
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

AWorkbench to Analyze X.509 in
Applications

Adrian Reuter

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

A Workbench to Analyze X.509 in Applications

Automatisierte Analyse der Verarbeitung von X.509 Zerti�katen
in Applikationen

Author Adrian Reuter
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Matthias Wachs
Date March 15, 2017

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, March 15, 2017

Signature

Abstract

Global networking and secure digital communication have become basic needs for
society, economy and individuals of our time. Security in digital communication signi�-
cantly depends on digital certi�cates, which allow to prove authenticity and establish
trust between communication partners. These certi�cates can only provide any security
properties, if relying applications correctly validate them. The correct validation of
certi�cates poses a complex task to overcome by implementing applications.

For this purpose, this thesis analyzes certi�cate validation of X.509, the most prominent
certi�cate standard, in applications. Outcome of this thesis is an automated workbench,
that allows for systematic and reproducible testing of certi�cate validation in applica-
tions. Therefore, the standardized validation process is analyzed and its complexity is
elaborated. Based on this analysis, test cases are derived which describe the correct
validation behaviour that must be provided by applications. This thesis develops a
concept for systematically testing certi�cate validation in applications and designs a
�exible and extensible system approach for the automated workbench. This workbench
and the identi�ed test cases are implemented and evaluated.

The certi�cate validation behaviour of a selected set of applications and libraries is
analyzed by placing them into the automated workbench. The evaluation of the test
results show that the applications in question predominantly conducted correct cer-
ti�cate validation: However, one of the applications examined accepts certi�cates that
were issued for a di�erent usage, while another library in default con�guration accepts
certi�cates that were issued for a di�erent certi�cate subject. While the �rst weakness
breaks the concept of certi�cate usage restrictions, the second weakness potentially
misleads developers into severe Man-in-the-Middle vulnerabilities, which endanger all
protection goals.

Zusammenfassung

Globale Vernetzung und sichere digitale Kommunikation haben sich zu gesellschaftlich,
wirtschaftlich und auch persönlich zentralen Bedürfnissen unserer Zeit entwickelt. Die
Sicherheit in der digitalen Kommunikation hängt dabei in erheblichem Maße von digi-
talen Zerti�katen hab, welche Authentizität und Vertrauenswürdigkeit gewährleisten.
Diese Zerti�kate besitzen jedoch nur dann Aussagekraft, wenn sie von Anwendungen
umfassend validiert werden. Die korrekte Validierung von Zerti�katen stellt dabei einen
komplexen und fehleranfälligen Prozess dar.

Diese Arbeit untersucht deshalb die Zerti�katsvalidierung des verbreiteten Zerti�-
katsstandards X.509 in Applikationen. Ziel der Arbeit ist es, eine Testumgebung zu
entwerfen und zu implementieren, die das automatisierte, systematische und reprodu-
zierbare Testen der Zerti�katsvalidierung in Anwendungen ermöglicht. Hierfür wird der
standardisierte Validierungsprozess analysiert und dessen Komplexität herausgearbeitet.
Basierend auf dieser Analyse werden Testfälle abgeleitet, die das Validierungsverhalten
in Anwendungen überprüfbar machen. Daran angeschlossen entwirft diese Arbeit ein
Konzept zum systematischen Testen von Anwendungen und entwickelt ein �exibles und
erweiterbares Systemdesign für die Umsetzung einer automatisierten Testumgebung.
Die Testumgebung und die identi�zierten Testfälle werden anschließend implementiert
und evaluiert.

Die Analyse einer exemplarischen Auswahl an Kommandozeilenprogrammen und Bi-
bliotheken unter Verwendungen der entwickelten Testumgebung zeigt, das Zerti�kats-
validierung mehrheitlich korrekt durchgeführt wird. Eine der getesteten Anwendungen
o�enbart jedoch Schwächen bei der Prüfung des Verwendungszweck der ihr vorgelegten
Zerti�kate, während eine andere Bibliothek in ihrer Standardkon�guration Zerti�kate
akzeptiert, welche zwar korrekt sind, aber nicht das eigentlich zu authenti�zierende Sub-
jekt ausweisen. Während die fehlerhafte Prüfung des Verwendungszwecks das Prinzip
von Verwendungszweckbeschränkungen verletzt, kann die zweite Validierungsschwä-
che Entwickler irreführen und deren Produkte für schwerwiegende Man-in-the-Middle
Attacken angreifbar machen, welche sämtliche Schutzziele gefährden.

I

Contents

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Goals of This Thesis . 2
1.3 Document Structure . 3

2 Background 5
2.1 Asymmetric Cryptography . 5

2.1.1 Example of Asymmetric Cryptography 6
2.2 X.509 Public Key Infrastructure . 7

2.2.1 X.509 Certi�cates . 7
2.2.2 Certi�cate Status and Revocation 8
2.2.3 Trust Establishment and Certi�cate Chaining 9

2.3 Transport Layer Security . 10
2.3.1 Protocol Description . 10
2.3.2 Subprotocol Types . 11
2.3.3 Handshake Sequence and Connection Establishment 11

3 Related Work 13

4 Problem Analysis 17
4.1 Certi�cate Validation Process . 17
4.2 Complex Certi�cation Paths . 19
4.3 Automated Certi�cate Validation Testing 21

4.3.1 Application Blackbox Testing 21
4.3.2 Regression Testing of Applications 21
4.3.3 Certi�cate Validity Testing . 22

4.4 Identi�cation of Test Cases . 22

5 Workbench Design 27
5.1 System Approach . 27
5.2 Requirements Analysis . 29

5.2.1 Functional Requirements . 29

II Contents

5.2.2 Technical Requirements . 29
5.3 Testing Concept . 30
5.4 Testing Sequence . 31
5.5 Application Integration . 33
5.6 Structured Storage . 33

6 Implementation 35
6.1 Certi�cate Generation with X.509 Certi�cate Builder 35
6.2 Data Management and Data Storage . 37
6.3 Implementation of Testing Logic . 38

7 Evaluation 41
7.1 Comparison with Goals of This Thesis 41
7.2 Certi�cate Validation in Applications 43

7.2.1 Exemplary Blackbox-Testing of Command-Line Applications . 43
7.2.2 Exemplary Regression Testing of OpenSSL 46

8 Discussion 49

9 Conclusion and Future Work 51

Bibliography 53

III

List of Figures

2.1 Relation between Private Key and Public Key (from [1]) 6
2.2 Alice and Bob Communicating Securely (from [2]) 7
2.3 Chain of Trust (from [3]) . 9
2.4 TLS Protocol Stack (from [4]) . 10
2.5 TLS Handshake Sequence . 12

4.1 Example of Cross-Certi�cation (from [5]) 20

5.1 High-Level System Approach for the Workbench 28
5.2 Workbench Interaction . 30
5.3 Workbench Controllers . 32

6.1 Workbench Core Classes . 39

V

List of Tables

4.1 Test Cases for Signature and Validity Period 23
4.2 Test Cases for Name Chaining and Trust Anchors 23
4.3 Test Cases for Version and Basic Constraints 24
4.4 Test Cases for Key Usage and Extended Key Usage 25
4.5 Test Cases for Additional Validation Steps 25

7.1 Implemented Test Cases . 42
7.2 Tested Command-Line Applications . 44
7.3 Comparison of Certi�cate Validation in Applications 45
7.4 Certi�cate Validation Regression Testing of OpenSSL 47

1

Chapter 1

Introduction

1.1 Motivation and Problem Statement

With the global increase of digital communication and world-wide interconnection of
networking infrastructures over the past decades, the need for security in digital data
exchanges increased likewise. Today, secure digital communication is a foundation for
progress and economic growth. Industry, research and economy depend on security in
data exchange, as it prevents loss of know-how and informational advance, but equally
simpli�es accountable and resilient collaboration around the globe. Besides industry,
security in digital communication becomes a fundamental necessity for individuals and
involves more and more aspects of our daily lives. Security in digital data exchange
helps individuals to preserve con�dentiality, privacy and anonymity in their daily com-
munication. Cryptography is the key methodology to secure digital communication.
Modern cryptosystems often rely on digital certi�cates, which mean to prove authentic-
ity and establish trust between endpoints. Consequently, certi�cates constitude a key
technology for achieving many other protection goals, such as con�dentiality, integrity,
accountability or non-repudiation. X.509 is the most common standard for digital certi�-
cates and �nds wide adoption in various infrastructures, most prominently for securing
internet tra�c �ows on transport layer, but also for example in secure mailing.
However, certi�cation infrastructures only make sense if all participants comprehen-
sively verify certi�cation documents. Hence, X.509 certi�cates can only provide any
security properties, if they are validated correctly by X.509 implementations. A large
amount of libraries and middlewares have been developed to face the challenging task of
validating not only single X.509 certi�cates but entire certi�cation paths. Such libraries
constitute complex software projects with many contributors and are adapted to mul-
tiple platforms and operating systems. The amount of vulnerability exposures [6] [7],
the GnuTLS Goto Fail [8] as well as scienti�c research [9] [10] shows that libraries
and middlewares partially deploy broken or incomprehensive certi�cate validation. In

2 Chapter 1. Introduction

addition, some libraries overload developers who deploy these libraries with obscure
con�guration parameters [9] [10]. Moreover, as faulty middlewares are potential weak
points for a lot of relying applications, they constitute an attractive target for attackers
to put alot of e�ort and concentration in �nding weaknesses and exploiting them.
The aim of this bachelor’s thesis is to improve security in network communication by
analyzing whether applications enforce correct certi�cate validation. The objective of
this thesis is to design, engineer and implement a testing environment - henceforth
called workbench - that provides functionality to systematically analyze X.509 certi�cate
validation in applications. As such, the resulting workbench shall assist in investigating
the security properies of applications.

1.2 Goals of This Thesis

This thesis develops and implements a workbench to analyze certi�cate validation
in applications. Prior to the realization of the workbench, this thesis analyzes the
formal X.509 certi�cate validation process that has been standardized by the Internet
Engineering Task Force (IETF). This analysis identi�es:

• which validation steps need to be executed by applications in order to
correctly validate X.509 certi�cates,

• why certi�cate validation is a complex and thus error-prone process,

• why a workbench is necessary to test certi�cate validation in a systematical
and scalable manner.

Subsequent to this analysis, a system approach for the workbench is designed that allows
for automated, systematic and reproducible testing of certi�cate validation routines
inside of applications. Therefore the design elaborates:

• how the generic testing sequence for testing an application looks like,

• which individual components are needed to construct the entire workbench
and how do they interact,

• how instrumentation of applications can be realized, while preserving a �exible,
extensible and scalable system design.

Thereafter, the workbench is implemented and utilized for exemplarily examining the
certi�cate validation of a set of applications.
The outcome of this thesis is an insight into the certi�cate validation process as well as
a software application to conduct automated tests on applications.

1.3. Document Structure 3

1.3 Document Structure

Chapter 2 of this bachelor’s thesis familiarizes with background knowledge that is in-
herently needed for analyzing certi�cate validation in applications. This familiarization
includes an overview of asymmetric cryptography, the X.509 certi�cation infrastruc-
ture, and the Transport Layer Security (TLS) protocol, which is presumably the most
prominent use case of X.509 certi�cates for authenticating communication peers.
Chapter 3 presents related work that has put e�ort into analyzing X.509 certi�cate vali-
dation in applications and developing automated testing environments for measuring
certi�cate acceptance and rejection behaviour.
Chapter 4 conducts an analysis of the certi�cate validation process and elaborates the
complexity of the validation process. As result of this elaboration, supposably error-
prone parameters within the validation process are identi�ed and certi�cate acceptance
and rejection scenarios are identi�ed. Following, corresponding test cases are extracted
that cover these acceptance and rejection scenarios.
Chapter 5 presents the overall testing concept as well as the system approach for a
workbench that provides functionality for automated testing of certi�cate validation
in applications. Subsequently, this chapter conducts requirements engineering and
identi�es central workbench components and de�nes their interaction.
Chapter 6 gives an insight into implementation details on how X.509 certi�cates are
generated, how the internal testing logic of the workbench is organized, and how test
cases are inputted and test results are outputted by the workbench.
Chapter 7 evaluates the work done in this thesis by comparing the outcomes with the
designated goals of this thesis and moreover places a selected set of applications into
the workbench testing environment and investigates their certi�cate validation.
Chapter 8 discusses the impact of the weaknesses discovered in the evaluation results.
It explains which vulnerabilities can result from the validation weaknesses and sketches
how an attacker might exploit these weaknesses.
Chapter 9 �nally summarizes the contribution of this thesis and emphasizes major �nd-
ings, design decisions and evaluation results. It furthermore presents visions for future
work that might extend the workbench’s capabilities and integrate it into contexts of
larger projects.

5

Chapter 2

Background

This chapter provides an insight into methods and protocols that constitude crucial
basic knowledge for understanding the proceeding presented in this thesis. In particular,
this chapter explains the main principles of asymmetric cryptography, which is a key
technology for security in modern and scalable network infrastructures. This chapter
further introduces the X.509 Public Key Infrastructure (PKI), since it is a widely used
infrastructure for distributing public keys for asymmetric cryptography. Furthermore
Transport Layer Security (TLS) is introduced, as it is one of the most commonly used
protocols for securing network tra�c, making use of the X.509 PKI for authentication.

2.1 Asymmetric Cryptography

A fundamental concept for secure communication is asymmetric cryptography. Asym-
metric cryptography is based on number theory problems that are impractical to solve
with raw computational power, such as factorization or discrete logarithm of huge
numbers. The computation of such functions is only feasible knowing a secret function
parameter. This circumstance is taken advantage of in asymmetric cryptography, using
functions that are feasible to calculate but impractical to invert. Such a function is
used for encrypting messages and is feasibly computable for everyone. The needed
function parameters are called public key and are made available for everyone. In con-
strast, for decrypting messages, the inverse function must be computed, which is only
manageable using the secret function parameter, called private key [11, pp. 352 – 368].
Hence as shown in Figure 2.1, a plaintext message can be encrypted using the public
key, and decrypted with the help of the correspondent private key. Consequently and
in constrast to symmetric cryptography, asymmetric cryptography is not based on a
common secret key that is used for both encryption and decryption and is secretly
shared among the network entities that wish to communicate securely [11, p. 311].
However, asymmetric cryptography is often used to encrypt and securely communicate

6 Chapter 2. Background

Figure 2.1: Relation between Private Key and Public Key (from [1])

a secret key for symmetric mechanisms, as symmetric algorithms typically bene�t of a
better performance compared to asymmetric ones and thus are preferably used for bulk
data encryption [12].

2.1.1 Example of Asymmetric Cryptography

Putting asymmetric cryptography into practice, every communication peer maintains a
key pair, consisting of a private key and a public key. The private key is kept secret and
is never published. Contrary, the public key is not con�dential at all and is published
to every other peer that wishes to communicate with the peer owning it. The public
key is often exchanged during connection establishment phase and is used by the other
peers to encrypt messages destined for the owner of the correspondant private key.
To give an example, please consider the following situation as described in Figure 2.2:
Peer Alice maintains the key pair privAlice and pubAlice , while peer Bob maintains
the key pair privBob and pubBob . If Alice wants to send a con�dential message to Bob,
she is using Bob’s public key pubBob to encrypt the message, and only Bob will be
able to decrypt this message using his private key privBob . Vice versa, Bob can send a
con�dential message to Alice by using pubAlice for encryption, and only Alice will be
able to decrypt that message with the help of her private key privAlice .

Besides encryption, some asymmetric cryptosystems can also be used for authentication,
i.e. proving which peer originated a message. If Alice sends a message and signs it
with her private key privAlice , any receiver can verify the signature with the help of
Alice’s public key pubAlice . That means Alice can attach a signature to her messages
that proves that only herself could have originated them [13].

As result of both encrypting and signing a message, an adversary peer Eve is neither
capable of reading the con�dential communication between Alice and Bob, nor is Eve
capable of successfully altering or injecting messages without Alice and Bob noticing
the manipulation attempt.

2.2. X.509 Public Key Infrastructure 7

Figure 2.2: Alice and Bob Communicating Securely (from [2])

2.2 X.509 Public Key Infrastructure

The X.509 PKI is a widely used infrastructure to establish a trustworthy correlation
between public keys and their corresponding network entities. That means the X.509
PKI aims to guarantee that a speci�c public keypubX belongs to a speci�c network entity
X , disabling other entities to impersonate as X and thereby break into a supposably
con�dential communication.

2.2.1 X.509 Certi�cates

Within the X.509 PKI, a network entity is distinctively identi�ed by aDistinguished Name
(DN). The DN is a collection of information about a subject, such as the organization
name, organizational unit, country, state, province, city and common name [14]. A
X.509 certi�cate proves the ownership of a public key. Therefore a certi�cate includes
the following obligatory information [14]:

• version of X.509 certi�cate format (mostly v3)

• certi�cate serial number

• subject public key (the public key to be certi�ed)

8 Chapter 2. Background

• subject DN (the DN of the owner of the public key)

• issuer DN (the DN of the authority issuing the certi�cate)

• validity period

• signature algorithm information

• signature value

• [optional extensions]

Besides these basic information �elds, a certi�cate may carry various additional ex-
tensions, such as subject alternative names, key usage restrictions, name constraints
or policy constraints. A detailed explanation of all extensions can be found in RFC
5280 [14].
Individuals or organizations that wish to obtain a certi�cate for one of their public keys
can apply to a commonly trusted third party for issuing the desired certi�cate. To do
so, they build a Certi�cate Signing Request (CSR), which mainly includes the respective
public key as well as their Distinguished Name [15]. To actually prove the ownership
of the public key, the CSR is signed with the correspondent private key [16]. The CSR
is then sent to a Registration Authority (RA), which is in charge to check whether the
applicant is legitimate to ask for the desired certi�cate, and will validate the signature.
If this process was successful, the Registration Authority instructs a subordinated Certi-
�cation Authority (CA) to issue the requested certi�cate. The newly created certi�cate
is signed with private key of the Certi�cation Authority to make it unforgeable and
trustworthy for other network entities [16].

2.2.2 Certi�cate Status and Revocation

There are situations where previously issued certi�cates have to be declared invalid, e.g.
in case of private key disclosure, private key loss or changes in owner information. To
face these situations where certi�cates need to be revoked before their regular validity
period expires, two mechanisms gained wide adoption, namely Certi�cate Revocation
List (CRL) and the Online Certi�cate Status Protocol (OCSP). Both mechanisms are usually
maintained by Certi�cation Authorities and each authority is responsible for publishing
certi�cate status information for the certi�cates it issues. Therefore certi�cates option-
ally contain extension �elds pointing to the web location of the relevant CRL or the
OCSP service [14]. CRLs are lists of revoked certi�cates and they are signed by the CA.
Of course they are only up-to-date for a limited period of time and after their validity
period expired, certi�cate validation routines are requested to retrieve an updated ver-
sion. In case that a certi�cate’s serial number appears on that list, this certi�cate has
been revoked and should be consequently rejected [14]. The Online Certi�cate Status

2.2. X.509 Public Key Infrastructure 9

Protocol serves the same purpose, but o�ers an almost real-time status query service
instead of temporarily static and quickly outdated lists. Certi�cate validation routines
can send OCSP requests to the appropriate OCSP responder that is speci�ed in the cer-
ti�cate extension [17]. The OCSP responder will answer with a signed OCSP response,
indicating the requested certi�cate status as either "good", "revoked" or "unknown" [17].

2.2.3 Trust Establishment and Certi�cate Chaining

If a network entity intends to prove its ownership of a certain public key to another
entity, it delivers its X.509 certi�cate to that entity. With its signature, the issuing
Certi�cation Authority acts as warrantor, con�rming that the public key presented
in the certi�cate belongs to the owner also speci�ed in the certi�cate [18]. Hence it
is inherently required that the issuing CA is seen as a trustworthy third party for all
network entities that shall trust this certi�cate. To achieve this, CAs themselves present
their own certi�cates, either signed by another authority or selfsigned (signed with their
own private key and thus involving no further authority). As result, a so-called chain of
trust evolves, with a ultimately trusted certi�cate at its end, called root certi�cate [18].
These root certi�cates constitude a minimal set of certi�cates that are trusted by default
and distributed via an out-of-band mechanism [19], such as being shipped with an
application, an operating system or any other kind of X.509 implementation.

Figure 2.3: Chain of Trust (from [3])

Figure 2.3 demonstrates an exemplary chain of trust, consisting of a certi�cate for an
arbitrary website ("site certi�cate"), a certi�cate of an intermediate certi�cate authority
("intermediate certi�cate") and a self-signed certi�cate of another certi�cate authority
("root CA certi�cate"): If a network entity tries to verify the authenticity of the site
certi�cate, it needs to check its signature. This is done using the public key of the
issuer, which is the intermediate CA. That public key is presented in the intermediate
certi�cate. However, the authenticity of the intermediate certi�cate needs to veri�ed as
well. Its signature can be validated using the public key of the issuer, which is the root

10 Chapter 2. Background

CA. The appropriate public key is contained in the root CA certi�cate, which is trusted
by default and thence requires no more veri�cation. Besides the signatures along the
chain of trust, each and every certi�cate needs to be validated with regard to domain
name, validity period, key usage, revocation state according to CRLs or OCSP, as well
as many other attributes and extensions. A precise analysis of all checks that need to
be done within the certi�cate validation process will follow in Chapter 4.1.

2.3 Transport Layer Security

Transport Layer Security (TLS) is a protocol that operates on top of Internet Protocol
(IP) and Transmission Control Protocol (TCP), providing an encrypted, authenticated and
integrity protected session for superior protocols. TLS has become an internationally
widely adopted standard protocol for secure network communication, intensively used
for securing HTTP, IMAP, SMTP, SIP, FTP and many other omnipresent protocols.

2.3.1 Protocol Description

TLS is derived from a protocol called Secure Sockets Layer (SSL), a protocol originally
developed by Netscape for securing HTTP-tra�c between web servers and Netscape’s
webbrowser Netscape Navigator. Based on SSL, the Internet Engineering Task Force (IETF)
has developed TLS as vendor-independent industrial standard protocol and already
released version 1.2, currently working on version 1.3. Working on top of IP and TCP,
which together o�er reliable and stateful connections, TLS is located on the session
layer (layer 5) of the ISO/OSI model. [11, pp. 796 – 798]

Figure 2.4: TLS Protocol Stack (from [4])

TLS distinguishes between connections and sessions. A TLS session de�nes security
parameters that are used for all subordinate connections of that session, such as the
cipher suite, the master secret and the certi�cate of the communication peer. That
allows multiple TLS connections to be assigned to a session and thereby using the same

2.3. Transport Layer Security 11

security parameters of that session, thus reducing negotiation tra�c. A cipher suite
primarily de�nes the usage of a certain hash algorithm and encryption algorithm, while
the master secret is used to derive further key material. However, every connection
maintains its own keys for encryption and integrity protection, derived from the master
secret shared within the session. [11, pp. 805 – 806]

2.3.2 Subprotocol Types

As portrayed in Figure 2.4, the TLS protocol consists of the Record Protocol and three
subprotocols, namely Handshake Protocol, Change Cipher Spec Protocol and Alert Protocol.
Within the TLS protocol stack, the Record Protocol is one layer below the other three
TLS protocols of equal height. It is responsible for fragmenting higher protocol data into
data blocks, applying compression, calculating a Message Authentication Code (MAC) for
each block and �nally encrypting the concatination of data block and MAC [11, p. 799].
The Handshake Protocol is necessary for negotiating the cipher suite and cryptographic
parameters along with authenticating the communication peers. The Alert Protocol is
used to indicate warnings, such as on certi�cate rejection or a discrepancy of MACs
[20]. Finally, the Change Cipher Spec Protocol is used to indicate that all future TLS
records will be sent encrypted and integrity protected by the cipher suite that has been
negotiated during the handshake [20].

2.3.3 Handshake Sequence and Connection Establishment

The handshake sequence always starts with a Client Hello message sent from the client
to the server, mainly containing a list of client-side supported cipher suites, a 28 bytes
random number and optionally the session ID of a previously established session. The
server responds to the Client Hello with a Server Hello message, including either the
proposed session ID or a new one, the chosen cipher suite and also a 28 bytes random
number. In case the server sent the proposed session ID, it is thereby con�rming the
existance of that session and the handshake sequence can be abbreviated; if not, the
server sends a new session ID and thus initiating a new session [11, p. 802]. The Server
Hello is followed by a Certi�cate message, presenting the server certi�cate. It is op-
tionally followed by a Server Key Exchange message in case a cipher suite was chosen
that requires further security parameters. A Certi�cate Request message is likewisely
optional, demanding the client to authenticate with a certi�cate as well. The server
�nishes its Server Hello with a Server Hello Done message [20].
After the Server Hello Done was received, the client optionally sends - if requested
by a previous Certi�cate Request message - its certi�cate encapsulated in a Certi�cate
message. In any case the client sends a Client Key Exchange message, either including
a 48 byte random key called premaster secret encrypted with the server’s public key,
or including its Di�e-Hellman public value [11, p. 803]. If a client certi�cate has been

12 Chapter 2. Background

Client Server

Handshake: Client Hello

Handshake: Server Hello

Handshake: Certficate

Handshake: Server Key Exchange

Handshake: Certificate Request

Handshake: Server Hello Done

Handshake: Certificate

Handshake: Client Key Exchange

Handshake: Certificate Verify

Change Cipher Spec

Handshake: Finished

Change Cipher Spec

Handshake: Finished

Figure 2.5: TLS Handshake Sequence

exchanged, the Client Key Exchange message is followed by a Certi�cate Verify message,
proving the ownership of the respective public key by sending a signed hash of all
handshake messages that have been exchanged so far. In any case the client sends a
Change Cipher Spec message, indicating that all further messages will be encrypted and
authenticated with the negotiated cipher suite. The keys for encryption and authentica-
tion are derived from the master secret, which is calculated separately on both client
and server using the exchanged random values and the premaster secret [20].
The client concludes its part of the handshake with a Finished message, containing a
hash of all handshake messages that have been exchanged so far, signed with the au-
thentication key derived from the master secret. The server also sends a Change Cipher
Spec message and �nishes the handshake sequence with a Finished message by its side,
likewise containing a signed hash of all exchanged handshake messages. This message
is particularly important, as the server also proves the ownership of the public key
contained in its certi�cate: the server is only capable of calculating the authentication
key needed for the signed hash, if it was able to decrypt the premaster secret the client
sent in its Client Key Exchange message [20].

13

Chapter 3

Related Work

A lot of security �aws arise when deploying X.509 libraries or X.509 middlewares in supe-
rior software components. The APIs of such libraries o�er great �exibility to developers
due to various con�guration parameters and settings that can be supplied. However,
this �exibility also moves greater responsibility to developers to correctly deploy the
libraries and enforce extensive certi�cation path validation. Some relevant validation
steps such as hostname validation are even intentionally disabled during development
phase in order to ease software testing [10]. If not re-enabled before rolling out the
o�cial software release, such con�gurations break the security concept of X.509. With
the article "SSL sicher implementieren" [10], Dr. Yun Ding illustrates common mistakes
when deploying X.509 libraries and brings well-known vulnerabilities to the readers
attention. Ding gives advices to avoid well-known security breaches and sharpens the
senses of developers to apply strict certi�cate validation. The proceeding "The Most
Dangerous Code in the World: Validating SSL Certi�cates in Non-Browser Software" [9]
by Georgiev et al. provides an analysis of broken certi�cate validation routines in sev-
eral commonly used X.509 libraries and middlewares that lead to Man-in-the-Middle
vulnerability in applications that deploy these software components. Georgiev et al.
especially warns developers of weaknesses in online shopping middlewares. The author
further highlights the fact that libraries often provide confusing and misunderstandable
setting options, which frequently lead to unintentional insecure deployment of these
libraries [9]. However, both publications remain eye-opening depictions of common
mistakes and weaknesses of X.509 implementations and give appropriate advices to
face them, but do not implement a workbench to actually test applications for faulty
certi�cate validation routines.
In his master thesis proposal, titled "DoWeb Browsers Obey Best PracticesWhen Validating
Digital Certi�cates ?" [21], Krati Kiyawat presents an evaluation of three di�erent web
browsers regarding their build-in certi�cate validation routines. Kiyawat discovers vary-
ing certi�cate acceptance and rejection behaviour across di�erent web browsers as well
as varying behaviour within di�erent platform versions of the same browser. Further-

14 Chapter 3. Related Work

more Kiyawat points out that the desktop browser versions often apply more stringent
certi�cate validation than their mobile versions for Android or iOS. Yet, Kiyawat’s work
concentrates on evaluating web browsers only and is not considering TLS-enhanced
applications in general. Moreover Kiyawat’s thesis identi�es a rather small set of test
cases, mainly consisting of expired, invalid, self-signed and revoked test certi�cates.
This thesis though aims for more extensive and detailed testing, including test cases
that cover entire certi�cation paths as well as certi�cate extensions. Additionally and
in contrast to Kiyawat’s testbed, the workbench which is subject to this thesis aims to
automate the testing process to some practicable extend, in order to facilitate a frequent
testing of various applications.
With the paper "SMV-HUNTER: Large Scale, Automated Detection of SSL/TLS Man-in-
the-Middle Vulnerabilities in Android Apps" [22], Sounthiraraj et al. put great e�ort into
a testbed which automatically detects whether developers deploy custom certi�cate
validation routines in Android apps and thus potentially introduce Man-in-the-Middle
(MitM) vulnerabilities. If SMV-Hunter detects a costum validation routine via static
code analysis, an additional dynamic analysis at runtime executes a MitM attack to
con�rm the vulnerability. While SMV-Hunter shows a high degree of automation and
constitutes an e�cient framework for testing Android apps at large scale, it is focused
on Android apps only and does not consider arbitrary TLS-enhanced applications. Fur-
thermore the focus of SMV-Hunter is set to detecting certi�cate validation routines that
spuriously accept self-signed certi�cates or simply accept all certi�cates, but does not
concentrate on extensively testing validation routines whether they are checking all
critical �elds within certi�cates and certi�cation paths.
This thesis is thematically related to Brubaker’s et al. proceeding "Using Frankencerts for
Automated Adversarial Testing of Certi�cate Validation in SSL/TLS Implementations" [23],
demonstrating an automated di�erential testing method for SSL/TLS libraries. The test
certi�cates used by Brubaker et al. for testing TLS libraries are generated by fragment-
ing real certi�cates from the internet and randomly stitching fragments together; thus
deriving new syntactically correct certi�cates that even cover unorthodox combina-
tions of �eld values and extensions [23]. Di�erential testing in this context means that
potentially faulty validation routines are detected by comparing the validation results
of multiple SSL/TLS implementations. Whenever at least two implementations disagree
about the validity of a certain test certi�cate, this potentially indicates a partly incorrect
validation logic in one of the implementations [23]. Yuting Chen and Zhendong Su
published a similar proceeding in 2015 titled "Guided di�erential testing of certi�cate val-
idation in SSL/TLS implementations" [24], which presents a considerably more e�cient
di�erential testbed for SSL implementations. However, both projects are focused on
a bounded list of wellknown SSL/TLS libraries such as OpenSSL 1 and GnuTLS 2, but
are not designed to test arbitrary TLS-enhanced applications. Moreover, security �aws

1OpenSSL Cryptography and SSL/TLS Toolkit, https://www.openssl.org; last accessed on 2017/02/27
2GnuTLS Transport Layer Security Library, https://www.gnutls.org; last accessed on 2017/02/27

https://www.openssl.org
https://www.gnutls.org

15

that arise from insecure deployment of TLS libraries or custom validation routines are
consequently not focused by these two projects.

17

Chapter 4

Problem Analysis

X.509 certi�cates bear high responsibility for secure communication, as they are a mean
to prove authenticity and establish trust between endpoints. Consequently, certi�cates
constitude a key technology for achieving many other protection goals, such as con-
�dentiality, integrity, accountability or non-repudiation. This chapter analyzes the
motivation for the workbench that is subject to this thesis. The �rst section elaborates
the certi�cate validation as speci�ed in RFC 5280 [14]. The second section explains why
certi�cate validation poses a complex task to be solved by X.509 implementations. Sub-
sequently, the bene�t of a workbench that is systematically testing certi�cate validation
routines is illustrated by an investigation of possible use cases. Resulting from the anal-
ysis of the validation algorithm presented in RFC 5280 [14], certi�cate acceptance and
rejection scenarios are extracted and test cases are derived that cover the corresponding
scenarios.

4.1 Certi�cate Validation Process

In X.509, an entity that wishes to prove its identity is only mandated to present its
end-entity certi�cate, and the process of constructing a complete certi�cation path
(including all intermediate certi�cates in correct order) and validating it remains the
task of the relying peer. In contrast, TLS, which makes use of the X.509 PKI, obligates
the entity that wishes to prove its identity to present the whole certi�cation path to
the relying party. RFC 5246 [20] speci�es that TLS applications are entitled to expect a
valid and complete certi�cation path in form of a gapless certi�cate chain during the
handshake; and are entitled to reject any certi�cate that comes without a valid chain
that could be validated by the TLS implementation. As this thesis is focused on X.509
in TLS applications, it does not analyse the process of constructing certi�cation paths,
because the complete certi�cation path is sent during handshake sequence.
RFC 5280 [14] speci�es the certi�cate �elds and values that are comprised in the X.509v3

18 Chapter 4. Problem Analysis

Internet Pro�le, as well as an exemplary certi�cation path validation algorithm. The
validation logic of this algorithm de�nes the minimum functionality that needs to be
provided by conforming implementations. The certi�cate validation process can be
devided into two major parts: validating the basic certi�cate �elds of each certi�cate
within the chain, and validating the chain dependencies of a certi�cation path. It is
important to note that throughout this whole thesis we consider a certi�cation path
to be validated in direction from the trust anchor through all intermediate certi�cates
down to the leaf certi�cate.The certi�cation path itself that is to be validated, as well as
trust anchor information, the current date and time, initial name constraints and initial
policy constraints are considered to be the minimal inputs to any validation routine [14].
Based on these inputs, a conforming X.509 implementation validates the following:

Basic certi�cate processing
Each certi�cate within the certi�cate chain needs to be processed and their basic infor-
mation �elds must be validated. The validity period [14, Section 4.1.2.5] of a certi�cate
must include the date and time at which the validation is executed, while the border
timestamps ’NotBefore’ [14, Section 4.1.2.5.1] and ’NotAfter’ [14, Section 4.1.2.5.2] of
the certi�cate are part of the valid time span. The certi�cate furthermore must not be
revoked at the current time of validation, which needs to be checked by an out-of-band
mechanism, such as a Certi�cate Revocation List or the Online Certi�cate Status Pro-
tocol. Finally, the cryptographic signature value [14, Section 4.1.1.3] at the end of the
certi�cate must be veri�ed to ensure the certi�cate is authentic and has not been forged.

Chain processing
Besides validating each certi�cate within the chain, all chain dependencies need to be
validated as well. A certi�cate chain can be denoted as sequence cert 1 .. n, where cert
1 is the top-most CA certi�cate that is immediately signed by the trust anchor, and
cert n is the leaf certi�cate of the end-entity. Often but not necessarily trust anchors
are encoded as self-signed certi�cates for practicability reasons and thus can be seen
as cert 0. However, trust anchors are not considered to be part of the chain itself but
rather an independent input parameter. For each certi�cate i within the chain (cert 1
.. n) it must be veri�ed that the subject Distinguished Name (DN) of cert i equals the
issuer DN of cert i+1. Subject DNs as well as issuer DNs are part of the basic certi�cate
�elds [14, Section 4.1]. Additionally, the subject DN of the �rst certi�cate in the chain
cert 1 must equal the DN of the trust anchor. This comparison of Distinguished Names
ensures that the certi�cation path is a gapless chain of trust that ends with the end-entity
certi�cate in question.
For each version 3 certi�cate within the chain except the leaf certi�cate at the very
end, a X.509 implementation must verify the basic constraints extension [14, Section
4.2.1.9]. This includes the veri�cation that the ’cA’ bit [14, Section 4.2.1.9] of the ba-
sic constraints extension is set to true, in order to ensure that the certi�cate is a CA

4.2. Complex Certi�cation Paths 19

certi�cate. Moreover, the maximum path length must not be exceeded. The maximum
path length limits the number of non-self-issued intermediate CA certi�cates that are
allowed to follow a CA certi�cate. The maximum path length is determined by the ’path-
LenConstraint’ [14, Section 4.2.1.9], which can be optionally set in the basic constraints
extension. Furthermore, for all non-self-issued intermediate certi�cates of the chain it
must be veri�ed that the certi�cate’s ’Subject’ name [14, Section 4.1.2.6], which is part
of the basic information �elds, as well as all Subject Alternative Names (SAN) included
in the ’Subject Alternative Name’ extension [14, Section 4.2.1.6] - if present - ful�ll the
name constraints imposed by the ’Name Constraints’ extension [14, Section 4.2.1.10] of
preceding certi�cates. Therefor the subject names must �rstly be within the permitted
namespace and secondly must not be part of the explicitly inhibited namespace. Ad-
ditionally to name constraint awareness, all intermediate certi�cates must ful�ll the
policy constraints that can be imposed and sequentially narrowed by ’Policy Constraints’
extensions [14, Section 4.2.1.11] of preceding certi�cates within the chain.
If the ’Key Usage’ extension [14, Section 4.2.1.3] is present, each intermediate cert�cate
in the chain must have the ’keyCertSign’ bit [14, Section 4.2.1.3] set to true, which
indicates that the public key that is being certi�ed by the certi�cate is authorized to be
used for signing further certi�cates.
Finally, any other extensions that were marked as ’critical’ must be processed and veri�ed.
If an implementation encounters an extension that is marked as critical but is not able
to process it, the certi�cate and thereby the whole certi�cate chain must be rejected. If
any of the previously explained veri�cations fails, the validation process is aborted and
the certi�cate chain must be rejected [14].

4.2 Complex Certi�cation Paths

Correctly validating not only single X.509 certi�cates but entire certi�cation paths from
the trust anchor through all intermediate certi�cates down to the leaf certi�cate is a
challenging task. Certi�cation topologies are likely to get much more complex, multi-
branched and meshed than simple chain structures. Complicated certi�cation structures
typically evolve when Certi�cation Authorities of di�erent Public Key Infrastructures
cross-sign their respective CA-certi�cates in order to establish a larger common trust
domain [25]. Figure 4.1 demonstrates a typical bilateral cross-signing situation: CA 1,
which is responsible for PKI 1, cross-signes the root certi�cate of another CA 2, which
is responsible for PKI 2 and vice versa. This procedure allows users of PKI 1 to trust
certi�cates issued by CA 2 of PKI 2, yet only having installed the root certi�cate of CA
1 in their own root certi�cate store. For example, the signature of user certi�cate "cert.
2.2" of PKI 2 can be veri�ed by users of PKI 1 with the help of certi�cate "cert. 2.1",
whose signature in turn can be veri�ed by certi�cate "cert.1". The latter is trusted by
default as it is installed in the root store.

20 Chapter 4. Problem Analysis

Figure 4.1: Example of Cross-Certi�cation (from [5])

The complexity of certi�cation paths is also increased by key renewals. The security of
cryptographic keys can be enhanced by regularly renewing it and thereby preventing
attackers from computing active keys in reasonable time. In case a Certi�cation Author-
ity wishes to change its own key pair and use a newer one, the CA issues a certi�cate
for its new public key using the old key for signature and vice versa [25]. Without
cross-signing the keys with the respective other key, the CA can not be trusted by its
users during key transition phase, as the self-signed CA certi�cate for the new key �rst
needs to be established in the trust store of all clients.
The X.509v3 PKI additionally introduces the concepts of name constraints and policy
constraints as a mean to further restrict certi�cate validity [14]. Both constraint types
can be imposed to a certi�cate by optional certi�cate extensions. Name constraints allow
a CA to limit the competence of subordinate CAs to be only entitled to issue certi�cates
for subjects within a narrowed namespace. Consequently, name constraints gradually
restrict the namespace in which subject name as well as all Subject Alternative Names
(SAN) must fall [14]. A certi�cate policy restricts the context in which a certi�cate
should be used and in which context it is aiming to be trustworthy. For example, by
using a speci�c policy identi�er, a CA might issue a certi�cate for authentication in
domains with lower security requirements (e.g. a end-entity certi�cates for blogging
websites), which has not an adequate level of assurance for high security domains (e.g.
authentication in aviation control systems) [26]. Both, name constraints as well as
policy constraints, allow to narrow the competence and hence the validity of subse-
quent certi�cations gradually with each certi�cation step. As the validation of these
constraints requires implementations to maintain continuously changing internal data
structures, these constraints introduce additional complexity and error-proneness to
the certi�cate validation process.

In a nutshell, correctly validating certi�cation paths is a challenging and error-prone

4.3. Automated Certi�cate Validation Testing 21

process. The algorithms and recommendations for constructing such certi�cation paths
are not analyzed in this thesis and are covered by RFC 4158 [27]. The workbench
that is subject to this thesis is not supposed to construct certi�cation paths itself, but
rather takes certi�cation paths as input and processes them by testing TLS-enhanced
applications whether they properly or spuriously accept or reject these certi�cation
paths.

4.3 Automated Certi�cate Validation Testing

The previous depiction of the complexity of the certi�cate validation process motivates
the need for a workbench that can test the certi�cate validation routines within ap-
plications. Moreover the complexity already indicates that testing validation routines
comprises a multitude of test cases. Manually executing each test case for one applica-
tion is already laborious and time consuming, but testing multiple applications or even
testing multiple applications several times becomes unfeasible. Out of it results the need
for automation of the testing process, which is exactly the objective of the workbench
of this thesis. The workbench aims to automate and accelerate the testing process and
thus introduces manageability and scalability for testing certi�cate validation routines.
This section illustrates what a X.509 workbench which analyzes certi�cate validation in
applications can be used for, and which bene�ts result from using such an automated
and universal testing environment. Three major use cases are depicted in the following,
but further use cases potentially exist and might show up in the context of other projects,
or might be inspired when deploying the workbench.

4.3.1 Application Blackbox Testing

The workbench which is subject to this thesis is primarily designed for testing certi�cate
validation routines within TLS applications. The workbench o�ers automation of the
testing process from a black box perspective with regard to the application that is to be
tested. Basically, the needed information about the application to be tested is how to
start it and how to make it access a remote location while using TLS for securing the
connection. In this use case the central question that can be answered by deploying
the workbench is "Does an application validate certi�cates correctly ?", which is an
essential quality criteria when examining the security of an application.

4.3.2 Regression Testing of Applications

The workbench also introduces comparability with regard to the security of applications.
Using the workbench to test several di�erent applications - while deploying the same

22 Chapter 4. Problem Analysis

test suite as input parameter - creates a neutral and impartial testing environment, that
generates reproducible test results and allows to compare applications with respect to
their certi�cate validation routines. The test results can constitude a metric for ranking
applications and libraries. Besides comparing di�erent applications, the workbench
can likewise serve to compare di�erent versions / releases of the same application,
and thereby be a tool for regression testing that veri�es whether and how certi�cate
acceptance behaviour changed over time or from one version to another. In a nutshell
the workbench can be used to compare the certi�cate validation routines in:

• application A vs. application B

• version X vs. version Y

• application + version A.X vs. application + version B.Y

4.3.3 Certi�cate Validity Testing

Furthermore a X.509 workbench can be used for testing collections of real-world certi�-
cates rather than test certi�cates solely build for testing purposes. In this use case the
testing principle of the workbench is inverted and an application that has previously
proven to deploy correct certi�cate validation would be con�gured as client component.
Then the workbench can be fed with collections of o�cially issued certi�cates and test
whether they are valid or not. This can be a useful functionality, e.g. for large companies
that have to maintain large amounts of certi�cates for their IT infrastructure, in order
to check if certi�cates did expire, were revoked or are invalid for some other reason,
and which certi�cates needs to be renewed to be valid and e�ective.

4.4 Identi�cation of Test Cases

This section identi�es test cases for a default test suite that is based on the preceding
analysis of RFC 5280. The test cases cover most of the relevant tests that need to be
executed on an arbitrary TLS-enhanced application to ensure that the validation logic of
the application in question conforms to the minimum validation algorithm speci�ed in
RFC 5280 [14]. Certainly there are environments in which certi�cate validation routines
need to be more restrictive and implement more stringent security policies to increase
the level of trust. Consequently, further test cases would be needed to test such a custom
certi�cate acceptance behaviour. However, security requirements vastly vary and this
thesis focuses on the minimum requirements speci�ed in RFC 5280 [14].
In the following, a certi�cation path is assumed as sequence of certi�cates 0...n, where
certi�cate 0 is the trust anchor and certi�cate n is the end-entity leaf certi�cate, with
a varying number of intermediate CA certi�cates in between. In the following tables
each row represents one test case. The column ’Information’ speci�es the attribute

4.4. Identi�cation of Test Cases 23

within the certi�cates that is being modi�ed, and ’Modi�cation’ shows the correspond-
ing modi�cation of the attribute value. The modi�cation is added to a generically valid
certi�cation path and turns the path into either a valid or invalid path. ’Scope’ indicates
to which certi�cate within the certi�cation path the modi�cation is applied, and ’Expect’
speci�es whether the certi�cation path is expected to be accepted or rejected.

Signature and Validity Period
The signature at the end of a certi�cate must �t the certi�cate content. If applications
do not check the signature value, they are vulnerable to attackers who present forged
certi�cates. The validity period must include the current time of validation, otherwise
applications spuriously accept certi�cates that expired or a not valid yet. Table 4.1 lists
corresponding test cases to test both signature and validity period values.

ID Scope Information Modi�cation Expect
1 1,..,n signature

value
valid signature value accept

2 invalid signature value reject
3 validity

period
notBefore ≤ NOW ≤ notAfter accept

4 notBefore ≥ NOW reject
5 notAfter ≤ NOW reject

Table 4.1: Test Cases for Signature and Validity Period

Name Chaining and Trust Anchors
The term name chaining refers to the requirement that every certi�cate within the
certi�cation path must have been issued by the subject of the respective preceding
certi�cate [25]. If this requirement is violated, the chain of trust is broken. Likewise, the
�rst intermediate certi�cate within the certi�cate chain needs to be issued by the trust
anchor. The trust anchor certi�cate can optionally be prepended to the certi�cate chain
and thereby be denoted as cert 0. Table 4.2 lists the test cases to test name chaining in
applications.

ID Scope Information Modi�cation Expect
6 0,..,n-1 subject DN,

issuer DN
subject DN of cert i = issuer DN of cert i + 1 accept

7 subject DN of cert i , issuer DN of cert i + 1 reject
8 0 trust anchor recognized and prepend. to chain accept
9 trust anchor recognized but not part of chain accept
10 unrecogn. self-signed cert prepend. to chain reject
11 no corresponding trust anchor for cert chain reject

Table 4.2: Test Cases for Name Chaining and Trust Anchors

24 Chapter 4. Problem Analysis

Version and Basic Constraints
For all version 3 intermediate certi�cates the basic constraints extension [14, Section
4.2.1.9] must be present and the ’cA’ bit must be set to true. Moreover, for all version
1 and version 2 certi�cates it must be veri�ed via a out-of-band process whether they
really are CA certi�cates, or must be rejected otherwise. The path length constraint -
if present - adjusts the maximum length of the certi�cation path, which must not be
exeeded. Table 4.3 lists the test cases to test version and basic constraints.

ID Scope Information Modi�cation Expect
12 1,..,n-1 version, basic

constraints ext.
v3, basic constraints present, cA-bit set accept

13 v3, basic constraints NOT present reject
14 v3, basic constraints present, cA-bit NOT set reject
15 unrecognized v1 certi�cate reject
16 unrecognized v2 certi�cate reject
17 1,..,n-2 path length constraint NOT present accept
18 path length constraint present in cert x ,

path length > n − x
accept

19 path length constraint present in cert x ,
path length < n − x

reject

Table 4.3: Test Cases for Version and Basic Constraints

Key Usage and Extended Key Usage
If present, the key usage extension must be validated by all conforming implementa-
tions, regardless of whether it is marked critical or not. For all CA certi�cates, the
’keyCertSign’-bit must be set to true. When a leaf certi�cate is used in combination with
RSA key encipherment, the key usage must have the ’keyEncipherment’-bit [14, Section
4.2.1.3] set to true. When the extended key usage extension [14, Section 4.2.1.12] is
marked as critical in an end-entity certi�cate, the ’serverAuth’-bit of this extension
must be set to true for server certi�cates and the ’clientAuth’-bit of this extension must
be set for client certi�cates. If both the key usage extension as well as the extended key
usage extensions are present, they must agree in intended certi�cate usage. Table 4.4
lists test cases to test key usage extension and extended key usage extension.

Additional Validations
Moreover, any unrecognized critical extension must lead to certi�cate rejection, as well
as the value ’anypolicy’ must not occur in the policy mappings extension. Additionally
to the veri�cations speci�ed in RFC 5280, hostname validation must be carried out to
prevent active Man-in-the-Middle vulnerability. Therefore, the target domain to which
an application is about to connect to must be included in either the subject Common
Name (CN) or any of the Subject Alternative Names of the leaf certi�cate. Table 4.5

4.4. Identi�cation of Test Cases 25

lists test cases for various additional validation steps. Testing certi�cate policies, name
constraints and certi�cate revocation states goes beyond the scope of this bachelor’s
thesis and will not be treated in the progression of this thesis. However it must be
noted that the workbench that is being designed and developed within the bounds
of this thesis is capable of testing these constraints, as corresponding test cases can
be identi�ed by future work and can then be easily inputted into the workbench as
extended or alternative test suite.

ID Scope Information Modi�cation Expect
20 1,..,n-1 key usage ext. key usage ext. present (critical),

keyCertSign-bit set
accept

21 key usage extension present (NOT critical),
keyCertSign-bit NOT set

reject

22 key usage extension present (critical),
keyCertSign-bit NOT set

reject

23 n key usage extension present (critical),
keyEncipherment-bit set

accept

24 key usage extension present (critical),
keyEncipherment-bit NOT set

reject

25 extended key
usage ext.

extended key usage ext. present (critical),
serverAuth-bit set

accept

26 extended key usage ext. present (critical),
serverAuth-bit NOT set

reject

27 key usage ext.,
extended key
usage ext.

key usage = keyEncipherment,
extended key usage (critical) = serverAuth

accept

28 key usage = keyEncipherment,
extended key usage (critical) , serverAuth

reject

29 key usage , keyEncipherment,
extended key usage (critical) = serverAuth

reject

Table 4.4: Test Cases for Key Usage and Extended Key Usage

ID Scope Information Modi�cation Expect
30 n subject DN,

SAN extension
subject CN = target domain,
target domain NOT included in SAN

accept

31 subject CN , target domain,
target domain included in SAN

accept

32 subject CN , target domain,
target domain NOT included in SAN

reject

33 1,..,n unrecognized
extension

unrecognized critical extension present reject

34 1,..,n-1 policy mapping
extension

’anypolicy’ occurs in mapping extension reject

Table 4.5: Test Cases for Additional Validation Steps

27

Chapter 5

Workbench Design

This chapter illustrates the design of the workbench. It presents a high-level system
approach as well as the resulting functional and technical requirements for the work-
bench. This chapter also introduces the idea of a strict separation of the test suite from
the actual workbench testing logic itself. Subsequently, the major components of the
workbench and their interaction are explained. Furthermore, this chapter depicts how
applications can be integrated into the workbench and how instrumentation of het-
erogenous TLS-enhanced softwares can be accomplished. Finally, the necessary input
information sets as well as the generated output information set are speci�ed.

5.1 System Approach

TLS distinguishes a server role and a client role. A connection is always initiated by
the client and the client is in charge to validate the certi�cate presented by the server.
Optionally, a server can obligate the client to authenticate with a client certi�cate as
well and thereby enforce mutual authentication. Conceptually the workbench can be
divided into three major components. The workbench comprises a server component, a
client component and a central control unit. The control unit implements the automation
and the testing logic, and has access to a pool of test certi�cates and their corresponding
private keys. Chaining several test certi�cates forms a certi�cation path that is either
valid - and thus should be accepted by a validation routine - or invalid, and thus should
be rejected by a validation routine. Such certi�cation paths represent the concrete
instantiation of a test case which is investigating the certi�cate acceptance and rejection
behaviour of the software that is to be tested. The control unit takes such a chain of
certi�cates and the private key for the leaf certi�cate of the chain from the pool and
instruments the server software to use it for any future incoming TLS connections.
Then, the control unit instruments the client component - which is the software to be
tested with regard to its certi�cate validation routine - to initiate a TLS-connection to the

28 Chapter 5. Workbench Design

Figure 5.1: High-Level System Approach for the Workbench

server component and thereby makes the client validating the certi�cate chain presented
by the server. After the TLS handshake has �nished, the control unit investigates the
output and the exit code of the client software:

• If the client decided to accept the certi�cation path (which can be the correct or
the wrong behaviour, depending on the test case) the connection was successfully
established.

• If the client decided to reject the certi�cation path (which can be also the correct or
wrong behaviour, depending on the test case) the TLS connection establishment
is aborted during handshake sequence and accessing the server component failed.

If the measured acceptance or rejection matches the expected behaviour for the cer-
ti�cate chain, the test case is considered as "passed", and otherwise as "failed". This
process of assigning a new certi�cate chain (and the appropriate private key) to the
server component, then instructing the client component to access the server, and �nally
measuring the connection result is repeated for every test case.
As result, the workbench is always testing the certi�cate validation routine inside the
software that has the role of the TLS client. In case that the validation routine inside of
a server software (e.g. Apache Webserver 1) is the one to be tested, this server software
must be placed into the workbench with the role of the TLS client that is accessing the
workbench’s regular testing server.

1Apache HTTP Server Project, http://httpd.apache.org; last accessed on 2017/02/19

http://httpd.apache.org

5.2. Requirements Analysis 29

5.2 Requirements Analysis

This section identi�es functional as well as technical requirements that need to be
taken into consideration for the design of the workbench. The functional requirements
mainly derive from the use cases of the workbench, whereas the technical requirements
primarily depend on the system approach of the workbench presented in Section 5.1.

5.2.1 Functional Requirements

In order to test applications, the previously identi�ed test cases need to be translated
into syntactically correct X.509 test certi�cates. Such test certi�cates carry manipulated
attribute values that correspond to their test case de�nition. Multiple test cases need
to be grouped to test suites. The workbench that is subject to this thesis must be able
to read-in test suite speci�cations and must be able to distribute X.509 certi�cates to
TLS server as well as TLS client applications. Moreover, the workbench must provide
functionality to setup, execute, tear-down and clean-up the test environment for each
test case of a test suite. To achieve this, the workbench must be able to instrument TLS
server and TLS client applications, as well as to recognize the connection state of the
application that is to be tested. The test results need to be stored in a structured and
machine-readable �le. The workbench must be adaptable to be universally applicable
to new TLS-enhanced applications.

5.2.2 Technical Requirements

When generating X.509 test certi�cates, distinct attribute values and certi�cate exten-
sions need to be speci�ed and altered, even if this produces syntactically correct but
semantically corrupt certi�cates. The workbench must be able to handle large amounts
of certi�cate data. To allow �exible applicability to TLS applications, an adapter com-
ponent for each application needs to be implemented which is using a standardized
interface. The server component of the workbench must be able to con�gure the leaf
certi�cate, the certi�cate chain and the private key for each test case. The client com-
ponent needs to instrument the application that is to be tested, i.e. to install a custom
trust anchor, connect to the server component and �nally measure the output and the
exit code of the application in question. In the context of application instrumentation,
the workbench needs to provide functionality to read-in and alter con�guration �les.

30 Chapter 5. Workbench Design

Figure 5.2: Workbench Interaction

5.3 Testing Concept

A major design choice for the workbench is the strict separation of the workbench test-
ing logic and the actual test suites which comprise all the test cases that are executed
on the application that is to be tested. A test suite speci�cation can be created and
con�gured independently and outside the bounds of the workbench itself. As such, the
test suite can be reused for multiple test runs with various applications. It can comprise
a custom composition of valid and invalid X.509 certi�cate chains to �t the individual
security requirements that applications in question have to meet. This introduces great
�exibility to de�ne own test suites which are testing certi�cate validation routines for
di�erent levels of trustworthiness, e.g. one test suite that is only testing the minimal
validation steps as speci�ed in RFC 5280 [14] and one test suite that tests for more
restrictive certi�cate validation. This concept also allows to use the workbench testing
logic for future X.509 version speci�cations and validation constraints.
As shown in Figure 5.2 the workbench has two main input parameters: the test suite
to be executed and an adapter implementation that is adapting the application in ques-
tion to the automated workbench. After reading-in both parameters, the workbench
processes the test suite and executes all test cases contained in it on the application
that is instrumented by the given adapter. During the testing process, the workbench
logs information about the progress and the success of the test run to the output stream
of the workbench. Internal sequences of events and statuses can be optionally logged
into log �les, which can be inquired for debugging purposes or for obtaining detailed
information in case a test case execution failed or an application instrumentation error
occured. After the testing process has completed, the test results are saved to a struc-

5.4. Testing Sequence 31

tured and machine-readable �le. The output �le can also be converted to an HTML
representation on-the-�y, which provides better readability and convenience for users.
The latter functionality will be further discussed in Section 6.2.

5.4 Testing Sequence

As illustrated in Figure 5.3 the testing logic of the workbench consists of six di�erent
control units that organize the testing process. The User-Interaction-Controller is the
unit that is initially invoked by the user and handles all interaction with the workbench
user. It parses user inputs, con�gures the workbench to use the settings speci�ed by
the user and prints status information to the screen. The main control unit is the Main-
Controller, which is instrumenting the Testing-Controller unit and is initiating a test run
using a speci�c test suite and a speci�c application adapter. The Testing-Controller is in
charge to prepare a test suite execution as well as executing it. Therefore it sequentially
prepares, executes, tears down and cleans up each test case of the test suite, making use
of the application instrumentation features provided by the Server-Controller and the
Application-Controller units. The lifecycle that is traversed by each test case includes
the following:

Setup Test Case:
Before a test case can be executed, all test case speci�c parameters need to be installed.
That is the server component must be equipped with the new leaf certi�cate as well
as the corresponding private key. Additionally, the new certi�cate chain with all in-
termediate CA certi�cates (and optionally including the trust anchor certi�cate) needs
to be installed in the server component. Afterwards, many server applications must
be reloaded or restarted in order for con�guration changes to take e�ect. Finally, the
new trust anchor certi�cate, that was used when creating the test certi�cates, must be
implanted into the root certi�cate store of the application that is to be tested (i.e. the
client component).

Execute Test Case:
The execution of a test case basically consists of two steps. At �rst, the client component
is instructed to connect to the URL of the server component and thereby is forced to
validate the certi�cate chain presented by the server component during the connection
establishment phase. Meanwhile, the workbench must wait for the client component
software to �nish the connection establishment and must wait for the connection result.
The resulting information - whether the server component was accessed successfully
or not and due to which reason a connection was potentially aborted - is �nally stored
in corresponding �elds within the workbench’s internal representation of the test case.

32 Chapter 5. Workbench Design

Figure 5.3: Workbench Controllers

Tear-down Test Case:
After the execution of the test case has �nished, some client component applications
need to be explicitly terminated if they did not already terminate after trying to access
the server component.

Clean-up Test Case:
Finally, after the test case was executed and the connection was successfully torn down,
the individual trust anchor certi�cate that was previously installed in the client com-
ponent needs to be removed. Moreover, the server component con�guration for the
leaf certi�cate, the private key and the certi�cate chain needs to be neutralized in case
the server component application is not operating in adhoc mode with non-persistent
con�gurations.

The results for each test case, which have been previously stored for each test case
in its individual in-memory representation, are brought together and saved to a com-
mon output �le with the help of the Storage-Controller. A precise de�nition of required
inputs and outputs will follow in Section 5.6, and their implementation will be discussed
in Section 6.2.

5.5. Application Integration 33

5.5 Application Integration

The heterogeneity of TLS-enhanced server and client software demands adapter imple-
mentations. Every software o�ers di�erent possibilities and options regarding start-up
parameters, con�guration �les, output information, exit codes and termination. Taking
all these di�erences into account makes an adapter implementation for each software
unavoidable. However, the functionalities required by the workbench testing logic for
instrumenting an application are conceptually the same for every application and can
be phrased into interface de�nitions, whose methods need to be implemented by all
custom adapter implementations. Hence the workbench includes the two interfaces,
namely Server-Controller and Application-Controller. The Server-Controller interface
must be used to derive custom server component implementations and primarily en-
forces methods for assigning new leaf certi�cates, private keys, certi�cate chains and
for reloading / restarting the server component software. The Application-Controller
interface must be used to derive custom client component implementations and primar-
ily enforces methods for triggering the application that is to be tested to connect to the
server component as well as terminating the application. The Application-Controller
interface also enforces methods for implanting and removing trust anchor certi�cates
from the root certi�cate store of the application in question.
A custom adapter implementation for instrumenting the server component is much less
likely to be necessary than a client component adapter. Generally speaking, a custom
server component adapter is only necessary if an application is to be tested that uses
a TLS-secured protocol other than HTTPS; and thus a testing server software other
than the default must be used. In constrast, a client component adapter is necessary
for every new application that is to be tested. Conceptually a client component adapter
can instrument either a traditional client software (e.g. GNU Wget 2) or also a server
software (e.g. Apache 3). Custom adapter implementations can be given as program
parameters at start-up of the workbench and are then dynamically loaded into the static
workbench core implementation.

5.6 Structured Storage

This section speci�es the structured sets of information that constitude a wellformed
input test suite for the workbench and the resulting output information that the work-
bench is generating after the execution of a test suite. The following notation in extended
Backus-Naur form (EBNF) describes a test suite in the context of this thesis:

2GNU Wget, https://www.gnu.org/software/wget/; last accessed on 2017/02/19
3Apache HTTP Server Project, http://httpd.apache.org; last accessed on 2017/02/19

https://www.gnu.org/software/wget/
http://httpd.apache.org

34 Chapter 5. Workbench Design

〈Testsuite〉 ::= 〈TestsuiteName〉 〈TestsuiteDescription〉 { 〈Testcase〉 }

〈TestsuiteName〉 ::= 〈TestsuiteDescription〉 ::= UTF8-String

〈Testcase〉 ::= 〈TestID〉 〈TestDescription〉 〈ExpectedBehaviour〉 〈LeafCerti�cate〉
〈PrivateKey〉 〈TestCerti�cateChain〉 〈TrustanchorCerti�cates〉

〈TestID〉 ::= UTF8-String

〈TestDescription〉 ::= UTF8-String

〈ExpectedBehaviour〉 ::= accept | reject

〈LeafCerti�cate〉 ::= 〈PrivateKey〉 ::= pathToPemFile

〈TestCerti�cateChain〉 ::= 〈TrustanchorCerti�cates〉 ::= pathToPemFile

The term pathToPemFile represents a path to a PEM encoded binary �le including either
a certi�cate, a private key or a sequence of certi�cates. The output generated by the
workbench adheres to the following scheme, which reuses the preceding de�nitions of
<TestID> and <ExpectedBehaviour>:

〈TestReport〉 ::= { 〈TestResult〉 }

〈TestResult〉 ::= 〈TestID〉 〈TestStatus〉 〈ExpectedBehaviour〉
〈MeasuredBehaviour〉 [〈RejectionMessage〉]

〈TestStatus〉 ::= success | fail | error

〈MeasuredBehaviour〉 ::= 〈ExpectedBehaviour〉

〈RejectionMessage〉 ::= UTF8-String

35

Chapter 6

Implementation

This chapter provides an insight into implementation details. It explains how the test
certi�cates that correspond to the test cases identi�ed Section 4.4 are generated. Also
the data format of input and output data is de�ned and which libraries are used to
create and write data �les. Furthermore, this chapter explains how the workbench
components are implemented and how the testing sequence is implemented. Finally,
this chapter describes how future adapter implementations and alternative test suites
can be integrated into the workbench environment.

6.1 Certi�cate Generation with X.509 Certi�cate Builder

The test cases identi�ed in Section 4.4 need to be translated into valid and invalid test
certi�cates and certi�cation paths that examine the certi�cate acceptance and rejection
behaviour of an application in question. X.509 certi�cates can be comfortably created
with the help of the cryptography.io 1 library for Python programming language. The
huge advantage of this library compared other frameworks and libraries such as pure
OpenSSL 2, GnuTLS 3 or Bouncy Castle 4 is that it provides a lightweight and easy-to-
use ’Certi�cateBuilder’ class that allows for adding, removing and altering almost any
attribute �eld of an X.509 certi�cate data structure. Using the cryptography.io library,
generating a certi�cate consists of the following steps:

1. generate an asymmetric key pair

2. create a new empty certi�cate structure and �ll it with information sets;
e.g. subject name, issuer name, public key, validity period and extensions

1Cryptography.io Python Library, https://cryptography.io/en/latest/; last accessed on 2017/02/27
2OpenSSL Cryptography and SSL/TLS Toolkit, https://www.openssl.org; last accessed on 2017/02/27
3GnuTLS Transport Layer Security Library, https://www.gnutls.org; last accessed on 2017/02/27
4Legion of the Bouncy Castle, https://www.bouncycastle.org; last accessed on 2017/02/27

https://cryptography.io/en/latest/
https://www.openssl.org
https://www.gnutls.org
https://www.bouncycastle.org

36 Chapter 6. Implementation

3. sign the certi�cate structure

An exemplary Python code snippet that creates a certi�cate using the cryptography.io
library might look like this [28]:

Step 1
private_key = rsa.generate_private_key(

public_exponent=65537,

key_size=2048,

backend=default_backend()

)

Step 2
cert = x509.CertificateBuilder()

cert = cert.subject_name(x509.Name([...]))

cert = cert.issuer_name(x509.Name([...]))

cert = cert.public_key(priv_key_root.public_key())

cert = cert.serial_number(x509.random_serial_number())

cert = cert.not_valid_before(datetime.datetime(2017,3,15))

cert = cert.not_valid_after(datetime.datetime(2022,3,15))

cert = cert.add_extension(

x509.BasicConstraints(ca=True,path_length=None),

critical=True

)

Step 3
cert = cert.sign(private_key , hashes.SHA256(), default_backend())

As the certi�cates needed for the default test suite of our workbench are almost identical
except for some test case speci�c modi�cations, we can avoid creating and �lling all
new and empty certi�cate structures for each certi�cate and instead generate a template
certi�cation path. Therefore a valid default certi�cation path of length three is gener-
ated, including a root CA certi�cate, an intermediate CA certi�cate and an end-entity
certi�cate. For each test case this default certi�cation path is used, and the certi�cates
within the path that need to be changed for this test case are copied into new objects.
Afterwards, the information set that is speci�c for the test case can be adjusted in these
new objects, reusing the original keys for signing the modi�ed certi�cate structure. For
each test case identi�ed in Section 4.4, one or two representative indices x were picked
from the scope and separate certi�cation paths were generated carrying the respective
modi�cation in certi�cate x .

6.2. Data Management and Data Storage 37

6.2 Data Management and Data Storage

Both the input and output information sets, as speci�ed in Section 5.6, adhere to a strict
structure and thereby suggest a structured data format. Thus the Extensible Markup
Language (XML) is a well suited data format for storing test suite speci�cations as well
as storing test results. A conforming XML document that speci�es an input test suite
for the workbench has the following structure:

<?xml version="1.0" encoding="UTF−8" ?>
<testsuite >

<name>Default test suite</name>

<description >This test suite covers ...</description >

<pathsRelativeToThisFile >true</pathsRelativeToThisFile >

<testcases >

<testcase >

<id>1</id>

<description >Invalid signature cert </description >

<expectAcceptance >true</expectAcceptance >

<leafCertificate >/001/leaf.crt</leafCertificate >

<privateKey >/001/leaf.key</privateKey >

<certificateChain >/001/chain.pem</certificateChain >

<trustAnchors >/001/rootCA.pem</trustAnchors >

</testcase >

...

</testcases >

</testsuite >

The document primarily contains a test suite name, a test suite description, and a
sequence of test case speci�cations. Such a test case speci�cation includes an alphanu-
meric identi�er, a description, a de�nition whether the test case is expected be accepted
or not, and the path information where the respective pem �les can be found. Optionally,
the test suite speci�cation can include a boolean value which indicates whether the
path information within the test case speci�cations should be relative to the location of
this test suite �le. This toggle allows to easily copy and paste the whole test suite to an
arbitrary directory without needing to change any paths inside the XML document.
An output �le, which is created by the workbench when it �nished a test run, has the
following structure:

<?xml version="1.0" encoding="UTF−8" ?>
<?xml−stylesheet href="reportstyle.xsl" type="text/xsl"?>
<testreport >

38 Chapter 6. Implementation

<testsuiteName >Default test suite</testsuiteName >

<clientComponent >cURL 7.47.0</clientComponent >

<serverComponent >NanoHTTPD 2.3.1</serverComponent >

<testStart>17−02−26 15:01:05</testStart >
<testFinish>17−02−26 15:02:20</testFinish >
<testDuration >00:01:15</testDuration >

<testresults >

<testresult >

<id>001</id>

<status>success </status>

<expectedBehaviour >reject </expectedBehaviour >

<measuredBehaviour >reject </measuredBehaviour >

<rejectionMessage >Due to ...</rejectionMessage >

</testresult >

...

</testresults >

</testreport >

The document names the test suite, the client software which was tested, the software
of the testing server used by the workbench, and timestamps which indicate the test
execution start, �nish and duration. Additionally, the output document references a XSL
�le. This �le is used by the Extensible Stylesheet Language Transformation technology,
which allows web browsers that support this technology to transform XML documents
on-the-�y into styleable HTML code. The result is an easily readable and convenient
representation of the XML output document for users that open the XML �le with a
recent web browser.
Inside the Python script for building the test suite, the LXML 5 library was used to
automatically create the XML test suite speci�cation �le. The workbench main program
uses the JDOM 6 library for reading in and parsing XML test suite speci�cations as well
as writting the XML output �les.

6.3 Implementation of Testing Logic

The workbench testing logic is implemented in Java programming language and pri-
marily includes the four controller classes UserInteractionController, MainController,
TestingController and StorageController ; each serving their designated purpose as de-
�ned in Section 5.4. As shown in Figure 6.1, the testing logic moreover includes two
interface classes, namely ServerController and ApplicationController, which de�ne the

5LXML - XML and HTML with Python, http://lxml.de; last accessed on 2017/02/27
6JDOM - accessing XML data from Java code, http://www.jdom.org; last accessed on 2017/02/27

http://lxml.de
http://www.jdom.org

6.3. Implementation of Testing Logic 39

Figure 6.1: Workbench Core Classes

40 Chapter 6. Implementation

methods that adapter classes need to implement. Inside a derived adapter class, such
as the CurlAdapter or the W3mAdapter, the ProcessBuilder class - which is part of the
java.lang standard package - is used to create a new operating system process and
execute the respective application binary. The ProcessBuilder class allows to hand over
startup arguments as well as fetching the input-, output- and error-streams and the
exit code of the newly created OS process. The latter functionality is used to deter-
mine whether an application was successfully started and whether a client component
application is correctly or spuriously accepting the certi�cate chain presented by the
workbench testing server. The class name of an adapter implementation to be used for
the testing process is given as workbench startup argument, allowing to use

Class adapterClass = Class.forName("nameOfAdapterClass");

for dynamically determining and loading the corresponding adapter implementation at
runtime. The testing sequence after reading in and con�guring startup arguments by
the User-Interaction-Controller conceptually consists of the following steps:

mainController.runTestsuite(".../testsuite.xml",

applicationAdapter , serverAdapter)

testingController.prepareTestsuiteRun(".../testsuite.xml",

applicationAdapter , serverAdapter)

testsuite = loadTestsuite(".../testsuite.xml")

serverAdapter.prepareTestsuiteRun()

applicationAdapter.prepareTestsuiteRun()

testingController.executeTestsuiteRun()

foreach(testcase in testsuite)

testingController.setupTestcase()

testingController.executeTestcase()

testingController.teardownTestase()

testingController.cleanupTestcase()

endForeach

storageController.generateOutputFile()

testingController.cleanupTestsuiteRun()

serverAdapter.cleanupTestsuiteRun()

applicationController.cleanupTestsuiteRun()

In the pseudo code snippet above, the indention indicates that following method calls
with higher indention are called from the context of the preceding method. While the
snippet is not complete and does not correspond to the exact implementation syntax, it
fairly represents the core of the testing sequence. The methods for setting up, executing,
tearing down and cleaning up a test case implement the steps de�ned in Section 5.4

41

Chapter 7

Evaluation

This chapter evaluates the outcome of this thesis. The evaluation is splitted into two
parts. The �rst section compares the achievements with the initial goals of this thesis.
The analysis part, design part as well as the implementation part of the thesis are taken
into consideration. The second section evaluates the certi�cate validation behaviour of
several software projects by executing them in our workbench.

7.1 Comparison with Goals of This Thesis

Analysis of Certi�cate Validation Process
The vision of this thesis is to analyze X.509 certi�cate validation in applications. There-
fore an analysis of the formal certi�cate validation process is required. This thesis
accomplishes this requirement by analyzing the validation process speci�ed in RFC
5280 [14], identifying essential validation steps that conforming validation routines
need to go through. Based on this analysis, the thesis derives certi�cate acceptance and
rejection scenarios, with each scenario leading to a set of test cases that investigate the
validation behaviour of applications. Table 7.1 provides an overview of all test scenarios
that were identi�ed and successfully implemented to constitude a default test suite for
testing certicate validation in applications.

Automated, Systematic and Reproducible Testing
Within the bounds of this thesis, a workbench was designed and implemented, that
allows for analyzing certi�cate validation in applications in an automated, systematical
and reproducible manner. Due to the variety of domains where X.509 certi�cates are
deployed, it is simply unmanageable to design an integrated analysis tool that covers
all heterogenous use cases of X.509 certi�cates in applications. Therefore this thesis
early decides to focus on analyzing certi�cate validation in applications that use TLS
as secure transport layer protocol. The bene�t of this decision is that the resulting

42 Chapter 7. Evaluation

Test Scenario Identi�ed and
Implemented

Signature X
Validity period X
Name chaining X
Basic constraints X
Key uage X
Extended Key Usage X
Hostname Validation X
Revocation State 7

Name Constraints 7

Certi�cate Policies 7

Table 7.1: Implemented Test Cases

workbench covers a multitude of use cases of X.509 certi�cates, as TLS constitudes a
basic technology on transport layer for securing many superiour protocols and appli-
cation data exchanges. The workbench that is designed and implemented within the
bounds of this thesis is capable of sequentially preparing and executing large amounts
of given test cases on TLS-enhanced applications whose validation routines are to be
examined. The validation behaviour of the application in question is documented for
each test case and manifested in a test report as output document. Test results show to
be consistent throughout multiple executions under the same circumstances and thus
compose reproducible outputs.

Extensible and Scalable System Design
The workbench is designed with �exibility and extensibility with regard to the applica-
tions that can be placed into it, on server side as well as on client side. The applicability
of the workbench to arbitrary TLS-enhanced applications is achieved by small adapter
implementations, that need to be implemented for each application. The adapter to
be used can be speci�ed as workbench startup parameter and is dynamically loaded
at runtime. Moreover, the workbench also shows universality and extensibility with
regard to the tests that are executed on applications in question. This quality is achieved
by a strict separation of the workbench testing logic and the test suites that include
the test cases to be executed. The default test suite speci�cation or a custom test suite
speci�cation can be given as input parameter at workbench startup in terms of a XML
document. The test result output �le generated by the workbench is also a XML docu-
ment, which implies that output data is stored in a highly structured manner and hence
o�ers the possibility to be read in and used in future processing. At the same time
the XML nature of the output �le allows a convenient on-the-�y transformation into a
user-friendly HTML representation, using XSLT technology.

7.2. Certi�cate Validation in Applications 43

Opportunities for Improvement
The default test suite identi�ed within the bounds of this thesis does not include test
cases that cover certi�cate policies, name constraints and certi�cate revocation states.
Also, using the cryptography.io 1 Python library, no X.509 certi�cates of version 2 could
be crafted, as this functionality was not implemented in this library. Likewise, the
library does not support crafting unrecognized critical marked extensions, so test cases
16 and 33 were omitted during implementation of our default test suite. However, test
cases can be identi�ed and implemented by future work and can be easily inputted
into the workbench as alternative test suite, possibly but not necessarily using the
cryptography.io library for certi�cate generation.

7.2 Certi�cate Validation in Applications

The following sections analyze the certi�cate validation inside of several di�erent TLS-
enhanced command-line applications and libraries, by implementing corresponding
adapter classes and thus placing the applications inside the workbench testing envi-
ronment. For retrieving the results of this evaluation, the workbench is operated on a
recent Lenovo Thinkpad Yoga 260 notebook, manufactured in beginning of 2016 and
running Ubuntu 16.04 LTS. The hardware of this notebook includes an Intel Skylake
i7-6500U CPU and 8 GB DDR4-2133 memory. The test suite identi�ed in Section 4.4 is
used as common input for all test runs, and comprises exactly 30 test cases. Moreover,
NanoHTTPD 2.3.1 2 is used as workbench server component software, which is a pure
and lightweight Java web server framework.The test execution duration for executing
the whole test suite on an application was approximately between 8 and 13 seconds.
The Java process of the workbench core program consistently consumed 2.5% or less of
the system’s DDR memory and 1% or less of the system’s CPU power.

7.2.1 Exemplary Blackbox-Testing of Command-Line Applications

This section evaluates the certi�cate validation inside of three di�erent applications,
namely W3M 3, cURL 4 and Wget 5. Therefore the respective application adapter classes
W3mAdapter, CurlAdapter and WgetAdapter were implemented, which allow the work-
bench to instrument the respective application and analyze its certi�cate acceptance
and rejection behaviour in a reproducible and automated manner.

1Cryptography.io Python Library, https://cryptography.io/en/latest/; last accessed on 2017/02/27
2NanoHTTPD web server, https://github.com/NanoHttpd/nanohttpd; last accessed on 2017/03/13
3w3m - Pager and Text-based Browser, http://w3m.sourceforge.net; last accessed on 2017/03/03
4cURL - Library for Transferring Data with URLs, https://curl.haxx.se; last accessed on 2017/03/03
5GNU Wget, https://www.gnu.org/software/wget/; last accessed on 2017/02/19

https://cryptography.io/en/latest/
https://github.com/NanoHttpd/nanohttpd
http://w3m.sourceforge.net
https://curl.haxx.se
https://www.gnu.org/software/wget/

44 Chapter 7. Evaluation

Application Version TLS Backend Backend Version
W3M 0.5.3 OpenSSL 1.0.2g
cURL 7.47.0 GnuTLS 3.4.10
cURL 7.47.0 OpenSSL 1.0.2g
Wget 1.17.1 OpenSSL 1.0.2g

Table 7.2: Tested Command-Line Applications

W3M is a small but powerful web browser application that operates on command-
line only and thus requires no Graphical User Interface (GUI) environment. It relies
on OpenSSL as backend TLS library. When analyzing W3M version 0.5.3 with our
workbench (relying on OpenSSL 1.0.2g), the application showed excellent certi�cate
validation behaviour. As shown in Table 7.3, W3M validated all certi�cates correctly
and hence passed all test cases. Furthermore, when certi�cates were correctly rejected
as expected by the test case, the rejection message thrown by W3M always indicated
the correct reason for rejection. The mean test execution duration of three test runs
was approximately 8 seconds.

cURL is a free command-line tool for transfering data with various protocols, such
as HTTP, FTP, LDAP and many others, supporting both up- and downloading of data.
When compiled and installed manually, cURL can be con�gured to rely on a TLS library
of choice, supporting OpenSSL, GnuTLS and many others. In our evaluation, cURL 7.47.0
was once compiled to use GnuTLS version 3.4.10, and another time to use OpenSSL
1.0.2g. As shown in Table 7.3, when compiled with GnuTLS, cURL consistently failed in
test cases 24 and 29, thus accepting certi�cates with wrong key usage speci�cation. Test
case 24 veri�es that the key usage extension in leaf certi�cates allows key encipherment,
which is necessary for our test certi�cates. Test case 28 and test case 29 both verify that
the key usage extension and the extended key usage extension agree in a common key
usage scenario (as mandated by RFC 5280 [14] in Section 4.2.1.12); one test case correctly
setting the key usage but miscon�guring the extended key usage and the other test
case vice versa. Surprisingly, test case 29 failed whereas test case 28 passed. Apparently
cURL with GnuTLS accepts certi�cates regardless of the mandatory key usage consense,
as long as the extended key usage is indicating the correct usage. In contrast, when
compiled with OpenSSL, cURL passes all test cases. The mean test execution duration
of six test runs (3 × with GnuTLS, 3× with OpenSSL) was approximately 13 seconds.
Certi�cates that are rejected by cURL are rejected for the correct reason.

GNU Wget is a free and handy command-line tool for accessing and downloading
data from remote sites. It easily allows integration in script programming and has
found wide adoption. Wget can be compiled with di�erent external TLS libraries. Our
evaluation used Wget version 1.17.1 compiled with OpenSSL version 1.0.2g. As shown
in Table 7.3, the application proved excellent certi�cate validation behaviour and passed

7.2. Certi�cate Validation in Applications 45

all test cases. In addition, Wget always reported the correct rejection reason whenever
it encountered an invalid certi�cate. The mean test execution duration of three test
runs was approximately 8 seconds.

W3M v.0.5.3 cURL v.7.47.0 cURL v.7.47.0 Wget v.1.17.1
GnuTLS v.3.4.10 OpenSSL v.1.0.2g

Test ID
1 X X X X
2 X X X X
3 X X X X
4 X X X X
5 X X X X
6 X X X X
7 X X X X
8 X X X X
9 X X X X
10 X X X X
11 X X X X
12 X X X X
13 X X X X
14 X X X X
15 X X X X
16 - - - -
17 X X X X
18 X X X X
19 X X X X
20 X X X X
21 X X X X
22 X X X X
23 X X X X
24 X 6 X X
25 X X X X
26 X X X X
27 X X X X
28 X X X X
29 X 6 X X
30 X X X X
31 X X X X
32 X X X X

Table 7.3: Comparison of Certi�cate Validation in Applications

46 Chapter 7. Evaluation

7.2.2 Exemplary Regression Testing of OpenSSL

This section demonstrates the regression testing use case of the workbench by analyzing
the certi�cate validation behaviour of OpenSSL 6 over multiple versions. Therefore the
OpensslAdapter class was implemented to allow instrumentation of the s_client pro-
gramm - a lightweight TLS client that can connect to a given host and port combination
- which is contained by default in OpenSSL distributions. The OpenSSL source code of
multiple versions was downloaded and compiled, and the workbench was executed on
each downloaded version. Our evaluation compares the releases 1.1.0, 1.1.0a, 1.1.0b,
1.1.0c and 1.1.0d , which are published on the o�cial project website 7. Downloading,
compiling and installing these OpenSSL releases from source and thereafter initiating
the testing process was automated by a shell script. Table 7.4 illustrates that the cer-
ti�cate validation behaviour did not change over these versions that were exemplarily
analyzed. All versions are passing every test case except for test case 30, as OpenSSL
is not deploying hostname validation by default. All certi�cates that are rejected by
OpenSSL are rejected for the correct reason.

6OpenSSL Cryptography and SSL/TLS Toolkit, https://www.openssl.org; last accessed on 2017/02/27
7OpenSSL Source Downloads, https://www.openssl.org/source/old/; last accessed on 2017/02/27

https://www.openssl.org
https://www.openssl.org/source/old/

7.2. Certi�cate Validation in Applications 47

Version 1.1.0 1.1.0a 1.1.0b 1.1.0c 1.1.0d
Released 25-Aug-2016 22-Sep-2016 26-Sep-2016 10-Nov-2016 26-Jan-2017

Test ID
1 X X X X X
2 X X X X X
3 X X X X X
4 X X X X X
5 X X X X X
6 X X X X X
7 X X X X X
8 X X X X X
9 X X X X X
10 X X X X X
11 X X X X X
12 X X X X X
13 X X X X X
14 X X X X X
15 X X X X X
16 - - - - -
17 X X X X X
18 X X X X X
19 X X X X X
20 X X X X X
21 X X X X X
22 X X X X X
23 X X X X X
24 X X X X X
25 X X X X X
26 X X X X X
27 X X X X X
28 X X X X X
29 X X X X X
30 X X X X X
31 X X X X X
32 6 6 6 6 6

Table 7.4: Certi�cate Validation Regression Testing of OpenSSL

49

Chapter 8

Discussion

This chapter discusses the impact of the weaknesses discovered in the evaluation of
applications in Section 7.2. This chapter explains which vulnerability can result from
the respective validation weakness and exemplarily illustrates how an attacker can
exploit that vulnerability.

cURL 7.47.0 compiled with GnuTLS 3.4.10 as backend TLS library was discovered
to deploy incromprehensive key usage validation. Incorrectly validating the key usage
extension [14, Section 4.2.1.3] or the extended key usage extension [14, Section 4.2.1.12]
of a certi�cate breaks the concept of key usage restrictions. Limiting the competence of
a speci�c key material to one or several distinct purposes, such as authentication, key
encipherment, key agreement or sub-certi�cation, leverages the separation of concerns
paradigm and potentially increases security. Using di�erent keys for di�erent purposes
might help that the disclosure of a single private key only negatively a�ects the context
of its designated purpose, while other key usage scenarios remain una�ected [23, Section
IX.D]. For example, the disclose of a private key of a Certi�cation Authority designated
for key encipherment might allow the attacker to impersonate as the CAs website, but
does not necessarily imply the loss of trust in certi�cates issued by this CA, as issued
certi�cates have been signed with another key material designated for subcerti�cation.
Consequently, not validating key usage restrictions eliminates that possibility of loss
limitation. Another feature of key usage restrictions is the opportunity for restricting
privileges. For example, the internal CA of a huge software company can authorize one
if its development departments to use their key material for code-signing, but not for
server authentication for the company’s website. Not validating key usage correctly
eliminates that possibility of privilege restriction.

The second weakness discovered during evaluation is the lack of hostname valida-
tion by the OpenSSL library in default con�guration. This behaviour is actually less
an security �aw of the library itself, but rather an mannerism and questionable design

50 Chapter 8. Discussion

choice of the OpenSSL developers. The test results of the workbench show that the
tested OpenSSL correctly validates inputted certi�cation paths, thus correctly reporting
to relying applications whether the inputted certi�cation path is valid and trustworthy.
Consequently, applications that use the OpenSSL API are ensured that the TLS entity
presenting the certi�cation path is really the entity it claims to be. However, hostname
validation is one important additional step: it ensures that the pretended entity, whose
authenticity was approved by validating the certi�cation path, is indeed the correct
entity we intended to communicate with. If this veri�cation is omitted, an authenticated
active Man-in-the-Middle (MitM) can interfere the communication between two end
points and thereby violate all protection goals, e.g. con�dentiality or data integrity,
without being recognized.
Developers that use the OpenSSL library must be aware of this mannerism of not exe-
cuting hostname validation by default. And even if aware, they must not forget to do
the respective method calls; or elsewise risking a severe MitM vulnerability.

51

Chapter 9

Conclusion and Future Work

This thesis elaborated that correct validation of X.509 certi�cates is crucial for security
in communication systems, as X.509 constitudes a Public Key Infrastructure (PKI) that
is widely used to establish trust between entities. Such an infrastructure has only sig-
ni�cance if all participating entities correctly validate certi�cates. The thesis elaborated
that certi�cate validation is an extensive and consequently error-prone process, which
needs to be accomplished by every application that implements X.509. By analyzing
the formal certi�cate validation process speci�ed in RFC 5280 [14], it was pointed out
that correctly validating certi�cates not only consists of validating basic information
included in a single certi�cate, but also consists of validating whole certi�cation chains
up to a ultimately trusted root certi�cate, meanwhile considering all chain dependencies.
Based on this analysis, test cases for testing the certi�cate acceptance and rejection
behaviour of applications were extracted and phrased into a test suite.
As consequence of the complexity of the validation process, this thesis deduced that
a testing tool is needed to enable automated, systematic and reproducible testing of
certi�cate validation routines in applications. In the proceeding of the thesis, a system
approach for such a testing tool was developed and functional and technical require-
ments were identi�ed. Subsequently, the concrete instantiation of such a testing tool,
destined for testing TLS-enhanced applications, was designed and named X.509 work-
bench. This workbench was implemented and o�ers high �exibility and extensibility, as
it is not bound to a predetermined list of applications that can be placed into its testing
environment, nor is the workbench bound to a speci�c test suite that is executed on any
application in question. Nevertheless, the test cases identi�ed during analysis phase
were implemented as a set of test certi�cates and constitude a default test suite that can
be used by the workbench out of the box.
In the evaluation chapter the workbench was exemplarily applied to several command-
line applications. While two command-line tools successfully passed all test cases, it
was spotted that the application cURL compiled with GnuTLS as backend TLS library
spuriously accepts certi�cates with wrong key usage indication, whereas combined with

52 Chapter 9. Conclusion and Future Work

OpenSSL as TLS library, cURL correctly rejected certi�cates with wrong key usage indi-
cation. Moreover, testing the s_client tool which is part of the OpenSSL library directly
without a third-party application in between, it turned out that OpenSSL deploys no
hostname validation by default. This circumstance leaves great responsibility on appli-
cations to deploy their own - and hopefully correct - hostname validation mechanisms;
or elsewise risking a severe Man-in-the-Middle vulnerability. Even recent releases of
OpenSSL that support hostname validation do not apply it by default, thus leaving
developers in responsibility to manually opt-in that functionality [29]. Consequently,
developers must be aware of this mannerism and must not forget to do the respective
method calls.
The workbench which is developed within the bounds of this thesis is explicitly de-
signed to easily allow integration of future work in terms of custom test suites and
application adapters. Future work might identify additional, more restrictive test suites,
e.g. checking certi�cate policies, name constraints, certi�cate revocation states or any
other critically marked optional certi�cate extensions. Besides custom test suites, future
work might also apply the workbench to applications other than those examined in
the evaluation chapter. Corresponding new adapter implementations can be given at
workbench startup and dynamically loaded at runtime. Especially testing certi�cate
validation routines inside Google’s mobile operating system Android 1 and mobile apps
might be subject to interesting future work.
The test result outputs generated by the workbench are formatted using the Extensible
Markup Language (XML), thus allowing easy processing and integration into arbitrary
other projects. Through aiming for �exibility and extensibility of the workbench, the
author of this thesis hopes that the workbench becomes a useful and handy tool for
analyzing certi�cate validation in applications, that can be integrated into the larger
context of other security related projects.

1Android Operating System, https://www.android.com; last accessed on 2017/03/02

https://www.android.com

53

Bibliography

[1] S. Haunts, “Cryptography in .NET : RSA,” https://stephenhaunts.com/2013/03/26/
cryptography-in-net-rsa/; last accessed on 2016/12/28.

[2] United States Naval Academy - Cyber Sciene Department, “Asymmetric Encryp-
tion,” https://www.usna.edu/CyberDept/sy110/lec/cryptAsymmEnc/lec.html; last
accessed on 2016/12/28.

[3] I. Grigorik, “Transport Layer Security (TLS),” https://hpbn.co/
transport-layer-security-tls/; last accessed on 2016/12/28.

[4] “Transport Layer Security,” https://upload.wikimedia.org/wikipedia/commons/6/
61/TLS_protocol_stack.jpg; last accessed on 2016/12/28.

[5] “Cross-certi�cation between two PKIs,” https://en.wikipedia.org/wiki/X.509; last
accessed on 2017/02/06.

[6] CVE Details, “OpenSSL Vulnerability Statistics,” http://www.cvedetails.com/
product/383/Openssl-Openssl.html?vendor_id=217; last accessed on 2017/03/07.

[7] CVE Details , “GnuTLS Vulnerability Statistics,” http://www.cvedetails.com/
product/4433/GNU-Gnutls.html?vendor_id=72; last accessed on 2017/03/07.

[8] J. Schmidt, “GnuTLS Goto Fail,” 2014, https://www.heise.de/security/meldung/
Sicherheitsluecke-GnuTLS-jetzt-mit-goto-fail-2133192.html; last accessed on
2017/03/07.

[9] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov,
“The most dangerous code in the world: Validating ssl certi�cates in non-
browser software,” in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY, USA: ACM, 2012, pp.
38–49. [Online]. Available: http://doi.acm.org/10.1145/2382196.2382204

[10] Y. Ding, “SSL sicher implementieren,” Datenschutz und Datensicherheit-DuD, vol. 38,
no. 12, pp. 857–861, 2014.

[11] C. Eckert, IT-Sicherheit: Konzepte, Verfahren, Protokolle, 8th ed. Oldenbourg, 2013.

https://stephenhaunts.com/2013/03/26/cryptography-in-net-rsa/
https://stephenhaunts.com/2013/03/26/cryptography-in-net-rsa/
https://www.usna.edu/CyberDept/sy110/lec/cryptAsymmEnc/lec.html
https://hpbn.co/transport-layer-security-tls/
https://hpbn.co/transport-layer-security-tls/
https://upload.wikimedia.org/wikipedia/commons/6/61/TLS_protocol_stack.jpg
https://upload.wikimedia.org/wikipedia/commons/6/61/TLS_protocol_stack.jpg
https://en.wikipedia.org/wiki/X.509
http://www.cvedetails.com/product/383/Openssl-Openssl.html?vendor_id=217
http://www.cvedetails.com/product/383/Openssl-Openssl.html?vendor_id=217
http://www.cvedetails.com/product/4433/GNU-Gnutls.html?vendor_id=72
http://www.cvedetails.com/product/4433/GNU-Gnutls.html?vendor_id=72
https://www.heise.de/security/meldung/Sicherheitsluecke-GnuTLS-jetzt-mit-goto-fail-2133192.html
https://www.heise.de/security/meldung/Sicherheitsluecke-GnuTLS-jetzt-mit-goto-fail-2133192.html
http://doi.acm.org/10.1145/2382196.2382204

54 Bibliography

[12] T. Roeder, “Asymmetric-Key Cryptography,” https://www.cs.cornell.edu/courses/
cs5430/2013sp/TL04.asymmetric.html; last accessed on 2016/12/28.

[13] Apache Software Foundation, “SSL/TLS Strong Encryption: An Introduction,” http:
//httpd.apache.org/docs/2.4/en/ssl/ssl_intro.html; last accessed on 2016/12/28.

[14] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet
X.509 Public Key Infrastructure Certi�cate and Certi�cate Revocation List (CRL)
Pro�le,” RFC 5280 (Proposed Standard), Internet Engineering Task Force, May
2008, updated by RFC 6818. [Online]. Available: http://www.ietf.org/rfc/rfc5280.txt

[15] M. Nystrom and B. Kaliski, “PKCS #10: Certi�cation Request Syntax Speci�cation
Version 1.7,” RFC 2986 (Informational), Internet Engineering Task Force, Nov. 2000,
updated by RFC 5967. [Online]. Available: http://www.ietf.org/rfc/rfc2986.txt

[16] J. Schaad, “Internet X.509 Public Key Infrastructure Certi�cate Request Message
Format (CRMF),” RFC 4211 (Proposed Standard), Internet Engineering Task Force,
Sep. 2005. [Online]. Available: http://www.ietf.org/rfc/rfc4211.txt

[17] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “X.509
Internet Public Key Infrastructure Online Certi�cate Status Protocol - OCSP,” RFC
6960 (Proposed Standard), Internet Engineering Task Force, Jun. 2013. [Online].
Available: http://www.ietf.org/rfc/rfc6960.txt

[18] T. Roeder, “Survival guides - TLS/SSL and SSL (X.509) Certi�cates,” 2016, http:
//www.zytrax.com/tech/survival/ssl.html; last accessed on 2016/12/28.

[19] C. Adams, S. Farrell, T. Kause, and T. Mononen, “Internet X.509 Public Key
Infrastructure Certi�cate Management Protocol (CMP),” RFC 4210 (Proposed
Standard), Internet Engineering Task Force, Sep. 2005, updated by RFC 6712.
[Online]. Available: http://www.ietf.org/rfc/rfc4210.txt

[20] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task Force, Aug. 2008,
updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919.
[Online]. Available: http://www.ietf.org/rfc/rfc5246.txt

[21] K. Kiyawat, “Do Web Browsers Obey Best Practices When Validating Digital Cer-
ti�cates?” Ph.D. dissertation, Northeastern University Boston, 2014.

[22] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-hunter: Large
scale, automated detection of ssl/tls man-in-the-middle vulnerabilities in android
apps,” in In Proceedings of the 21st Annual Network and Distributed System Security
Symposium (NDSS’14. Citeseer, 2014.

https://www.cs.cornell.edu/courses/cs5430/2013sp/TL04.asymmetric.html
https://www.cs.cornell.edu/courses/cs5430/2013sp/TL04.asymmetric.html
http://httpd.apache.org/docs/2.4/en/ssl/ssl_intro.html
http://httpd.apache.org/docs/2.4/en/ssl/ssl_intro.html
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc2986.txt
http://www.ietf.org/rfc/rfc4211.txt
http://www.ietf.org/rfc/rfc6960.txt
http://www.zytrax.com/tech/survival/ssl.html
http://www.zytrax.com/tech/survival/ssl.html
http://www.ietf.org/rfc/rfc4210.txt
http://www.ietf.org/rfc/rfc5246.txt

Bibliography 55

[23] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using frankencerts for
automated adversarial testing of certi�cate validation in ssl/tls implementations,”
in IEEE Symposium on Security and Privacy, 2014.

[24] Y. Chen and Z. Su, “Guided di�erential testing of certi�cate validation in ssl/tls
implementations,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp.
793–804. [Online]. Available: http://doi.acm.org/10.1145/2786805.2786835

[25] S. Lloyd, “Understanding Certi�cation Path Construction,” PKI Forum White Paper,
2002.

[26] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu, “Internet X.509 Public Key
Infrastructure Certi�cate Policy and Certi�cation Practices Framework,” RFC 3647
(Informational), Internet Engineering Task Force, Nov. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3647.txt

[27] M. Cooper, Y. Dzambasow, P. Hesse, S. Joseph, and R. Nicholas, “Internet
X.509 Public Key Infrastructure: Certi�cation Path Building,” RFC 4158
(Informational), Internet Engineering Task Force, Sep. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4158.txt

[28] Individual Contributors, “Cryptography.io Python Library Reference,” https://
cryptography.io/en/latest/x509/reference/#x-509-certi�cate-builder; last accessed
on 2017/03/10.

[29] OpenSSL Software Foundation , “OpenSSL Wiki,” https://wiki.openssl.org/index.
php/Hostname_validation; last accessed on 2017/03/02.

http://doi.acm.org/10.1145/2786805.2786835
http://www.ietf.org/rfc/rfc3647.txt
http://www.ietf.org/rfc/rfc4158.txt
https://cryptography.io/en/latest/x509/reference/#x-509-certificate-builder
https://cryptography.io/en/latest/x509/reference/#x-509-certificate-builder
https://wiki.openssl.org/index.php/Hostname_validation
https://wiki.openssl.org/index.php/Hostname_validation

	Introduction
	Motivation and Problem Statement
	Goals of This Thesis
	Document Structure

	Background
	Asymmetric Cryptography
	Example of Asymmetric Cryptography

	X.509 Public Key Infrastructure
	X.509 Certificates
	Certificate Status and Revocation
	Trust Establishment and Certificate Chaining

	Transport Layer Security
	Protocol Description
	Subprotocol Types
	Handshake Sequence and Connection Establishment

	Related Work
	Problem Analysis
	Certificate Validation Process
	Complex Certification Paths
	Automated Certificate Validation Testing
	Application Blackbox Testing
	Regression Testing of Applications
	Certificate Validity Testing

	Identification of Test Cases

	Workbench Design
	System Approach
	Requirements Analysis
	Functional Requirements
	Technical Requirements

	Testing Concept
	Testing Sequence
	Application Integration
	Structured Storage

	Implementation
	Certificate Generation with X.509 Certificate Builder
	Data Management and Data Storage
	Implementation of Testing Logic

	Evaluation
	Comparison with Goals of This Thesis
	Certificate Validation in Applications
	Exemplary Blackbox-Testing of Command-Line Applications
	Exemplary Regression Testing of openssl

	Discussion
	Conclusion and Future Work
	Bibliography

