, GNUnet RSA cryptography source code, GNUnet
e.V., 2015, accessed: 2015-10-11. [Online]. Available: https://gnunet.org/svn/
gnunet/src/util/crypto_rsa.c

[16] Various, BoringSSL, Google Inc., 2015, accessed: 2015-10-11. [Online]. Available:
https://www.chromium.org/Home/chromium-security/boringssl

[17] K. Michaelis, C. Meyer, and J. Schwenk, “Randomly failed! the state of randomness
in current java implementations,” Horst Görtz Institute for IT-Security, Ruhr-
University Bochum, Tech. Rep., 2013, accessed: 2015-10-05. [Online]. Available:
https://hgi.rub.de/media/nds/veroe�entlichungen/2013/03/25/paper_2.pdf

[18] A. Klyubin. (2013) Some securerandom thoughts. Google Inc. Accessed:
2015-10-05. [Online]. Available: http://android-developers.blogspot.de/2013/08/
some-securerandom-thoughts.html

[19] Various, GnuPG for Android - Make�le for external sources, 2015. [Online].
Available: https://github.com/guardianproject/gnupg-for-android/blob/master/
external/Make�le

[20] F. Dold, S. H. Totakura, B. Müller, and C. Grotho�, Taler utility library source code,
GNUnet e.V., 2015, accessed: 2015-10-12. [Online]. Available: http://www.git.taler.
net/?p=mint.git;a=tree;f=src/util;h=610b3f8ee3fac5b3abc9404e4b992280a0f8c75d;
hb=99865ad6d46c61eea43b59c110730d6781aade6d

[21] T. Wall et al., Java Native Access source code, 2015, accessed: 2015-10-12. [Online].
Available: https://github.com/java-native-access/jna

[22] Various, Getting Started with the NDK, Google Inc., 2015, accessed: 2015-10-14.
[Online]. Available: https://developer.android.com/ndk/guides/concepts.html

http://www.git.taler.net/?p=mint.git;a=tree;f=doc/paper;h=a273a642c281bc7eee21a26427ea32e81e0b630e;hb=HEAD
http://www.git.taler.net/?p=mint.git;a=tree;f=doc/paper;h=a273a642c281bc7eee21a26427ea32e81e0b630e;hb=HEAD
https://www.gnupg.org/documentation/manuals/gcrypt/
https://rtyley.github.io/spongycastle/
https://android.googlesource.com/platform/external/bouncycastle/
https://android.googlesource.com/platform/external/bouncycastle/
https://gnunet.org/svn/gnunet/src/util/crypto_rsa.c
https://gnunet.org/svn/gnunet/src/util/crypto_rsa.c
https://www.chromium.org/Home/chromium-security/boringssl
https://hgi.rub.de/media/nds/veroeffentlichungen/2013/03/25/paper_2.pdf
http://android-developers.blogspot.de/2013/08/some-securerandom-thoughts.html
http://android-developers.blogspot.de/2013/08/some-securerandom-thoughts.html
https://github.com/guardianproject/gnupg-for-android/blob/master/external/Makefile
https://github.com/guardianproject/gnupg-for-android/blob/master/external/Makefile
http://www.git.taler.net/?p=mint.git;a=tree;f=src/util;h=610b3f8ee3fac5b3abc9404e4b992280a0f8c75d;hb=99865ad6d46c61eea43b59c110730d6781aade6d
http://www.git.taler.net/?p=mint.git;a=tree;f=src/util;h=610b3f8ee3fac5b3abc9404e4b992280a0f8c75d;hb=99865ad6d46c61eea43b59c110730d6781aade6d
http://www.git.taler.net/?p=mint.git;a=tree;f=src/util;h=610b3f8ee3fac5b3abc9404e4b992280a0f8c75d;hb=99865ad6d46c61eea43b59c110730d6781aade6d
https://github.com/java-native-access/jna
https://developer.android.com/ndk/guides/concepts.html

Bibliography 35

[23] S. Liang, The Java™ Native Inteface. Addison-Wesley, 1999, accessed: 2015-10-14.
[Online]. Available: https://www.fer.unizg.hr/_download/repository/jni.pdf

[24] Various, SWIG-3.0 Documentation, 2015, accessed: 2015-10-12. [Online]. Available:
http://www.swig.org/Doc3.0/index.html

[25] O. Chal�k et al., BridJ documentation, 2015, accessed: 2015-10-11. [Online].
Available: https://github.com/nativelibs4java/BridJ

[26] F. Dold, S. H. Totakura, B. Müller, and C. Grotho�, The Mint RESTful
JSON API, GNUnet e.V., 2015, accessed: 2015-10-11. [Online]. Available:
http://api.taler.net/api-mint.html

[27] F. Dold, S. H. Totakura, B. Müller, M. Stanisci, and C. Grotho�, The
Merchant API, GNUnet e.V., 2015, accessed: 2015-10-11. [Online]. Available:
http://api.taler.net/api-merchant.html

[28] Various, AsyncTask documentation, Google Inc., 2015, accessed: 2015-10-
14. [Online]. Available: https://developer.android.com/reference/android/os/
AsyncTask.html

[29] Various, Services, Google Inc., 2015, accessed: 2015-10-14. [Online]. Available:
https://developer.android.com/guide/components/services.html

[30] Various, Saving Data in SQL Databases, Google Inc., 2015, accessed: 2015-10-11.
[Online]. Available: https://developer.android.com/training/basics/data-storage/
databases.html

[31] N. Fet et al., GnuCash Android, 2015, accessed: 2015-10-11. [Online]. Available:
https://github.com/codinguser/gnucash-android

[32] Various, The SQLite Encryption Extension (SEE), Hipp, Wyrick & Company, Inc.,
2015, accessed: 2015-10-11. [Online]. Available: http://www.hwaci.com/sw/sqlite/
see.html

[33] Various, SQLCipher: Encrypted Database, The Guardian Project, 2015, accessed:
2015-10-11. [Online]. Available: https://guardianproject.info/code/sqlcipher/

[34] Various, HttpURLConnection documentation, Google Inc., 2015, accessed: 2015-
10-11. [Online]. Available: https://developer.android.com/reference/java/net/
HttpURLConnection.html

[35] I. Singh and J. Leitch, Gson Design Document, Google Inc., 2015, accessed: 2015-10-
11. [Online]. Available: https://sites.google.com/site/gson/gson-design-document

[36] S. Liang, T. Fast, and T. Wall, Memory (JNA API), 2015, accessed: 2015-10-10.
[Online]. Available: https://java-native-access.github.io/jna/4.2.0/

https://www.fer.unizg.hr/_download/repository/jni.pdf
http://www.swig.org/Doc3.0/index.html
https://github.com/nativelibs4java/BridJ
http://api.taler.net/api-mint.html
http://api.taler.net/api-merchant.html
https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/reference/android/os/AsyncTask.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/training/basics/data-storage/databases.html
https://developer.android.com/training/basics/data-storage/databases.html
https://github.com/codinguser/gnucash-android
http://www.hwaci.com/sw/sqlite/see.html
http://www.hwaci.com/sw/sqlite/see.html
https://guardianproject.info/code/sqlcipher/
https://developer.android.com/reference/java/net/HttpURLConnection.html
https://developer.android.com/reference/java/net/HttpURLConnection.html
https://sites.google.com/site/gson/gson-design-document
https://java-native-access.github.io/jna/4.2.0/

36 Bibliography

[37] Various, Building Local Unit Tests, Google Inc., 2015, accessed: 2015-10-13.
[Online]. Available: https://developer.android.com/training/testing/unit-testing/
local-unit-tests.html

[38] S. Faber et al., Mockito, 2015, accessed: 2015-10-11. [Online]. Available:
http://mockito.org/

[39] M. Hara et al., “Method and apparatus for reading an optically two-dimensional
code.” Patent EP0 672 994, September, 1995, accessed: 2015-10-11. [Online]. Avail-
able: http://worldwide.espacenet.com/publicationDetails/originalDocument?CC=
EP&NR=0672994A1&KC=A1&FT=D&ND=3&date=19950920&DB=EPODOC&
locale=en_EP

[40] Various, System Permissions, Google Inc., 2015, accessed: 2015-10-05. [Online].
Available: https://developer.android.com/guide/topics/security/permissions.html

[41] Various, ClipboardManager documentation, Google Inc., 2015, accessed: 2015-10-05.
[Online]. Available: https://developer.android.com/reference/android/content/
ClipboardManager.html

[42] C. Percival and S. Josefsson, “The scrypt password-based key derivation function,”
2015, accessed: 2015-10-14. [Online]. Available: https://tools.ietf.org/html/
draft-josefsson-scrypt-kdf-00

[43] Various. (2012, June) Android take screenshot on rooted device. Post by
"cgolden". [Online]. Available: https://stackover�ow.com/questions/10965409/
android-take-screenshot-on-rooted-device

[44] P. Teoh, How to dump memory of any running processes in Android (rooted), Decem-
ber 2011, accessed: 2015-10-14. [Online]. Available: https://tthtlc.wordpress.com/
2011/12/10/how-to-dump-memory-of-any-running-processes-in-android-2/

[45] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation
onion router,” DTIC Document, Tech. Rep., 2004, accessed: 2015-10-14.
[Online]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPre�x=
html&identi�er=ADA465464

[46] Various, Top changes in Tor since the 2004 design paper (Part 1), 2012,
accessed: 2015-10-12. [Online]. Available: https://blog.torproject.org/blog/
top-changes-tor-2004-design-paper-part-1

[47] Various, Top changes in Tor since the 2004 design paper (Part 2), 2012,
accessed: 2015-10-12. [Online]. Available: https://blog.torproject.org/blog/
top-changes-tor-2004-design-paper-part-2

[48] D. Humphrey, M. Willesson, T. Lindblom, and G. Bergendahl, “What does it cost
to make a payment?” Review of network economics, vol. 2, no. 2, 2003, accessed:

https://developer.android.com/training/testing/unit-testing/local-unit-tests.html
https://developer.android.com/training/testing/unit-testing/local-unit-tests.html
http://mockito.org/
http://worldwide.espacenet.com/publicationDetails/originalDocument?CC=EP&NR=0672994A1&KC=A1&FT=D&ND=3&date=19950920&DB=EPODOC&locale=en_EP
http://worldwide.espacenet.com/publicationDetails/originalDocument?CC=EP&NR=0672994A1&KC=A1&FT=D&ND=3&date=19950920&DB=EPODOC&locale=en_EP
http://worldwide.espacenet.com/publicationDetails/originalDocument?CC=EP&NR=0672994A1&KC=A1&FT=D&ND=3&date=19950920&DB=EPODOC&locale=en_EP
https://developer.android.com/guide/topics/security/permissions.html
https://developer.android.com/reference/android/content/ClipboardManager.html
https://developer.android.com/reference/android/content/ClipboardManager.html
https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
https://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
https://stackoverflow.com/questions/10965409/android-take-screenshot-on-rooted-device
https://stackoverflow.com/questions/10965409/android-take-screenshot-on-rooted-device
https://tthtlc.wordpress.com/2011/12/10/how-to-dump-memory-of-any-running-processes-in-android-2/
https://tthtlc.wordpress.com/2011/12/10/how-to-dump-memory-of-any-running-processes-in-android-2/
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA465464
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA465464
https://blog.torproject.org/blog/top-changes-tor-2004-design-paper-part-1
https://blog.torproject.org/blog/top-changes-tor-2004-design-paper-part-1
https://blog.torproject.org/blog/top-changes-tor-2004-design-paper-part-2
https://blog.torproject.org/blog/top-changes-tor-2004-design-paper-part-2

Bibliography 37

2015/10/14. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.496.5865&rep=rep1&type=pdf

[49] R. M. Grüschow, J. Kemper, and M. Brettel, “Do transaction costs of payment
systems di�er across customers in e-commerce?” 2015, accessed: 2015/10/14.
[Online]. Available: http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1063&
context=ecis2015_cr

[50] Various, What is Patreon?, Patreon, Inc., 2015, accessed: 2015-10-14. [Online]. Avail-
able: https://patreon.zendesk.com/hc/en-us/articles/204606315-What-is-Patreon-

[51] Unknown, Banking Blockade, WikiLeaks, June 2011, accessed: 2015-10-15. [Online].
Available: https://wikileaks.org/Banking-Blockade.html

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.496.5865&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.496.5865&rep=rep1&type=pdf
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1063&context=ecis2015_cr
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1063&context=ecis2015_cr
https://patreon.zendesk.com/hc/en-us/articles/204606315-What-is-Patreon-
https://wikileaks.org/Banking-Blockade.html

	Introduction
	GNU Taler
	Goals of the thesis
	Outline

	Implementation prerequisites
	Native libraries
	Libgcrypt
	GNU unistring
	GNUnet utility library
	Taler utility library
	JNI dispatch library / Java Native Access

	Android integration
	Data Persistence
	Cross-compilation
	Native code interface

	Architecture
	Application model
	Communication
	Persistence
	Native library wrappers
	Android-specific code

	Application data storage
	Communication
	Cryptography
	Testing

	Functionality
	User interface
	Enabling mobile payments
	Existing payment method
	Proposed mobile payment method

	Security
	Application security
	Communications security

	Conclusion
	Transformative effects of Taler and wallet
	Future work

	Bibliography

