Efficient high-speed packet processing in high-level languages

Efficient packet processing on high-speed links (e.g. 10 Gbps) is mostly implemented in low-level languages such as C or C++. The reason for that is, that high-level languages lack performance and predictability for time-critical tasks such as packet acquisition, flow matching etc. However, code written in high-level languages tends to be easier to extend and maintain. It is desirable to have a small code-base in C or C++ handling the performance critical parts of the packet processing and on top the logic written in a high-level language.

An example for such an approach can be found in the stenographer project\(^a\). The flow monitoring tool Vermont\(^b\) predates such a design. It is a monolithic binary written in C and C++ and does not scale well on multi-core CPU architectures. To enhance the maintainability and extensibility of the code base and exploit modern CPU architectures, part of Vermont's code needs to be redesigned and rewritten.

\(^a\)https://github.com/google/stenographer/blob/master/DESIGN.md
\(^b\)https://github.com/tumi8/vermont

Motivation

- Investigate which parts of the capturing logic need to be written in C/C++
- Use modern multi-core friendly packet capturing frameworks, e.g. PF_RING ZC
- Implement configuration and high-level processing tasks in a high-level language
- Evaluate the performance characteristics of such a modular architecture

Prerequisites

- Knowledge of a high level programming language (Go, Python or Lua)
- Understanding of C/C++ and modern computer architecture
- Willingness to learn and understand the architecture, characteristics and trade-offs of the chosen tools
- Interest and basic knowledge in network measurement such as IPFIX
- Familiarity with GIYF-based work approaches to avoid LMGTFY-scenarios

Your Task

- Knowledge of a high level programming language (Go, Python or Lua)
- Understanding of C/C++ and modern computer architecture
- Willingness to learn and understand the architecture, characteristics and trade-offs of the chosen tools
- Interest and basic knowledge in network measurement such as IPFIX
- Familiarity with GIYF-based work approaches to avoid LMGTFY-scenarios

Contact

Oliver Gasser gasser@net.in.tum.de
Johannes Naab naab@net.in.tum.de

http://go.tum.de/306574