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Chapter 1

Introduction

Network alert correlation has been a topic of interest to the research commu-
nity for at least 20 years [13]. Not much later, research towards a practical
alarm correlation system was initiated [11], with a plethora of proof of concept
and demonstration systems having been developed until today. However, there
still exists no system which is reportedly used in a notable number of produc-
tion networks, arguably due to shortcomings in detection capabilities of existing
approaches. Thus, effective network alert correlation remains an unsolved prob-
lem. We aim to contribute to its solution with this software and report authored
as part of an Interdisciplinary Project (IDP), a coursework requirement for ac-
quiring the Master of Science degree in Computer Science at the Technische
Universität München. The software will serve as a component in the ANSII
research project for security in industrial information systems and networks [1].

Network alert correlation promises several benefits, depending on the capa-
bilities of the respective approach:

• Combining several or many non-uniform alerts into one alert, thus reduc-
ing the overall number of network alerts which has become a big issue for
security officers [30]

• Identifying multi-stage intrusions which consist of otherwise harmless or
less critical steps [30]

• Providing network administrators with a global view of events in their
network by combining local views of several monitors (network and host
intrusion detection systems)

• The identification of a root cause for complex events and their effects

• Enabling operators to take effective and more efficient countermeasures
against incidents

The objectives of this IDP are threefold:
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1. Development of a software framework for easy development and deploy-
ment of correlator modules

2. Development of a correlator, to be deployed within said framework as a
module

3. Design of test cases to facilitate (1) the validation of the correlator’s effi-
cacy and (2) aid in the authoring of new signatures/rules for the correlator

The software framework (1.) will be lightweight and take care of basic connec-
tion setup to data sources, such as intrusion detection system (IDS) monitors
or a single data sink, for correlator modules at startup. It will receive and pass
on incoming events in whatever format they are provided, potentially parsing or
converting them if required. Correlated alerts generated by the correlator will
be returned to the data sinks, data bases, or policy enforcers by the framework.
Thus, any additional correlator modules to be plugged into the framework need
only take care of correlation itself, and not of communication and configuration.

The correlator (2.) itself is the core part of this work and will be the sam-
ple correlator module to be plugged into the framework. It will process events
received and passed on by the framework from one or many data sources in
its environment. The correlator to be developed in this IDP pursues a “sig-
nature of signatures” approach: The signature or rule author will access fields
of received events/alerts which in turn have been generated due to signature
matches on IDS. Thus, signature matches are combined to deduce knowledge
of atomic events that happened as part of more complex events, such as multi-
stage or distributed attacks. Two possible and closely related approaches for
implementing such a “signature of signatures” correlator have been envisioned
by the author of this IDP. One is a largely completely novel solution making use
of a new decision tree-like data structure. The second option is largely based on
Esper, a readily available open source Complex Event Processing (CEP) engine.
These two approaches, the one developed from scratch by the author and the
one based on Esper, will be introduced and evaluated. The approach deemed
most suitable will then be implemented as the correlator. The correlator frame-
work alongside with the correlator module will contribute to the ANSII research
project [1].

The test cases (3.) have two objectives: Firstly, they will, as indicated by
the name, serve for testing the efficacy of the correlator. To this end, the test
environment shall be able to simulate a series of potentially security-critical
events which a correlator should be able to detect. In distributed attacks, for
example, the test bed will forge source IP addresses to simulate many involved
hosts, but also multi-stage attacks will be featured.
Secondly, the test environment will aid in the authoring of signatures/rules for
the correlator. By enabling a signature developer to easily launch attacks, the
developer can find out which events are reliably triggered and thus which events
and event fields new signatures should be based upon.
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1.1 Report Organization

This report is structured as follows: In Chapter 2, we will review existing related
work and approaches at attack correlation. We will introduce the reader in
Chapter 3 to the environment the correlator will run in and the framework which
provides the interface to the environment for correlator modules. Chapter 4 will
detail the two approaches at “signature of signatures”-based event correlation,
one being completely novel and the other being based on the complex event
processing engine Esper. The test environment will be covered in Chapter 5.
We will evaluate our own correlation approach against existing correlators in
Chapter 7, partially building upon the test environment of Chapter 5. Chapter 8
concludes the report.

1.2 Terminology

When not stated otherwise, alarm and alert will be used interchangeably. In-
cidents or events, also used interchangeably, trigger alerts or alarms.

Atomic events are events which trigger a single, non-correlated alarm by an
IDS such as Snort or Samhain.
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Chapter 2

Related Work

In this chapter, we review existing work in the field of alert correlation. Our
review will be largely based on survey papers [29, 24] with detailed accounts of
existing work, but will be expanded with our own findings. We will apply the
same classification taxonomy as used in [29, 24], which is used by two indepen-
dent papers, proving its suitability, and deemed fit by ourselves. Accordingly,
in Section 2.1, we will cover scenario-based correlation approaches. Section 2.2
will deal with rule-based correlation, while Section 2.3 covers statistical and
machine-learning based approaches. Time-based alerts tested for potential sig-
nificance using statistical relevance tests will, only covered in [24], will be the
topic of Section 2.4. We will mainly cover approaches already listed in above
two papers, though with different focus and detail. Some additional papers will
be included as well.

A survey of existing free and open source as well as commercial correlation
solutions can be found in [18].

2.1 Scenario-based

Scenario-based approaches correlate alerts based on whether they can be com-
bined to form a known attack scenario. To this end, even languages for scenario
specification such as LAMBDA [3], STATL [5] and ADeLe [16] have been de-
fined.

STATL [5] is a very powerful language, describing an attack’s substeps and
transitions from each stage of an attack to another using conditions. It allows
for very fine-grained and flexible description of events and scenarios. It also
allows for temporal conditions and even dynamic responses to scenario sub-
events through code blocks. While this approach is certainly very powerful and
offers more precise description options, its strengths are also its weaknesses:
Scenario definition is not trivial and potentially error prone; other formats can
hardly be reused, and the language is very low-level. Also, it is not trivial to
plug it into all systems while supporting all of its features.
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ADeLe [16], while offering attack precondition formulation, is less power-
ful in dynamics and granularity. It also provides a number of response actions
to counteract undergoing attacks at runtime. ADeLe, unlike STATL, can also
describe preconditions, but these require in-depth knowledge about vulnerabil-
ities present in a system. It is not specified how these are determined or fed to
ADeLe.

The disadvantage of all of these three approaches is that they directly specify
how the substeps of an attack can be detected [15]. This requires all substeps to
be formulated explicitly for these systems, which is error prone, requires a lot of
effort, and may sometimes be impossible due to shortcomings of the description
language or a lack of knowledge. Also, these systems cannot easily cooperate
with existing IDSs and use them as information sources.

The system devised in [4] establishes correlation based on duplicate match-
ing (which would often be considered aggregation) and on consequence chains.
The latter are similar to the activate/dynamic rules, now supported in stan-
dard Snort installations. Additionally, a number of “aggregation scenarios” are
defined where certain fields of an alert match, implying different kinds of dis-
tributed attacks or precursors to attacks. As such, we do not consider it to be
very powerful.

A more capable approached based on chronicles is described in [17]. It
performs correlation based on temporal specifications of events that can be
matched at runtime against chronicles of events. The temporal specifications
contain event descriptors/names and specify in which order the atomic events
can occur. This approach is capable of describing multi-stage attacks and their
stages’ single steps temporal relation. Its theoretical capabilities are similar to
the ones of the approach later to be detailed in this work.

2.2 Rule-based

Rule-based approaches are a more flexible take at scenario-based correlation.
Instead of defining specific scenarios, they describe preconditions and postcon-
ditions. This gives credit to the fact that subobjectives in courses of action
with multiple steps can be achieved through different means. However, these
systems often need precise knowledge and access to information in order to mon-
itor whether conditions have been met. Measuring this is not trivial in practice.
On the other hand, when such information can be assumed, these approaches
are more flexible and yet less complex. Also, cooperation with established IDS
systems is possible.

Examples for rule-based systems are PreludeIDS [21] or commercial systems
as offered by McAfee [14] and others.
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2.3 Statistical and Machine Learning

Statistical approaches measure properties to find deviations of statistical rele-
vance. Techniques used from machine learning and pattern detection are widely
used to this end, for example Bayesan networks. The advantage of this kind of
approach is that it requires no expert knowledge or scenario/attack descriptions.
On the other hand, it often requires a training set to function properly, and in
case of “positivist” approaches, i.e., approaches trying to extract known pat-
terns acquired through machine learning, will only recognize patterns learned
during training. A “negativist” approach detecting everything not matching
typical property distribution will not be very precise with high false positive
rates, and establishing correlation in this case is even more difficult. Also, it
will not be able to state what has been detected, but only that something has
been detected. In general, these approaches are often not very precise.

Statistical and machine learning approaches have been put into practice in
[22], [23] or [25], for example.

2.4 Classification of Our Approach

Our approach can be classified as mostly rule-based, with the possibility to
specify concrete scenarios as well. In terms of correlated incident specification,
it is almost identical to [20]. One major advantage of our system over [20] is
that it works in real time.

Our approach does not specify how exactly the IDS should detect attack sub-
steps, which (a) makes our approach more flexible, (b) scenario detection much
easier and less error prone, and (c) allows for cooperation with existing host and
network IDS. Our system only uses the detection capabilities of connected IDSs
to detect attack substeps, which are finally correlated by our approach. These
are advantages specifically over STATL, ADeLe and LAMBDA. On the other
hand, in the trade-off of simplicity vs. complexity and granularity, these three
systems outperform in the latter point. However, we argue that systems where
scenario definition is extremely complex and error-prone are less likely to be de-
ployed in production networks, and it is unknown whether substep descriptions
as comprehensive as established IDSs’ signature databases exist.
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Chapter 3

Environment & Framework

In the following, we will introduce the reader to the scenario and environment
the correlator will be deployed in. Requirements as well as system design and
approach decisions are direct consequences of the scenario.

3.1 Correlator Environment

The correlator is dependent on knowledge about the occurrence of atomic events.
This knowledge will be supplied by many IDS monitors. The more IDS monitors
are positioned at different spots in a network, the more complete the correlator’s
view will become. The correlator will combine the atomic events observed by
each monitor to form a global view, and check whether all atomic events forming
one correlated event are present. The event feed is provided by an XMLBlaster
instance in the backend. The correlator framework, which is intended to enable
easy development and deployment of additional correlation modules, takes care
of communicating with the XMLBlaster.

In summary, many IDS monitors, both network and host based, will stream
their events to the central data store, an XMLBlaster instance. The combined
feed is received by the framework, which will, after optional parsing and filtering,
pass the alerts on to one or more correlator modules. Correlated alerts which
have been newly generated will be passed back to the framework. The framework
will then return them to the XMLBlaster. Optionally, the framework can be
extended to supply correlated alerts to other entities, such as policy generators
and/or enforcers, or evaluation and comparison components.

3.2 Framework

One objective of this IDP is to not only develop a correlator itself, but to
integrate it into an extensible framework. This framework should allow for
easily plugging in additional correlators and take care of input and output of
event streams.
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Common object-oriented modeling can define the input interface format of
such correlator modules. However, as correlation happens at runtime and thus
return data format is unknown at compile time, the return data format cannot
be specified as part of the interface definition. This makes interface definition
necessarily very lax. Correlator modules need to be trusted that they only insert
objects of the expected format into the output stream.

Simple extensibility will be provided by a configuration file containing the
names of correlator modules. The specified correlator modules will be located
and loaded using reflection. Thus, the framework code does not need to be al-
tered when new correlator modules are added. Only the correlator’s class name
needs to be added to a text-based configuration file. As stated above, how-
ever, interface definition cannot be strict enough to prevent loading misbehaved
correlation modules.

For asynchronous and thus more efficient data processing and less commu-
nication overhead, the framework’s public interface will receive callbacks upon
each received new alert instead of busy-polling. These asynchronous callbacks
will, after optional parsing and filtering steps, call into one ore more registered
correlator modules. The correlator and its environment are depicted in Fig-
ure 3.1.

Figure 3.1: The correlator framework and its environment

3.2.1 Framework software architecture

The framework’s software architecture is visualized in Figure 3.2. Asynchronous
communication services with the XMLBlaster instance running on a remote ma-
chine are provided by the Correlator Input Iface1 and Correlator Output I

face1 classes which inherit from classes generated by the software environment
the correlator framework is deployed it. The Correlator Input Iface1 is asyn-
chronously woken up when new messages arrive, and places a callback to the
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Policy Correlator class which acts as a mediator between the communication
interface and proxy modules. This class keeps track of all registered and en-
abled correlation modules and passes data on to these modules. To allow for
plugging in additional correlation modules, the class names of such modules are
parsed from a configuration file and loaded at runtime through the class loader
interface which is commonly used with reflection tasks. The correlation mod-
ule detailed in Chapter 4 will, for instance, be listed in this configuration file.
Once such a correlation module has generated an alert, it will pass it on to the
Correlator Output Iface1 class, which sends it to the XMLBlaster instance.

Figure 3.2: Framework software architecture class diagram

3.2.2 Module software architecture

Module software architecture is limited by the lack knowledge of return types
at runtime. The processing model is asynchronous and needs to account for
modules which most likely will only produce new alerts and send them to the
output interface (cf. Figure 3.2) out of order.

Specific modules can be limited in their data’s runtime return type through
inheriting from interfaces they will use and putting checks such as instanceof
operations in place. For example, if a module will use a certain API or li-
brary which accepts all objects, the interface class of this API or library can be
inherited from to impose limitations on data inserted into this API or library.

Apart from that, interface definition is limited to methods provided and
input data formats to be supported.
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Chapter 4

Correlator

The author of this IDP has envisioned two potential approaches which differ
significantly from the approaches presented in Chapter 1. Both of these are
“signature of signatures” approaches in the sense that correlator signatures build
upon atomic events which have been found by other IDS monitors, most likely
by signature matches of their signature sets.

The major difference in the two approaches is how event processing and
correlation is done in the back end: One approach, a novel development by the
author, utilizes a new form of decision tree-like data structure which has been
extended to persistently store intermediate results for such data that cannot
be classified immediately, and to classify multiple events as groups. This kind
of new decision-tree does not only classify one event at a time by sending it
down the whole decision tree, but in case certain conditions dependant on other
events have not been met, the event remains in a non-leaf node in the tree until
the conditions for further traversal are met. This kind of decision tree has been
named persistent-storage enabled decision tree, stateful decision tree, or delayed
decision tree by the author.

The second approach uses a readily available complex event processing (CEP)
engine called Esper [7]. It thus does not need to take care of how and in what
kind of data structures the computations to combine events are carried out.

The basic assumption underlying both approaches is that event correlation
can be expressed through the description of logical relation, as some kind of
logical relation will always be given in a correlated attack. For example, in a
distributed denial of service attack on one system, the common property, an
equality relation, for all single events to be correlated will be the target system
being identical. In a multi-stage attack, single steps will be linked transitively
via the involved hosts serving as intermediates. We postulate that for any dis-
tributed attack or pre-attack activity, such a relation can always be found, as
also from the attacker’s perspective his course of actions is correlated. Other-
wise, the adversary’s actions would be arbitrary. Such logical relations can be
used for classification and combination of events, and in turn to group them
into a correlated event.
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4.1 Approach Options

Two approaches are considered sensible by the author, both of which will be
introduced in the following. The first approach is a custom data structure for
non-immediate classification: A decision tree where input data can temporarily
reside at inner nodes and only traverse to leaves, i.e. classes, at a later time
when all conditions for traversal are met. This accounts for the temporal aspect
of multi-stage attacks and the fact that the knowledge of a multi-stage attack
is incomplete before each stage of an attack has been conducted. This option is
effectively a completely new approach at CEP.

The second approach builds upon an already existing solution known by the
name of Esper [7].

4.1.1 Persistent Storage-Enabled/Stateful Decision Trees

The first approach is an extension for decision trees. Decision trees are a well-
known means for classifying data according to relations or criteria, such as
“greater than”, “less than”, or “equal to”. Most commonly, however, they have
no notion of persistent storage. Any instance of data to be classified will traverse
the tree until it reaches a leaf.

In our case, however, we want instances of data to be able to remain at a
node in the tree. The reasons are the following:

1. To group multiple events with criteria referring to these multiple events,
such as “at least n events with property x”.

2. To account for the fact that atomic events comprising a correlated event
will not arrive at the same time, but with a temporal discrepancy. This
discrepancy can be huge, e.g., multiple hours in case of stealthy malware.
Thus, we need to store atomic events that may be linked to events which
might occur much later.

These requirements for (1) criteria and relations referring to multiple events
and (2) accounting for temporal discrepancy lead to the design of persistent
storage-enabled, stateful, or delayed decision trees, which temporarily store data
in a node when no criteria for traversing to the next node are (yet) met.

To counteract memory consumption until depletion, a maximum lifespan for
events has to be defined. This can be a global or a node specific maximum
time to live value. A global limit will remove events from the data structure
independent of the node they are currently stored in after a certain specified
amount of time, while a node-local limit will only apply to events stored in that
specific node.

Signatures

Signatures ought to be able to express any kind of relation which might occur
in incoming events. We propose the following relational operators:
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• <, ≤

• >, ≥

• =, 6=

• ⊂ (e.g., for subnet definition or “contains” string operators)

Operands can be field values as provided by event data, or constants. Quan-
tifiers are implicit: Whenever addressing two entities a and b, we assume a
Cartesian product, i.e. we assume all pairs of a and b with matching criteria to
be part of the solution set.

Fields can be addressed in typical “dot” notation: a.dstip = 12.34.56.78.
This specifies that one event with destination IP 12.34.56.78 must be part of the
whole correlated event. a.dstip = b.dstip means that one event a’s destina-
tion IP address must be identical to another event b’s destination IP address.
This signature, as it refers to two events a and b, will trigger traversal of both
events into the next node. Additionally, such a signature does not only apply
to two specific events a and b, but to any pair of events a and b in the set of all
received events and a 6= b. a always refers to the incoming event and all other
alphanumerical identifiers to existing events, allowing for an arbitrary number
of identifiers. It holds that any alphanumerical event identifier will be pairwise
dissimilar to any event already in the solution set for another identifier. This,
effectively, generates implicit Cartesian products on a set of criteria.

Additionally to prespecified operators, calls into Java methods are also, in
general, possible using reflection, dynamic class loading, and method invocation.
The signature writer needs to make sure, however, that the Java class he loads
and the methods he invokes are existent and accessible from the scope of the
query.

Examples A few example signatures will be given to facilitate a better un-
derstanding of syntax and expressivity:

• a.dstip = b.dstip ∧ a.srcip 6= b.srcip ∧ a.time−300 < b.time ∧ ′′dos′′ ⊂
a.description ∧ a.description = b.description: This rule is a very basic
signature for distributed denial of service (DDoS) incidents. By checking
the time, which is assumed to be in Unix timestamp format, it considers
all b within the last 300 seconds before the timestamp of a. Additionally,
the signature queries the event’s description field to look for a denial of
service classification. This of course requires that the IDS monitors detect
single-source denial of service attacks.

• a.srcip = b.dstip ∧ b.srcip = c.dstip ∧ a.description = b.description ∧
b.description = c.description: A very generic rule matching for tran-
sitively spreading events comprising three hosts. This signature would
match any malware that spreads to one host A coming from a host B
which has originally been infected by a host C.
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Compilation of Signatures into a Single Tree

To receive a single data structure, the set of signatures needs to be compiled
into a single tree.

For all atomic events comprising a signature to produce a correlated event
according to each atomic event’s specification, there needs to be a path to the
same leaf for each of these atomic events. Tree compilation itself is trivial:
For each signature, each relation (expressed by a subterm in the signature with
conjuctions being the subterm’s borders) not yet included will be given a new
node and according edge. Already existing relations will just be ignored. Node
rearranging, e.g. to have all relations and thus traversing options on one level
of the tree, can help keep the tree small but is not a requirement. A single
tree is necessary to keep track of conditions related to multiple atomic events
memory-efficiently, so that every event can be potentially met in the same tree
if required by a signature.

The organisation in a (potentially rearranged and thus minimized) tree erases
the need for query optimization as the execution of the evaluation of subqueries
follows a predefined order given a compiled tree.

Instead of compiling all signatures into a single tree, all of them can be
maintained individually, i.e. as much smaller trees depicting one signature at a
time. This would make the correlation process much more parallelizable and in
extension much faster on modern multicore processors.

Ambiguity in Tree Traversal

We propose that every event shall not only traverse one path down the tree,
but all paths whose signatures an event matches. This ensures that no deci-
sion towards one correlated event is made before all necessary information is
available.

Sometimes, when being entered into the classification tree, an event may be
ambiguous in regards to the branches to be taken: Multiple or no branches’
conditions may apply. This can be the result of signatures which do not match
for certain fields at all, because no signature properties have been defined.

Also, some events with completely identical signatures may belong to com-
pletely different correlated events. While the raw events may differ in some
fields, the signatures might match for less fields. Thus, in these fields the events
might seem identical.

Lastly, the aforementioned events matching multiple signatures and thus
subtrees, may be part of completely different activities. What kind of activity
they were part of can only be determined in the retrospective, however, once
all other sub-events of the activity have been observed. Until then, it cannot
be decided what kind of bigger event an event matching multiple signatures is
part of.
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Incomplete Signatures

Some signatures may be indifferent as to the value of certain fields, i.e., they
do not match for certain constants or relations on these fields. Still, these
signatures’ matching events need to traverse down the tree.

The solution is to either skip fields, or to introduce “no-criteria” nodes and
paths for each criterion. These are only traversed when there is no rule for
this field (and the corresponding level in the tree), as the underlying signature
does not specify only this field. Thus, the “all-matches-traversal” proposed in
Section 4.1.1 should not apply to “no-criteria” nodes. They should only be
entered/traversed when nothing else matches.

Example Tree

For a better understanding of the resulting data structure and classification
process, we provide an example of a very simple tree for classifying different
kinds of correlated events in Figure 4.1.

4.1.2 Esper

Esper [7] is a CEP framework readily available for Java and the .NET frame-
work, the former being the language of choice for this IDP. Esper queries can
be stated in an SQL-like language, decreasing the difficulty for the creation of
new rules/signatures, as SQL is widely understood. Pattern matching for con-
dition evaluation is performed using non-deterministic finite automata (NFA).
Events and their conditions are mapped as trees with dynamic subtrees; dy-
namic meaning here that they create and destroy dynamically at runtime. NFA
make pattern matching easily parallelizable, and dynamic trees quickly naviga-
ble and memory-efficient. [8]

Queries can be limited in the time window that needs to be considered, i.e.,
the events up until a maximum point in time in the past that will regarded for
query evaluation.

Esper also allows for calling into Java/.NET methods at runtime and use
their results for query evaluation. It can directly evaluate on Java objects as
long as they follow the Plain Old Java Object (POJO)/JavaBean standard re-
quiring getter and setter methods for all fields that need to be considered in
queries according to a fixed naming scheme. Thus, parsing and conversion is
not necessary if the data source is already POJO-style objects. This is the case
in this project which is to be integrated into a larger architecture not detailed
in this report.

Signatures

As Esper queries are formulated in Esper’s SQL-like Event-Processing Language
EPL, the signatures for the correlator will be as well. As stated in the introduc-
tion, our concept can be described as a “signature of signatures”. Each event
the correlator receives will be the result of a signature match on one of the
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Figure 4.1: Example of a persistent-storage enabled classification tree

monitors. Each signature for a correlated event will match for the existence of
all required atomic events as specified in a signature.

4.2 Approach Decision

Of the two approaches above, one will be chosen according to the following
criteria:

• Effectiveness

• Development complexity and effort

• Signature format and complexity of signature generation
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• Execution performance

• Signature expressiveness and flexibility

Effectiveness Both approaches are effective at solving the task of evaluating
signatures for incoming events which do not only pertain to the event itself but
also to future and past events. For persistent-storage enabled/stateful/delayed
decision trees, it has been detailed how this is achieved. Esper, on the other
hand, being a general purpose CEP engine, has already been deployed in a wide
range of comparable scenarios for event processing.

Development complexity and effort The development effort when using
Esper is obviously considerably lower than when having to implement our own,
novel approach at event processing.

Signature format and complexity of signature generation The sig-
nature format of our own approach closely resembles typical first order logic
syntax and the language used by libpcap filters as used by, e.g., Wireshark or
tcpdump. Esper, on the other hand, uses a query language very similar to SQL.
It is arguable whether our own language with implicit pairwise comparison/im-
plicit Cartesian products or SQL with explicit joins is more difficult to write
when complex signatures have to be created. We tend to assume that implicit
pairwise comparisons reduce complexity, thus making signature authoring in
our language a little bit easier.

Execution performance This criterion is hard to evaluate without bench-
marks. In theory, both approaches should be equal in execution complexity:
Given n events with m fields to evaluate on, n ∗ m single evaluations need
to be carried out both in our persistent-storage enabled tree approach and in
Esper. While not explained in great detail, query evaluation using Esper’s SQL-
like Event Processing Language is also tree-based in Esper as EPL statements
are translated into trees. However, Esper uses many techniques known from
database performance optimization to increase its throughput such as an in-
dexed data store and query planning and optimization. It is not possible to
evaluate execution performance of our own approach against Esper’s, but it
is highly likely that Esper’s performance will be better in practice due to its
various optimizations and long ongoing development.

Signature expressiveness and flexibility Though certain database opera-
tions, most notably different join types, are not available in our own language,
these can usually be rephrased in statements without those joins. Both lan-
guages allow for calling into Java methods for statement evaluation. Esper is
more convenient when formulating some queries through its support for SQL
syntax which offers a broad range of operators. On the other hand, our own
language provides implicit pairwise operations.
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Decision

The author of this IDP report decides to use Esper. In theoretical aspects, the
two approaches seem to be almost identical. Esper, however, is widely deployed,
has a rich interface, allows for calling into Java methods and provides a proven
and high performance engine with many optimizations. All of these would
need to be implemented from scratch when pursuing the persistent storage-
enabled/delayed/stateful decision tree approach. As there is no advantage in
the storage-enabled/delayed/stateful decision tree approach, there is no reason
not to use a readily available solution and to instead develop a complex system
which does not offer any additional functionality or better suitability for this
specific scenario. It might be more suitable for other scenarios, though, and is
an option for potential future projects.

4.3 Correlator Module Software Design

This section describes software design aspects of the correlator module and how
it integrates into the architecture and data flow of the correlation framework.

4.3.1 Data Flow

Following the well-known observer software pattern, developers building on top
of the Esper engine can use classes implementing an UpdateListener interface
to be notified by Esper once a query generates new data [6]. Each EPL query
(i.e. a signature) corresponds to one UpdateListener which generates a specific
classification text for the correlated alert.

As the results of a query are always provided as EventBean objects, corre-
lated events need to be converted back into Alert objects which is also being
passed as input to the correlator framework.

The resulting data flow model is depicted in Figure 4.2.

Figure 4.2: Data flow through the correlator framework and module
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4.3.2 Signature Storage

Obviously, to eliminate the need to recompile the module when adding new
signatures, these will be provided in a signature file. No integrity or sanity
checks will be performed on this file, as checking compliance with a language
that is very, but not completely similar to SQL is far from trivial. The module
will rely on the signature set to be syntactically valid. This is the responsibility
of the signature author.

A matter of interest in this regard has to be pointed out: This lack of checks
of signatures is likely an attack vector in case an unauthorized third party
gains write access to the signature store. An adversary can write signatures
compromising general event processing in order to cover his activities.

4.4 Reuse of Correlated Events

Correlated events can themselves be part of other correlated events. Essen-
tially, an attack can become arbitrarily complex and consist of arbitrarily many
substeps. Thus, it can be meaningful to correlate already correlated events.

A simple example is a password brute force attack on the RDP service on
a Host X preceding malware propagation after the RDP service’s compromise.
Then, the compromised host will start trying out passwords on other hosts
where it has discovered a running RDP service. This course of action is taken,
e.g., by the Morto worm.
In this example, multiple alerts for unsuccessful RDP password authentication
can be correlated based on the target host, Host X. If now subsequently the
same alert occurs for other hosts in the same network with Host X being the
source host now, we can correlate these again to deduce that Host X has been
compromised and either a multi-stage attack is underway or malware is spread-
ing successfully. Additionally, this way we can reconstruct the whole path of
propagation, if the means of propagation are constant among all involved hosts.
Effectively, there will be a transitive relation over all hosts for which such a
correlated event can be found.

In such a manner, we can recursively define arbitrarily complex distributed
attacks without explicitly describing all minor substeps. Instead, we can reuse
previously correlated events and correlate these again.

In our approach, the usability of already correlated events and their reinjec-
tion into the event input stream is covered by the infrastructural environment.
All events of all monitoring IDSs are gathered in a central entity running XML-
Blaster. New events generated by the correlator system designed and developed
in this IDP will be transmitted to the XMLBlaster too, from where they can be
fetched again.
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4.5 Signature Stock

The presupplied signature stock shipped with the correlator module is intended
to prove its effectiveness at detecting a wide range of distributed or composed
incidents.

4.5.1 Network Incident Taxonomies

In order to provide proof that our approach is suitable for a wide range of com-
plex or compound incidents, one needs to define this range and choose sample
incidents distributed widely and equally across this range. To this end, we will
use a network incident or attack taxonomy, categorizing incidents or attacks into
several categories, and select sample incidents from each category that relates
to our approach.

A multitude of attempts has been made at formulating network incident
taxonomies. Process-driven taxonomies such as [12] or vulnerability-focused
taxonomies like [2] will not be considered, as the system under development
is focused on detecting incidents triggered over the network. This is a differ-
ent level of abstraction, as we follow the “signature of signatures” approach
explained before, and we have no information about the exact process for ex-
ploitation or the vulnerability being exploited. It is our intention to classify
incidents or attacks only, and not attackers or their intention, or the systems
under attack, the attacked vulnerability, et cetera. A classification with fewer
dimensions is desirable for our objectives. The taxonomies we consider are:

• Hansman’s taxonomy [10]: In its first and second dimension, this taxon-
omy is quite useful for our approach. The first dimension classifies accord-
ing to the attack vector or the type of network attacks with some broad
categories as used in casual attack descriptions. These include, for exam-
ple, virus, worm, trojan horse, denial of service attack, buffer overflow. Its
weakness lies in the inconsistency that arises from both considering attack
vectors and broad terms for this dimension.
The second dimension describes the target, though for our purposes, it
is too specific: It describes whether hard- or software was attacked and
what layer was target of an attack. In our case, a distinction according to
classes of hosts would be more sensible: One host, multiple hosts in one
subnet, multiple hosts in one organization, a series of hosts in a transitive
connection, and so on.

• The taxonomy developed by the Swedish TS-CERT and, according to
ENISA [9], popular with the European Computer Security Incident Re-
sponse Team Network [19]: It is very flat, its categories apply universally
to network incidents, and it does not require knowledge which cannot be
gathered at our level of abstraction. Its incident class field representing
its first dimension is intuitive and not inconsistent like the two ways of
classifying in Hansman’s taxonomy. Additionally, the incident class field
roughly corresponds to information security goals such as confidentiality,
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anonymity, authenticity, availability, integrity, and non-repudability. Of-
tentimes, the attacks trying to violate a certain security property proceed
in a similar fashion. This way, attacks that work similarly are automat-
ically grouped together in the incident class dimension of the European
CSIRT/CERT security incidents taxonomy. The taxonomy’s second di-
mension roughly equals Hansman’s first dimension, minus the inconsis-
tency. However, it lacks Hansman’s taxonomy’s dimension according to
targets. This taxonomy is used by many European CERTs [9].

4.5.2 A Taxonomy Accounting for Correlation

While the two aforementioned taxonomies are the most suited out of the existing
taxonomies for our purposes, they are not perfect: Hansman’s taxonomy’s first
dimension allows for inconsistency and lacks the grouping of similar attacks.
The European Computer Security Incident Response Team Network incident
taxonomy lacks classification according to targets. Thus, we create a hybrid out
of those two taxonomies to match our needs, combining the European CSIRT
incident taxonomy’s first two dimensions with Hansman’s taxonomy’s second
dimension. The resulting taxonomy’s dimensions are as follows:

1. Incident class

2. Incident type

3. Incident target (limited to network node abstraction, one of: local, one-to-
one, many-to-one, one-to-many, one-to-one-transitively, many-to-many)

The last dimension’s possible values as defined above enable us to classify in-
cidents according to how they are correlated. Only correlated events (which can-
not be single events by definition) are of relevance for this work. Correlation can
occur in many ways, such as multi-stage attacks on one host (third dimension:
“one-to-one”), multi-host attacks where exposed or less well protected hosts
may be used to gradually work towards a target host or malware spreads tran-
sitively (third dimension: “one-to-one-transitively”), or attacks against whole
(sub-)nets like BGP hijacking (“one-to-many”) . The possible value “local” is
irrelevant for us as we consider network incident correlation, but may be inte-
grated into our correlator as future work incorporating host intrusion detection
systems.

These values roughly represent two potential dimensions of correlation: Time
and multiplicity. Events can be correlated in time if they represent a chain of
events that are related by a shared objective that are carried out in sequence.
Events can be correlated in multiplicity if more than one host acts is the source
and/or more than one host is the target of related events.

4.5.3 Representative Incidents & Sample Signatures

Although we just described a full taxonomy, in order to demonstrate that our
approach is effective at detecting all kinds of correlated attacks, it is sufficient
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to show that our approach is capable of detecting attacks of all possible values
in the third dimension. As stated above, the third dimension describes how a
composed event are correlated on a network level: Is one host attacking many?
Are many hosts attacking one host or one network, e.g., in a denial of service
attack? Is one attacker trying to first gain access to unprivileged machines to
finally compromise a target machine? Is malware spreading from host to host,
infecting in increasing number of machines?

As a proof of concept, we want to show that and how signatures for all these
kinds of composed and correlated events can be written, covering all possible
ways of composition in the third dimension of the taxonomy. For obvious rea-
sons, we will exclude local and single-event one-to-one events, as there is no
correlation or composition in those kinds of events.

Our sample signatures, as well as all signatures of our approach, require
that there are signatures for the sub- or atomic events of a correlated/composed
incident in the connected IDS monitors. Otherwise, they would not trigger
IDMEF messages to the correlator.

The sample incidents are as follows:

• many-to-one: Distributed denial of service attack on one host

• one-to-many : Portscan of multiple hosts on a net

• one-to-one-transitively : Malware trying to spread from an already infected
host

• many-to-many : No idea yet

The sample signatures are as follows:

Many-to-one: Distributed denial of service

select a1.* from Alert.win:time (10 sec) a1

where

(classification.text.toLowerCase ().contains(’denial

of service ’)

or

classification.text.toLowerCase ().contains(’dos’))

and (select

count(a2.source [0]. node.address [0]. address)

from Alert.win:time (10 sec) a2 where

a1.source [0]. node.address [0]. address =

a2.source [0]. node.address [0]. address) > 3; --

at least 3 different source IPs

Listing 4.1: Sample signature for a distributed denial of service attack
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This query outputs all events within the last 10 seconds that had “denial of
service” or “dos” in their classification and were generated by at least 3 differ-
ent source IP addresses. We match for two different strings as input might not
have necessarily been normalized. Note how data is extracted from the alert us-
ing nested field accesses as the alert is provided in nested POJO (plain old java
object) format. Also note how Java methods are executed on the extracted data.

One-to-many: Portscan of multiple hosts

select a1.* from Alert.win:time (100 sec) a1

where

classification.text.toLowerCase ().contains("portscan")

and (select

count(a2.target [0]. node.address [0]. address) from

Alert.win:time (100 sec) a2

where a2.target [0]. node.address [0]. address =

a1.target [0]. node.address [0]. address) > 2;

-- at least 2 different destination IPs

Listing 4.2: Sample signature for a port scan of multiple target hosts

Port scans are a almost always one of the first steps of early reconnaissance of
a target network for an attacker. This signature selects atomic port scan events
from the same source IP address to at least two different target IP addresses.

One-to-one-transitive: Malware spreading from host to host

select a1.*, a2.detectTime , a2.source , a2.target ,

a2.classification

from Alert.win:time (12 hour) a1 , Alert.win:time (12

hour) a2

where a1.target [0]. node.address [0]. address =

a2.source [0]. node.address [0]. address

and a1.classification.text =

a2.classification.text

and a1.detectTime.ntpstamp <

a2.detectTime.ntpstamp

Listing 4.3: Sample signature for a transitively occurring incident

This signature tracks arbitrary events that occur in transitive chains of hosts,
for example malware spreading from one host to another.

Another instance of transitive correlated events are attack paths in general
which can be reconstructed with according signatures. However, as each corre-
lated attack can consist of a multitude of single sub steps, it is hard to formulate
explicit signatures matching all those single sub steps.
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Many-to-many

We leave this as an exercise to the reader.

4.5.4 Limitations of EPL

While SQL syntax is a subset of Esper’s Event Processing Language EPL, SQL
is not fully supported in every context. For example, subqueries inside another
query’s where-clause cannot contain the group by or having keywords. Fur-
thermore, join operations cannot be performed on subqueries in a from-clause.
Taken together, these are significant limitations on subqueries. This holds es-
pecially for queries that need to compute on data which depend on the data’s
relation to an aggregate function over all data inside the event stream.

There are possible workarounds for this. Firstly, one can create an addi-
tional Esper event stream to specifically provide the aggregated data that other
queries might need. The problem with this approach is that in our case, we
cannot determine beforehand what kind of data the dynamically loaded signa-
tures might refer to, and we cannot assume that signature developers know the
internal names of these extra streams. This would reduce signature creation
flexibility greatly and we would need to create all kinds of aggregated data
streams beforehand which might potentially be used. Thus, this workaround is
not feasible for our approach.

Secondly, one can try to reformulate the semantics of subqueries using
having or group by statements, or used as tables to be joined, as correlated
subqueries in the where-clause. This retains the independence of signatures from
data structures that are internal to the correlator and thus their flexibility and
ease of writing. We used this approach for the example signatures above. How-
ever, reformulating uncorrelated subqueries using group by/having or used in
join operations into a semantic equivalent might not always be possible.

4.5.5 Classification Keyword Nomenclature

Our approach needs to rely on the classifications of adjoined IDS monitors to
know what kind of event occurred. Thus, keywords in signatures need to be
identical to those of adjoined monitors. For this IDP, we choose to use keywords
used in Snort signatures, as this IDP will be tested using Snort monitors later
on and Snort is in widespread use in productive environments. For example, the
port scan signature from above matches for the ”portscan” keyword instead of
”port scan”, as Snort rules classify port scans using the former. Alternatively,
one could also match for both cases or the existence of both ”port” and ”scan”.
For the simplicity of the examples, though, such measures are not deployed in
our sample signatures.
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Chapter 5

Test Environment

The objective of the test environment is to test the correlator whose implementa-
tion has been described in the previous chapter and its sample signatures. This
serves as a general proof of concept demonstrating that our approach is capable
of detecting the four different types of composed/correlated events defined in
Section 4.5.3.

We will first describe the test environment setup which is based on the
GNUnet Parallel Large-scale Management Tool (GPLMT). It allows for script-
ing and monitoring multiple hosts in a network. We will continue to describe
the tests we run and lastly their results.

5.1 Environment Setup

The tests are conducted in our testbed. It contains a number of physical and
virtual hosts, running mostly Linux configurations. Two sets of virtual hosts
will take the attacker and target roles, respectively.

5.1.1 Hardware

Figure 5.1 shows the test bed. The three VMs running on Physical Host 1 have
their incoming traffic scanned by a Snort instance. The attacking VMs are in
another subnet on a different physical machine, Physical Host 2. Both machines
are connected with a switch. Each physical machine corresponds to a different
network in our setup. The Snort instance passes its alerts via IDMEF massages
to an XMLBlaster instance, from where our correlator fetches them. If alerts
are found to be correlated, the correlator will create an IDMEF correlated alert
message and send it to the XMLBlaster.

5.1.2 Software

Tests are coordinated and automated using the GNUnet Parallel Large-scale
Management Tool (GPLMT). It allows for host scripting via ssh and centralized
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Figure 5.1: Network diagram of the testbed
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task definition in an XML file. On the client side, we only require echo, netcat,
and nmap.

5.2 Tests

The signatures described in Section 4.5.3 cover every form of correlation which
we characterized in Section 4.5.2. The tests are intended to confirm the signa-
tures’ efficacy at this task. We formulate a test case for each signature and thus
one test case for each form of correlation.

TC1: Many-to-One: Distributed Denial of Service

For this scenario, the three attack hosts in the test bed will flood one target
host in the victim network.

It has to be noted that the Snort registered user ruleset does not contain rules
for typical flooding denial of service attacks. The reason is likely that flooding
is not primarily characterized by packet contents, but by the amount of packets
per time and by state, or rather lack of the latter. It is still possible to write
Snort rules covering rate-based denial of service with detection filter:track

by dst, count 50, seconds 1; as part of the signature. However, for this
test this is not necessary: It does not matter for our signature whether the
underlying denial of service attack triggering the Snort instance to send out a
“denial of service” alert is flooding-based or malicious payload-based.

As a consequence, to trigger atomic “denial of service” alerts by Snort, we
created byte payloads that match existing Snort rules in the “denial of ser-
vice” category. These payloads were stored in a script (Listing 5.1), which was
uploaded to the attacker hosts in our testbed, and then executed via GPLMT.

echo -e "HTTP/ GET mi" | nc -n 172.16.18.10 443

echo -e "Cookie\x3A =\x0D\x0A\x0D\x0A" | nc -n

172.16.18.10 80

echo -e "Range\x3Abytes\x3D0 -\x2C" | nc -n

172.16.18.10 80

echo -e "P=*?*?*?*?*?*?*?*?*?*?*?*?*?*?*?*?*?*?*?*?"

| nc -n 172.16.18.10 80

echo -e "Range\x3A bytes\x3D" | nc -n 172.16.18.10 80

echo -e

"\x80\xEB\x00\x00\x00\x00\x00\x0A\x00\x00\x06\x04"

| nc -n 172.16.18.10 4569

echo -e "\x02SMB 2 \xFFSMBr" | nc -n 172.16.18.10 139

echo -e "\x02SMB 2 \xFFSMBr" | nc -n 172.16.18.10 445

Listing 5.1: Script to trigger atomic denial of service alerts

Due to the nature of netcat (TCP) connections which require a successful
handshake before transmitting the payload, a listening server on the target port
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is required. This can be accomplished through listening netcat instances on
the server’s side.

Trivially, though, one could also create test signatures that only contain
prespecified test patterns. For example, if we created a test signature matching
for the pattern This is a Denial of Service attack, we could generate an
atomic denial of service alert just like this:

echo -e "This is a Denial of Service attack" | nc -n

172.16.18.10 80

It would not matter for the correctness of our correlator-side signatures
for distributed events in what way the atomic alerts they try to correlate are
triggered. That is one of the strengths and weaknesses of our approach: We
rely on the monitors to detect atomic events and trigger atomic alerts. For our
correlation signatures, it is of no relevance how they were created, thus making
them easy to test.

TC2: One-to-Many: Portscan of Multiple Hosts

These tests are carried out by running nmap on one attacking host. Port scans
can be detected by the sfPortscan preprocessor of Snort.

To demonstrate our usage of GPLMT, we show one GPLMT tasklist in
Listing 5.2.

<?xml version="1.0" encoding="UTF -8"?>

<tasklist name="Perform portscan of three target

hosts"

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

xsi:noNamespaceSchemaLocation="./ tasklist_schema.xsd">

<sequence >

<run id="0" name ="Scan first host">

<command >nmap</command >

<arguments >-sT 172.16.18.10 -p 22,23</arguments >

<timeout >30</timeout >

<expected_return_code >0</expected_return_code >

<expected_output ></expected_output >

<stop_on_fail >true</stop_on_fail >

</run>

<run id="1" name ="sleep">

<command >sleep</command >

<arguments >1</arguments >

<timeout >2</timeout >

<expected_return_code >0</expected_return_code >

<expected_output ></expected_output >

<stop_on_fail >true</stop_on_fail >

</run>

<run id="2" name ="Scan second host">
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<command >nmap</command >

<arguments >-sT 172.16.18.11 -p 22,23</arguments >

<timeout >30</timeout >

<expected_return_code >0</expected_return_code >

<expected_output ></expected_output >

<stop_on_fail >true</stop_on_fail >

</run>

<run id="3" name ="sleep">

<command >sleep</command >

<arguments >1</arguments >

<timeout >2</timeout >

<expected_return_code >0</expected_return_code >

<expected_output ></expected_output >

<stop_on_fail >true</stop_on_fail >

</run>

<run id="4" name ="Scan third host">

<command >nmap</command >

<arguments >-sT 172.16.18.12 -p 22,23</arguments >

<timeout >30</timeout >

<expected_return_code >0</expected_return_code >

<expected_output ></expected_output >

<stop_on_fail >true</stop_on_fail >

</run>

</sequence >

</tasklist >

Listing 5.2: Sample GPLMT tasklist describing a testcase for a port scan on
multiple target hosts

TC3: One-to-One-Transitively: Spreading of Malware

To test our signature for transitive malware infections, we alter the roles in our
testbed a bit. Instead of considering the network 172.16.18.0/24 the target and
172.16.19.0/24 the attacker side, we now assume that both networks belong to
the same company but may, for example, belong to different departments. We
simulate the spreading malware infection as depicted in Figure 5.2.

Just like in Test Case 1 (TC1), we trigger atomic alerts by Snort via sending
according payloads, similar to the script described in Listing 5.1.

5.3 Results

All three signatures successfully correlated the atomic events and lead to the
generation of according correlated alerts. Thus, all three tests yielded a positive
result.
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Figure 5.2: Simulated spreading of malware through our testbed
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Chapter 6

Infrastructure Integration

While our correlator can be used as a standalone solution, part of the objec-
tives of this IDP was the integration of our correlator as a component into
the ANSII [1] infrastructure. ANSII, an acronym for “Anomalieerkennung und
eingebettete Sicherheit in industriellen Informationssystemen” – Anomaly De-
tection and embedded security in industrial information systems – is a research
project funded by the German Federal Ministry of Education and Research
(Bundesministerium für Bildung und Forschung, BMBF), with its objectives
being states as follows:

“The ANSII research project’s aim is to develop of a procedure model for
the integrating IT-security algorithms into industrial information systems. This
model includes the selection of the assets that need to be protected, the threat
analysis, risk assessment, and a selection of actions and implementations. Appli-
cation-specific models and solution cores should be developed within the field of
embedded systems, aiming at industrial information systems.” [1]

The following subtasks were defined to integrate our correlator:

1. Development of a web user interface to be added to the central ANSII
management for the configuration of the correlator, which is now an ANSII
component

2. Integration of the correlator and its output into the Zabbix network mon-
itoring solution to allow for central monitoring of correlation alerts

3. Integration of test cases for verification of the correlation rules’ efficacy
into Zabbix’ web interface

Their successful completion will only be shortly reported on, as they are
matters specific to the ANSII infrastructure and of no great value to the issue
of correlation itself, which this report documents.
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Figure 6.1: Web UI component for configuration of the correlator’s signature
database inside ANSII’s management interface

6.1 ANSII Management Web UI Integration

ANSII’s communication and persistent storage infrastructure is XML-based, as
are the IDMEF messages that are provided by NIDS and HIDS nodes, pro-
cessed by our correlator, and the alerts emitted as IDMEF in case a correlated
event has been detected. Communication is performed asynchronously using
the XMLBlaster middleware, while persistent storage, including that of config-
uration files and output generated by ANSII components, is supplied by the
eXist XML database system. As a result, the central ANSII management web
user interface was implemented as an eXist web app with server-side content
generation and delivery being implemented in XQuery.

To allow for the central management of the correlator alongside with the
other ANSII components, a tiny web interface, shown in Figure 6.1 with corre-
sponding server-side XQuery code was developed. As of now, it allows for the
configuration and extension of the correlator’s signature database. Signatures
can be added, activated, and deactivated. These are the only useful features for
our correlator module; other modules, to be plugged into our framework, can
add features accordingly.

6.2 Zabbix Network Monitoring Integration

Zabbix [28] is an open source network monitoring solution. It can gather vitality
and resource usage data, perform active tests on monitored hosts using agent
daemons, parse logs, and collect and visualize all data in one central monitoring
interface.
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Figure 6.2: Log monitoring output on Zabbix server

To allow for centrally tracking correlation alerts alongside with the other
monitoring data collected by Zabbix instead of requiring a separate interface
just for tracking correlation alerts, our correlator’s alerts were integrated into
Zabbix accordingly. To this end, suitable monitoring target items [26] and
triggers [27] were defined which evaluate a locally produced correlation alert log
file.

The resulting log output on the Zabbix server is shown in Figure 6.2.

6.3 Test Case Integration into Zabbix

Zabbix is, by itself, only able to monitor and collect data, but not to carry out
active tests. To add this functionality, a patch has been developed at the Chair
for Network Architectures and Services of the Department of Computer Science
of the Technische Universität München to integrate GPLMT into Zabbix. With
this patch, GPLMT task lists like those specified in Section 5.2 can be uploaded
to and executed from Zabbix.

The integration of tests directly into Zabbix has two advantages:

1. Easy verification of the correct configuration and deployment of the cor-
relator as well as of the efficacy of its signatures: Tests can be launched
from inside Zabbix and the results immediately show up in its monitored
log data
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2. Aiding in the development of new signatures: Complex attack scenarios
or other network-level processes can be centrally specified and then be
carried out by network nodes, making simulation of scenarios much sim-
pler. Again, the correctness of new signatures can be verified as log data
is available right in Zabbix. In summary, this allows for a “signature de-
velopment lifecycle”: (1) Scenario specification (2) Signature writing (3)
Test execution (4) Result validation: If not satisfactory, return to Step 2.

For the sake of completeness and result documentation, a screenshot of test
case integration into Zabbix is provided in Figure 6.3.

Figure 6.3: Test case integration into Zabbix using the GPLMT patch developed
by the Chair for Network Architectures and Services, Technische Universität
München
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Chapter 7

Evaluation

As the previous chapter has shown, our approach is capable of correlating events
related in the four different ways described in Section 4.5.3. As its efficacy has
been demonstrated, we aim to compare it to other approaches for network event
correlation in this chapter.

7.1 Comparison With Existing Approaches

System Scenario-based Rule-based Statist./ML Our Approach
Ease of Deployment - + + +

Ease of Sig. Def. - o + +
False Positives + o - +
False Negatives - o - -

Req. Expert Knowl. - - + o
Coop w/ ext. IDS - + - +

Explanations

Ease of deployment was chosen as low for scenario-based approaches, as
they are often closely intertwined with their host systems. Their sophisticated,
very complex, time-consuming, and error-prone signature definition process re-
sult in another low rating. On the other hand, these signatures prohibit false
positives almost perfectly. False negatives, however, are high, unless a “com-
plete” scenario signature set can be assumed, which is impossible in practice.
Very high expert knowledge of all sub-aspects of an attack is required, resulting
in another low rating. Finally, as these systems define how substeps are to be
detected exactly, they also cannot cooperate with existing remote IDSs.

The ease of deployment has been rated as medium for rule-based ap-
proaches. They do not need close host system interaction for direct event
detection. Signatures are easier to define as they do not necessarily require in-
depth knowledge of all aspects of substeps. On the other hand, rule authors still
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need to know about pre- and post-conditions. False positives can occur, though
not to a high degree, as conditional rules only measure the effect of events,
which might have been brought about by non-malicious activity. Flexibility in
condition specification on the other hand can lead to lower false negative rates,
as non-specific definition of all substeps will lead to more cases described by a
rule. Again, expert knowledge is required, this time about system conditions.
As these systems do not specify how exactly an event has to take place, they
can be easily extended to cooperate with existing IDSs.

Statistical and machine learning approaches are very easy to deploy,
as long as classification to specific attack types is not demanded, which would
require training sets which correctly identify certain attack patterns. This is,
however, not the common case. Blind approaches are much more common in
this class. Thus, no expert knowledge is required, as signatures are unnecessary
as well. False positive ratios and false negative ratios will naturally be quite
high, though. Cooperative options with existing IDS systems are also not given.

Our approach is easy to deploy, as it only requires input from existing IDSs.
Signatures are easy to write, as they do not require any in-depth knowledge of
substep specifics which would need to be described. Only a listing of substep
criteria is to be provided. False positive rates will be low, for the same reasons
as with the scenario-based approaches. However, similarly, false negative ratios
will be high as anything not described by signatures will necessarily be missed.
Expert knowledge is required for signature definition, as one has to know at
least the composing steps of an attack. This requirement is still lower than for
other approaches which require more complete and exact knowledge about the
detection process itself. Cooperation with existing IDS for a global view is not
only possible, but is mandatory for our approach.

7.2 Detection Test Results Evaluation

It is very important to note that, due to our testing methodology, the evaluation
of the detection capabilities is not to be understood comparative to other ap-
proaches in any way. As we test our correlator against a pre-defined set of events
which we have previously used to author signatures/rules for the correlator in
the first place, a detection rate of 100% is to be expected. Likewise, anything
that is not covered by our signatures/rules will definitely not be detected. This
is a general property of signature-based approaches. These tests, evaluating the
true positive detections, were only meant as a proof of concept: We showed
that our approach is capable of detecting a broad range of attacks through the
signatures that can be authored and the event processing techniques that are
used to process incoming atomic event alerts. In order to ensure that indeed a
broad range of events is covered, we composed an attack taxonomy for corre-
lated attacks in Section 4.5.2 and tested our correlator for the different kinds of
correlation we characterized in Chapter 5.
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7.2.1 False Positives

While signatures can detect exactly the kind of events they define and will
succeed at that unless the properties of events change, it might be that the
properties used in the signature are not only characteristic to malicious but
also to neutral activity. Thus, imprecisely authored signatures/rules will trigger
false positives, raising alerts for allegedly malicious events even though none
took place.

The advantage of our approach in regards to false positives is that it relies on
adjoined IDS monitors for the detection of atomic events. Under the assump-
tion that adjoined IDS monitors do not produce false positives, the probability
of the correlator producing false positives is significantly reduced as then it is
certain that the atomic events indeed have happened. Thus, false positives –
as long as no false positive atomic events are reported by IDS monitors – will
only result from a badly authored signature, probably due to bad understand-
ing of characteristic properties of composed events, but not due to detection
mechanisms themselves, as they are offloaded to IDS monitors.

False positives are hence not a problem of our approach, but can only result
from badly authored signatures or monitors falsely reporting atomic events.

To show that the very small signature set used for proving the general effec-
tiveness of our approach does not produce a notable number of false positives or
potentially even none at all, we placed a workstation computer in the test en-
vironment. From that workstation, we then simulated the following workloads,
aiming to cover a broad range of different packet distributions:

• Browsing the web

• Searching the local AD domain for other PCs and printers

• Running a BitTorrent client and downloading a file

• Performing an nmap scan of a target host outside the test environment

Especially the last case, as nmap scans are often part of reconnaissance of po-
tential target networks and machines, is of importance. It is also contained in
our signatures as atomic events.

7.2.2 Results

False positives were indeed detected, but only as a consequence of false positive
alerts of port scans generated by our monitoring hosts. As our approach depends
on and completely trusts the IDS monitors’ alerts, this issue cannot be resolved
at our end.
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7.3 Shortcomings of the “Signatures of Signatures”-
Approach

As with any signature-based approach, each possible case that needs to be
detected has to be formulated as a signature. While this is already a hard task
for regular applications like network IDS signatures or anti-malware signatures,
this becomes even more of a problem for correlated attacks, as now all possible
combinations of atomic events need to covered. This results in an explosion of
the event space signatures would need to be created for. A possible remedy is
matching for generic keywords such as ”worm” or ”virus” or ”exploit” which
the atomic events’ classifications might or might not contain. Either way, the
correlated event space is greatly increased over atomic event space.
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Chapter 8

Summary and Conclusion

In this report we presented a new signature-based approach at network inci-
dent alert correlation and put it into practice. We described design decisions
and the implementation process. Furthermore, we composed a security inci-
dent/attack taxonomy from two existing taxonomies and extended it by adding
a classification for the different ways in which atomic events can be related.
The resulting taxonomy for correlated attacks, such as multi-stage attacks and
attacks with multiple source or target hosts, accounts for two dimensions of cor-
relation: Multiplicity relations of involved hosts (e.g., 1–n, n–1, n–m) and time.
We formulated test cases covering those possible types of correlation and proved
our correlator’s efficacy at detecting them using proof-of-concept signatures.

We also introduced a new approach at complex event processing which we
dubbed persistent-storage enabled decision tree, stateful decision tree, or delayed
decision tree. This kind of new decision tree allows for delayed classification,
postponing it until all information for classification is available and permitting
multiple data instances in a tree at the same time. Thus, classification of one
instance of data can depend on other data, giving it context and relation. While
we concluded that a readily-available solution for complex event processing,
Esper, is better suited for the specific task at hand, our new form of decision
tree might have an advantage in other scenarios.

Evaluating our signature-based correlator, we found it has various advan-
tages over existing approaches. Defining correlated events is easier than in
other approaches, false positive rates are low, and cooperation with other corre-
lators or intrusion detection systems is simple. On the downside, our correlator
depends on adjoined intrusion detection system’s capability of detecting atomic
events, and shares the disadvantage of all signature-based approaches, i.e., it
can only detect what has been explicitly defined in the ruleset before. De-
ployment and operation of our signature-based correlator is easy and has no
productivity-reducing factors through false positives. It reliably detects what
has been expressed as a signature before and does not depend on a learning
phase with potentially huge discrepancies between the learning data and real-
life data.
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All in all, our signature-based correlator allows for easy deployment and
extension of its detection capabilities. Especially, it reduces the effort for de-
tecting correlated events to writing signatures in Event Processing Language
(EPL) whose syntax is almost identical to SQL. With its advantages in practi-
cal deployment and operation, we consider it a considerable improvement over
existing correlation systems. These suffer from high false positive and low true
positive rates and require training data sets or high expert knowledge. They are
hardly deployed in current production networks, arguably due to the aforemen-
tioned practicability issues which we intended to resolve with our correlation
system.
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