
Dissertation
Network Architectures
and Services
NET 2014-05-1

Empirical Analysis of Public Key Infrastructures
and Investigation of Improvements

Technische Universität München

Ralph-Günther Holz

TECHNISCHE UNIVERSITÄT MÜNCHEN
Institut für Informatik

Lehrstuhl für Netzarchitekturen und Netzdienste

Empirical Analysis of Public Key Infrastructures and
Investigation of Improvements

Ralph-Günther Holz

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Thomas Neumann
Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Georg Carle

2. Assoc. Prof. Nick Feamster, Ph.D.,
Georgia Institute of Technology, Atlanta/USA

Die Dissertation wurde am 18.12.2013 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 05.05.2014 angenommen.

Abstract
Public Key Infrastructures (PKIs) were developed to address the key distribution prob-
lem of asymmetric cryptography. Certificates bind an identity to a public key and are
signed by a trustworthy entity, called the issuer. Although seemingly a simple concept,
the setup of a PKI is not an easy task at all. Trustworthy issuers need to be guaranteed,
and certificates must be issued conforming to certain standards. A correct deployment
is needed to ensure the PKI is usable for the parties that rely on it. Some PKIs, like the
important X.509 PKI for TLS, were criticised from early on for being poor examples
with respect to these aspects. The objective of this thesis is to provide a sound analysis
of important PKIs and to analyse proposals for improvements for one of them, X.509.
The contributions of this thesis are threefold.

In the first part of this thesis, we carry out an analysis of known criticisms of the
X.509 PKI and show that they were never addressed well. The approach here is both
documental as well as empirical. Furthermore, we provide a survey of incidents in the
X.509 PKI, some of which brought it close to failure, and identify their root causes.
This analysis allows us to formulate requirements that improvements for the X.509 PKI
have to meet. The methodology here is historical-documental.

In the second part of the thesis, we apply empirical methods to analyse the status
quo for three representative and important PKIs that address different use cases: X.509,
the OpenPGP Web of Trust, and the simple key distribution mechanism of SSH. We
measure their respective strengths and weaknesses, in particular with respect to de-
ployment, and draw conclusions about the level of security that each PKI achieves in
practical use. For X.509, we carried out HTTPS scans of a large number of servers
over a period of 1.5 years, including scans from globally distributed vantage points.
We also monitored live TLS traffic on a high-speed link of a large network. Our ana-
lyses of the thus obtained certification data reveals that the quality of certification
lacks in stringency to a degree that is truly worrisome. For OpenPGP, we conducted a
graph analysis of the Web of Trust, with a focus on properties such as usefulness and
robustness of certification chains. We also analysed the community structure of the
Web of Trust and mapped it to social relationships. This allows us to determine for
which users, and on which scale, the Web of Trust is particularly useful. For SSH, we
carried out several scans over the entire IPv4 address space and collected statistics on
host-keys and ciphers used. A number of keys were found to be duplicates, but not due
to cryptographic weaknesses. For these, we determined in which network setups they
occurred and identified both secure as well as very insecure patterns of use.

In the third part of this thesis, we study five representative schemes to improve the
security of X.509. In order to describe each scheme succinctly, we first develop a unified
notation to capture the essential protocol flows and properties of each scheme. We then
analyse its security properties with particular regard to three threat models that we
defined for this purpose. A further particular focus is on the deployment properties
of a scheme, i.e., which entities need to make changes to implement it. Based on our
findings, we identify the two most promising candidates to reinforce X.509.

However, all schemes fall short in one respect, namely automatic incident reporting
and localisation of the position of an attacker. We thus developed and deployed our
own solution, Crossbear, to close this gap. Crossbear allows to detect an ongoing
man-in-the-middle attack and initiates a distributed but centrally coordinated hunting
process to determine the location of the attacker in the network with a fair degree of
confidence.

III

Zusammenfassung
Public Key Infrastructures (PKIs) wurden als Antwort auf das Problem der sicheren
Schlüsselverteilung in der symmetrischen Kryptographie eingeführt. Zertifikate von ver-
trauenswürdigen Ausstellern binden einen öffentlichen Schlüssel an die Identität eines
Teilnehmers. Der Aufbau einer PKI ist jedoch kein leichtes Unterfangen. Zum einen
muss die Vertrauenswürdigkeit der Aussteller garantiert und Zertifikate müssen nach
anerkannten Standards ausgestellt werden. Zum anderen müssen die Zertifikate auf
korrekte Weise zum Einsatz kommen, um sicherzustellen, dass alle Teilnehmer sie auch
nutzen können. PKIs wie X.509 wurden schon früh dafür kritisiert, dass sie in den
genannten Bereichen Schwächen aufweisen. Das Ziel dieser Arbeit ist eine umfassende
Analyse wichtiger PKIs und eine Analyse von Verbesserungen für eine davon, X.509.

Im ersten Teil der Arbeit werden frühere, bekannte Kritikpunkte an X.509 darauf-
hin untersucht, ob seit ihrer Veröffentlichung Verbesserungen erreicht wurden. Es wird
gezeigt, dass das nicht der Fall ist. Der Ansatz enthält sowohl dokumentarische als
auch empirische Elemente. Weiterhin wird eine Ursachenanalyse für eine Reihe von
kritischen Vorfällen in der X.509 PKI durchgeführt, von denen einige die Sicherheit
der PKI beinahe außer Kraft gesetzt hätten. Daraus werden Anforderungen abgeleitet,
die Erweiterungen von X.509 erfüllen müssen, um Verbesserungen bewirken zu können.
Der Ansatz hier ist vor allem dokumentarisch.

Im zweiten Teil kommen empirische Methoden zum Einsatz, um den Status Quo
für drei repräsentative und wichtige PKIs zu ermitteln. Diese PKIs decken jeweils un-
terschiedliche Anwendungsfälle ab. Es handelt sich um X.509, das Open PGP Web of
Trust, und die Schlüsselverteilung in SSH. Für jede PKI werden Methoden entwickelt,
mit denen die besonderen Stärken und Schwächen der jeweiligen PKI ermittelt werden
können. Das erlaubt Rückschlüsse auf die Sicherheit, die die jeweilige PKI bietet. Für
X.509 wurde eine große Zahl an Servern über einen Zeitraum von 1,5 Jahren gescannt,
zum Teil auch von Beobachtungspunkten rund um den Globus. Zusätzlich wurden
Monitoringdaten genutzt. Die Analyse zeigt eine besorgniserregende Qualität der Zer-
tifikate und ihres Einsatzes. Für OpenPGP wird eine Graphanalyse des Web of Trust
durchgeführt. Der Fokus liegt auf der Nützlichkeit dieser PKI und ihrer Robustheit ge-
gen ungewollte Änderungen. Zusätzlich wird untersucht, inwiefern sich die Teilnehmer
des Web of Trust sogenannten Communities, die sozialen Verbindungen entsprechen,
zuordnen lassen. Dies erlaubt es, Rückschlüsse zu ziehen, für welche Teilnehmer das
Web of Trust einen besonders hohen Nutzen aufweist. Die Arbeiten zu SSH umfassen
Scans, die internetweit durchgeführt wurden. Es werden zum einen Statistiken zu Chif-
fren und den Schlüsseln erhoben, mit denen sich Hosts in SSH authentisieren. Zum
anderen wird eine Analyse von Schlüsseln durchgeführt, die keine kryptographischen
Schwächen haben, aber häufig auftreten. Dies passiert vor allem in bestimmten Netz-
werkkonfigurationen, von denen einige sehr unsicher sind.

Im dritten Teil werden Systeme zur Verbesserung von X.509 untersucht. Dazu wird
eine Notation entwickelt, die es erlaubt, die wesentlichen Protokollflüsse und Design-
Elemente eines Systems in einheitlicher Weise zu beschreiben. Darauf baut eine Analyse
der Sicherheitseigenschaften des Systems auf. Weiterhin wird eine Betrachtung durchge-
führt, welche Schwierigkeiten sich bei der Einführung des Systems ergeben können. Mit
Hilfe dieser Betrachtungen werden die zwei aussichtsreichsten Kandidaten zur Verbes-
serung von X.509 identifiziert. Alle betrachteten Systeme haben jedoch einen Nachteil:
Sie erlauben keine automatisierte Meldung von Angriffen oder gar eine Lokalisierung
des Angreifers. Daher wurde im Rahmen der Arbeit Crossbear entwickelt: Crossbear
erlaubt, Man-in-the-middle-Angriffe auf TLS zu erkennen. Als Reaktion koordiniert
Crossbear einen verteilten Prozess, der es ermöglicht, die Position des Angreifers mit
hinreichender Genauigkeit zu ermitteln.

V

Acknowledgements
This work would not have been possible without the invaluable help and steady support
of a number of people. I would like to take the opportunity to express my gratitude.

My first thanks go to my advisor Dr. Georg Carle, of course, for making it possible
for me to carry out my research at his Chair and providing much support and guidance
throughout. He also provided much career advice once this thesis was submitted. I
would also like to thank Dr. Nick Feamster for being my second referee and Dr. Thomas
Neumann for heading my committee.

I was very fortunate to have some excellent collaborators, research students, and
co-authors to work with. A sincere thank you goes to all of them, in particular
Lothar Braun, Oliver Gasser, Peter Hauck, Nils Kammenhuber, Thomas Riedmaier,
and Alexander Ulrich.

My parents and friends have supported me and believed in me throughout all these
years. I cannot begin to say how grateful I am. A very personal thank you goes to my
partner Hui Xue for providing moral support and being the wonderful person she is.

Finally, I would like to thank some people who proofread my work or who helped
to improve it during many discussions: Lothar Braun, Maren Büttner, Nathan Evans,
Christian Grothoff, Michael Herrmann, Nils Kammenhuber, Andreas Müller, Heiko
Niedermayer, Stephan A. Posselt, and Stephan Symons.

VII

Contents

Contents

I. Introduction and background 1

1. Introduction 3
1.1. Research Objectives . 4
1.2. Structure of this thesis . 6
1.3. Note on terminology . 8
1.4. Publications in the context of this thesis . 9

2. Theory and practice of Public Key Infrastructures 11
2.1. The nature of authentication . 11
2.2. The Key Distribution Problem . 12

2.2.1. Key distribution in symmetric cryptography 12
2.2.2. Key distribution in public-key cryptography 13

2.3. Forms of Public Key Infrastructures . 13
2.4. X.509 Public Key Infrastructure . 16

2.4.1. Historical development of X.509 . 16
2.4.2. Certificate structure . 17
2.4.3. CA hierarchy . 17
2.4.4. Use of X.509 in TLS . 19

2.5. The OpenPGP Web of Trust . 21
2.6. The Secure Shell (SSH) and its PKI model 22

2.6.1. PKI model . 23
2.6.2. Protocol flow of SSH . 23

2.7. Revocation . 24
2.7.1. Revocation and scalability . 24
2.7.2. Revocation in X.509 for TLS . 24
2.7.3. Revocation in OpenPGP . 27

2.8. Text adapted from previous publications . 28

II. Analyses of Public Key Infrastructures 29

3. Analysis of the weaknesses of the X.509 PKI 31
3.1. Investigated questions . 31
3.2. Criticism of the design . 31

3.2.1. CA proliferation: the weakest link 31
3.2.2. Trust and liability . 33
3.2.3. Strength of identity verification . 34
3.2.4. Summarising view . 35

3.3. Incidents and attacks against the X.509 PKI 35
3.3.1. Attacks against the X.509 PKI . 35
3.3.2. Surveillance . 43
3.3.3. Cryptographic breakthroughs . 44
3.3.4. Summarising view . 45

IX

Contents

3.4. Reinforcements to the X.509 PKI . 46
3.4.1. The impossibility of direct defence 46
3.4.2. Improving defences . 47

3.5. Related work . 48
3.6. Key contributions of this chapter . 48

4. Analysis of the X.509 PKI using active and passive measurements 51
4.1. Investigated questions . 51
4.2. Measurements and data sets . 52

4.2.1. Methodology for active scans . 52
4.2.2. Passive monitoring . 53
4.2.3. Data properties . 54
4.2.4. Data preprocessing . 55

4.3. Host analyses . 56
4.3.1. Host replies with TLS . 56
4.3.2. Negotiated ciphers and key lengths 58

4.4. Certificate analyses . 60
4.4.1. Certificate occurrences . 60
4.4.2. Correctness of certificate chains . 61
4.4.3. Correct hostnames in certificates . 64
4.4.4. Unusual hostnames in the Common Name 65
4.4.5. Hostnames in self-signed certificates 65
4.4.6. Extended Validation . 66
4.4.7. Signature Algorithms . 66
4.4.8. Public key properties . 67
4.4.9. Validity periods . 69
4.4.10. Length of certificate chains . 70
4.4.11. Certification structure . 73
4.4.12. Different certificates between locations 75
4.4.13. Certificate issuers . 76
4.4.14. Further parameters . 77
4.4.15. Certificate quality . 77

4.5. Related work and aftermath . 78
4.5.1. Previous work . 79
4.5.2. Later work . 79

4.6. Summarising view . 81
4.7. Key contributions of this chapter . 82
4.8. Statement on author’s contributions . 84

5. Analysis of the OpenPGP Web of Trust 87
5.1. Introduction and investigated questions . 87
5.2. Methodology . 88

5.2.1. Graph extraction . 88
5.2.2. Terms and graph metrics . 89

5.3. Results . 91
5.3.1. Macro structure: SCCs . 91
5.3.2. Usefulness in the LSCC . 92
5.3.3. Robustness of the LSCC . 94
5.3.4. Community structure of the Web of Trust 96
5.3.5. Cryptographic algorithms . 99
5.3.6. History of the Web of Trust . 99

5.4. Related work . 100

X

Contents

5.5. Summarising view . 101
5.6. Key contributions of this chapter . 102
5.7. Statement on author’s contributions . 104

6. Analysis of the PKI for SSH 105
6.1. Investigated questions . 105
6.2. Scanning process and data sets . 106

6.2.1. Scanner . 107
6.2.2. Scanning periods and data sets . 107
6.2.3. Enriching data sets . 108

6.3. Results . 109
6.3.1. Protocol versions . 109
6.3.2. Server versions . 109
6.3.3. Weak keys . 111
6.3.4. Duplicate non-weak keys . 112
6.3.5. Use of SSHFP . 116
6.3.6. Cryptographic algorithms . 116
6.3.7. Key lengths . 117

6.4. Ethical considerations . 117
6.4.1. Responsible scanning . 118
6.4.2. Sharing data sets . 118

6.5. Related work . 119
6.6. Summarising view . 120
6.7. Key contributions of this chapter . 121
6.8. Statement on author’s contributions . 122

III. Strengthening the X.509 PKI 123

7. Unified notation for X.509 reinforcements 125
7.1. Developing a notation for PKI reinforcements 125

7.1.1. Motivation and design goals . 125
7.1.2. Design elements . 127
7.1.3. Structure of a scheme . 129
7.1.4. Sessions and event-driven descriptions 130
7.1.5. List of well-known records . 131
7.1.6. List of well-known processes . 132
7.1.7. Operators and comments . 133

7.2. Representation of design elements in the notation 133
7.3. Example: certification in the current X.509 PKI and TLS 137
7.4. Related work . 138
7.5. Key contributions of this chapter . 139

8. Proposals to replace or strengthen X.509 143
8.1. Threat models . 143
8.2. Pinning . 146

8.2.1. Choice of TACK as subject to study 146
8.2.2. TACK operation and representation in our notation 147
8.2.3. Assessment of TACK . 152

8.3. Storing certification information in the DNS 153
8.3.1. DNSSEC . 154
8.3.2. Representing DNSSEC in our notation 155

XI

Contents

8.3.3. Certification Authority Authorization (CAA) 155
8.3.4. CAA operation and representation in our notation 156
8.3.5. Assessment of CAA . 156
8.3.6. DNS-based Authentication of Named Entities: DANE-TLSA . . . 160
8.3.7. DANE-TLSA operation and representation in our notation 161
8.3.8. Assessment of DANE-TLSA . 161

8.4. Notary concepts . 165
8.4.1. Choice of Perspectives as subject to study 165
8.4.2. Operation and representation in our notation 165
8.4.3. Simplifications and choices in representation 173
8.4.4. Assessment of Perspectives . 173

8.5. Public log-based proposals: Certificate Transparency 176
8.5.1. Choice of Certificate Transparency as subject to study 176
8.5.2. Operation and representation in our notation 177
8.5.3. Assessment of Certificate Transparency 182

8.6. Assessment of schemes . 191
8.6.1. Contributions to security and robustness 191
8.6.2. Issues of deployment . 192
8.6.3. Choosing the appropriate candidate 193

8.7. Related work . 195
8.8. Key contributions of this chapter . 195

9. Crossbear: detecting and locating man-in-the-middle attackers 197
9.1. Introduction . 197
9.2. Crossbear design and ecosystem . 198

9.2.1. Methodology . 198
9.2.2. Intended user base . 198
9.2.3. Principle of operation . 199
9.2.4. Details of detection and hunting processes 201
9.2.5. Simplifications for the representation in our notation 210

9.3. Analysis and discussion of effectivity . 210
9.3.1. Attacker model . 210
9.3.2. Detection . 211
9.3.3. Localisation . 211
9.3.4. Attacks against Crossbear . 218

9.4. Status of deployment and cooperation with OONI 219
9.5. Related work . 220
9.6. Discussion . 221
9.7. Key contributions of this chapter . 221
9.8. Statement on author’s contributions . 222

IV. Summary and conclusion 225

10. Summary and conclusion 227
10.1. Results from Research Objectives . 227
10.2. Quo vadis?—research directions for PKI . 235

V. Appendices 237

List of frequently used acronyms i

XII

Contents

Academic resources iii

Books ix

RFCs xi

Further resources xv

List of figures xxv

List of tables xxvii

List of algorithms and listings xxix

XIII

Part I.

Introduction and background

1

1 Chapter 1.

Introduction

It is often said that security is an essential property that should be guaranteed for all
electronic communication. With the Internet having established itself as the primary
medium of communication, this is now certainly true: the value of communicated in-
formation has increased. The need for secure transmission of sensitive financial inform-
ation (e.g., credit card numbers, bank accounts) is evident. More recently, however, a
need to protect messages as a way to ensure personal safety has emerged—the Inter-
net has also become a platform for political activity, for collaboration and information
dissemination—with several countries attempting to exercise control over the activities
of their dissidents. Networking protocols and applications are thus rightfully expected
to protect critical data. Confidentiality, authentication of communication partner and
message origin, as well as message integrity, are aspects of security that can be achieved
by cryptographic protective measures.

Central to all cryptography is the issue of key distribution, which counts among the
hardest problems to solve. Public Key Infrastructures (PKIs) are an important form of
key distribution. In a PKI, the goal is to certify a binding between data items. Most
commonly, this is the authenticity of a public key, which is expressed as a digital signa-
ture on the combination of entity name (identity) and corresponding public key. The
issuer of a signature must be a Trusted Third Party (TTP). Analysis of the security of
PKIs thus requires to take into account the role and correct functioning of the different
entities that are responsible for security-critical operations like identity verification,
certificate issuance and safeguarding key material. In this thesis, we analyse the role
that PKIs play in protecting Internet communication. Our contributions are threefold.

We begin with a systematic analysis of weaknesses of the PKI that is currently the
most important one, namely the X.509 PKI as used for the Transport Layer Security
(TLS) protocol [94, 97]. We identify fundamental weaknesses in the organisation and
structure of X.509, which revolve mostly around the concept of Certification Authorities
(CAs) as TTPs. We provide evidence that critical weaknesses continue to persist in
the X.509 PKI to this day, and have not been resolved. This will allow us to draw first
conclusions with respect to possible improvements.

The core of this dissertation consists of an empirical analysis of the three PKIs that
are most widely used today. Each PKI serves a different use case. Our primary subject
of investigation is once again the X.509 PKI, particularly its use in securing the WWW.
By active and passive measurement, we determine how well the X.509 PKI has been
deployed and the level of security that it provides. The second PKI we chose is the
OpenPGP [93] Web of Trust, a PKI where entities are not servers or hosts, but users
wishing to secure their private communication. Due to the nature of this PKI, we use
graph analysis to determine to which degree it is useful for its users and which security
it provides for them. The third PKI is the ‘False PKI’, i.e., a PKI without TTPs, as
used in the Secure Shell (SSH) protocol [125]. SSH is an important protocol in network
management. Its mechanism of key distribution is different from the other two PKIs,

3

1. Introduction

and it is thus a very valuable subject to study. As SSH is closely linked to network
management practices, these will be at the focus of our analysis, too.

The third part of this dissertation chooses the X.509 PKI as its sole subject again.
Several proposals have been made to reinforce this PKI, with each proposal serving a
slightly different purpose. Based on our conclusions in the first part, we provide an
analysis of these proposals and assess how robust they are in the face of attackers of
varying strengths. As no proposal addresses the open problem of automated attack
detection and reporting, the final contribution of this dissertation describes the design,
development and deployment of Crossbear, our tool to detect and locate man-in-the-
middle attackers.

1.1. Research Objectives
We are now going to outline the Research Objectives of this thesis. There are three
overall Research Objectives, which we split into several subtasks.

O1: Identifying weaknesses and historical-documental analysis of incidents
The goal of the first Research Objective is an analysis of the weaknesses of the X.509
PKI by investigating both earlier criticism of X.509 as well as known incidents. This
allows us to draw conclusions what requirements mechanisms to improve the PKI have
to meet.

In particular, we analyse earlier academic work and determine which criticisms have
been brought forward. Against this background, we investigate whether the shortcomings
have been satisfactorily addressed and provide evidence for our claims. Since 2001,
several attacks have become known that threatened the security of the X.509 PKI. We
use a historical-documental approach and analyse the reports from incidents. Our goal
is to identify the root causes and determine how, and by which entity, the attacks were
detected. Finally, we derive conclusions what kind of improvements would help reinforce
the PKI. Our objective is thus split into three tasks:

O1.1 To identify weaknesses of the X.509 PKI and determine whether these
have been satisfactorily addressed.

O1.2 To investigate and analyse incidents, and in particular determine the
root causes and how the attacks were detected.

O1.3 To derive conclusions which improvements would help strengthen the
X.509 PKI.

O2: Empirical analyses of PKIs
While the previous Research Objective can only provide evidence about a relatively
small number of incidents, which furthermore can only be analysed from publicly avail-
able sources, the question remains whether systematic weaknesses exist in the PKIs
that have been deployed. Having such data would be very valuable as it would allow
to mount pressure at entities that operate PKIs to improve the status of their security.
Research Objective O2 is thus to carry out large-scale analyses to empirically meas-
ure PKI deployment and structure. As the PKIs to investigate, we choose X.509, the
OpenPGP Web of Trust, and SSH.

Different methodologies have to be employed in this endeavour. The X.509 PKI can
be analysed by active scans of Web hosts, by analysis of data from TLS monitoring, and

4

1.1. Research Objectives

by statistical evaluation of the properties of certificates. As X.509 is tree-structured
and essentially all information is public, links between cryptographic entities and their
properties are relatively easy to trace. The challenge here is in obtaining the data—
optimally, over a longer period of time to track changes—and in applying the correct
statistical methods on large data sets to derive statistically significant conclusions.

The OpenPGP Web of Trust, however, is not accessible to the above methodology.
While data sets can be obtained from so-called key servers, there is very little inform-
ation stored with such keys. The whole concept of a Web of Trust is based on storing
much information locally, and very little publicly. Therefore, the methodology has to
be different: only graph analysis can shed light on the links between entities and their
properties.

The methodology to analyse the third large infrastructure, SSH, resembles the one
for TLS again. However, obtaining data is much more difficult as scans of SSH ports
are very often considered hostile in nature by the scanned party. Much care has to be
applied to avoid being marked as an annoyance or, worse, a hostile party. Analysis of
the data is also slightly different in nature: SSH does not employ certificate chains as
X.509 does. Key distribution is practically always managed from a central location.
Thus, an important focus must be on identifying issues that arise as a consequence of
this particular kind of key distribution and network management.

To summarise, the goal of this Research Objective is to derive empirical data about
the three most widely employed PKI technologies, analyse it, and derive conclusions
with respect to the level of security each technology provides. We formulate the fol-
lowing three tasks:

O2.1 To analyse and assess the deployment and use of the X.509 PKI for
the WWW, with particular focus on security weaknesses and quality
of certification.

O2.2 To analyse and assess the OpenPGP Web of Trust, with particular
respect to the usefulness and security that the Web of Trust provides
for its users.

O2.3 To analyse and assess the deployment of the SSH infrastructure on
the Internet, with particular regard to issues that may arise from its
method of key distribution.

O3: Improvements to X.509 and attack detection

Research Objective O3 returns to the X.509 PKI for the WWW. We will see from our
results in Research Objectives O1 and O2 that there are critical issues to solve, and that
the X.509 PKI for the WWW is in a state that makes it infeasible for it to withstand
certain attacks, in particular from adversaries on state-level to whom many resources
are available.

Several proposals have been made by other researchers to improve (or even replace)
the X.509 PKI. These must be analysed with regard to several aspects, in particular the
improvements they provide and their robustness against attackers of varying strengths.
One also needs to consider whether there are serious obstacles that would hinder their
deployment. Optimally, an analysis should be carried out using a common framework
to describe the important properties of each proposal—which we will call a scheme—in
a formalised way. In particular, it should be easy to identify the participants in each
scheme, the actions they need to carry out, the interactions with other participants,
and the security of the communication channels over which they occur.

5

1. Introduction

Another issue that the research community is facing is a true lack of empirical
evidence of ongoing attacks. Such data would be very valuable as it would allow to
identify the nature of attacks (local or regional, for example) and possibly help derive
the identity of the attackers. As no scheme addresses automated attack detection and
reporting, we thus set ourselves the design, development and deployment of such a
scheme as a further objective.

Summing up the previous paragraphs, we thus arrive at the following research ob-
jectives.

O3.1 To develop a formalised notation to describe schemes to improve the
X.509 PKI; to use it to analyse the schemes with respect to the con-
tributions they make to strengthen the PKI, their robustness against
attackers, and potential issues with deployment.

O3.2 To design, develop and deploy a scheme that is able to detect attacks
against the X.509 PKI for the WWW, and to provide data that allows
to analyse the nature of these attacks, in particular the location of the
attacker.

Figure 1.1 provides a summary of our Research Objectives for graphical reference,
and shows how each part builds on previous ones.

1.2. Structure of this thesis

The structure of this thesis follows the outline of the Research Objectives. We describe
it in the following.

Chapter 2 introduces the reader to the theory and practice of PKIs. We de-
rive the principal idea from the concepts of authentication and key distribution, both
of which we show to be hard problems. This is followed by an overview of the different
forms that PKIs may take and present several models and instantiations, particular
X.509, OpenPGP, and SSH. Our discussion is structured around the underlying as-
sumptions concerning trust in other entities that are at the core of each model. We
also touch on the difficulty of revocation, which is a topic that is often overlooked.

Chapter 3 addresses Research Objective O1. We build on previous work to
identify critical issues in X.509 and investigate whether these have been addressed (we
will see that this was mostly not the case). In the second part of the chapter, we
investigate incident reports of the past twelve years in great detail and extract the root
causes. Organisational practices, structure of the PKI and technical vulnerabilities will
be identified as the primary root causes. Against this background, we derive conclusions
which mechanisms may help improve X.509.

Chapter 4 begins the empirical contributions that this thesis makes. It addresses
Research Objective O2.1. We present the results of our empirical study of the X.509
PKI as it is primarily used, namely in TLS for the WWW. We scanned the hosts on the
Alexa Top 1 Million list of popular Web sites and downloaded the X.509 certificates they
presented. These scans were carried out over a duration of 1.5 years and also included
scans from eight further vantage points on other continents. We complemented our data
sets with data we obtained from monitoring TLS connections in the Munich Scientific
Network and also included a data set from a third party for reference. We analysed the
thus obtained certificates with respect to a number of properties that are crucial for
security goals to be achieved. Foremost among these is validity of the certificate chain,
especially with respect to information identifying the Web host. We also investigated

6

1.2. Structure of this thesis

Research Objectives

O1 Analysis of weaknesses of X.509
O1.1 Critical issues and evidence

O1.2 Analysis of incidents in X.509

O1.3 Deriving conclusions

O2 Empirical analyses of PKIs
O2.1 Analysis: X.509 PKI for the WWW

O2.2 Analysis: OpenPGP Web of Trust

O2.3 Analysis: PKI in SSH

O3 Defence against attacks

O3.1 Schemes to strengthen X.509

O3.2 Attack detection and localisation

Chapter 3

Chapter 3

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapters 7 and 8

Chapter 9

Figure 1.1. – Research Objectives of this thesis, mapped to chapters. Arrows show which
Research Objectives deliver findings on which later chapters are based.

other properties that are relevant for deployment, like validity periods, certificate chain
lengths and cryptographic security. Our results show that the X.509 PKI is in a sorry
state: only about 18% of certificates offered by Web hosts were completely valid. We
also measured the distribution of certificates over multiple hosts, length of certificate
chains, use of algorithms, as well as issues like susceptibility to known bugs. Ours was
the first academic study on such a large scale and then the only one to track changes
in the PKI over time. As our study concluded in mid-2011, Chapter 4 also includes a
discussion of academic work that followed our study, confirmed our findings, and added
new aspects.

Chapter 5 addresses Research Objective O2.2. The OpenPGP Web of Trust
is a structure that is entirely different from the X.509 PKI, which is also reflected in
its use (e.g., secure email). We present the results of an investigation of the Web of
Trust using graph analysis. We first analysed the Web of Trust’s major constituents.
Although it is almost two orders of magnitude smaller than the Web of Trust as a
whole, the so-called Largest Strongly Connected Component is the most meaningful
component to analyse as it directly influences the network’s usefulness. We evaluated
this property by analysing to which degree users are actually able to authenticate other
users. The basis of this was an analysis of the length of certification chains, redundant
paths, mutual signatures and the Small World effect that the Web of Trust exhibits.
We also investigated how robust the network is to changes like key expiration or the
targeted removal of keys. As social relations are an important aspect in assessing a
key’s authenticity, we also applied different community detection algorithms with the
goal of mapping identified communities to social relations.

Chapter 6 presents the results of our investigation of the PKI concept in SSH. It
addressesResearch Objective O2.3. This PKI is markedly different from X.509 as its
method of key distribution resembles the direct exchange known from a Web of Trust.

7

1. Introduction

However, certificate chains are not supported. For our study, we scanned the entire
routable IPv4 space on TCP port 22 and downloaded the SSH host keys that we found.
In this analysis, recent work by Heninger et al. [35] was our point of departure: the
authors had identified critical cryptographical weaknesses and duplicate keys in SSH.
We were thus interested whether we could trace such issues to network management
practices, i.e., the result of SSH’s mode of key distribution. We could indeed identify
causes for duplicate keys that are a consequence of network management and provide
a list of patterns how such keys may occur. We could also reproduce the results by
Heninger et al. and show that the situation has slightly improved since their study.
Finally, we also studied the use of symmetric cryptography on SSH servers and the
occurrence of older servers on the Internet.

Chapter 7 returns to the X.509 PKI and addresses Research Objective O3.1. In
order to prepare our analysis of schemes to strengthen X.509, we develop a formalised
notation to capture the relevant properties of each scheme within a common framework.

Chapter 8 will then make use of the notation and provide the analysis of the
proposed schemes. To this end, we define a threat model to describe attackers of
varying strength, ranging from a weaker local attacker to a globally active attacker
with immense resources at his disposal. The schemes we investigate can be classified
by the approach they take. We analyse approaches that are based on pinning, DNSSEC,
notaries, and public logs. We assess each scheme with respect to the contributions it
makes and its robustness against attackers. A particular focus is on difficulties that
may arise when deploying a scheme. Based on our results, we identify the schemes that
promise to be the best candidates to reinforce the X.509 PKI.

Chapter 9 addresses Research Objective O3.2. Very little is known about man-
in-the-middle attacks in the wild, possibly because most users would either not know
how to detect an attack, or, if they do, where to report it. Our goal is to develop an
infrastructure that allows to collect hard data about such ongoing attacks and report
and analyse them in an appropriate manner. To this end, we developed Crossbear,
a notary-based tool that can detect man-in-the-middle attacks on TLS and report
the attacks automatically. While the underlying notary principle is well understood,
Crossbear’s novelty lies in its aggressive attempt to also locate the position of the
attacker. This is achieved by establishing TLS connections to a victim server and
tracerouting from a large number of positions in the network. The interception point
between poisoned and clean connections yields the attacker’s position with a certain
level of confidence. We show that Crossbear can achieve good results in determining
a poisoned Autonomous System (AS), although its accuracy decreases significantly at
the router level. However, we show that Crossbear functions particularly well against
the two attacker types it addresses.

Chapter 10 provides a summary of our findings and reviews them in the context of
each Research Objective. We also identify research directions that would help improve
PKIs further.

1.3. Note on terminology

Unless otherwise indicated, we use the abbreviation TLS to refer to both the Secure
Sockets Layer (SSL) protocol and the TLS protocol. SSL is the predecessor to TLS and
uses exactly the same kind of certificates. In the context of our work, there is usually
no reason to distinguish between them.

8

1.4. Publications in the context of this thesis

1.4. Publications in the context of this thesis
The following papers were published in the context of this thesis:

• Alexander Ulrich, Ralph Holz, Peter Hauck, and Georg Carle. Investigating the
OpenPGP Web of Trust. Proc. 16th European Symposium on Research in Com-
puter Security (ESORICS), Leuven, Belgium, September 2011.

• Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. The SSL
Landscape—a thorough analysis of the X.509 PKI using active and passive meas-
urements. Proc. 11th ACM SIGCOMM Internet Measurement Conference (IMC),
Berlin, Germany, November 2011.

• Ralph Holz, Thomas Riedmaier, Nils Kammenhuber, and Georg Carle. X.509
forensics: detecting and localising the SSL/TLS men-in-the-middle. Proc. 17th
European Symposium on Research in Computer Security (ESORICS), Pisa, Italy,
September 2012.

• Oliver Gasser, Ralph Holz, Georg Carle. A deeper understanding of SSH: res-
ults from Internet-wide scans. Proc. 14th IEEE/IFIP Network Operations and
Management Symposium (NOMS), Krakow, Poland, May 2014.

9

2 Chapter 2.

Theory and practice of
Public Key Infrastructures

This chapter contains text from the sections on related work and background
in previous publications. Please see the note at the end of the chapter for
further information.

In this chapter, we introduce Public Key Infrastructures (PKIs) and explore the
forms a PKI may take. Two terms are at the heart of PKI: authentication and key
distribution. PKIs are meant to provide a solution for both, and thus we are going
to begin with an introduction to these two fundamental terms. In particular, we will
see that although one may understand the term ‘authentication’ intuitively, it is quite
difficult to define formally. Furthermore, we show why the problem of key distribution
is a very hard one indeed.

Against this background, we introduce the concept of Trusted Third Parties (TTPs),
which is fundamental for PKIs, and then describe PKI concepts that have proved to
be relevant, in particular those that we analysed in our own work (X.509, OpenPGP,
and SSH). X.509 will be a particular focus as it is a key subject in our investigations
and analyses. These sections will give the reader the necessary background for Parts II
and III of this thesis.

PKI concepts are often assessed without regard to a problem that is actually essential
for their correct operation: key and certificate revocation. We thus dedicate Section 2.7
to this problem and explain revocation mechanisms. This background will prove useful
when we analyse compromises of the X.509 infrastructure (Chapter 3).

2.1. The nature of authentication

PKIs play an important role in many cryptographic protocols. Such protocols usually
aim to achieve the three goals of confidentiality, authentication and message integrity.
Among these, authentication is the essential ingredient—in fact, protocols without
authentication are rare. Practically all protocols that computer users deal with today
feature at least one mechanism to authenticate the end-points of a communication
channel. In these protocols, authentication is a prerequisite to secure key establishment
and providing an encrypted and integrity-protected channel.

Intuitively, authentication is a simple concept: the identity of some other entity
is ascertained by means of a proof. However, authentication is actually not so easily
defined in a mathematically strict sense. The term is frequently used without a clear
definition as Boyd comments in [82, p. 33]. Ferguson, Schneier and Kohno, for example,
do not define it at all in their book Cryptography Engineering [85]. Bishop calls it ‘the
binding of an identity to a subject’ in his book on computer security [81], and states
that this binding may be established by something an entity knows, possesses, etc.

11

2. Theory and practice of Public Key Infrastructures

Menezes et al. are more precise when they define entity authentication as ‘[...] the
process whereby one party is assured (through acquisition of corroborative evidence) of
the identity of a second party involved in a protocol, and that the second has actually
participated [...]’ [87]. This definition states that authentication is a process and
that corroboration and evidence are involved. The definition of the evidence remains
unclear, however.

In fact, many attempts have been made to give a ‘good’ definition of authentication,
but a great number have also left room for interpretation. As Lowe points out in [51],
this has repeatedly led to misinterpretations with respect to the formal guarantees a
protocol gives, which is particularly problematic in the formal verification of protocols.
It is interesting to note that even the RFCs for TLS and the Internet Protocol Security
(IPSec) protocol suite [97, 108] do not indicate what their understanding of the term
authentication is.

To facilitate formal verification of protocols, Lowe, and later Cremers, gave formal
definitions of authentication and showed that they establish a hierarchy. Lowe, for
example, gave a definition of ‘authentication as injective agreement’ [51]. The idea
here is to define authentication between two parties as an agreement on the values in a
set of data items, which is the result of a protocol run in which both parties participated.
In [16], Cremers shows that ‘authentication as synchronisation’ is an even stronger form
and at the top of the hierarchy.

There is a fundamental link between authentication and the possibility to establish
an authenticated and encrypted secure channel between two parties. Consider two
entities A and B who wish to establish a secure channel. A necessary condition for them
to be able to achieve this goal is that such a secure channel must have been available to
them at a previous point in time. In other words, it is not possible to establish a secure
channel without already having authenticated credentials. This (intuitively obvious)
insight was proved to be correct by Boyd in 1993 [10]. It has an important consequence:
the necessary cryptographic material must be distributed between all participants of a
particular cryptographic protocol before any authentication can succeed.

2.2. The Key Distribution Problem

For two entities to be able to establish a secure channel, they must be in possession
of authenticated credentials. Such credentials are usually shared keys (in symmetric
cryptography) or previously exchanged public keys (in asymmetric cryptography). The
need to distribute keys to the participants in a protocol is known as the Key Distribution
Problem.

2.2.1. Key distribution in symmetric cryptography

In the case of symmetric cryptography, all entities need to have pairwisely exchanged
shared keys before they can authenticate. With n being the number of participants,
the result would be O(n2) keys that need to be exchanged, and all of these exchanges
would need to be secure. As a consequence of Boyd’s theorem, the only way to do this
is out-of-band, i.e., by relying on some other, pre-existing secure channel. A typical
real-world solution would be delivery in a face-to-face personal meeting. This quickly
becomes impractical, especially when a large number of participants is involved (e.g., a
bank and its customers). Given that it is also good practice to regularly replace keys,
the costs of key distribution in symmetric cryptography rise quickly.

A solution to reduce this overhead is to introduce a Key Distribution Centre (KDC).
The KDC is assumed to be trusted by all participants, and it must have securely

12

2.3. Forms of Public Key Infrastructures

exchanged symmetric keys with each. The idea is now that the KDC can be queried
by an entity A for a symmetric key KAB, to use with another entity B. This implicitly
guarantees that A can be sure that only B (and the KDC) will be able to read messages
on the secure channel. There are schemes that allow the KDC to create KAB in such a
way that A can retrieve it and forward it securely to B. There are a number of details
to take care of to make the scheme secure. A well-known example of a scheme that
uses a KDC is Kerberos [113].

2.2.2. Key distribution in public-key cryptography

In public-key cryptography, the scalability may seem to be improved as only O(n)
public keys need to be published. However, in order to be able to authenticate each
other, A and B must have previously exchanged their public keys securely, too, i.e.,
both must be sure that the respective public key really belongs to the respective other
entity. This still requires O(n2) secure key exchange operations to take place. For
small domains with relatively few participants, this may again seem quite reasonable.
However, consider the case of email or the WWW: the number of participants is so
large that proper key distribution is infeasible. The solution here is to introduce a
PKI. The underlying idea is similar to the KDC, but the mode of operation is different.

The key concept is to relieve participants of the need to exchange keys themselves.
Rather, they are meant to rely on assertions made by a small set of trustworthy
entities—the Trusted Third Parties (TTPs). TTPs make assertions which public key
belongs to which entity. An assertion is made by cryptographically signing a tuple
(I, k), where I is a meaningful identifier for the entity in question, and k is the entity’s
corresponding public key. This assertion is commonly called a certificate, a term first
introduced by Kohnfelder [42].

2.3. Forms of Public Key Infrastructures

Public Key Infrastructures may appear to be a simple concept. However, as we will see
in this chapter, creating a practical PKI is not an easy undertaking at all.

The essential operation in a PKI is the creation and revocation of certificates. We
will call the entity that is responsible for creating a certificate the issuer1. The issuer’s
act of applying a digital signature to name and public key creates a cryptographic
binding between the two data items that anyone with the issuer’s public key can verify.
In theory, issuing certificates is a simple (although computationally intensive) task.

The problems begin when theory is turned into practice. Before an issuing entity
creates a certificate, it has to verify that the entity who wishes to be certified is indeed
the entity it claims to be. Furthermore, it must ascertain that the public key presented
to it is indeed owned by this particular entity. Consequently, a central question is which
entity, or entities, can be trusted to do this job with due care and act as the TTPs.

Even with TTPs established, however, there is more to take into account. Most PKIs
like X.509 or the OpenPGP Web of Trust use so-called certificate chains. A verifying
entity—the verifier—generally needs to verify a chain from a trusted issuer to the entity
whose certificate it wants to verify. In hierarchical PKIs (like X.509), an issuer often
wishes to delegate the creation of a certificate for an entity to an intermediate entity.
To this end, the issuer creates a special certificate that binds the intermediate’s identity,
the public key and a boolean value that signals the delegation of certification capacity.

1The name for the issuing entity varies from PKI to PKI. In X.509, it is usually called ‘Certification
Authority’. In a Web of Trust like OpenPGP, the term is often ‘endorser’. We use the generic term
issuer here.

13

2. Theory and practice of Public Key Infrastructures

Global CA

Certified entities

Figure 2.1. – One global CA that directly certifies entities.

The delegated capacity may be delegated again to another intermediate entity, and
so on. This process results in a certificate chain that starts at the original issuer and
includes one or more intermediate entities. In non-hierarchical PKIs—such as Webs of
Trust—certificate chains develop naturally: every certified entity may also be an issuer.

However, it is an interesting question whether (complete) trust into a TTP should
also imply trust into the entities to which the signing capacity has been delegated.
Assuming full transitivity may often be an unacceptable choice as it does not accurately
model real-world trust relationships, and different degrees of trust need to be expressed.
This is the realm of trust metrics. A body of literature exists that investigated the
different options to compute trust into other entities—the works by Maurer [54] or
Jøsang [39] are well-known examples.

A related question concerns the actual structure that a PKI prescribes, i.e., which
certificate chains are possible. Most PKIs follow a certain philosophy that governs
to which intermediate entities certification rights may be delegated. Perlman gave an
overview of the essential constructions in [61].

The simplest form of PKI could be said to be the strictly hierarchical one with one
global TTP, which we show in Figure 2.1. The global authority is called Certification
Authority (CA). The CA is responsible for verifying the identity of any entity applying
for a certificate, for issuing the certificate, and, if necessary, also revoking it. This
structure seems rather idealistic on a global scale: there is no universally trusted or-
ganisation that could run the necessary infrastructure, and it is hard to imagine that
organisations, corporations, and governments, etc. would be willing to rely on the
services of a provider that is possibly located outside their legal reach. Even if such
an organisation could be agreed on, numerous practical problems would remain. For
example, what would be the agreed common standard that the CA would follow in
verifying entities coming from very different legislations? What would its chances be
to accurately identify entities like owners of Web sites and avoid mistakes? And finally,
who would be in actual control of day-to-day activities, and would there be a guarantee
that no abuse of power will ever occur?

One way to approach these challenges would be to delegate the task of certification
to regionally operating subordinate CAs. This would relieve the global CA from some
of its responsibilities. Regionally active entities might also operate more efficiently,
with better capacity to carry out tasks like identity verification, due to their knowledge
of local practices. As every subordinate CA is a CA in its own right, this would
increase the number of attack vectors, however. An alternative would thus be to use
so-called Registration Authorities (RAs) instead. These entities cannot sign certificates
themselves but are responsible for properly identifying an entity according to local
legislation and then for creating a certification request and forwarding it to the global
CA. We show this model in Figure 2.2. This restricted form of delegation only removes
some of the technical attack vectors, however. The social ones remain: unless the correct
operation of RAs can be guaranteed in a meaningful way, attackers may attempt to

14

2.3. Forms of Public Key Infrastructures

RA

Global CA

RA RA

Certified entities

Figure 2.2. – One global CA with several RAs.

Alice

Bob

Charlie Daniel
Emile

Frank

George

Henry

Ivan

Jane
Karla

Laura

Nate Paul

Quentin

signs

Figure 2.3. – A Web of Trust is an example of a non-hierarchical PKI. Users sign each others’
keys and verify the authenticity of other keys using trust metrics.

obtain certificates via RAs that do not execute their duties carefully enough. This
shows that the operational factors in a PKI are as important as its technical basis.

Historically, different PKI structures have come into use. The structure used for
X.509 on the WWW, for example, is a variant of what we just described above. Perlman
calls this structure ‘configured CAs plus delegated CAs’ [61]. The concept developed
from early browsers beginning to integrate the public certificates of CAs and later
introducing programmes to which CAs can be admitted. We elaborate on this in the
next section. It is interesting to note that, while Perlman’s article is from 1999, it
already warns of possible attack vectors in this model. We will show in Chapter 3 that
this assessment was quite correct. Yet X.509 is one, if not the, dominating standard
on the Internet today.

A notably different model is a Web of Trust as implemented by, e.g., OpenPGP,
where participating entities are free to certify any other entity. We describe this in
more detail in Section 2.5. The resulting structure is shown in Figure 2.3. OpenPGP
enjoys a certain popularity for encrypted and signed email. Thus, we chose it as a
further PKI to analyse.

We have so far not elaborated on the simplest possible PKI, which we might call the
‘False PKI’. Here, public keys are simply distributed among participants by external
means, and there are no TTPs nor CAs. While one might argue that this model does
not constitute a ‘real’ PKI at all, it is actually used very often: it is the structure
preferred by the popular SSH protocol, which runs on millions of hosts. The security of

15

2. Theory and practice of Public Key Infrastructures

the structure depends exclusively on the correctness of the key deployment operations.
It is clearly a very interesting PKI, and we thus chose it as the third PKI to analyse.

A variety of other schemes to structure PKIs exist. Some PKIs attempt to introduce
very strong technical constraints that rule which entities a CA is allowed certify. The
Domain Name System Security Extensions (DNSSEC), for example, construct a PKI
with a single authoritative key for the DNS root zone. Certification is then delegated
to subzones and their subzones, creating a tree of ‘CAs’. As the DNS is itself a tree
of names, each zone can be technically constrained to only issue ‘certificates’ (really
signatures on resource records) to domain names that are in its own zone, with delega-
tions to subzones. DNSSEC did not play a significant part in our empirical analyses as
it is not widely deployed yet, but we do return to it when we discuss PKI alternatives
in Chapter 8.

2.4. X.509 Public Key Infrastructure

X.509 is a tree-structured hierarchical PKI. It is an ITU-T standard that has been
adopted by the Internet Engineering Task Force (IETF) as the PKI for several IETF
protocols. X.509 certificates are an integral part of the TLS protocol, which secures
application layer protocols like HTTP, IMAP and POP3. The most common use case
is authentication of a server, but certificates can also be used to authenticate clients.

2.4.1. Historical development of X.509

The history of X.509 is well summarised in, e.g., the work by Gutmann [32] and in
RFC 26932 [100]. We give a brief summary here.

The roots of X.509 are found in the hierarchical structure of X.500, an ISO/IEC
standard of 1988 intended to be used by telecommunication companies. The intention
of the standard was to create a global directory of named entities, with data structured
in a hierarchical tree. Different organisations would be responsible for different subtrees.
The use of certificates was incorporated to allow users to authenticate to this directory
and retrieve data. A CA would be an entity responsible for a subtree, i.e., for issuing
certificates to users to allow them to access this subtree. One global CA was to be at
the top of the hierarchy. X.509 was the standard that defined the certificate format to
be used in the X.500 series of standards. As it turned out, however, X.500 never saw
much deployment3. Furthermore, X.500 required a strict naming discipline. However,
as the authors of RFC 2693 [100] note, at the time X.500 was specified, too many
different naming disciplines were already in use.

When the Internet, thanks to the WWW, began to grow into its role as a major
communications infrastructure, the X.509 format was mandated in the new Secure
Sockets Layer (SSL) and later Transport Layer Security (TLS) protocols. As these
connected hosts on the Internet, which were referred to by their DNS names, some way
was needed to securely associate a DNS name with a public key. The role of CAs was
filled by companies that offered X.509 certificates for owners of DNS domains. CAs
were (and are) expected to carry out checks of domain ownership with due diligence.
However, these CA-internal work processes are difficult to assess from the outside, and
thus users need to place their trust into the correct working of a CA. In particular, the
verification that a requesting party really owns a domain has always been problematic

2RFC 2693 describes the competing SDSI/SPKI standard.
3The original X.500 was meant to be used with the ISO/OSI stack of network protocols, which never
gained wide support. Adaptations of X.500 protocols to TCP/IP exist, e.g., LDAP [129].

16

2.4. X.509 Public Key Infrastructure

as most CAs rely on insecure protocols to carry out this verification. We return to this
in the next chapter.

More importantly, the notion of responsibility for subtrees was removed in this
new X.509 PKI: CAs have no association with DNS zones here. Rather, any CA can
issue certificates for domains anywhere in the DNS hierarchy. These activities quickly
developed into a successful business model that continues to this day. Since sites could
buy their certificates from any CA, operating systems and browser vendors began to
ship the certificates of a number of CAs with their products to allow client software
and browsers to verify certificates.

The inclusion process for new CAs generally depends on the respective vendor.
In the case of Mozilla, it is an open forum where inclusion requests of new CAs are
publicly discussed. Companies like Microsoft or Apple do not make their decision
processes very transparent, although there is some effort to publicly document the
outcome, in form of a list of included CAs (e.g., [221]). For quite some time, both
the inclusion policies that browsers used as well as the certification practices that CAs
followed were largely independently defined. In 2005, the CA/Browser Forum [150]
emerged as a collaborative body of browser vendors and CAs, with the goal of releasing
normative guideline documents. This forum needed several more years to agree on
the first such document, the Baseline Requirements (BR) [148], which took effect on 1
January 2012. This document defines the minimal set of common policies that all CAs
with membership in the CA/Browser Forum have agreed to implement.

The number of CA certificates in browsers has grown for a long time, and it contin-
ues to grow. Furthermore, CAs have recently introduced new products, among which
Extended Validation (EV) certificates are maybe the most significant ones: these cer-
tificates are intended for organisations and are supposed to be issued only after a more
thorough evaluation of credentials, e.g., by verifying legal documents. They are gener-
ally much more costly than normal domain-verified certificates [7].

Although server certificates have remained a pillar of CA business models, CAs can
also issue certificates for persons. A popular example are personal certificates for email
as defined in the S/MIME standards [118, 115, 116].

2.4.2. Certificate structure

Figure 2.4 shows the simplified structure of an X.509v3 certificate. Version 3 is by
far the most common version that can be found today. The most important fields
are the issuer, the subject, the public key (algorithm identifier and actual key) and
the digital signature (algorithm identifier and actual signature). A serial number is
stored as the reference number under which an issuer has created this certificate. The
validity is specified in two fields that act as start and end date. In addition to these
fields, X.509v3 introduced a certain number of extensions. Among these, we find a
flag that indicates whether this certificate belongs to an entity with CA-like properties,
i.e., one that will use its private key to sign other certificates. There are also fields for
revocation purposes, e.g., Certificate Revocation Lists (CRLs). The EV field signals
the EV status of a certificate. This field is expressed as an Object Identifier (OID):
just as they maintain a list of CA certificates, browser vendors also maintain a list of
OIDs that they associate with EV status. There are several more fields that we do not
mention here—e.g., fields indicating the allowed uses of the certificate.

2.4.3. CA hierarchy

Since there is a relatively large number of CAs in the X.509 PKI, it can be viewed as
a forest rather than a tree. CAs and subordinate CAs play different roles in the PKI.

17

2. Theory and practice of Public Key Infrastructures

VersionVersion Serial no. Sig. algo.

Issuer

Not Before Not After
Validity

Subject

Subject Public Key Info

Algorithm Public Key

X509 v3 Extensions

CA Flag, EV, CRL, etc.

Signature

X509v3 Certificate

Figure 2.4. – Schematic view of an X.509v3 certificate.

Figure 2.5 shows a minimised example. CAs reside at the top of the hierarchy and are
all equally allowed to issue certificates to any domain in the DNS hierarchy. They are
identified by their own certificates, which they issue to themselves and sign with their
own private keys. These certificates are called root certificates.

Root certificates, indicated as Rx in Figure 2.5, could be used to directly sign end-
entity certificates (indicated by Ex), and indeed some CAs do this or have done so in
the past. However, this means that the private key must be held online and in memory
during a CA’s operations. This constitutes an attack vector. Thus, it is considered good
practice for CAs to issue intermediate certificates from the root certificates. These
certificates have the CA Flag set to true and are used in online operations4. We
indicate them by Ix. The private key for the root certificate can be stored safely offline
in a protected location. The public key certificate can be shipped with browsers and
operating systems. If anything should happen to the intermediate certificate’s private
key, it can be replaced without having to replace the shipped root certificate. In our
example, R1 and R2 are in the root store (and thus coloured green), while R3 is from
a CA that has so far not been included (coloured grey). Hence a browser with this
root store would reject E7 as an untrusted end-host certificate (and display a warning
message to the user).

An intermediate certificate may be used to sign further intermediate certificates.
These may or may not be controlled by entities that are part of the same organisation
as the root CA. Intermediate certificates always increase the number of private keys
that must be protected. If they are issued for subordinate CAs, i.e., organisations
outside the direct control of the root CA, this is a particularly sore point as an in-
termediate certificate has the same signing power as any other certificate. Note that
this method also removes some control from the client: it is debatable if users would
trust all intermediate authorities, assuming they even knew about them—the existence
of subordinate CAs can only be inferred from close inspection of a certificate chain
and investigation of the business relationship of the entities specified in the certificate
subjects.

An interesting use case for intermediate certificates is cross-signing, where a CA also
has a certificate (I4) that has actually been signed by another CA (in this case, via an
intermediate certificate). This is useful if the other CA is contained in a root store in
which the cross-signed CA is not contained. The thus certified CA essentially becomes
a subordinate CA of the issuing CA. If a CA or any of the subordinate or intermediate

4This method is now required by the Baseline Requirements [148].

18

2.4. X.509 Public Key Infrastructure

2
CA

1

CA
3

CA

Root

1 I2

I3

R31 2R RStore

I

E1 E2 I5

EE5

E

E4
I6E3

6

I4

7

Figure 2.5. – X.509 certificate chains and root stores. Figure adapted from [37].

CAs it cooperates with becomes compromised, the attacker can issue certificates for
any domain. Thus, both cross-signing and subordinate CAs can be very dangerous to
the PKI system.

2.4.4. Use of X.509 in TLS

The SSL protocol was originally developed by Netscape and later standardised within
the IETF as TLS. Since 1999, three versions of TLS have been specified: TLS 1.0 in
1999 [95], TLS 1.1 in 2006 [96], and TLS 1.2 in 2008 [97]. The protocol specifications
have been updated over the years to incorporate up-to-date cryptographic algorithms,
remove weaknesses, and add extensions. However, the core ideas of the protocol have
remained the same.

TLS achieves authentication and session key establishment between a client and a
server. X.509 certificates are used to authenticate the communicating parties. In the
following, we describe the essential steps of TLS, abstracting from the actual RFC. TLS
requires two round-trips between client and server for authentication and key establish-
ment to complete. Although the protocols are subdivided in a number of subprotocols,
the exchange between client and server can be described as the exchange of four mes-
sages. The principal idea is that information relevant for authentication is exchanged in
the first two messages (or three for mutual authentication), and the correctness of the
initial exchange confirmed afterwards by exchanging message authentication codes over
all previous messages. TLS also supports key establishment via a Diffie-Hellman key
exchange, which achieves the important property of Perfect Forward Secrecy (PFS).
Like most cryptographic protocols, TLS distinguishes between long-term (public) keys
and (symmetric) short-term keys (the session keys). The long-term keys are used to
establish session keys at the beginning of a communication. PFS means that an at-
tacker can never obtain the session keys for a communication that he has only recorded
and for which he obtains the long-term keys only after the communication has already
completed. The Diffie-Hellman key exchange is described in [17]. We include the
mechanism here in its form with ephemeral values, i.e., non-fixed values.

Message 1 TLS begins with a client C initiating communication with a server S. C
sends a nonce nC to S, together with a list of cryptographic suites it can support (LC)5.
The list contains combinations of symmetric ciphers, cryptographic hash functions and
key exchange mechanisms. We denote this first message as:

C Ð→ S ∶ nC , LC

5The RFC also uses session identifiers for tasks like session resumption. We omit this here.

19

2. Theory and practice of Public Key Infrastructures

Message 2 Upon receiving C’s message, S will respond to it with its own nonce (nS).
It will select an entry from LC , which we denote as lS . It will add its own certificate
and the intermediate certificates (CertS). Adding the root certificate of the CA is
optional, as it is assumed that this certificate must already be in a client’s root store
anyway for authentication to succeed. If a Diffie-Hellman key exchange was requested,
the server also includes the necessary Diffie-Hellman values (DH S). A signature must
be added to demonstrate knowledge of the private key (corresponding to the certificate)
and signal the correctness of the nonces and the Diffie-Hellman values. The server may
also include a request for a client certificate.

S Ð→ C ∶ nS , lS ,CertS ,DH S ,SigS(nC , nS ,DH S) {, req cert}

Message 3 Upon receiving the server’s message, C will determine whether the certific-
ate is valid. This includes a number of steps and verification of fields in the certificate,
described in RFC 5280 [94]. The following steps are the essential ones. The verifier
begins by tracing the certificate towards the root:

• The client verifies that all signatures in the certificate chain are correct.

• It verifies that each issuer of one certificate is the subject of the certificate further
up the chain. All intermediate certificates must have the CA flag set to true.

• It verifies that the root certificate is included in its root store.

• It verifies that all certificates in the chain are within their validity period.

• It verifies that the subject of the end-host certificate corresponds to the entity it
wishes to connect to.

Verification is often more complicated with many possible paths through the process.
For example, certificates may also carry a flag that indicates whether they are intended
for securing HTTP or not—the client can inspect this field if it is present6. More
importantly, the verification of the subject depends to some degree on the application
protocol on top of the TLS connection, or even the user: the application or user must
verify that the entity named in the certificate subject is the intended communication
partner. For HTTPS, this means that the field Subject Alternative Name (SAN) in
the certificate must match the DNS name of the host the client connected to (wild
cards are allowed). However, mostly due to historical use, this information is often
stored and accepted in the so-called Common Name (CN) in the subject, although this
is technically wrong. Some certificates (and all EV certificates) indicate the real-world
organisation behind the DNS name, which can be displayed by a browser and verified
by a user. In practice, users rarely invest this kind of effort.

It should also be noted that there are X.509 extensions whose use requires more veri-
fication steps. For example, a certificate of a subordinate CA may be name-restricted,
an extension that has only recently come into some use. It means that the certificate
carries a restriction that says the corresponding private key may only be used to cer-
tify domain names under a certain domain in the DNS hierarchy (e.g., a top-level or
second-level domain). The path length extension is a related extension: it defines how
many intermediate certificates may occur in a chain.

6This field is officially called Extended Key Usage and not mandated by RFC 5280 [94]. It is different
from the field Key Usage, which refers to the basic operations allowed for this certificate, e.g.,
encryption or key agreement.

20

2.5. The OpenPGP Web of Trust

If the certificate chain could be verified to the client’s satisfaction, the client will
continue with the handshake. It first sends its own certificate (if it was requested).
Then, it proceeds to compute its own Diffie-Hellman value, which it also uses it to derive
the symmetric key KC,S

7. The client sends its own Diffie-Hellman values (DH C). If it
was asked to authenticate (i.e., the server requested its certificate), it shows possession
of its private key as well as the correctness of the Diffie-Hellman values by adding a
signature over all message fields that have been sent so far. Finally, it adds a keyed
hash value (i.e., a MAC) over all message fields so far.

C Ð→ S ∶ {CertC ,}DH C {,Sig(X fields)},MAC(X fields {,Sig(X fields)})

Here, the term X fields indicates the concatenated fields nC , LC , nS , lS , CertS , DHS ,
SigS(nC , nS ,DH S), potentially req cert, potentially CertC , and DH C . The MAC is
computed with KC,S as the key.

Message 4 The server can verify the client’s certificate in the same way as described
above, although the verification of the subject field may take a number of forms, depend-
ing on the server’s configuration. Using the value DH C , the server can now compute
KC,S and verify the validity of the MAC. This ensures all previous messages were cor-
rect. The server confirms that the whole authentication process was correct by sending
a final MAC over all previously sent fields, including the signature and MAC sent in
the client’s last message:

S Ð→ C ∶ MAC(X fields{, Sig(X fields)},MAC(X fields {,Sig(X fields)}))

2.5. The OpenPGP Web of Trust

Webs of Trust are a different form of PKI. In this section, we introduce the Web of
Trust of OpenPGP, which is a user-centric and self-organised form of PKI. A user in
OpenPGP is identified by a user ID, which contains a user-chosen name and email
address. Every user ID is associated with a public/private key pair, which is stored
locally in a data structure that also contains an expiry date. Users ‘issue certificates’
by signing another key (i.e., user ID and public key) with their private keys.

In contrast to X.509, certificates are not verified with reference to a root certificate in
a root store but by finding a certification path from the own key to the key that is to be
verified as belonging to some entity. This allows practically arbitrary paths (although
cycles are not considered). Before using someone else’s public key, users must determine
the key-entity binding and assess whether it is likely to be correct. Consequently, the
question arises which intermediate keys (and users) one should trust, and to which
degree, in verifying the authenticity of another key.

OpenPGP uses a trust metric to allow users to assess the trust in a key-entity
binding. Users store keys of other users in so-called key rings. For these keys, OpenPGP
defines two notions of ‘trust’. First, ‘introducer trust’ refers to how much another user
is trusted to apply care when verifying an identity. This value is expressed as a string
with an associated numerical value, with a higher value signalling more trust. It must
be set manually by a user for all keys of other users in his or her key ring. The value is
stored locally together with the key (not the user ID). ‘Public-key trust’ is the degree

7In practice, one would derive different keys for encryption and message authentication codes, but we
simplify this here.

21

2. Theory and practice of Public Key Infrastructures

to which a user claims to be sure of a key-entity binding himself. This value is again
expressed as a string with an associated numerical value. It may be stored as part of
the signature.

OpenPGP’s trust metric is parameterised, and the parameters can be set by the
users themselves. The popular implementation GnuPG, for example, uses a default
setting that focuses on introducer trustworthiness: this must either be ‘full’ for all keys
on the certification path, or there must at least be three redundant certification paths
to the key in question (with all keys on the paths assigned a trust value that is less than
‘full’). No certification path must be longer than five keys, either. Trust in OpenPGP
relies on social relations for identity verification. CAs are not forbidden in OpenPGP,
however—they are merely a very special kind of user. OpenPGP’s model can thus be
viewed to be more focused on the local ‘environment’ of a user—it is infeasible for a
user to determine introducer trust for everyone in the Web of Trust. A user can only
make reasonable assessments about keys to which paths are short and lead over social
contacts. When talking about the scalability of the Web of Trust, this is important to
keep in mind.

The exact mechanism of creation of OpenPGP’s Web of Trust is not exactly known,
but it is commonly agreed that personally established contact between users plays a
major role, in particular as there are organised events, the so-called Keysigning Parties,
at conferences and meetings. To make keys available to the public, users can upload
them to a network of key servers, together with the signatures that they have received
for their own key or issued for other keys. The key servers use the Synchronizing
Keyservers (SKS) protocol for synchronisation. This protocol implements a gossiping
strategy to ensure changes to a key server are propagated quickly. There does not
seem to be a formal documentation, although a home page exists for the reference
implementation [226]. A snapshot of the data stored on a key server contains a complete
history of the Web of Trust: keys cannot be deleted from an SKS server and timestamps
of key creation, signature creation, and expiry dates are stored.

The open nature of the Web of Trust could lead one to speculate whether large-
scale attacks on the Web of Trust are possible, where a malicious entity certifies a large
number of keys to trick others. However, this attack is much more difficult than it
seems. Assume Alice wants to verify a fake key for the identity Bob, which has only
been signed by a number of false identities signed by Mallory. Alice must establish a
certification path to the ‘fake Bob key’ using the faked signed keys. These faked keys
would only be used in a path search if Alice manually and explicitly sets a trust value
for Mallory and the false identities. As setting introducer trust is a manual operation,
it is unlikely that Alice would assign the needed trust to unknown entities.

Note that the mapping from human users to user IDs and keys is generally not
bijective in OpenPGP. It is not uncommon for users to have multiple keys, for example
under pseudonyms or for different email addresses. This can make it difficult to assess
who the real person behind a user ID or key is.

2.6. The Secure Shell (SSH) and its PKI model

The SSH protocol started as a replacement for insecure login protocols. It dates back
to 1995 [124] and has been a popular tool since its conception. Its versatility and omni-
presence make it indispensable for many power users, especially system administrators.
SSH is a prime example of using a ‘False PKI’ without TTPs.

The SSH protocol resides on the application layer and provides authentication (of
server and client), encryption, and message integrity. It is primarily used for remote
shell access to hosts, including infrastructure devices such as routers. SSH is also

22

2.6. The Secure Shell (SSH) and its PKI model

notable because it provides support for several other protocols that it runs as so-called
subsystems over an encrypted connection. Two particularly important examples are
secure remote copy (SCP8) and secure FTP (SFTP9). Many implementations of SSH
also allow to create secure tunnels for arbitrary application layer protocols. In the
following, we will give some background on the PKI model that SSH uses as well as
discuss some aspects of the protocol flow.

2.6.1. PKI model

Although the use of X.509 certificates is defined for SSH [106], the most popular method
to authenticate a server is based on the so-called host keys. A host key is a pub-
lic/private key-pair of which the public part is sent during connection establishment.
The client needs to have been introduced to this key securely a priori and out-of-band.
This is most commonly achieved by administrative control over both client and server,
i.e., system administrators store the server’s public key on the clients. There is a
second accepted method: when a client cannot authenticate a server by its host key,
it will display the host key’s fingerprint (a hash value) and leave the decision whether
to continue to the user. If the user decides to continue, the fingerprint will be stored
locally for future reference and comparison, just like in the predistributed case. In later
connections, SSH also displays a warning if the server suddenly presents a different
key. This concept is variously known as trust on first use, leap of faith authentication,
pinning, or key continuity.

It is an interesting and mostly unanswered question to which degree the approach
taken by SSH works, and what level of security is achieved. First, the key distribution
does not scale well, invites human error, and may lead to misconfigurations. Second, it
is not clear if common users of a computer have the necessary knowledge to understand
their client software warn about an unknown key (or if they do, whether a relaxed atti-
tude may cause them to continue anyway). Ultimately, such questions are intrinsically
linked to network management and the methods used for configuration.

2.6.2. Protocol flow of SSH

The SSH protocol consists of several subprotocols [111, 125, 126, 127, 128]. However,
the protocol flow of SSH is not so different from TLS and can be described without
referring to each subprotocol. Both TLS and SSH first negotiate the methods for key
exchange in a first round of message exchanges, in which the server is also authenticated.
Authentication of the client happens in the second round of messages, which is also
used to cryptographically confirm the correctness of all previous messages. However,
authentication in SSH has some aspects that are not shared by TLS.

First, the protocol is unusual in that it does not define a strict sequence of messages
between client and server. The client initiates the connection with a TCP handshake,
and client and server send identification strings and version information—but the order
of these messages is not defined. In particular, the server may send before the client.
This first message exchange is followed by messages to negotiate parameters and cipher
suites for key exchange. Again, the order is not defined, but a resolution algorithm
ensures that an agreement can be reached. The parties may choose different suites.
The server authenticates first with its host-key and proves possession of the private key
in a challenge-response exchange.

In the second round of messages, the client (or rather, the user) must authenticate
to the server. There are several supported options, like passwords or wrappers for

8SCP was never published as an RFC.
9SFTP is only specified in an expired Internet-Draft [102].

23

2. Theory and practice of Public Key Infrastructures

system-wide mechanisms like Kerberos. Most notably, a user’s public key may also
have been placed in his home directory by an administrator, which allows login via
another (automated) challenge-response process.

It is this latter method that contributes to the second interesting aspect of SSH.
It has a profound impact on the feasibility of man-in-the-middle attacks. Thanks to
the Diffie-Hellman key exchange, an attacker would have to actively exchange Diffie-
Hellman parameters. However, SSH is designed to also use session IDs, which must
match between client and server. The message exchange is designed in such a way that
an attacker can either swap the Diffie-Hellman secrets, or be able to forward the correct
session ID to its victims but not both. Tampering with a connection is thus detectable
if clients use public-key authentication.

2.7. Revocation
Public keys and certificates can be marked as unsuitable for further use. This process
is known as revoking a key or revoking a certificate, respectively. There are important
reasons to provide this possibility. Key owners might want to replace an older key with
a newer, stronger one, and wish others to stop using the old key. For client certificates,
the name by which the owner is referred to may have changed, or the owner may not
belong to the same organisation any more (if this relationship was indicated in the
certificate). There are also more serious reasons: the private key that belonged to a
certificate might have been mislaid, lost, or even compromised. This section provides
a summary of revocation in PKIs.

2.7.1. Revocation and scalability

Revocation in PKIs is remarkable in that it has a profound impact on the scalability of
the entire PKI. This is especially true for hierarchical PKIs, where revocation almost
inverses the argument of scalability.

For revocation to be effective, a verifier must be able to retrieve status information
about the key or certificate before it uses it. The only entity from which reliable
information about a key or certificate’s status can be retrieved is the issuer. In the
case of hierarchical PKIs, there are comparatively few issuers, namely the root CAs
and (possibly) subordinate CAs. The number of verifiers is often several orders of
magnitude higher. As every verifier must communicate with the issuer, this means
effectively that issuers have to deal with a very high load of requests—the beneficial
effect of PKI, scalable key distribution, is countered by poor scalability in revocation
checks.

Consequently, a revocation mechanism should attempt to minimise the number of
necessary queries. In the following, we are going to present the mechanisms for the
forms of PKI we have presented so far, with a focus on the hierarchical X.509 PKI and
the Web of Trust that OpenPGP employs. In X.509 at least, there is also a noteworthy
difference between theory and practice, which we are going to explore.

Interestingly, revocation is practically no concern in the ‘False PKI’ of SSH: there
are no TTPs that could be bottlenecks. As administrators are assumed to have control
over both client and server, revocation can be achieved by simply replacing a host key
with a new one.

2.7.2. Revocation in X.509 for TLS

Two mechanisms are defined for revocation checks in X.509. The first one, Certificate
Revocation Lists (CRLs), is defined in the same RFC as X.509 [94]. It is an offline

24

2.7. Revocation

mechanism for revocation checks. The Online Certificate Status Protocol (OCSP) is a
more recent addition and provides an online way to obtain certificate status information.

Certificate Revocation Lists

The idea behind CRLs is that CAs regularly issue lists of certificates with status in-
formation about revoked certificates. The mechanism is defined in RFC 5280 [94]. A
CA may issue several CRLs, each with a different scope (e.g., dividing by revocation
reason). Certificates in CRLs are identified by the issuer’s identity and a serial number.
A full CRL is a list of all certificates that have ever been revoked. CAs may choose
to issue so-called delta CRLs: these are incremental updates against a base CRL. A
CRL must itself be signed by the CA so a verifier can determine its correctness. It
also contains information when the next update is going to be published. The CA may
choose between different mechanisms how a CRL can be downloaded or obtained, e.g.,
via HTTP, FTP, etc.

Revoked certificates are listed with additional information. Two items are of par-
ticular relevance, although both are optional: invalidity date and reason. The former
represents a date from when on a certificate must be considered revoked. This may be
a point in time that lies before the actual issuing date of the CRL itself: consider a
protocol that involves the use of the private key that corresponds to some certificate,
and applies a signature to some timestamped data item as part of the protocol. The
invalidity date allows the verifier to determine if the signature was issued while the key
was already revoked or not. The reason for revocation can also be given in a CRL; the
standard specifies a list of reasons like key compromise or compromise of the CA, but
also more mundane reasons like changed affiliations.

One issue with CRLs is generally that they can grow rather large—some CAs may
have many thousands of customers for which they issue several certificates over time.
With a potentially large number of CAs in a root store, this would mean that clients
would waste considerable bandwidth to regularly download CRLs that contain a list
of all revoked certificates instead of the ones that the clients really need information
about. Furthermore, CRLs can generally not be downloaded when they are needed,
i.e., during TLS connection establishment: this would induce a rather high delay in
connecting to a Web site. Thus, the user must accept that revocation information is
only updated at certain intervals and that there is a certain time window for an attacker
until the next update is published.

Online Certificate Status Protocol

OCSP is a protocol to retrieve status information about a certificate in an online
interaction. OCSP allows to obtain fresh revocation information. It is defined in
RFC 6960 [119]. The protocol describes a request-response mechanism between a client
and an OCSP server. An OCSP request message by a client may contain queries for
several certificates at once. A queried certificate is identified by a 3-tuple, namely a
hash over the issuer name, a hash over the issuer’s public key, and the certificate’s
serial number. The idea here is that a serial number is always logged and stored at the
issuer, and that it is unique for the given issuer. A nonce against replay protection is
an optional part of the request, as is a client signature.

An OCSP server (often called responder) is responsible for a particular issuer. In
its response to a client, it identifies itself (by name or hash value of its public key),
states the time at which the response was generated, and adds a response for each
of the queried certificates. The response is signed by the server. It may also include
extensions, like a reference to the CRL on which the response is based.

25

2. Theory and practice of Public Key Infrastructures

There are only three values to express the status of a certificate. It may either be
good (i.e., the certificate is valid to use), revoked (the certificate must not be used) or
unknown. The revoked status can be expanded with a reason for the revocation and
must contain a timestamp. The allowed reasons are exactly the same as in the RFC
for CRLs (see above). The revocation can be temporarily or permanent; this can be
expressed in the reason.

The status unknown is interesting because it is the answer the responder is supposed
to send if the certificate in question is unknown to it, for example because it is not from
the issuer for which the responder is responsible. This leaves it open to the client to try
another resource like a CRL. The RFC does not require clients to abort the connection
attempt—as we will see in Chapter 3, this can be a dangerous weakness.

OCSP Stapling

OCSP, in its basic form, suffers from two issues. One is that an OCSP responder can
determine a client’s browsing habits, which can be a serious violation of privacy. If
a client sends an OCSP request every time it visits a new domain, the responder can
track it by its IP address. The second issue is performance. The OCSP default mode of
operation puts all load onto the OCSP responder, and the load grows with the number
of verifying clients, i.e., browsers. In a blog entry [253], Symantec claimed to serve 3.5
billion OCSP requests per day10.

An approach to solve this is the TLS Certificate Status Request extension, also often
called OCSP Stapling. It is an extension for TLS that can be part of the handshake [99].
With OCSP Stapling, it is the server’s responsibility to obtain a proof that its certificate
is still considered valid by an authorised OCSP responder. A server is supposed to
obtain a valid OCSP response for its certificate and return it as part of the TLS
handshake, immediately after its own certificate. The RFC allows the server to reuse
the OCSP response to avoid having to query for every single client connection.

OCSP Stapling provides several important benefits. It solves the privacy problem
and takes considerable load from the CAs. Web servers can limit themselves to re-
questing a new OCSP response at certain intervals. Finally, OCSP Stapling also makes
the TLS handshake faster as the client does not have to connect to a further party to
verify the certificate, saving TCP round-trips and DNS lookups.

However, even OCSP Stapling has some shortcomings. A very important one is that
the original RFC does not allow to transport OCSP responses for the intermediate cer-
tificates in a certificate chain, only for the end-host certificate. This is very unfortunate
as intermediate certificates are very common. RFC 6961 is meant to address this but
was only published in mid-2013 [114].

Revocation practices in browsers

Theory and practice are often two different things, and this is also the case for revoca-
tion in X.509. If certificates do not carry information where to find proper revocation
information, they are effectively irrevocable, i.e., valid for their entire lifetime. In an
investigation carried out by Netcraft [182], a number of mistakes made by CAs are
listed. A CA operated by American Express was one example where revocation in-
formation was completely lacking. Google’s CA (a subordinate CA of Equifax) did not
include OCSP URLs, which effectively disabled revocation checks by Firefox as this
browser only checks CRLs in the case of EV certificates. For all other certificates, it
will carry on normally and establish the connection, without warning. Netcraft stated
10The blog entry does not specify which CA does this. Symantec owns at least five brand names:

Equifax, GeoTrust, TrustCenter, Thawte, and VeriSign.

26

2.7. Revocation

that this was particularly discomforting as Google’s own CRL listed seven certificates
with reason ‘key compromised’. Google was not the only offender—Netcraft had also
found such certificates from Symantec, Verizon, GlobalSign, and Microsoft.

Browsers do not necessarily carry out revocation checks as intended, either. Netcraft
demonstrated the shortcomings of browsers in a blog post in May 2013 [181]. The prob-
lem they investigated was a revoked intermediate certificate by RSA. The revocation
was meant to be effective immediately. However, as the blog post pointedly remarked,
‘more than a week later nobody had noticed [and] the certificate was still in place [on
the server]’ . The reason was that RSA did not provide an OCSP revocation service and
had only put the certificate on a CRL. Even if OCSP had been available, however, Net-
craft notes that Firefox does not check the validity of intermediate certificates anyway.
Only the browsers Internet Explorer and Opera carried out proper verification checks
and prevented access to the Web site. However, browser caching behaviour might still
have broken the verification: Netcraft judged most browsers would cache the CRL for
six months.

Furthermore, as Google engineer Adam Langley points out in a blog post [208], so-
called ‘captive portals’ make it practically impossible to carry out OCSP checks. The
term ‘captive portal’ refers to network setups as they are common in, e.g., hotels, which
require users to register before allowing them unrestricted access to the Internet. As
wireless access points often do not use encryption, the registration has to be sent via
HTTPS to the registration server (which is initially the only host that can be accessed).
OCSP requests are generally not forwarded, and thus users cannot identify a revoked
certificate. This unsatisfying situation led Google to be the first vendor to change their
revocation support in their browsers. Langley announced that Google Chrome would
no longer support CRLs nor OCSP in the future. Instead, Google would maintain a
list of revoked certificates and distribute these to the browser via their normal software
update mechanism [208]. The list would be obtained by scans of CRLs. The obvious
question is whether this concept can scale. It is exceedingly difficult even for Google
to maintain a complete list of revocations and distribute them. However, it is safe to
assume that most users never access large portions of the Web. This means that Google
can focus at first on important Web sites, like those on the Alexa Top 1 Million list of
popular Web sites [133] in order to deliver a level of protection that is better than the
current one.

2.7.3. Revocation in OpenPGP

Revocation in OpenPGP is different from X.509 revocation. First of all, revocation
in OpenPGP cannot be carried out by any entity other than the key owner himself—
otherwise, any malicious participant could mark keys as unsuitable for use by others.
To revoke a key, the key owner issues a so-called revocation certificate. This is a simple
statement that the indicated public key must be considered revoked and not be used
any more, signed with the associated private key. The revocation certificate can then be
propagated to all interested and affected parties. Optimally, the revocation certificate
should be created right after the creation of the key pair itself, and then stored in a
secure location until it is needed. It must never be lost, or revocation of the key is
impossible. The fact that key servers never delete keys from the Web of Trust makes
this worse.

The fact that the revocation certificate must be distributed to affected parties is
also a serious problem. While users can inform those they know to use their key, they
cannot reach out to unrelated parties who might download the public key from key
servers and use OpenPGP’s trust metrics to establish a first, marginal trust into the
public key. Key servers allow to optimise this as they are able to store revocation

27

2. Theory and practice of Public Key Infrastructures

certificates, too. Just as in X.509, users would then have to remember to verify that a
key has not been revoked every time before using it.

Finally, it is worthwhile to think about the damage that a successful attacker can do
in OpenPGP and in X.509. In X.509, domain owners generally must register with a CA
out-of-band (usually on a Web site) before they can request certificates. This access is
usually protected by password, and thus there is a second secure channel available for
the domain owner to request revocation of a certificate. Furthermore, as long as this
password remains uncompromised, an attacker cannot obtain further certificates from
the CA. He is not able to use the private key to certify other entities, either. This is
not true in OpenPGP: an attacker in possession of the private key can spread some
damage through the network until he is detected.

On summary, the security of revocation in OpenPGP depends on the security of the
revocation certificate and how fast a key owner is able to distribute it. Despite the
flaws in implementation, revocation in X.509 can limit the potential damage. However,
one should also note that this issue may not be so devastating if a Web of Trust is used
within smaller communities: the possibility of personal contact between users may help
mediate the problem.

2.8. Text adapted from previous publications
This chapter contains text from the sections on related work and background of the
following previous publications:

• Alexander Ulrich, Ralph Holz, Peter Hauck, and Georg Carle. Investigating the
OpenPGP Web of Trust. Proc. 16th European Symposium on Research in Com-
puter Security (ESORICS), Leuven, Belgium, September 2011 (reference [73]).

• Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. The SSL
Landscape—a thorough analysis of the X.509 PKI using active and passive meas-
urements. Proc. 11th ACM SIGCOMM Internet Measurement Conference (IMC),
Berlin, Germany, November 2011 (reference [37]).

• Oliver Gasser, Ralph Holz, Georg Carle. A deeper understanding of SSH: res-
ults from Internet-wide scans. Proc. 14th IEEE/IFIP Network Operations and
Management Symposium (NOMS), Krakow, Poland, May 2014 (reference [28]).

The contributions to the papers made by the author of this thesis are listed in Chapter 4
(for [37]), Chapter 5 (for [73]), and Chapter 6 (for [28]).

Section 2.4 is an extended version of Section 2 in [37]. The author added the sections
on history and use in TLS. He significantly extended the sections on certificate structure
and CA hierarchy. Section 2.5 is a revised version of Section 2 in [73], with clarifications
and details added by the author. Section 2.6 is an extended version of Section II in
[28]. The author added the protocol flow of SSH and added details on the PKI model.

28

Part II.

Analyses of Public Key Infrastructures

29

3 Chapter 3.

Analysis of the weaknesses of the
X.509 PKI

The deployment of X.509 for the WWW began in the 1990s with the first browser
vendors adding CA certificates to their root stores. Criticism of this approach can
be found as early as the turn of the millennium. From about 2008 on, we also find
increasing evidence of successful attacks against the X.509 PKI.

This chapter addresses Research Objective O1. The approach we take is historical-
documental, with empirical elements. We analyse early criticisms and investigate
whether these were addressed later. We then investigate reports of known attacks
(both successful and unsuccessful ones) and determine the root causes. From this, we
derive requirements that mechanisms to strengthen X.509 have to meet in order to be
successful.

3.1. Investigated questions
In keeping with Research Objective O1, we define the following research tasks.

Criticism and mediation We investigate which major criticisms were brought forward,
and whether these were addressed. This covers Research Objective O1.1.

Incidents and their causes We investigate incidents in the X.509 PKI and determine
their root causes. This task addresses Research Objective O1.2.

Improvements to X.509 Based on the above findings, we derive which kind of ap-
proaches can help mitigate the above identified causes for failures. This addresses
Research Objective O1.3.

3.2. Criticism of the design
In the following, we describe some major criticisms of X.509 that were brought forward
from early on and analyse whether these were addressed.

3.2.1. CA proliferation: the weakest link
The original X.509 PKI envisaged one global CA with many subordinate CAs respons-
ible for clearly outlined portions of the X.500 directory. X.509 for the WWW eliminated
this principle: here, any CA may issue a certificate for any domain. When discussing
different PKI setups, Perlman identified the critical weakness of this approach in [61]:
compromising a single CA is enough to break the entire PKI. Yet CAs in the root store
are not the only ones that are trusted. As mentioned in Section 2.3, CAs may employ
Registration Authorities (RAs) to identify the entity making a certificate request. Since

31

3. Analysis of the weaknesses of the X.509 PKI

the identity verification is a crucial step in certificate creation, this means that there
are more entities that need to be ‘trustworthy’ than the size of a root store suggests.
This was recognised early on in publications, e.g., by Ellison and Schneier [23], and
also in academic talks, e.g., by Chadwick [156]. The obvious CA for an attacker to
target would be the one with the weakest protections. As a result, the strength of the
entire PKI is equal to the strength of the weakest CA.

It is thus an interesting question whether these early criticisms of CA proliferation
were addressed or not. One way to measure this is to analyse the development of the
root store of a major browser vendor. We chose to do this for the Mozilla Firefox
browser, whose source code is publicly available. It takes its root store from the NSS
cryptographic library, which it uses for TLS [230]. We downloaded all revisions of NSS
from the CVS development branch1 [233]. This branch holds the root stores between
late 2000, when the first certificates were added, and late 2012. It is a very good
approximation of the state of Firefox’s root store over the years2. For each root store,
we determined the number of included root certificates. Our tool suite [200] is an
extension of another tool to extract the root store, written by Langley [211]. It allows
us to extract the root stores not only from the current Firefox versions, but also from
older versions3.

The result is shown in Figure 3.1, which shows the development of the NSS root store
since 2000. As can be seen, the root store was initialised with only about a handful of
certificates. Since then, the number has greatly increased over the years. By December
2010, we find the number to have grown to almost 120. By the end of 2012, it had
reached 140 root certificates. Recall that each certificate is associated with a private
key that must be protected at all times in order to avoid compromise of the entire PKI.

The significance of this count alone is somewhat limited, however. Another inter-
esting question would be how many organisations exist that own root certificates in
the root store. This question can be answered with data available from Mozilla—
the organisation discloses the owners of the root certificates in a publicly available
document [231]. As of 7 November 2013, we find the root certificates belong to 65 or-
ganisations, which identify themselves via 90 different names in the ‘organisation’ part
in the issuer field of the certificate4. We also investigated the requests for inclusion of
new root certificates, which are also published by Mozilla [232]. We found 41 owners
applying for the inclusion of a new root certificate. Seven owners applied for an update
of their certificate’s status in the root store (e.g., to enable EV treatment). Note that
this list also contains already-approved requests, which have just not been added into
the source code of NSS.

As a note aside, even browser vendors sometimes find it hard to track root certificates
across organisational changes (mergers, acquisitions, introduction of new operational
procedures, etc.). Mozilla, for example, had to admit in 2010 that they had difficulties
determining whether the owner of a root certificate in their root store was still active
[273, 238]. The issue could be cleared up within weeks: the company RSA still held the
private key, but the certificate had been retired. The case demonstrates the considerable
effort that must go into the administration of root stores.

1cvs -d :pserver:anonymous@cvs-mirror.mozilla.org:/cvsroot/ co mozilla/security/nss/
2There is no centrally maintained list which NSS revision was used in which Firefox version, unfor-
tunately. Firefox versions have a different release schedule than NSS and may skip the odd NSS
version. However, the root stores are the same and the delay in introducing new CAs into Firefox
is too short to be significant for our analysis.

3Note that this method differs from the one we used in [37] as we count only root certificates that are
declared to be used to issue server certificates here.

4We discounted two certificates where the organisation part was empty.

32

3.2. Criticism of the design

N
um

be
r

of
 c

er
tif

ic
at

es

●

● ●

●

●● ●●●
●● ●●

●●●
● ●●●●●● ●● ●

●

●●●
●●●● ●●

● ●
●●

●
● ●

●●
● ● ●

●

● ●●
●

●
●

●

●

●●●●
● ●●●●

● ●

●
●●

●●●●● ● ●● ● ●
●

● ●

20
00

−
09

−
01

20
01

−
01

−
01

20
02

−
01

−
01

20
03

−
01

−
01

20
04

−
01

−
01

20
05

−
01

−
01

20
06

−
01

−
01

20
07

−
01

−
01

20
08

−
01

−
01

20
09

−
01

−
01

20
10

−
01

−
01

20
11

−
01

−
01

20
12

−
01

−
01

20
13

−
01

−
01

0

20

40

60

80

100

120

140

Figure 3.1. – Growth of the NSS/Mozilla root store.

Our method can merely estimate a lower boundary on the number of entities that can
sign certificates. The root store does not list subordinate CAs, which may be operated
by other organisations. One could be tempted to determine the names of organisations
from large-scale scans of the HTTPS infrastructure. However, this method has another
caveat: it is impossible to tell from an intermediate certificate whether it is used by
a subordinate CA or whether it just indicates that a certain RA verified the identity
of the subject named in the certificate. For example, it is known that the German
association DFN-Verein, which itself operates as a subordinate CA, employs a large
number of RAs. These RAs appear in the issuer strings of intermediate certificates
issued by DFN-Verein. However, they do not control the cryptographic material: all
certificates are issued by the DFN-Verein subordinate CA itself [190]. It would thus
be incorrect to count the RAs as entitites that can issue certificates—only the one
subordinate CA should be counted.

Finding The numbers for both certificates and organisations show that CA prolifera-
tion has continued over the past decade and there is no sign that it will stop, at least in
the short or even medium term. The weakest CA determines the strength of the entire
PKI.

3.2.2. Trust and liability

Browser vendors and operating systems decide which root certificates should be in-
cluded in their root stores. Users as the parties that rely on the correctness of certific-
ates are not involved in these decisions. It is thus an interesting question whether CAs
can be held liable for accidents, compromises or mistakes they make. This point was
first investigated by Ellison and Schneier in [23] in 2000. At that time, PKI practices
were far from being standardised, but CAs did already document abstract duties and
responsibilities in Certification Practices Statements (CPSs). Ellison and Schneier ana-
lysed the CPSes of several CAs. They found that not one of them accepted liability in
any form for an issued certificate. Consequently, trust into CAs could be said to be es-
tablished by browser vendors without a legal way for users to hold anyone accountable
for damages.

33

3. Analysis of the weaknesses of the X.509 PKI

Generally, vendors require security audits according to a standard like
WebTrust [171]. Some set additional requirements. Mozilla documents their require-
ments in [229], Microsoft in [223]. The question is if compliance with an audit is enough
to constitute trust in a CA, especially as the audited parties are exactly the parties that
pay for the audits. However, PKI practices have moved a step further towards stand-
ardisation. The so-called Baseline Requirements of the CA/Browser Forum impose
policies on the certification practices of the forum members [148].

With such documents in existence, one way to assess the trustworthiness of a CA
is to consider the degree of liability they prescribe: a high liability means that the CA
will at least pay damages if any incident should harm the customer. This should give it
a strong incentive to adhere to good secure practices. We thus inspected the Baseline
Requirements. We found that not very much had changed since Ellison’s and Schneier’s
investigation: the standard continues to allow a CA to disclaim any liability. There is
not even a need to mention this in the CPS5. As of 2013, a separate set of guidelines
exists for EV certificates. The guideline document by the CA/Browser forum allows
CAs to limit liability to 2000 USD per ‘relying party’ (e.g., users) or ‘subscriber’ (e.g.,
domain owner), and per EV certificate [149, p. 40].

Finding While users are parties that need to rely on the correctness of the PKI, we find
that they still cannot hold CAs liable, except in the case of EV certificates. Even then,
however, CAs can limit their liability to 2000 USD. Liability is only a small incentive
for CAs to operate in a way that makes them more trustworthy.

3.2.3. Strength of identity verification

Ellison and Schneier also expressed concern about what they call a CA’s ‘author-
ity’ [23]—based on the fact that CAs certify public keys for domain names without
actually having control over DNS registration, and thus being unable to verify the
identity of the party requesting a certificate with enough certainty. We analysed cur-
rent practices, based on the Baseline Requirements and the EV requirements of the
CA/Browser Forum.

The Baseline Requirements distinguish between the authorisation of a domain owner
to apply for a certificate and the verification of the identity of the domain owner in
terms of name and address. Concerning the authorisation, the document specifically
allows CAs to use email to verify that a requesting party is authorised to request a
certificate. The email address to use may be either taken from the WHOIS, be a
‘standard’ address like hostmaster prepended to the domain name, or be supplied
from the domain registrar as a recognised authority [148, p. 14]. However, email still
relies on the insecure DNS, which thus represents a weak link in the chain of verification
steps to carry out.

For certificates where the requester also wishes to add name and address, the
Baseline Requirements require out-of-band steps. Examples are attestation letters,
site visits or communication with a government agency. This establishes a level of
verification between the email-based domain-verification and EV certificates. Recall
that the latter are intended for organisations only. The respective guidelines for EV
certificate issuance are described in a document of their own, and often require contact
with entities recognised by a jurisdiction’s government for such purposes [149, p. 20–
21]. Interestingly, email contact is cited as one way to communicate with such entities,
at least in some cases [149, p. 20].

5At the time of writing, the liability clauses remain in effect even for the now-updated version of the
BR.

34

3.3. Incidents and attacks against the X.509 PKI

Finding The guidelines published by the CA/Browser Forum establish (at least) three
different classes of certificates. Some certificate types require a relatively thorough
verification, which takes contact with government agencies into account. However, the
‘domain-validated’ certificates still rely on insecure technology during the verification
process.

3.2.4. Summarising view

The previous sections demonstrated that a number of weaknesses were known to exist
in the X.509 PKI from an early point on. We showed that at least two of them, namely
CA proliferation and liability, were not mediated since the academic publications that
described them.

Concerning CA proliferation, we found that the number of root certificates continues
to grow as evidenced by an analysis of the Mozilla root store for the time between late
2000 and end of 2012. Furthermore, the number of organisations owning the root
certificates is also relatively high, namely about 60—and another 40 organisations are
waiting to have their certificates included in the root store.

Concerning liability, we analysed the current guidelines for the issuance of certificates
that have been agreed upon by members of the CA/Browser Forum. We found that
CAs may disclaim any liability, except for the case of EV certificates. However, the
liability even in this case is relatively low.

We found that the third issue, the use of insecure technology to verify identities, has
been addressed only partially and only for a certain class of certificates.

On the whole, it is safe to say that developments in the X.509 PKI have been rather
slow, with important issues not addressed for many years. In particular, it seems
unlikely that the issue of CA proliferation will be addressed in the near future. With
CAs having equal certification capabilities, the argument of the X.509 PKI being as
strong as its weakest link will continue to hold.

3.3. Incidents and attacks against the X.509 PKI

In this section, we take a documental approach: we compile a survey in which we
analyse known attacks and incidents against the X.509 PKI. In particular, we will
investigate the root causes. To the best of our knowledge, this is the first academic
survey covering this topic.

Figure 3.2 shows a timeline of events that may serve as a graphical reference. Our
results are mostly based on the analysis of publicly available sources (like reports from
hackers) and incident reports (from CAs themselves or companies hired to carry out an
investigation). We also briefly analyse the extent to which cryptographic breakthroughs
endangered the X.509 PKI. We conclude with a relatively new danger to X.509 and
TLS: the appearance of devices that allow to carry out mass surveillance.

3.3.1. Attacks against the X.509 PKI

The order in which we present incidents will be only roughly chronological: in some
cases, incidents occurred before others but were not disclosed until later, or they oc-
curred but it was not realised then that they were linked to other incidents. We thus
sometimes deviate from the chronological order to make such links more transparent.

35

3. Analysis of the weaknesses of the X.509 PKI

Microsoft code-signing certificates (2001)

The first case we discuss gained a certain prominence as it affected Microsoft. The
Microsoft Security Bulletin that describes the incident can still be found online [220].

In 2001, the VeriSign CA erroneously issued certificates to an unknown party that
claimed to be Microsoft. These certificates could be used to sign code. They were not
issued for domain names, thus a man-in-the-middle attack on traffic was not possible.
Microsoft stated their real certificates were issued from a different CA and that the
rogue certificates would not be accepted by its Windows operating system.

Finding The incident showed that it was possible to trick a well-known CA into issuing
certificates for the wrong entity. The weakness was the insufficient identity check on
part of the CA. It remains unclear at which point in the certification process the mistake
was made.

Thawte (2008)

Attacks on the X.509 PKI began in more seriousness in 2008, marked by a series of
proof-of-concept exploits against major CAs. These were carried out by white-hat
hackers, i.e., hackers with benign intent. In summer 2008, Zusman announced that
he had been able to obtain a certificate for login.live.com, an important site by
Microsoft [277]. Combined with a man-in-the-middle attack, this would have allowed
him to intercept critical traffic to the site.

The attack vector was simple. Zusman exploited the fact that CAs assume certain
email addresses can only be owned by an administrative contact, i.e., someone with
a claim to the domain. As mentioned in the last section, this practice is still allowed
by the Baseline Requirements. Examples of such addresses are root@example.org,
postmaster@example.org, etc. However, at that time no comprehensive list of such
addresses had been agreed upon between CAs and other parties. This was critical
in the case of Web mail services, however, as these allow email address to be freely
registered under the domain name of the service. In this particular case, Thawte6
viewed sslcertificates@live.com as a valid administrative contact. This address
was still available for registration. Zusman acquired the email address and then bought
a certificate for login.live.com. His blog entry implies that he even spoke to Thawte
personnel on the phone, who did not notice the high value of the domain name nor
thought of additional verification steps.

Finding The weakness consisted of a lack of agreement between server operators and
CAs which email addresses constitute a valid contact. The root of the problem, however,
is that email contacts are a poor way to assert an entity’s ownership of a domain.

Comodo (2008)

A serious incident in the same year concerned the Comodo CA, a relatively large CA.
It was reported by Eddy Nigg, founder of the competing CA StartSSL, in a blog
post [236], on 23 December 2008. Comodo operates resellers and Registration Au-
thorities that are allowed to verify ownership of a domain name themselves. Nigg
found that one of these resellers sent him unsolicited advertisements to buy certificates
from them. He tested whether he could get a certificate for mozilla.com, and found

6Zusman did not immediately announce the name of the CA; he disclosed this information several
months later [276].

36

3.3. Incidents and attacks against the X.509 PKI

that he could buy the certificate without any verification checks applied at all. He re-
ported this violation of a CA’s most basic obligation on his blog and in the newsgroup
mozilla.dev.security.policy [235], where Mozilla carries out its root certificate in-
clusion process. The issue was also discussed in Mozilla’s bug tracking system [146].
The entry contains an incomplete description of the rather complicated system of RAs,
resellers and subordinate CAs that Comodo operates.

Comodo’s failure to guarantee their RAs’ proper functioning raised the question
whether their root certificates should be removed from Mozilla’s root store. There was
no precedent for this. Comodo themselves deactivated the RA. After discussion in the
newsgroup and the bug tracker, Mozilla chose to interpret this as sufficient action on
Comodo’s side. No further steps were taken.

Finding The weakness was an RA failing to comply with their duties in spite of con-
tractual obligations. It shows that the model of RAs is dangerous if the RAs cannot
also be technically controlled.

StartSSL (2008)

StartSSL itself was also a victim in 2008. The incident was reported two weeks after
the previous one, but actually occurred three days earlier. On 20 December 2008, an
attacker exploited a flaw in StartSSL’s Web interface to issue a number of certificates,
among them the domain of the online payment operator PayPal and the CA VeriSign.
The latter was caught by StartSSL as the CA maintained a list of domains it considered
sensitive. Certification requests for these domains were automatically forwarded to
human personnel for manual inspection (but after the issuing process had completed).
This second line of defence caught the intruder, and all rogue certificates were instantly
revoked.

StartSSL contacted the intruder via the email address he had given during the
registration process—it was Zusman, who had also previously tricked Thawte. Zusman
reported his success in a blog post [279]. StartSSL documented it in a white paper [261].
We inspected both texts. There is no unambiguous description in StartSSL’s report how
the attacker managed to break the registration process. Zusman cleared it up in a talk at
DEF CON 17 [278] and identified the weakness as ‘Insecure Direct Object Reference’.
This vulnerability type had been in the Top 10 list of weaknesses compiled by The
Open Web Application Security Project (OWASP) just the year before. StartSSL also
became the centre of debate in the Mozilla newsgroup. Mozilla decided to keep their
root certificate in the root store.

Finding The weakness lay in a serious technical vulnerability in the front-end which
may have been there for an undetermined period of time. The incident was contained
thanks to the CA’s defence-in-depth approach, a manual check for sensitive domains.

RapidSSL (2010)

In 2010, Seifried reapplied the method Zusman had used previously to obtain a certi-
ficate from Thawte. His target was the RapidSSL CA (owned by VeriSign). Seifried
registered ssladministrator@portugalmail.pt from the Portuguese Web mail pro-
vider of the same name and found he could normally buy a certificate for the domain.

He documented this finding in a post to the newsgroup mozilla.dev.tech.crypto
and an article in Linux Magazine [257, 256]. A bug in the Mozilla bug tracker was
consequently opened [212]. It is worthwhile to note here that the attack vector was
long-known and had been exploited before. The CA was even aware of it: an entry

37

3. Analysis of the weaknesses of the X.509 PKI

in Mozilla’s bug tracker documented that the CA had promised one year before to
disallow such addresses [262]. Technically, however, they were not at fault—the grace
period that the CA had been given to address the issue was not completely over yet
when Seifried carried out his certification request.

Finding The weakness was identical to the Thawte incident of 2008. However, it also
shows that even security-critical organisations like CAs can sometimes exhibit a slow
pace of change.

Comodo (2011)

2011 could be said to be the year when the X.509 PKI was broken the first time with
very serious consequences. On 15 March 2011, a Comodo RA was compromised and
the attacker was able to issue rogue certificates. Comodo themselves acknowledged this
fact about a week later [159]. The intruder himself posted a letter to Pastebin (a site for
sharing text fragments, with anonymous access) and identified himself as a hacker from
Iran [164], providing details about the methods he had used to issue the certificates
and secret information whose authenticity only the RA could confirm—passwords and
database names among them. Comodo broadly acknowledged some of these details
later [214].

The intruder identified the Italian branch of InstantSSL as the reseller he had broken
into. Once on the server, he could decompile a library, which allowed him to determine
Comodo’s online interface for certificate signing and gave him the access credentials.
Note that this means that the reseller was essentially a subordinate CA, not just an
RA. The attacker used the credentials to issue nine certificates. High-value domains
were among them, e.g., Google, sites of Yahoo, Skype, and Microsoft Live, as well as
the Mozilla Add-on site. The latter is of particular note: together with a man-in-the-
middle attack, it would allow to trick users into installing forged add-ons, which has
the potential to compromise their entire system. The purpose of another certificate,
with the subject ‘global trustee’, was never ascertained. In two separate posts to
Pastebin over the next two days, the intruder presented more details [160, 163]. Shortly
afterwards, he released the rogue certificate for Mozilla [162] and indicated that he
had compromised at least two more Comodo resellers [166]. Comodo confirmed the
compromise of two more ‘RA accounts’ [132], although this leaves open what kind of
accounts were compromised. A blog post by Netcraft later identified GlobalTrust as
one compromised ‘RA’ [234].

Comodo noticed the incident themselves and reacted by revoking the affected certi-
ficates. According to their report [159], the certificates were not detected in use, apart
from one ‘test’ on a host in Iran. The company claimed that ‘the attack came from
several IP addresses, but mainly from Iran’ [159]. Comodo also notified other affected
parties, in particular browser vendors. The first public notice did not come from Co-
modo, however, but from Mozilla [240] and the independent security researcher Jacob
Appelbaum [137]. He had monitored changes to the source code in the repositories
of Chromium (the open-source project behind Google’s Chrome browser) and Mozilla
and noticed that the two organisations had both blacklisted (roughly) the same cer-
tificates in their source code. Upon inquiry, he was told of the incident and agreed
not to disclose it until patches had been shipped. Mozilla disclosed the incident on 22
March, Microsoft and Comodo on 23 March. The changes to the repositories had both
happened on 17 March. In other words, between the compromise and the fix two days
had passed. It took five more days until the incident was finally publicly disclosed.

Browser vendors reacted by marking certificates as untrusted as part of their code.
Revocation mechanisms like CRLs or OCSP were not sufficient. First, a root of the

38

3.3. Incidents and attacks against the X.509 PKI

PKI had been successfully attacked. Second, as mentioned in the last chapter, browsers
generally do not fail promptly on revocation errors—i.e., they do not abort a connection
if they are unable to obtain revocation information. If the certificates had only been
revoked, an attacker would still have been able to use them if he had been able to
suppress CRL or OCSP traffic, too. Apart from removing Comodo’s root certificate,
blacklisting certificates in code was thus the only way to make the rogue certificates
useless for an attacker.

Finding The weakness here was of a combined technical and organisational nature.
First, a weak link existed in the form of an RA. Second, the reseller’s public-facing
systems were vulnerable, and the attacker could escalate his privileges to the point
where he could issue certificates. Third, the attack showed that there is no clear
distinction between RA and subordinate CA—the ‘RA account’ was equipped with
access rights to Comodo’s signing systems.

DigiNotar (2011)

The series of incidents culminated in the breach of the DigiNotar CA. DigiNotar parti-
cipated in the Dutch government’s PKI, PKIOverheid, allowing it to issue government-
accredited certificates. The CA was allowed into the Mozilla root program in May
200878. The incident that concerned DigiNotar was investigated by the security com-
pany Fox-IT, on whose final report we rely in the following [192].

On 19 July 2011, DigiNotar found a mismatch between their list of issued certificates
and records kept in their back office. An investigation yielded that rogue certificates
had been issued. In the week that followed, more such rogue certificates were found
and also a message from the intruder. DigiNotar revoked the rogue certificates and
consulted an external security firm. DigiNotar did not inform browser vendors; the
company believed the damage had been contained by revoking all rogue certificates
they had found.

It turned out that this assessment was wrong. On 27 August 2011, a user from Iran
posted a message to Google’s Gmail product forum, stating that he was encountering a
rogue certificate [145]. His browser, Google Chrome, had given a warning when trying
to access Gmail. This was due to a largely undocumented feature in the browser: it
contained hard-coded checksums for valid Google certificates. This allowed it to identify
the rogue certificate and warn the user. The post to the forum contained the rogue
certificate and was later enhanced with traceroute information showing an unusual path
to Google’s servers. The initial post was soon followed by other reports from Iran. This
showed that the incident was not limited to one ISP. Rather, everything was pointing
towards a state-level man-in-the-middle attack.

DigiNotar learned about this only when it was contacted by the Dutch CERT the
next day. The rogue certificate was instantly revoked, and other stakeholders notified.
Google published a blog post on the same day [130], stating that they had received
several reports about ongoing man-in-the-middle attacks with the fraudulent DigiNotar
certificate. They announced their plans to remove DigiNotar from their root stores.
Mozilla was informed by Google and also reacted on the same day, shipping emergency
versions of their software with the DigiNotar CA disabled [241]. Microsoft reacted in
the same way [191].

7The DigiNotar root certificate appears for the first time in CVS revision 1.48 of the Mozilla source
code, which is from 2008.

8Interestingly, DigiNotar applied for being allowed to issue X.509 certificates for Web hosts, S/MIME,
and code signing. Their verification practices for email addresses did not meet Mozilla’s standards
for S/MIME, however, and the email trust flags were never enabled in Mozilla.

39

3. Analysis of the weaknesses of the X.509 PKI

2013

2012

2011

2010

2009

2008

2002

2001
VeriSign tricked into issuing rogue certificates

Trustwave discloses ‘industry practice’ of subordinate CAs
for surveillance

Türktrust—rogue intermediate certificates used to
impersonate Google
DigiCert Sdn. Bhd. issues weak certificates;
used to sign malware

DigiNotar compromised (‘Comodo Hacker’);
rogue certificates issued
StartSSL breached; no rogue certificates issued
InstantSSL (Comodo RA) compromised (‘Comodo Hacker’);
rogue certificates issued; more compromised RAs confirmed

RapidSSL performs insufficient identity check

Rogue CA certificate created by MD5 collision
(Sotirov et al.)

Comodo RA issues certificate without identity check

StartSSL interface compromised; rogue certificates issued
Thawte performs insufficient identity check

Figure 3.2. – Timeline of incidents threatening the security of the X.509 PKI for the WWW.

40

3.3. Incidents and attacks against the X.509 PKI

Fox-IT was hired to carry out an investigation on 30 August 2011. The company
set up a monitoring system to determine whether the intrusion was ongoing. Fox-IT
found that DigiNotar’s logs had been tampered with, leaving the company without
information about the serial numbers in the rogue certificates, and without a way to
assess how many rogue certificates had actually been issued. Initially, this also preven-
ted them from sending correct OCSP revocation responses for the rogue certificates as
OCSP is a blacklist-based system. Upon further investigation, Fox-IT found that the
attacker had begun to breach DigiNotar’s network as early as 17 June 2011. Firewall
logs showed connections to IP addresses in Iran.

By 1 July 2011, the sensitive network containing the hosts running the CA software
had been compromised. The first successful attempt at creating a rogue certificate was
made on 10 July. The investigation showed that all servers that managed CA activities
were compromised, with the intruder having administrator privileges and access to
databases. Fox-IT could show that the intruder had issued at least 531 certificates, for
140 unique certificate subjects and 53 unique Common Names (e.g., DNS domains). It
remains unclear to this day whether more certificates were issued. The last traceable
activity of the attacker on DigiNotar’s systems was on 24 July 2011. Note that this is
a full week after DigiNotar noticed the breach and consulted a security firm to contain
the incident.

Fox-IT found messages left by the attacker on DigiNotar’s systems. The attacker
claimed to be the same person who had also breached Comodo’s RA several months
before. He communicated with the public via Pastebin [165] later and for a short time
also over a Twitter account [169]. The attacker claimed to come from Iran and act
alone [168, 161]. He clarified that he did not work as part of a state-sponsored attack,
but acknowledged that he had given rogue certificates to other entities, without stating
who they were [167]. The ongoing man-in-the-middle attack was consistent with the
attacker’s claims, as were Fox-IT’s findings of communication with IP addresses in Iran.
Among speculations that the Pastebin entries came from an impostor, and not the real
intruder, the attacker reacted by using one of the private keys that belonged to a rogue
certificate to sign a file [170]. He also claimed to have breached a number of other
Comodo RAs, as well as the CA GlobalSign [168, 161]. The last entries on Pastebin are
from 7 September and on Twitter from 11 September 2011. GlobalSign later confirmed
an intrusion, but stated that it had been limited to their Web server [194], and the
attacker had only obtained the private key to the Web server’s certificate.

Mozilla reconfirmed their decision to permanently remove DigiNotar from their root
store in early September 2011 [239]. Their decision was based on several factors. First,
DigiNotar had failed to notify browser vendors of the compromise and the rogue cer-
tificates. This was viewed as particularly bad as certificates had also been issued
for addons.mozilla.org. Second, the scope of the breach remained unknown as Di-
giNotar’s log files had been compromised, too. Third, the certificate had been used in
a real attack. This made DigiNotar the first CA ever to be removed from root stores
for misconduct.

Finding The DigiNotar incident is of huge interest as so much is known about how the
intrusion occurred. The weakness may, at first glance, seem to be of a purely technical
nature: the CA had failed to secure its perimeter. However, the effects of intrusion
were quite severe. This points at an organisational problem: it took the CA very long
before they fully realised the extent of the incident.

41

3. Analysis of the weaknesses of the X.509 PKI

StartSSL (2011)

StartSSL became a victim again in 2011. The incident actually occurred before the
DigiNotar case, on 15 June 2011, but was found to be connected to DigiNotar. It
became publicly known when the StartSSL homepage suddenly announced that the
CA would temporarily stop issuing certificates due to a security breach [197]. The
CA stated that no rogue certificates had been issued, and the incident was under
investigation. In email to a journalist, Eddy Nigg, CTO of the company, said that the
attacker had attempted to obtain certificates for the same targets as during the attack
on Comodo several months previously. The intruder had unsuccessfully attempted to
create an intermediate certificate [195]. In the discussion that followed in the Mozilla
newsgroup mozilla.dev.security.policy, Nigg maintained that he was currently
not allowed to release further details. The discussion led Mozilla to consider changes
in their policy, concerning under which circumstances, and how, CAs were meant to
notify other parties in case of security breaches.

StartSSL never issued a public incident report. This has remained unchanged at
the time of writing and has been confirmed to us in private email. However, details
about the incident became known in the context of the DigiNotar case. The intruder
mentioned in his post on 6 September 2011 that it had been him who had successfully
breached StartSSL. According to his claims, he had already connected to a secure
hardware module that was central to certificate issuing. However, Nigg himself had
been monitoring the device, and noticed the intrusion. The case was made even more
mysterious when Nigg posted an entry on the company blog [237]. He disclosed that his
business had ended up in a ‘country sponsored cyber-war’(sic). The post mentions the
attack on Comodo and cites Iran’s involvement, but does not disclose further details.
It was not followed up.

Finding The attack was unsuccessful but aimed at a technical weakness. If Nigg’s
claim of a cyber war should be the truth, this would be proof that the capacities of
countries need to be factored into a threat model for the X.509 PKI.

DigiCert Sdn. Bhd. (2012)

In 2012, DigiCert Sdn. Bhd.9 were found to have issued certificates that were in
critical violation of acceptable standards and their own CPS [213]. The CA operated
as a subordinate CA for Entrust, Inc. They were found to have issued certificates for
very short RSA keys (512 bits), which are not considered secure by today’s standards.
Furthermore, they had issued certificates without the so-called Extended Key Usage
extension, which allows the owner to use them for code signing. The certificates did
not carry any revocation information, either. The issue was detected when an attacker
cracked the key of one certificate and used it to sign malware.

Entrust reported the issue themselves to Mozilla and announced they would revoke
the intermediate certificate. They stated that Verizon had also cross-certified DigiCert
Sdn. Bhd., although it was initially not clear what the exact relationship was [189, 213].
Mozilla decided to blacklist the certificate in question [213, 242]. Microsoft and Google
followed [222, 206]. DigiCert Sdn. Bhd. responded themselves in a series of statements
[177, 178, 176], in which they confirmed the problem and announced they would seek
another audit [178]. At the time of writing, they are not in the list of pending requests
at Mozilla [232].

9Not related to DigiCert, Inc., which is US-based.

42

3.3. Incidents and attacks against the X.509 PKI

Finding The CA did not follow its own operational procedures and issued certific-
ates with weak keys and without a relevant extension. The impact was grave as they
operated as a subordinate CA, which once again highlights this particular danger.

Türktrust (2012)

The last incident we discuss concerns a server certificate for *.google.com, which was
discovered by Google at the end of 2012. This certificate had been issued from an inter-
mediate certificate that had in turn been issued by Türktrust, a CA based in Turkey.
Google announced the finding on their security blog [210]. An instance of their Google
Chrome browser had blocked the certificate due to the same mechanism that had un-
covered the rogue DigiNotar certificate. Google revealed that Türktrust had mistakenly
issued intermediate certificates for two organisations instead of what should have been
normal server certificates for TLS (this is only controlled by a Boolean flag). Microsoft
and Mozilla offered more details [224, 158, 259]. Only one certificate was used to issue
the fraudulent certificate for Google’s domain. It had been in active use on at least one
system. According to Türktrust, the rogue certificates had been issued due to a faulty
configuration in August 2011. The CA stated that their logs were complete and that
their customers had never requested intermediate certificates. However, one customer
had deployed the certificate on their firewall system. The explanation was that this was
by accident because the firewall would accept any intermediate certificate automatically
and switch to an interception mode. While the claim may seem bizarre, it is not com-
pletely implausible and was accepted by the vendors. It was reinforced by Türktrust’s
statement that OCSP traffic for this particular certificate was predominantly received
from IPs associated with the domain in question.

Microsoft, Mozilla and Google disabled use of the intermediate certificates by black-
listing them. Google announced that they would revoke the EV capacity for Türktrust;
Mozilla announced it had halted the inclusion of a new Türktrust root certificate meant
for the same purpose. Türktrust continues to be included in their root stores, however.

Finding The root causes were the same as in previous incidents— subordinate CAs
that were not tightly controlled but able to issue arbitrary certificates. In this particular
incident, we would like to emphasise the use of the certificates, however: they were used
to monitor encrypted connections.

3.3.2. Surveillance

The case of Türktrust highlighted a particularly severe problem: intermediate certific-
ates used on firewalls and routers for the purpose of inspecting encrypted traffic. It
was known well before the Türktrust incident that several companies produce devices
for such a purpose—The Spy Files [135] is a collection of documents with the names of
companies and products.

It should be noted that some organisations may have a legitimate interest in inspect-
ing traffic that enters and leaves their networks—defence against industrial espionage
is one use case. While such practices give rise to ethical concerns, it might be possible
to resolve these (e.g., by requiring informed consent from employees). The real concern
is a different one: such devices might be used by authoritarian governments to carry
out mass surveillance against their own populations. This is particularly troublesome
due to the fact that so many CAs exist that are subject to very different legislations.
Soghoian and Stamm already warned in [67] that governments might compel a CA
registered under its jurisdiction to issue an intermediate certificate for surveillance.

43

3. Analysis of the weaknesses of the X.509 PKI

The decisive question is thus how one can ascertain that inspection devices are
not used for nefarious purposes. The simplest way would be for a company to create
their own root certificate, install it on the border inspection device, and deploy it to
client devices. Since the root certificate is only trusted by clients in the organisation’s
network, no other Internet users are affected. Practical dangers remain, however, when
this is done carelessly. In a blog post, Sandvik and Laurie reported a serious flaw in an
inspection device by Cyberoam in 2012 [254]—it shipped with a default root certificate
that customers could use instead of creating their own one. Unfortunately, certificate
and private key were the same across all devices of the same type, and the private key
could be extracted as a commenter in the blog post demonstrated [254]. An attacker
only had to buy the device in order to be able to read traffic of Cyberoam customers
who had not changed the default key. Together with an attack on the Border Gateway
Protocol (BGP) as in [199], the attacker would not even need to be in the immediate
vicinity of the victim network.

An alternative to a self-created root certificate would be to pay a conventional CA
to issue a subordinate certificate. CAs exist that offer such certificates. The CA
Trustwave, for example, became the centre of attention when they announced10 that
‘it has been common practice for Trusted CAs to issue subordinate roots for enterprises
for the purpose of transparently managing encrypted traffic’ and that ‘Trustwave has
decided to revoke all subordinate roots issued for this purpose’ [263, 270]. Mozilla, at
least, did not welcome such practices and proceeded to explicitly forbid them [274].

Finding Intermediate certificates carry the complete signing power of the root certi-
ficate. Instead of compromising a CA, attackers can theoretically just as well buy the
certificates they need and then carry out surveillance. Careless deployment of default
keys may even enable them to skip this step.

3.3.3. Cryptographic breakthroughs
The number of occasions where the security of X.509 was threatened by cryptographic
developments is very small. In fact, there was only one cryptographic breakthrough that
had an impact on the PKI: the weakness of the MD5 hash algorithm. Dobbertin showed
a way to produce a collision for a modified version of MD5 as early as 1996 [179]. This
led to increased efforts to produce collisions in MD5. Wanget al. finally presented such
collisions in the rump session of Crypto 2004 [76]. These collisions did not constitute
practical attacks yet. However, the pace of development increased drastically: Lenstra
et al. presented two different X.509 certificates with the same hash values in 2005 [47].
This attack on the collision-resistance of MD5 was improved by Stevens et al. in
2007 [69]. The authors showed that they could choose input prefixes to MD5 such that
two certificates contained different identities yet had the same hash value (a so-called
chosen-prefix collision). In 2008, Sotirov et al. [260] finally demonstrated that they
could create an intermediate CA certificate from a normally issued end-host certificate,
which would be accepted by browsers as legitimate. Effectively, this showed that MD5
was no longer a secure algorithm for digital signatures. Work began to phase out MD5
from TLS implementations. Main-stream browsers continued to accept MD5-signed
certificates for much longer—e.g., in the case of Mozilla, until 2011 [228].

Finding The number of cryptographic breakthroughs is very small compared to the
many incidents that were caused by poor operational practices or technical vulnerab-
10The original announcement can no longer be found on Trustwave’s homepage. It is quoted here

from the post to the newsgroup mozilla.dev.security.policy [263], which cites the text from
Trustwave’s homepage. Reference [270] confirms the correctness of the facts.

44

3.3. Incidents and attacks against the X.509 PKI

Incident Causes Detection Impact

VeriSign (2001) operational unknown minor, if any
Rogue CA certificate crypto weakness disclosure none
(2007) by attacker
Thawte (2008) operational disclosure Mitm possible,

(verification) by attacker contained
StartSSL (2008) technology disclosure by CA Mitm possible,

contained
Comodo (2008) operational disclosure by CA Mitm possible,

(verification, RA) contained
RapidSSL (2010) operational disclosure Mitm possible,

(verification) by attacker contained
Comodo (2011) technology disclosure by CA Mitm carried out

(RA)
StartSSL (2011) technology disclosure by CA none, contained
DigiNotar (2011) technology attack detected Mitm carried out;

by Google PKI failure
DigiCert (2012) operational attack detected malware signed

(issuance, sub-CA)
Türktrust (2012) operational attack detected Mitm carried out

(issuance) by Google
Trustwave (2012) operational disclosure by CA unknown

(surveillance, sub-CAs)

Table 3.1. – Summary of X.509 incidents and attacks since 2001. ‘sub-CA’ is short for subor-
dinate CA. Mitm is short for man-in-the-middle attack.

ilities. It shows that the primary concern for X.509 should be the deployment of the
PKI.

3.3.4. Summarising view

The incidents we documented in Section 3.3 exhibited a range of causes. We summarise
this in Table 3.1. The impact of the incidents varied greatly, and they were detected
by different means. In this section, we are going to provide a summarising view. In
reference to Research Objective O1.2, there are two questions we ask. First, what were
the most common causes (attack vectors) and their impacts? And second, what were
the most common ways an incident was detected?

Going through Table 3.1, we note that operational practices were the cause in more
than half of all incidents: seven of twelve times. RAs and subordinate CAs proved to
be weak links in the overall security of the X.509 PKI. In three cases, CAs or RAs failed
to execute their duty of identity verification with due care. In two cases, the problem
lay in the issuance process (after verification): CAs accidentally issued certificates with
wrong values that allowed the certificates to be used for attacks. The impact of these
incidents was always low, however: while man-in-the-middle attacks would have been
possible, the incidents were mostly contained. Only the rogue certificates that were
due to mistakes in issuance had a measurable impact: in one case, malware was signed;
in the other, a localised man-in-the-middle attack was carried out for the purpose of
surveillance.

Technical vulnerabilities were responsible for four incidents: StartSSL (2008), Co-
modo (2011), DigiNotar (2011), and again StartSSL (2011). Of these, two had a very
serious impact: Comodo (2011) and DigiNotar (2011). In the case of DigiNotar, the
entire PKI was disrupted to the point that browser vendors had to ship emergency up-

45

3. Analysis of the weaknesses of the X.509 PKI

dates as X.509 mechanisms, including revocation, failed completely. Notably, only the
attack on StartSSL in 2008 was carried out by a white-hat attacker. The other three
were carried out with malicious intent. At least in the case of DigiNotar, a large-scale
man-in-the-middle attack was detected, which hinted that a country at least profited
of the attack, although there is no proof it initiated it.

Finally, we find that PKI structure was a cause in four incidents: in the cases of
Comodo (2008), Comodo (2011), DigiCert (2012), and Trustwave (2012), either RAs
or subordinate CAs made mistakes or failed to comply with their obligations. At least
in the case of Comodo (2011), a man-in-the-middle attack seems to have been the
result. The revelations made by Trustwave point at a grave problem concerning mass-
surveillance, however. It remains unclear how many such subordinate CAs already
exist or, worse, are continued to be sold.

Concerning incident detection, we find that CAs themselves disclosed incidents and
vulnerabilities surprisingly often, namely on five occasions (although they often did
not provide many details). However, in the two incidents that had the worst impact,
Comodo (2011) and DigiNotar (2011), the disclosure came either late and after in-
dependent researchers had already found evidence (Comodo) or the attack was not
disclosed at all (DigiNotar). In two cases, ongoing attacks were detected by Google,
thanks to their internal mechanism of comparing the certificate in a TLS handshake
with internally stored references. In the third event, DigiCert (2012), the attack was
not discovered by the CA, either.

3.4. Reinforcements to the X.509 PKI
We address Research Objective O1.3 in this section: based on our historical analysis
from Research Objectives O1.1 and O1.2, we draw conclusions what effective reinforce-
ments for the X.509 PKI should look like. In keeping with Research Objective O1.2,
we are going to structure our discussion around the following two aspects:

• Resistance against the attack vectors determined in the historical analysis

• Detecting and reporting an incident

3.4.1. The impossibility of direct defence

The primary attack vectors we determined were operational practices and technical
vulnerabilities. This was made worse by the existence of subordinate CAs and RAs in
the X.509 PKI. The first conclusion we would like to offer here may sound surprising
at first: it is impossible to defend against these vectors directly. We elaborate on this
in the following.

Operational practices The current CA system is built on root programs run by vendors
of browsers and operating systems. These programs generally require audits and com-
pliance with policies in order for CAs to be included in a root store. Yet we found that
CAs repeatedly violated policies they had agreed to. As subordinate CAs and RAs are,
in contrast to CAs, not documented in the public documents of a root program, they
are an obstacle in the effective detection of incidents. A report by Netcraft that was
published very recently supports our argument: Netcraft found that one year after the
Baseline Requirements of the CA/Browser-Forum had come into effect, a number of
CAs were still issuing certificates that were in violation of the agreed practices [180].
Netcraft reported keys that were too short, certificates that missed revocation inform-
ation, or showed wrong use of the CN field. In total, Netcraft reported 2500 cases.

46

3.4. Reinforcements to the X.509 PKI

Some of the largest CAs were among the offenders. Against this background, and our
previous findings, the position we take is that operational practices will continue to be
a problem, at least in the medium term.

PKI structure The above argument is intrinsically linked to the issue of the X.509
PKI structure. The compromise of one authority means the compromise of the entire
structure. RAs and subordinate CAs can be useful for better identity verification, but
they remain the weakest links in the PKI structure. Even if they were entirely removed,
however, we remain in doubt whether this improvement would have a larger impact: a
large number of CAs with equal signing rights continues to exist—our analysis of the
Mozilla root store has shown that. Any improvement in the short or medium term
must take the existence of a large number of equal authorities into account.

Technical vulnerabilities Concerning technical vulnerabilities, we take the view that
flaws in software will always exist, and thus also exploitable vulnerabilities. CAs, by
their very nature, must operate public-facing systems that accept input from untrusted
sources. This attack vector is next to impossible to close.

3.4.2. Improving defences

The second conclusion we offer is the following: the above does not mean at all that we
are defenceless, nor does it mean we need to abandon X.509 immediately. There are at
least three ways to address the shortcomings of today’s X.509 PKI.

Out-of-band mechanisms can help First, if we cannot address the problems of the X.509
PKI directly, we must design mechanisms that raise the security for users considerably,
even against very strong attackers. These mechanisms must be designed to work out-
of-band, i.e., without relying on X.509 mechanisms themselves. The reason is that
users in the above described cases had no way to assess the authenticity of a certificate
other than evaluating the certificate itself. The compromise of a root CA made it
impossible to use revocation mechanisms. Some out-of-band mechanisms to improve
X.509 have been proposed. They fall into several categories. We analyse the most
important contributions in Chapter 8.

Incident detection to aid containment Second, we suggest to return to the old wisdom of
computer security that good defences are not only concerned with thwarting an attack.
Rather, one should expect that defences are breached and have established powerful
reactive mechanisms to contain the damage. This should not be left to single CAs as
the compromise of one is damaging for all. We thus suggest that mechanisms to detect
incidents in the PKI are the most important step in containing damages. We saw in
the last section that some of the more dangerous incidents were not disclosed by the
CAs themselves (or only belatedly) but by third parties, which had a legitimate interest
in thwarting the attack. Designing mechanisms for detection from the outside is a key
factor in improving the X.509 PKI. As part of this thesis, we designed a detection
system, which we present in Chapter 9.

Outside pressure Finally, we believe it is possible to exercise pressure on CAs to cause
them to improve their operational practices—after all, a bad reputation is a poor basis
for economic success. One way to mount this pressure, and at the same time increase
the security of the X.509 PKI as a whole, is to monitor the deployed PKI. One case
where this would have helped are the certificates with short key lengths issued in the

47

3. Analysis of the weaknesses of the X.509 PKI

case of DigiCert Sdn. Bdh. Monitoring the deployed PKI has a further benefit: it makes
it possible to detect configuration problems on servers and notify administrators. In
the next chapter, we show that monitoring can indeed unveil poor (security) practices,
both on the side of servers as well as on the side of CAs.

3.5. Related work

Our analysis of X.509 criticism is mostly based on the work by Perlman [61] as well as
that of Ellison and Schneier [23]. Both publications provide significantly more detail
than we discussed here. Perlman discusses a wider range of PKI setups and trust
models; Ellison and Schneier also discuss issues related to usability (for users) as well
as end-host security (for client computers and client authentication). We chose these
two publications as they can be said to be highly accurate where they identify issues
in X.509. They also cover all aspects that are important in our discussion. Naturally,
there are many other publications available. Gutmann, for example, discusses improved
PKI setups in [32], focusing on the revocation issue. In [33], the same author makes
suggestions to improve X.509 based on interviews with programmers, administrators
and managers. Chadwick also identified several issues in a talk at EuroPKI 2004 [156].
In [22], Ellison addresses the usability aspect again and references principles established
within SPKI [100], a PKI that never saw wide deployment but took an entirely different
approach by replacing the concept of global identifiers with that of local names that
can be chained.

There is very little related related academic work available that gives a historical
assessment of incidents in the X.509 PKI and analyses the root causes. Asghari et al.
reported on several CA incidents in [7]. They also identified the ‘weakest link’ in the
PKI structure as a serious flaw. Their work focuses on an analysis of the interplay
between economical incentives and market forces and thus does not discuss systemic
vulnerabilities beyond PKI structure. Notably, however, the authors show empirically
that certificate pricing is not a driving market force. Roosa and Schultze [65], in a legal
publication, also identified the same weaknesses in the CA trust model as Perlman and
Ellison and Schneier and cite some incidents as examples.

Ian Grigg compiled a list of incidents from 2001 to 2013, which he announced in the
mozilla.dev.security.policy newsgroup [196] and published in a wiki at [151]. The
text gives only a brief description of each incident, but contains most of the incidents
discussed by us. A similar list was published in another wiki by The Hacker’s Choice at
[265]. The list is significantly shorter than both the one at [151] as well as ours. It was
compiled in the wake of disclosures about mass surveillance carried out by government
agencies.

We know of two books that are work-in-progress and contain sections on historic
CA incidents. The first is [86, p. 39–44] by Gutmann. The cited section provides
an entertaining summary of CA-caused incidents. It does not analyse the root causes
systematically. The other book is [89, p. 11-34] by Ristić. Ristić gives an (often shorter)
overview of many of the same CA incidents we discussed, but does not analyse root
causes, either.

3.6. Key contributions of this chapter

This chapter addressed Research Objective O1. We conclude this chapter with a list of
the key findings.

48

3.6. Key contributions of this chapter

Research Objective O1.1

We analysed historical criticism of the X.509 PKI. Three major criticisms were:

CA proliferation The number of CAs is high, and growing. This increases the number
of weak links.

Lack of liability CAs have very little liability towards relying parties (customers, users),
if any at all.

Strength of identity verification CAs rely on insecure communication to carry out iden-
tity verification or may lack the proper means to do so.

We investigated whether these issues were addressed. We found that no solutions
had been introduced for the first two, CA proliferation and liability. On the contrary,
the number of root certificates continues to grow, as does the number of organisations
that control them. The liability of CAs is only given for EV certificates, and even then
the sum for which a CA is liable is relatively low. On the bright side, the introduc-
tion of the Baseline Requirements and EV guidelines by the CA/Browser Forum has
introduced common standards and defined several classes of certificates. Certificates
for domain names may still be issued by relying on insecure mechanisms like email or
DNS. However, certificates with name verification of the subject and EV certificates
require CAs to carry out a much more thorough validation. Our conclusion here is that
weaknesses in the X.509 PKI—mostly on an organisational, but also on a technical
level—were known from early on, but never satisfactorily resolved. The proliferation
of CAs, in particular, constitutes a persisting danger.

Research Objective O1.2

We documented incidents related to the X.509 PKI in a survey. To the best of our
knowledge, this is the first academic survey to cover this topic. Our goal was to identify
the root causes for the incidents. Table 3.1 provides a summary. We found that the
most common causes of incidents were:

Poor operational practices Some CAs were tricked into issuing certificates for the wrong
entity. Other made mistakes when issuing certificates and signed keys that were
too short or accidentally issued intermediate certificates instead of server certific-
ates.

Operational setups The weakest link argument we mentioned above holds. The high
number of CAs, subordinate CAs and RAs was involved in several incidents where
the mistake was not made by the primary CA, but by an organisation acting in
its name. Control over the latter was not pronounced enough in some cases (e.g.,
Digicert Sdn. Bhd. or Comodo in 2011).

Vulnerabilities in the technology used The gravest incidents were all caused by com-
promises of CAs, subordinate CAs or RAs. In several cases, the intruders man-
aged to issue rogue certificates. In at least one case, this resulted in a real man-
in-the-middle attack. As a country may have been involved in the latter, it seems
necessary to include an attacker of this strength in the threat model for X.509.

Furthermore, we found that incidents were often detected by third parties, not by
the CAs themselves. Those parties had a legitimate interest in thwarting attacks.

49

3. Analysis of the weaknesses of the X.509 PKI

Research Objective O1.3

Based on our findings from Research Objectives O1.1 and O1.2, we derived conclusions
with respect to possible improvements to the X.509 PKI. Our primary conclusion is
that the attack vectors that were exploited are hard or impossible to defend against
directly. Consequently, the focus for improving X.509 should be on

Out-of-band mechanisms Several of the attacks were successful because no mechanism
existed to verify the correctness of certificates other than the certificates them-
selves. Establishing further channels over which users can verify the authenticity
of a certificate seems crucial to improve the security of X.509.

Strong mechanisms to detect incidents early Several of the attacks were detected very
late, when the damage was already done. Furthermore, the attacks were often
not disclosed by the CAs themselves. Early detection of ongoing attacks would
allow to take measures to contain the damage.

Monitoring It is possible to detect problems in X.509 deployment by monitoring issued
certificates (e.g., via active scans). This also allows to mount pressure on CAs to
only issue certificates that comply with recognised security standards (e.g., the
Baseline Requirements) and to improve their security practices in general.

50

4 Chapter 4.

Analysis of the X.509 PKI using active and
passive measurements

This chapter is an extended version of our previous publication [37]. Please
see the note at the end of the chapter for further information.

As shown in Chapter 2, the X.509 infrastructure consists of a rather large number
of organisations and entities. These may be linked by contractual obligations, but their
operations often show a high degree of independence. CAs, subordinate CAs and RAs
are required to carry out their work in conformance with certain certification practices
that they agree to follow. We showed in Chapter 3 that several incidents were caused
by failure to follow such operational practices.

In this chapter, we take one step back and shift our focus away from incidents
to the state of the X.509 PKI as a whole. Although the concrete implementation of
work processes within a CA is not directly observable, it is possible to determine the
outcomes of these processes: they are evident in the deployed X.509 PKI. Our overall
research question is: can we assess the quality of this PKI, with the ultimate goal of
determining where weaknesses occur due to poor operational practices?

To find an answer to this question, we carried out a thorough large-scale analysis
of the currently deployed and practically used X.509 infrastructure for TLS and ex-
amined its security-related properties. We used two empirical methods. Data obtained
from active scans allowed us to draw conclusions with respect to the X.509 PKI as
it is deployed on servers. Data obtained from passive monitoring allowed us to draw
conclusions with respect to the X.509 PKI as normal users encounter it during their
Internet activities.

4.1. Investigated questions
The following are the research questions we investigated.

Fundamentals: secured connections We set ourselves the goal to determine how many
servers offer TLS for HTTP, i.e., HTTPS. This can be achieved with active scans.

Security of deployment Certificates need to be deployed in a correct way in order for
authentication and key agreement in TLS to succeed. Most importantly, certi-
ficate chains need to be correct and without errors, and the certificate’s subject
must indicate the host on which the certificate is used. Cryptographic material
should not be deployed on many different physical machines as this increases its
exposure and thus the attack surface. We investigated these deployment factors.

Certification structure The number of intermediate certificates and the number of cer-
tificates they sign are indicators of the PKI’s certification structure. On the one

51

4. Analysis of the X.509 PKI using active and passive measurements

hand, too many intermediate certificates increase the exposure of cryptographic
material. On the other, use of at least one intermediate certificate is important
as it allows to keep the private key for the root certificate safely offline. We
investigated these factors in the deployed X.509 PKI.

Cryptography The cryptographic material used to establish TLS connections should be
strong enough to provide the desired level of security. We decided to investigate
the properties of public keys and hash algorithms in certificates as well as the
symmetric ciphers used to secure the actual connections.

Issued certificates versus encountered certificates Active scans can only detect certific-
ates as they have been issued and then deployed on servers. However, they can-
not provide us with statistical information about certificates that users encounter
during their Internet activities. We thus decided to investigate the latter case by
using passive monitoring to extract certificates from TLS connections of users.

Development over time One should expect the security of the X.509 PKI to improve
over time. We decided to investigate this by observing the state of the PKI over
1.5 years.

Influence of geographic factors It is well known that many services on the Internet are
provided in a geographically distributed fashion—Content Distribution Networks
(CDNs) are one example. We were interested whether the different locations
would be configured in different ways, despite offering the same service. We thus
decided to carry out additional scans from several geographic vantage points,
distributed across the globe.

4.2. Measurements and data sets
We present our measurement methodology and the data sets we obtained in this section.
We first describe the methodology for active scans, then for passive monitoring, before
we give a description of the data sets themselves. For the purpose of comparison, we
also included a third-party data set from the Electronic Frontier Foundation (EFF)
in our analysis. Table 4.1 gives an overview of all data sets. The data sets that we
acquired by active scans have been released to the scientific community at [249].

4.2.1. Methodology for active scans
We collected X.509 certificates with active scans between November 2009 and April
2011. We used primarily vantage points from Germany, first from University of Tübin-
gen and later from Technische Universität München1. In April 2011, we also added
several measurement points in other countries using PlanetLab [248] hosts. These
countries were China, Russia, USA, Brazil, Australia, and Turkey.

We chose the hosts on the Alexa Top 1 Million Hosts list [133] as the hosts to
scan. For each scan, we chose the most up-to-date list. The Alexa list contains the
most popular hosts on the WWW as determined by the ranking algorithm of Alexa
Internet, Inc. We chose this list as it contains sites that many users are likely to visit.
Although its level of accuracy is disputed [84], it nevertheless is appropriate for our need
to identify popular hosts. The list’s format is somewhat inconsistent: usually, domains
are listed without the www. prefix, but this is not always the case. We thus decided to
emulate browser-like behaviour by expanding each entry into two hostnames: one with
the prefix www., and one without.

1This change became necessary due to our group’s move to Munich.

52

4.2. Measurements and data sets

Short Name Location Period Type Certificates
(distinct)

Tue Tübingen, DE Nov 2009 Scan 834k (207k)
Tue Tübingen, DE Dec 2009 Scan 819k (206k)
Tue Tübingen, DE Jan 2010 Scan 817k (204k)
TUM Tübingen, DE Apr 2010 Scan 817k (208k)
TUM Munich, DE Sep 2010 Scan 829k (211k)
TUM Munich, DE Nov 2010 Scan 827k (213k)
TUM Munich, DE Apr 2011 Scan 830k (214k)
TUM Munich, DE Apr 2011 Scan, SNI 826k (212k)

Shanghai Shanghai, CN Apr 2011 Scan 799k (211k)
Beijing Beijing, CN Apr 2011 Scan 797k (211k)
Melbourne Melbourne, AU Apr 2011 Scan 834k (213k)
İzmir İzmir, TR Apr 2011 Scan 826k (212k)
São Paulo São Paulo, BR Apr 2011 Scan 833k (213k)
Moscow Moscow, RU Apr 2011 Scan 831k (213k)
S. Barbara S. Barbara, USA Apr 2011 Scan 834k (213k)
Boston Boston, USA Apr 2011 Scan 834k (213k)

MON1 Munich, DE Sep 2010 Monitoring 183k (163k),
. . . grid certificates: 47% (52%)
MON2 Munich, DE Apr 2011 Monitoring 989k (102k)
. . . grid certificates: 5.7%(24.4%)

EFF EFF servers Mar – IPv4 scan 11.3M (5.5M)
Jun 2010

Table 4.1. – Data sets used in our investigation of X.509.

Every TLS scan was preceded by nmap scans of TCP port 443 (three probes) to filter
out hosts where this port was closed. We did not scan aggressively; the actual certificate
scans thus started two weeks after obtaining the Alexa list. Our TLS scanning tool
itself is a wrapper around OpenSSL [267]. It takes a list of hostnames as input and
attempts to conduct a full TLS handshake on port 443 with each host. We let it run
with 128 processes in parallel; thus a single scan took less than a week. Where a TLS
connection could be established, we stored the full certificate chain as sent by the server,
along with all data concerning TLS connection properties.

PlanetLab hosts received a slightly different treatment. We omitted the nmap scans
entirely. The primary reason was that we wanted to scan TLS with the same host list
as in our main location so we would be able to compare differences between locations.
Furthermore, we wanted to scan from the remote location at roughly the same time
as from our primary location. Thus, we imported the list of hosts with open port 443
from our main location in Germany and used it as a basis for the TLS scans.

4.2.2. Passive monitoring

As mentioned, we used data obtained from passive traffic measurement to complement
our view on the deployed X.509 PKI with a view that corresponds to how users exper-
ience the X.509 PKI during their Internet activities. Our passive traffic measurements
were carried out in the Munich Scientific Network (MWN) in Munich, Germany. We
were able to monitor all traffic entering and leaving that network. The network is re-
latively large as it encompasses three major universities and several affiliated research

53

4. Analysis of the X.509 PKI using active and passive measurements

institutions. The MWN provides Internet access to users of these institutions via a
10Gbit/s link. At the time we carried out our measurements, the network served
about 120,000 users and about 80,000 devices. The peak load that we measured on the
link was about 2Gbit/s inbound and 1Gbit/s outbound traffic, observed in April 2011.

We carried out two monitoring runs, both during semester breaks. The setups we
used were different, although the hardware in both setups remained the same (Intel
Core i7, with hyper-threading; Intel 10GE network interface with 82598EB chipset).
The sampling algorithm was also the same in both runs: we sampled the first n bytes
of each bi-flow. This method was described by Braun et al. in [12].

The difference between both runs lay in the processing. In the first run (September
2010), we used an approach that is similar to the one used by the Time Machine [43].
We dumped all sampled packets to disk into files of size 10GB. As soon as one file was
complete, we started an offline extraction process to obtain the certificates. We had
to cope with hard drive limitations (both I/O and space). Thus, we sampled only the
first 15 kB of each bi-flow.

For our second monitoring run (April 2011), we switched to an online analysis of TLS
traffic. The method used was based on TNAPI [26], with an improvement presented
by Braun et al. in [11]. With six instances of our monitoring application running in
parallel, we could analyse up to 400 kB of traffic data for each bi-flow, with packet loss
of less than 0.003%.

We used Bro [60] in both monitoring runs to process TLS. Thanks to its dynamic
protocol detection, described in [19], we could identify TLS traffic without being limited
to certain ports.

4.2.3. Data properties

Table 4.1 summarises the locations, dates and number of certificates in the data sets.
Table 4.2 provides additional details for the monitoring runs. Our data sets can be
divided into four groups.

The first group consists of the scans from hosts located in Germany at the University
of Tübingen (Tue) and at TU München (TUM). These scans were carried out between
November 2009 and April 2011, thus spanning a time interval of about 1.5 years. In
April 2011, we performed an extra scan with Server Name Indication (SNI) enabled.
SNI is a TLS extension to address virtual HTTP hosts. In such setups, a single Web
server is responsible for a number of WWW domains. The name of the domain an
HTTP client wishes to access is part of the HTTP headers it sends. Without SNI, a
Web server is unable to determine which certificate it is supposed to send: the TLS
handshake takes place before the client can inform the server via the HTTP header.
SNI solves this by letting the client indicate the name of the domain as part of the TLS
handshake. We carried out our scan with SNI enabled to determine if there were any
significant differences in the certificates a server would send.

The second group of data sets was obtained in April 2011. We employed Planet-
Lab [248] nodes from different countries, in order to obtain a geographically distributed
picture of the TLS deployment. Our goal was to determine whether a client’s location
would result in different certificates received from a server. A typical example where we
expected this to happen were CDNs. These often use DNS to route clients to different
computing centres, depending on the geographic location of the client. Different com-
puting centres might use different certificates, which would give us relevant data on the
state and practice of certificate deployment in CDNs. Comparison between locations
also has a desirable side effect: it can show whether certain locations actively inter-
fere with TLS traffic by swapping end-host certificates during connection establishment
(a man-in-the-middle attack).

54

4.2. Measurements and data sets

The third group of data sets was obtained by passively monitoring live TLS traffic.
There is an important difference between what can be learned from active scans versus
passive monitoring. Active scans show which certificates are deployed for which host,
and statistics like percentages of valid certificates thus refer to the state of the PKI
as it is deployed. This might differ from what a user experiences: a user might access
well-protected sites more frequently than poorly protected ones with invalid certific-
ates. Evaluating the certificate chains we encounter in passive monitoring thus yields
a picture of the state of the PKI as it is encountered by users.

We extracted all observed certificates in TLS traffic over each two-week period of a
run. In September 2010, we observed more than 108 million TLS connection attempts,
resulting in over 180,000 certificates, of which about 160,000 were distinct. Our second
run observed more than 140 million TLS connection attempts, which were responsible
for about 990,000 certificates, of which about 100,000 were distinct. We found that
most TLS connections are due to HTTPS, IMAPS and POPS (see Table 4.2 for details).
One of the difficulties we encountered was that the MWN is a research network that
hosts several high-performance computing clusters. We consequently observed much
grid-related traffic secured by TLS and found many grid certificates. They had short
life-times and were replaced fast (their median validity period was just 11 hours). Grid-
related certificates cannot be reasonably compared to certificates for WWW hosts. We
thus filtered them out in our analysis of certificate properties. We explain this in the
next section.

Finally, we included a data set from the EFF in our analysis. This data set was
obtained using a different scanning strategy. The EFF data set is based on scanning
the entire assigned IPv4 address space, which took a few months. According to the
source code2, it seems an attempt was made to accelerate the scanning by assuming a
/8 subnetwork would not contain any Web servers if the first 655,360 probes did not hit
one3. The method used by the EFF results in a higher number of observed certificates,
but does not provide a mapping onto DNS names. Hence, the data set cannot be
verified in terms of a matching subject for a hostname, since information about which
domain was supposed to be served with a given certificate is not contained. In contrast,
our own data sets provide this information. Since a sizeable part of IP addresses are
assigned dynamically [78, 34], the long scanning period also impacts the accuracy of
the mapping from IP addresses to certificates. The results from this data set must
thus be taken with a grain of salt. However, due to its sheer size, the data set remains
valuable for comparisons.

An important distinction that we sometimes make is whether we analysed certificates
of the full set or just the distinct certificates in the data set. The difference is that
the former refers to the deployment of certificates and thus duplicate certificates can
occur, i.e., certificates that are used on more than one host. The latter is a pure view
at certificates as they have been issued.

4.2.4. Data preprocessing

The International Grid Trust Federation [266] operates an X.509 PKI that is separate
from the one for HTTPS and other TLS-related protocols. Their root certificates are
not included in the Firefox root store, but are distributed in grid setups. Our setup

2https://git.eff.org/public/observatory.git; file ControlScript.py, lines 41–45, revision
ffc10e4e1876a855f0ce24f29ae0ac80d38a99dc. There is a second scanner in later revi-
sions that uses roughly 850,000 probes; file scan/cs3.py, lines 77–85, from revision
73403a74d23e604fa6b9ae918245f0ccaad62a2f, added in 2012.

3A later IPv4-wide scan was carried out by Heninger et al. [35]. They found about twice as many
certificates as the EFF.

55

4. Analysis of the X.509 PKI using active and passive measurements

Property MON1 MON2
Connection attempts 108,890,868 140,615,428
TLS server IPs 196,813 351,562
TLS client IPs 950,142 1,397,930
Different server ports 28,662 30,866

Server ports ≤ 1024 91.26% 95.43%
HTTPS (port 443) 84.92% 89.80%
IMAPS and POPS (ports 993 and 995) 6.17% 5.50%

Table 4.2. – TLS connections in recorded traces.

stored certificates without a reference to the (potentially many) TLS connections during
which it was observed. Although we cannot filter out grid traffic in our analysis of TLS
connections to hosts, we were still able to identify some properties by correlating the
encountered IP addresses with those of known scientific centres.

For our analysis of certificate properties (Section 4.4), we used a rather coarse filter
mechanism: we simply checked whether or not a certificate contained the word ‘grid’
in the issuer field. We tested our certificate filter by checking the certificate chains in
the data set containing the thus determined grid certificates. Indeed, 99.95% of them
could not be found to chain to a CA in the Firefox root store, and not one of them
had a valid certificate chain (as is to be expected due to the use of a different PKI
setup). At the same time, the values for the validity of certificate chains of non-grid
certificates was either in the same range as in our active scans (MON1) or even higher
(MON2). We thus conclude that our filter removed most of the grid certificates and
the remaining bias is tolerable.

We describe results from our analyses now, going item-wise through each question
that we address.

4.3. Host analyses

Our first analyses are host-based: we investigate properties of the TLS hosts that we
either contacted through active scanning, or whose connections we monitored passively.

4.3.1. Host replies with TLS

A central question was how many hosts actually support TLS and allow TLS connec-
tions on ports that are assigned to these protocols.

To begin, Figure 4.1 shows the results of our nmap probes for the scans in November
2009 and April 2011. It groups host from the expanded Alexa list by rank: the top
1000, the top 10,000, the top 100,000, and all hosts (top 1 million). We plot the cases
of open ports vs. closed or otherwise non-reachable ports. We did not distinguish
between unreachable ports due to network configurations at the destination systems
and unreachable ports due to network failures in intermediate systems. We did count
failures due to DNS resolution (no IP address for domain name) and nmap timeouts—
these never occurred in more than 2-3% of cases. The most interesting case is, naturally,
where a host showed an open TCP port 443, i.e., where at least one nmap run determined
an open port. These were the candidate hosts we tried to connect to with OpenSSL
later.

Figure 4.1 reveals the fraction of hosts with an open port 443 is higher over the
entire range of the Alexa list than just for the top 1000. There is very little change

56

4.3. Host analyses

Tu
e

To
p

1k

T
U

M
 T

op
 1

k

Tu
e

To
p

10
k

T
U

M
 T

op
 1

0k

Tu
e

To
p

10
0k

T
U

M
 T

op
 1

00
k

Tu
e

To
p

1m

T
U

M
 T

op
 1

m

port not open
port open

%
 o

f a
ll

ho
st

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 4.1. – Hosts with open port 443 vs. hosts without open port 443 for scans in November
2009 (Tue) and April 2011 (TUM), in relation to Alexa rank.

over time—we find a trend towards enabling TLS only among the higher-ranking hosts,
but even there it is not pronounced too strongly. This seems surprising as one might
assume that the more important sites have more reason to protect sensitive data than
those on the lower ranks.

Without more data (and possibly more intrusive scanning), it is hard to find com-
pelling reasons here. However, one might speculate that two factors might have an
influence. First, it is possible that hosts on the lower ranks use out-of-the-box default
configurations more often, or at least do not optimise their Web server configuration
much as operators expect less traffic anyway. In these cases, TLS would be enabled by
default. Hosts on the higher ranks, on the other hand, are more likely to use optimised
configurations as they have to cope with different amounts of traffic—and they might
disable TLS for performance reasons. If this is the case, however, the result is a rather
poor deployment: only about half of the hosts among the top 1000 offer TLS (or at
least have the corresponding port open).

For the remainder of this analysis, we focused only on the hosts that had reported
an open port 443. We evaluated replies to our OpenSSL scanner. Figure 4.2 shows the
results for these hosts. As can be seen, the numbers do not change significantly over
time, neither for the overall picture nor for the top 1000. Two thirds of all queried
hosts offer TLS on port 443, and more than 90% of the top 1000 do so, too. We found
a surprising number of cases where OpenSSL reported an ‘unknown’ protocol on the
HTTPS port. We therefore rescanned all hosts that had shown this result and analysed
samples of the rescan traffic manually. In all samples, the servers in question offered
plain HTTP on the TLS port. As can be seen, this unconventional configuration is less
popular with highly ranked servers. The number of cases where a connection attempt
failed (due to refused connections, handshake failures, etc.) also showed a correlation
to rank, but was generally low.

57

4. Analysis of the X.509 PKI using active and passive measurements

Tu
e

To
p

1k

T
U

M
 T

op
 1

k

Tu
e

To
p

10
k

T
U

M
 T

op
 1

0k

Tu
e

To
p

10
0k

T
U

M
 T

op
 1

00
k

Tu
e

To
p

1m

T
U

M
 T

op
 1

m

Other failure
Connection refused
Lookup failure
Timeout
Handshake failure
Unknown protocol
Success

%
 o

f a
ll

co
nn

ec
tio

ns

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 4.2. – TLS connection errors for scans in November 2009 (Tue) and April 2011 (TUM),
in relation to Alexa rank.

On the whole, only about 800,000 hosts from the expanded Alexa list allowed suc-
cessful TLS handshakes on the HTTPS port. Since 2010, several industry leaders like
Google, Facebook, and Twitter have switched to TLS by default, thus bringing the
importance of secure connections to the attention of a larger public. It seems, however,
their example was not widely followed, at least during our observation period.

The corresponding data from our monitoring also showed a large number of TLS-
enabled servers. Recall, however, that we captured Grid traffic, too, but could not
filter it during our monitoring runs (live analysis of the certificates was not possible).
Table 4.2 shows a summary of the monitored traffic’s properties. We particularly point
out the distribution of TLS connections to the well-known ports for HTTPS, IMAPS
and POPS. These three protocols make up for most TLS traffic—however, there is
a relatively large number of ports that are used in total. Also note the increase in
observed TLS servers: this increase is also the main factor responsible for the increase
in the observed certificate numbers in Table 4.1.

4.3.2. Negotiated ciphers and key lengths
The strength of cryptographic algorithms and the length of the involved symmetric keys
determine the cryptographic protection of a TLS connection. We used our monitoring
data to obtain statistics on ciphers and key lengths. We did not use data from active
scans: it would have only limited validity as the negotiated ciphers depend on what a
client supports. Hence, all results from active scans would be biased.

Figure 4.3 presents the most frequently negotiated cipher suites, key lengths, and
hash algorithms encountered in the monitoring runs.

The first keyword in the cipher suite, e.g., RSA or DHE-RSA, refers to the method
of key exchange. DHE indicates the Diffie-Hellman Ephemeral Key Exchange, the
only mode that provides Perfect Forward Secrecy (PFS). PFS is an important security

58

4.3. Host analyses

Others
DHE_RSA_WITH_AES_128_CBC_SHA

RSA_WITH_NULL_MD5
DHE_RSA_WITH_CAMELLIA_256_CBC_SHA

RSA_WITH_NULL_SHA
RSA_WITH_3DES_EDE_CBC_SHA

RSA_WITH_RC4_128_SHA
RSA_WITH_AES_256_CBC_SHA

DHE_RSA_WITH_AES_256_CBC_SHA
RSA_WITH_AES_128_CBC_SHA

RSA_WITH_RC4_128_MD5

MON1
MON2

% of connection ciphers

0 5 10 15 20 25 30

Figure 4.3. – Top 10 chosen ciphers in passive monitoring data.

property. An attacker who is able to record non-PFS-protected communication and
later obtains the private keys used in the handshake (e.g., by compromise of a host) can
decrypt the session key used in the TLS session and thus decrypt the entire conversation.
PFS avoids this attacker by requiring that an (active) attacker must be able to break
or compromise the private keys at the time of the handshake in order to be successful.

As we can see, only one cipher suite with PFS enjoyed significant popularity in our
monitoring runs, namely DHE with RSA, together with AES, at a key length of 256
bits. The need for PFS may not have been as pronounced in 2011 as it is now—in the
light of powerful attackers who can store entire encrypted sessions and who may have
the power to obtain the necessary private keys, DHE is a wise choice.

We can also see that ciphers that were considered (very) strong at the time were most
commonly selected: RC4 and AES in Cipherblock Chaining mode (CBC). These were
sometimes also used with a very good safety margin (256-bit modes). 3DES was still
used, but not in the majority of cases. MD5 occurred relatively frequently in Message
Authentication Codes (MACs). In MAC schemes like HMAC, this is not considered
problematic at this time, but it is not encouraged either [97]. In April 2011, we found
an increased share of SHA-based digest algorithms, a positive development.

Lee et al. had analysed ciphers in TLS in 2007 [45]. Comparing our results to theirs,
we found that while the two most popular algorithms remained AES and RC4, their
order had shifted. In 2007, AES-256, RC4-128 and 3DES were the default algorithms
chosen by servers, in that order. In our data, the order was RC4-128, AES-128 and
AES-256. It is difficult to determine a compelling reason here. It could be that more
clients enabled support for TLS, and with different ciphers supported; but it could
also be that more servers supported TLS at the time of our monitoring and that their
default choice was the very fast RC4 at lower key length.

Furthermore, we can see that some of the connections, albeit a minority, chose no
encryption for their user traffic during the handshake. Such NULL ciphers were observed
for 3.5% of all connections in MON1, and in about 1% of all connections in MON2.
We were able to trace the corresponding IP addresses to computing centres. Our
hypothesis is that TLS was only used for authentication and integrity of grid traffic,
whereas encryption was omitted for performance reasons.

In summary, our results showed very good security as far as ciphers, key lengths
and hash algorithms were concerned—at least at the time of our observations. In

59

4. Analysis of the X.509 PKI using active and passive measurements

retrospect, we need to point out that CBC mode and RC4 in TLS have come under
some pressure since our analysis. In summer-autumn 2011, a new attack on TLS
was published: BEAST allows an attacker to derive HTTP cookies without actually
breaking the encryption [244]. It works only in CBC modes and in TLS version 1.0
and the even older SSL 3. For a while, it seemed that using a stream cipher like RC4
was a good way to mitigate the attack. However, it was long known that this setup
requires great care to be taken to avoid certain attack vectors [40]. In 2013, AlFardan
et al. presented two attacks on RC4 in TLS that showed the security of the algorithm
is far less than suggested by the keylength [4]. The attacks are not yet practical on a
larger scale; however it is old wisdom in cryptography that attacks only become better
over time. The authors suggested to move away from RC4 entirely. New scans and
monitoring runs will need to take this into account and monitor the situation closely.

4.4. Certificate analyses

We now present results concerning properties of certificates and certification chains
in X.509. For this analysis, we filtered out Grid-related certificates in the data from
passive monitoring.

4.4.1. Certificate occurrences

Ideally, every WWW domain should have its own certificate for TLS connections. How-
ever, in practice it is common to use so-called virtual host setups to serve a number
of domains from the same server. This method is based on an HTTP header, and it
has a disadvantage: plain TLS does not indicate the domain that is to be accessed.
This means that a Web server cannot determine the domain that a client wishes to
access until after an encrypted connection has already been set up. At this time, the
server must already have sent its certificate. There are two ways to deal with this
problem. Either one uses the same certificate for all domains on a server, and adds all
domain names to the certificate. This is not very elegant, but works with all setups.
The second way is to use the SNI extension: this allows to send the required domain
name as part of TLS. Since the SNI extension was only introduced several years after
TLS [92], it is not universally deployed. It is thus quite common that a certificate is
issued for several domain names. Note, however, that there are further reasons for a
domain owner to buy just a single certificate with several hostnames included. One
may be cost: this solution might be cheaper than separate certificates. It may also be
less time-consuming for the operator as the configuration of the Web server is simpler.
However, as the private key for every certificate must also be stored with the public
key, this method can increase the attack surface if a private key needs to be stored on
more than one physical machine.

We checked how often the same certificate was reused on several hosts. Figure 4.4
shows the complementary cumulative distribution function (CCDF) of how often the
same certificate was returned for multiple different hostnames during the active scan
of September 2010, in the middle of our observation period. We can see that the
same certificate can be used by a large number of hosts (10,000 or more), although the
probability for this is significantly less than 1:10,000. However, the probability that
a certificate is reused rises quickly for a smaller number of reuses. We found it not
uncommon (about 1% of the cases) that 10 hosts share the same certificate.

We investigated which hosts are particularly prone to reuse a certificate. To this end,
we evaluated the domain names in the certificates’ subject field. Despite being a viola-
tion of the specification in the Baseline Requirements [148] (also see Chapter 3, p. 34),

60

4.4. Certificate analyses

1 10 100 1000 10000

Number of hosts per certificate =: X

P
r[

 #
ho

st
s

>
 X

]

1e−5

1e−4

0.001

0.01

0.1

1.0 all certificates
valid certificates

Figure 4.4. – Certificate occurrences: CCDF for number of hosts per distinct certificate.

this is the field that is practically certain to hold the intended hostname. Figure 4.5
shows our results for the certificates that we found most often. Most of these are iden-
tifiable as belonging to Web hosters—but only the certificates for *.wordpress.com
were at least sometimes found to be valid (in 42.5% of cases). This is a rather poor
finding, considering how popular some of these hosters are.

www.snakeoil.dom is a placeholder certificate for the Apache Web server, possibly
appearing here because of Apache servers that run a default configuration (but probably
are not intended to be accessed via HTTPS). We continued to investigate hostnames
for those certificates that occurred at least 1000 times, and found that these seemed
to be primarily Web hosting companies. We explore the issues of domain names in the
subject fields and correctness of certificates in the next sections.

4.4.2. Correctness of certificate chains

To avoid confusion, we use the following terminology for the remainder of this work. A
certificate is verifiable if it chains to a recognised root certificate in a root store, and
the signatures in the chain are all correct. Furthermore, we require that no certificate
in the chain must be expired or have a validity date (‘not before’ field) in the future,
and intermediate and root certificates must have the CA flag set to true. When we
speak of a valid certificate, we assume that an additional semantic check takes place:
the certificate must have been issued for the correct hostname. Note that we do not
yet address the issue of hostnames—we defer this to the next section.

There are a number of reasons why a certificate may not be verifiable due to errors
in the chain. Hence, we verified chains with respect to the Firefox root store from the
official repositories at the time of the scan or monitoring run4. Note that we determine

4These are currently called Mozilla Central. The current URL is https://mxr.mozilla.org/mozilla-
central/source/.

61

4. Analysis of the X.509 PKI using active and passive measurements

*.wordpress.com

*.hostmonster.com

www.snakeoil.dom

*.blogger.com

*.hostgator.com

*.bluehost.com

*.blogger.com

0 5000 10000 15000 20000

Figure 4.5. – Domain names appearing in subjects of certificates most frequently used on
many hosts. The double entry for *.blogger.com is due to two different certi-
ficates with this subject.

verifiability with respect to a particular root store—the same certificate that is not
verifiable due to a missing certificate in one root store may theoretically be verifiable
with another root store. We chose the Firefox root store, however, as it is a publicly
accessibly resource of a popular WWW client. We used OpenSSL’s verify command
to check certificate chains. Our check verified the full certificate chain according to
OpenSSL’s rules.

We examined which errors occurred how often in the verification of a certificate
chain. Note that a single chain may contain multiple errors. Figure 4.6 presents our
results for a selection of our data sets. The error codes are derived from OpenSSL
error codes. Commonly, a browser would display a warning to the user (usually with
the option to override the alert). Depending on the vendor, additional user clicks are
necessary to determine the exact cause. In the following, we use error codes as employed
by OpenSSL to indicate problems with the certificate chain.

Error code 10 indicates that the end-host certificate was expired at the time we
obtained it. Expired certificates can be considered in two ways: either as completely
untrustworthy or just as less trustworthy than certificates within their validity period.
The latter would account for human error, i.e., failure to obtain a new certificate. We
determined expiration in a post-processing step, which we show in Listing 1. This was
necessary as we did not store timestamps during our monitoring runs, due to disk space
limitations. Furthermore, some (rare) certificates had missing timestamp fields, and we
wanted to process these in a lenient way that allowed for such errors in the certificates.

Error code 18 identifies an end-host certificate as self-signed. This means no certi-
ficate chain at all is used: a user has to trust the presented certificate and can only
verify and validate it out-of-band (e.g., by checking hash values manually).

Error codes 19 and 20 indicate a broken certificate chain. Error code 19 means a
correct full chain (with root certificate) was received, but the root certificate was not
in the root store and thus untrusted. This error can occur, for example, if a Web
site chooses to use a root certificate that is not included in a major browser. Certain
organisations (like some universities) sometimes use root CAs of their own and expect
their users to add these root certificates manually to their browsers. If this is not done
securely and out-of-band, its value is very debatable—we have anecdotal experience of
university Web sites asking their users to ‘ignore the following security warning’, which
would then lead them to the ‘secured’ page. Error code 20 is similar to 19: there was

62

4.4. Certificate analyses

0: verifiable
10: expired
18: self−signed
19: root cert not in root store
20: no root cert found at all
32: incorrect use for signing

%
 o

f a
ll

ce
rt

ifi
ca

te
s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Tu
e

N
ov

 2
00

9

T
U

M
 A

pr
 2

01
1

S
ha

ng
ha

i

E
F

F

M
O

N
1

M
O

N
2

Figure 4.6. – Error codes in chain verification for various data sets. Multiple errors can cause
the sums to add up to more than 100%.

a certificate in the sent chain for which no issuing certificate could be found, neither in
the sent chain nor in the root store.

Error code 32 means that one or more certificates in the chain are marked as not to
be used for issuing other certificates. Interestingly, cases where signatures were wrong
were rare: just one certificate in November 2009, nine in the second monitoring run
and 57 in the EFF data set.

Figure 4.6 reveals that trust chains were correct in about 60% of cases when con-
sidering the active scans and over all certificates. Expired certificates (about 18%) and
self-signed certificates (about 27%) are by far the most frequent errors found. The
number of verifiable certificates does not change significantly when considering only
distinct certificates. Between November 2009 and April 2011, these numbers also re-
mained practically constant. Note that the entries on the Alexa list had greatly differed
by then; more than 550,000 hosts in April 2011 had not been on our expanded list in
November 2009. We can thus say that even while the popularity of Web sites may
change (and new sites likely enter the stage), the picture of the PKI with respect to
verifiable certificates remains the same. This is a rather poor finding as no improvement
seems to occur.

Error codes 19 and 32 occurred very rarely. For our scans from Germany, we can
thus conclude that expired certificates and self-signed certificates are the major cause
for chain verification failures. We compared our findings to the vantage points in
Santa Barbara and Shanghai (Figure 4.6; only Shanghai data shown) and found the
perspective from these vantage points was almost the same.

Figure 4.6 also shows the findings for MON1 and MON2. Here, the situation is
somewhat different. Although the number of correct chains was similar in MON1
(57.55%), it was much higher in MON2 (82.86%). We can also see that the number

63

4. Analysis of the X.509 PKI using active and passive measurements

Listing 1 Algorithm to compute expiration of a certificate.
1: Algorithm Compute expiration
2: Requires: Certificate fields not before, not after, time of TLS handshake
3: Output: true when expired, else false
4: Procedure expirycheck(not before, not after, cert grab time):
5: if not after = ∅: ▷ Field empty
6: return true ▷ Count as expired
7: else if cert grab time > not after: ▷ Expired cert
8: return true
9: else if not before = ∅: ▷ Field not set

10: return false ▷ Count as not expired: not after is OK
11: return (not before > not after)

of errors resulting from expired certificates has decreased, and so have the occurrences
of Error 20. This does not mirror the findings from our scans. We cannot offer an
absolutely compelling explanation for this phenomenon, but one plausible explanation
is that the increased use of TLS by major Web sites (especially Google and social
networks) contributed as these are extremely popular among users.

We also compared our results with the full data set of the EFF, which represents
the global view for the IPv4 space. We found differences. First of all, the ratio of
self-signed certificates is much higher in the EFF data set. This is not surprising, given
that certification costs effort and often money—operators on not so high-ranking sites
may opt for self-issued certificates or just use the default certificates of common Web
servers like Apache. Samples showed us that these are not uncommon among self-signed
certificates.

It should be noted that our observation period ended before incidents like the
DigiNotar case (see Chapter 3) became known. Further scans might show whether
there has been improvement in the quality of certificate chains since then. On the
whole, however, we found the fact that about 40% of certificates in the top 1 million
sites showed broken chains to be rather discouraging.

4.4.3. Correct hostnames in certificates

The second major factor in determining whether a certificate should be accepted is the
correct identification of the certified entity. Only the application that uses a given TLS
connection can know which subject to expect. The common practice on the WWW
(but also for IMAPS and POPS) is that the application (i.e., the Web browser) verifies
that the subject certified in the certificate matches the DNS name of the server. In
X.509 terminology and syntax, the subject field must be a Distinguished Name (DN) .
A Common Name (CN) is part of the DN. Very commonly, a DNS name is stored in
the CN, although the Subject Alternative Name (SAN) field would be the correct place
to put it. In our scans, however, the SAN was the less common practice. Technically,
a user should also check manually that the other fields in the subject indicate the
intended entity or organisation (e.g., the user’s bank), but this is rarely done. Extended
Validation (EV) certificates, which we discuss later, facilitate such assurances.

In our investigation, we checked if the CN attribute in the certificate subject matched
the server’s hostname. We also checked if the SAN matched. Where the CN or
SAN fields were wild-carded, we interpreted them according to RFC 2818 [117], i.e.,
*.domain.com matches a.domain.com but not a.b.domain.com. One exception was
to count a single * as not matching, in accordance with Firefox’s behaviour. Note that

64

4.4. Certificate analyses

this investigation can be carried out only for data sets from active scans of domains as
neither data from monitoring nor the EFF data contain an indication of the requested
hostname.

In the scan of April 2011 (no SNI), we found that the CNs in only 119,648 of the
829,707 certificates matched the hostname. When we allowed SANs, too, this number
rose to 174,620. However, when we restricted our search to certificates that also had
correct chains, the numbers are 101,070 (correct hostname in CN) and 149,656 (correct
hostname in CN or in SAN). This corresponds to just 18.04% of all certificates. We
checked whether the picture changed for the data set of April 2011 where we had SNI
enabled. This was not the case. The number of certificates with both valid chains and
correct hostnames remained at 149,205 (18.06%). We deduce from this that client-side
lack of SNI support is not the problem. We also determined the numbers for the scans
in November 2009, April 2010, and September 2010: they are 14.83%, 15.83%, and
16.84%, respectively. This indicates a weak but positive trend.

Our findings mean that only up to 18% of certificates can be counted as absolutely
valid according to the rules implemented in popular browsers—in a scan of the top 1
million Web sites. More than 80% of the issued certificates would have led to a browser
warning. In this light, we are not surprised it is often said that users choose to ignore
security warnings. These are major shortcomings that need to be addressed. However,
we also have to add a word of caution here: while a poor finding, it is not implausible
that many of these hosts are actually not intended to be accessed via HTTPS and
thus neglect this critical configuration. Normal users may therefore never encounter
the misconfigured site, even in the case of very popular sites. Still, omitting support
for TLS does not increase security, either.

4.4.4. Unusual hostnames in the Common Name

We encountered a few unusual hostnames. In the data set of April 2011, with SNI
enabled, we found 60,201 cases of the string ‘plesk’ as a CN. Our hypothesis was that
this is a standard certificate used by the Parallels/Plesk virtualisation and Web hosting
environment. We tested this by rescanning the hosts, hashing the HTTP reply (HTML)
and creating a histogram that counted how often which answer occurred. Just eight
kinds of answers were alone responsible for 15,000 variants of a Plesk Panel site, stating
‘site/domain/host not configured’ or the like.

A further favourite of ours were certificates issued for ‘localhost’, which we found
38,784 times. Fortunately, neither certificates with ‘plesk’ nor ‘localhost’ were ever
found to have valid chains.

4.4.5. Hostnames in self-signed certificates

Server operators may opt to issue a certificate to themselves. Hence, no external
responsible Certification Authority exists. This saves the costs for certification, but
requires users to accept the self-signed certificate and trust it. The value of self-signed
certificates is debatable: some view them as useful in a Trust-On-First-Use security
model as used with the SSH protocol; others view them as contrary to the goals of
X.509. Our own view is that self-signed certificates can be useful for personally operated
servers, or where it is safe to assume that a Man-in-the-middle attack in the first
connection attempt is unlikely and a form of pinning can be used later (see Section 8.2).

In the data set with enabled SNI (April 2011), we checked if the self-signed certific-
ates had a subject that matched the hostname. The result was sobering: 99.4% of CNs
did not match. Subject Alternatives Names matched in 0.13% of cases.

65

4. Analysis of the X.509 PKI using active and passive measurements

Location EV status
Tue Nov 2009 1.40%
TUM Sep 2010 2.10%
TUM Apr 2011 2.50%
Shanghai 2.56%
Santa Barbara 2.49%
Moscow 2.51%
İzmir 2.50%

Table 4.3. – Deployment of EV certificates over time and from Germany; and the same for
April 2011 from Shanghai, Santa Barbara, Moscow and İzmir.

Interestingly, very few typical names account for more than 50% of the different
CNs. The string ‘plesk’ occurred in 27.3% of certificates as the CN (without any do-
main). Together, we found either localhost or alternatively localhost.localdomain
in 24.7% of CNs (without any further domain part). The remaining CNs in the top 10
all had a share of less than 3%. Yet the bulk of CNs is made up of entries that do
not occur more than 1–4 times—i.e., names are assigned (possibly automatically), but
they do not match the hostname. Our conclusion is that self-signed certificates are not
maintained with respect to hostname. This may make them puzzling to the average
user.

4.4.6. Extended Validation

Technically, a user should not only be able to verify that the domain in the CN or SAN
matches, but also that other information in the certificate correctly identifies the entity
on an organisational level, e.g., that it is really the bank he or she intended to connect
to—and not a similar-looking phishing domain. This is the purpose of the so-called
EV certificates, which were introduced several years ago. EV certificates are meant
to be issued under the relatively extensive regulations described by the CA/Browser-
Forum [147]. An identifier in the certificate identifies it as an EV certificate. A browser
is meant to signal EV status to the user (e.g., via a green highlight in the address bar).

We analysed how often EV certificates occurred. Table 4.3 shows the results. One
can see that there is a slight trend towards more EV certificates. We inspected the
top 10,000 hosts in the scan of April 2011 (no SNI) more closely and found that the
ratio of EV certificates was 8.93%. For the top 1000 hosts it was 8.11%, and for the
top 100 8.33%. Surprisingly, for the top 50 it was 5.17%. We found two explanations
for this. First, Google sites dominated the top 50 of our Alexa lists (almost half of all
hosts), and Google does not use EV5. Second, a number of well-known Web sites (e.g.,
Amazon and eBay) use different hosts to let users log in. These are not in the top 50,
but use EV.

To summarise, we found that EV certificates are not very wide-spread, even though
they can be very useful for sensitive domains. Since they are commonly more expensive
than standard certificates, this is somewhat to be expected.

4.4.7. Signature Algorithms

Cryptographic hash algorithms have come under increasing pressure in the past years,
especially MD5 [69]. Even the stronger SHA1 algorithm is scheduled for phase-out [243].

5This is even true at the time of writing.

66

4.4. Certificate analyses

Date

P
re

va
le

nc
e

in
 s

ig
na

tu
re

s

1/
1/

20
10

1/
1/

20
11

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

●

●
●

●

●
●

RSA/SHA1
RSA/MD5

● Tue Nov 2009/TUM Apr 2011
MON1/MON2
Shanghai

Figure 4.7. – Popular signature algorithms in certificates.

When researchers announced in 2008 they could build a rogue CA using MD5 colli-
sions [260], a move away from MD5 was expected to begin.

We thus extracted the signature algorithms in certificates. Figure 4.7 shows the
results for November 2009 and April 2011, the monitoring runs, and the vantage point
from Shanghai. We omitted the rare cases (less than 20 occurrences altogether) where
we found the algorithms GOST, MD2 and SHA512. The algorithms SHA256 and SHA1
with DSA were also only found rarely, in 0.1% of cases or less.

In our active scans, 17.3% of certificates were signed with a combination of MD5
and RSA in 2009. In 2011, this had decreased by 10% and SHA1 had risen by about
the same percentage.

The view from the monitoring data was slightly different. Most importantly, MD5
usage numbers were lower, both for all certificates and only for distinct ones. Between
September 2010 and April 2011, the number had fallen even further. Our conclusion
here is that MD5 does not play an import role in this PKI any longer.

4.4.8. Public key properties
It is quite evident that the ciphers used in certificates should be strong, and keys
should be of a suitable length to achieve the desired security. Otherwise the certificate
might be crackable by an attacker: RSA with 768 bits was factored in 2009 [41]. With
the security margin of RSA-1024 shrinking, a move towards longer ciphers has been
recommended in 2011 [142].

We thus investigated the public keys in certificates. Concerning the ciphers, the
result was very indicative. In the active scans of November 2009 and April 2011,
which span 1.5 years, the percentage of RSA keys on all queried hosts was always
around 99.98%. DSA keys made up the rest. Counting only distinct certificates, the
percentages remained the same. The values for the monitoring runs were practically
identical.

In these two scans, we also found a movement towards longer RSA key lengths: the
percentage of keys with more than 1024 bits increased by more than 20% while the
percentage of 1024-bit keys fell by about the same.

The general trend towards longer key lengths can be seen in Figure 4.8: the newer
the data set, the further the CDF graph is shifted along the x axis. This shows that the
share of longer key lengths increased while shorter key lengths became less popular,
with the notable exception of 384-bit keys that were found in the crawls from 2010

67

4. Analysis of the X.509 PKI using active and passive measurements

Key length (bits)

P
r[

X
 <

 le
ng

th
]

●

● ● ●●

●●●● ●●●● ●●● ● ●●●●●●

●●●●●● ● ● ●●●●●● ● ● ●

●

●

1e−05

1e−04

0.001

0.01

0.1

0.5

0.9

0.99

0.999

0.9999

0.99999

256 512 1024 2048 4096 8192

●

Tue Nov 2009
TUM Sep 2010
TUM Apr 2011

75% quantile / median / 25% quantile

Figure 4.8. – Cumulative distribution of RSA key lengths. Note the unusual atanh scaling
(double-ended pseudo-log) of the y axis.

and 2011, but not in the 2009 data. These were RSA keys, not keys for elliptic-curve
algorithms, where such lengths might be expected. The small triangles/circles/lozenges
along the curves indicate the jumps of the CDF curves; hence they reveal furthermore
that there is a significant number of various non-canonical key lengths, i.e., key lengths
that are neither a power of 2 (e.g., 2048) nor the sum of two powers of 2 (e.g., 768).
However, their share is extremely small as the CDF lines do not exhibit any significant
changes at these locations. It is not a particularly security-relevant finding6, either.

An exponent and modulus make up the public key together; and there is only one
private key for every public key. Concerning RSA exponents, the most frequent RSA
exponent we found in November 2009 was 65,537, which accounts for 99.13% of all
exponents used. The next one was 17, which accounts for 0.77% of exponents. The
value 65,537 is the minimum value recommended by NIST [141], which is also fast to
use in computations. It seems to be a preferred choice by software to create certificates.

There are two caveats to watch out for in public keys. The first refers to a now
well-known bug of 2008: the Debian distribution of OpenSSL had removed a source of
entropy and caused very weak randomness in key generation. It was therefore possible
to precompute the affected public/private key combinations. Such keys must not be
used as the private keys are publicly known. We determined the number of certificates
with weak keys of this kind by comparing with the official blacklists that come with
every Debian-based Linux distribution. Figure 4.9 shows the results for our scans.
We can see the number of affected certificates become less over time. Interestingly,
the percentage of Debian-weak keys was higher when we investigated it for just the
distinct certificates. This means Debian-weak keys are more likely to occur on a single
host, as opposed to being reused on several hosts. Our numbers fit well with another
investigation of 2009 [79]—they essentially continue where that investigation left off.

Finally, the percentage of affected certificates was four times less in our monitoring
data (about 0.1%)—this is a very good finding as it shows that the servers that most

6Keys are the products of two primes, e.g., 1024-bit keys are expected to be the product of two large
primes whose length is on the order of 512 bits (there are a number of rules how to choose primes
to make RSA secure). The product can, in rare cases, require a few bits less to encode.

68

4.4. Certificate analyses

●
●

●

●

●

●

●

Date

S
ha

re
 o

f w
ea

k
ke

ys

●

●

●

●

●

●

●

Date

S
ha

re
 o

f w
ea

k
ke

ys

distinct certificates
all certificates

1/
1/

20
10

1/
1/

20
11

0

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

Figure 4.9. – Debian weak keys over the course of 1.5 years in the scans of the Alexa Top 1
Million.

users deal with are generally unlikely to be affected. However, we also found some weak
yet absolutely valid certificates (correctly issued by CAs, correct hostnames, etc.) that
were still in use, but the number was very small: such certificates were found on about
20 hosts in the last scan.

The second caveat is that no combination of exponent and modulus should ever
occur in different certificates. However, we found 1504 distinct certificates in the scan
of April 2011 that shared the public/private key pair of another, different certificate. In
the scan of November 2009, we found 1544 such certificates. The OpenSSL bug could
have been a cause for this, but we found that only 40 (November 2009) and 10 (April
2011) of the certificates fell into this category. We found one possible explanation when
we looked up the DNS nameservers of the hosts in question. In about 70% of cases,
these pointed to nameservers belonging to the same second-level domain. In about
28% of cases, these domains were prostores.com and dnsmadeeasy.com. A plausible
hypothesis here would be that some Web space providers issue certificates and reuse the
public/private keys—either intentionally or due to some flaw in a device or software.
In either case, it means that some private key owners are theoretically able to read
encrypted traffic of others. They can even use a scanner to find out which domain
to target. However, our hypothesis does not explain the large number of remaining
certificates with duplicate keys. We could not give a reason ourselves at the time we
carried out the scans. Later, Heninger et al. found evidence that flaws in key generation
could have been involved. We return to this in Section 4.5.

Our own conclusion here is that shorter key lengths were still too frequent, but the
overall trend was very positive. RSA keys should not be issued any more at less than
2048 bits. The Debian OpenSSL vulnerability has become rare in certificates.

4.4.9. Validity periods
Certificates contain information for how long they are valid. This validity period is
also a security factor. If a certificate is issued for a very long period, advances in
cryptography (especially hash functions) can make it a target for attack. Alternatively,

69

4. Analysis of the X.509 PKI using active and passive measurements

Validity (years)

P
r[

X
 <

 v
al

id
ity

]

0.5 1 2 3 4 5 10 15 25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tue Nov 2009
TUM Apr 2011
MON2 Apr 2011

Figure 4.10. – Comparison of certificate validity periods, all certificates.

an attacker may attempt to reuse a stolen certificate (with stolen private key) and rely
on the fact that certification revocation is not very effective in any case (see Section 2.7).

When we analysed the validity period for the certificates we encountered in our
scans, we found that the majority of the certificates was issued with a life span of
12–15 months, i.e., one year plus a variable grace period. Other popular lifespans were
two years, three years, five years, and ten years. This can be seen from the cumulative
distribution function of the certificate life spans depicted in Figure 4.10. Comparing
the data of November 2009 with the data of April 2011, we can see that the share
of certificates with a validity period of more than two years increased, in particular
the share of certificates issued for ten years. The curve for the second monitoring run
reveals that the life spans typically encountered by users are either one, two, or three
years, plus some grace period. In particular, certificates with life spans of more than
five years seem to be only rarely used.

What the figure does not show are the extremal values for the certificate life span: we
encountered life spans on a range from two hours up to an optimistic 8000 years. This
was particularly evident in the monitoring data from April 2011. Figure 4.11 shows the
same kind of plot, but this time for the distinct datasets. The number of certificates
in the second monitoring run with extremely short validity periods (2 hours or less) is
striking. We thus inspected these certificates manually: they all had random-looking
issuers; and all issuer strings were unique with the exception of just six certificates. We
found a plausible solution when we showed these certificates to a representative of the
Tor project [269], who acknowledged the issuer strings as typical for certificates used
in Tor circuits.

While there is a trend towards slightly longer periods rather than shorter ones (which
is slightly worrisome), the otherwise reasonable validity periods seem to give little
reason for concern.

4.4.10. Length of certificate chains

As explained in Chapter 2, intermediate certificates—kept within the same CA—allow
to store the root certificate offline and carry out all online operations from the inter-

70

4.4. Certificate analyses

Validity (years)

P
r[

X
 <

 v
al

id
ity

]

1h 1 2 3 4 5 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tue Nov 2009 (distinct)
TUM Apr 2011 (distinct)
MON2 Apr 2011 (distinct)

Figure 4.11. – Comparison of certificate validity periods, distinct certificates.

mediate certificates. At least one intermediate certificate per chain is thus a sensible
setup. One should not use too many, however: it is not implausible that the probability
for negligence increases with the number of intermediate certificates. This is even more
problematic in setups where intermediate certificates are not kept within the same CA,
but used for subordinate CAs outside the direct control of the root CA. Although not
our focus, it is worthwhile to note that the verification of long chains has an impact on
performance (especially if the verifying device is a hand-held computer).

We thus proceeded to investigate the length of certificate chains. We did this for
the data sets from November 2009, April 2011 (no SNI), the EFF data set and the first
monitoring run. We derive the length of a chain as the number of all intermediate cer-
tificates in the chain that are not self-signed. The rationale is that OpenSSL constructs
chains by attempting to find a combination of certificates that yields a chain leading
to a certificate in the root store. Consequently, self-signed intermediate certificates in
the chain are either root certificates themselves, and we can safely discount them as
not being intermediate certificates7. Or they are certificates ‘outside’ a chain, i.e., they
cannot contribute to the verifiability of a certificate as they are not contained in a root
store. In this case, they only impact performance, and we can discount them for our
security-oriented investigation here.

There is a minor caveat here: it is possible in X.509 to construct more than one valid
chain. One way to do this is to use the fields Authority Key Identifier (AKID) and
Subject Key Identifier (SKID) from RFC 5280 [94], which provide (supposedly) unique
identifiers for issuer and subject. The alternative is to use the fields for subject and
issuer directly (these may sometimes not be unique). As a result, the corresponding
intermediate certificates use the same public key, but chain to a different root certificate.
We tested how often two chains may have been used in the mentioned datasets. We
found the method via AKID and SKID was used in 0.06% of certificates in November
2009, and only about 0.01% further cases where the second method may have been used
(we only checked matches on issuers and subjects, not public keys). The total number

7TLS allows to send root certificates as part of the chain, although there is no real advantage for
clients, except where clients display authentication decisions for unknown root certificates to the
user. Most users would probably not know how to make this decision.

71

4. Analysis of the X.509 PKI using active and passive measurements

Chain length

S
ha

re
 in

 c
er

tif
ic

at
es

0 1 2 3 4 and greater

0%

10%

20%

30%

40%

50%

60%

70%

●

●

●

●

●

●

Tue Nov 2009
TUM TUM Apr 2011
EFF
MON1

Figure 4.12. – Certificate chain lengths for two scans, one monitoring run, and the EFF data.
If no intermediate certificates are sent, the chain length is 0.

across all scans was between 0.02% and 0.06%. The numbers for the monitoring run
were similar. As they were so low, we decided to disregard the special case of multiple
chains in our analysis.

Figure 4.12 shows the results. We see that the vast majority of certificates is verified
via a chain of length three or less. At the other end, more than half of the certificates
have a chain length of zero. The natural explanation here is the high number of self-
signed certificates that we observed. When comparing the scan from November 2009
to the one in April 2011 (no SNI), we see that the share of chains of length zero greatly
decreased while the share of chains with length one or more significantly increased by
about 20%. The graph, as well as the increased average chain length (0.52 in November
2009 vs. 0.67 in April 2011), point to a weak tendency in the past 1.5 years to employ
more intermediate certificates, not less. We double-checked this by plotting the chain
lengths again, with self-signed end-host certificates excluded. The result can be seen in
Figure 4.13. The overall numbers are smaller, as is to be expected. The shift towards
using intermediate certificates is very pronounced when considering the changes from
November 2009 to April 2011.

Interestingly, our results for the second monitoring run were entirely different. Chain
lengths of 0–3 occurred at almost equal percentages, around 25–30%. We checked why
this might be the case by analysing the subjects in the certificates. We found that
they indicated high-profile sites in all cases, which we often knew to have enabled TLS
since the first monitoring run, which were very popular among users, and which had
appeared at different frequencies in our first run. The most common certificates were
from Akamai and Dropbox (both chain length 0); Google services (chain length 1),
Apple and Microsoft (chain length 2); and Rapidshare, Cloudfront, and Foursquare
(chain length 3).

72

4.4. Certificate analyses

Chain length

S
ha

re
 in

 c
er

tif
ic

at
es

0 1 2 3 4 and greater

0%

10%

20%

30%

40%

50%

60%

●
●

●

●

●

●

Tue Nov 2009
TUM TUM Apr 2011
EFF
MON1

Figure 4.13. – Certificate chain lengths for the same data sets, with self-signed end-host cer-
tificates excluded.

Overall, we can say that certificate chains are generally remarkably short, and the
move towards using intermediate certificates has not introduced chains that would be
too long. Considering the trade-off of too many intermediate certificates versus the
benefits of using them, this is a positive development.

The maximum length of chains found in the scans and EFF data set is 17. In the
monitoring data, it is only 12. The scans thus detected hosts with very unusual chain
lengths (outliers), whereas most certificate chains are actually relatively short. We
briefly checked whether the high values of 17 down to 12 were cases of multiple chains;
this was not the case.

4.4.11. Certification structure
While the use of intermediate certificates can be beneficial for security, it is also true
that if too many intermediate certificates are used in a chain, the undesired result can
be that the attack surface increases slightly as there are more targets. The number of
distinct intermediate certificates versus the number of distinct certificate chains built
with them is thus an indication whether a small number of intermediate certificates is
used to sign a large number of certificates (good for security) or whether this is done
with a larger number of intermediate certificates (bad for security).

We investigated the number of distinct intermediate certificates and the distinct
certificate chains that are built with them. Figure 4.14 shows the development of the
intermediate certificates. For the active scans from Germany, we see about 2300 distinct
intermediate certificates in the data set, with a trend to increase. Compared to the size
of the root store in Firefox, this means that, on average, every CA would use more than
ten intermediate certificates. However, we already know that average chain lengths are
short, so this points to a very skewed distribution. The number of distinct intermediate
certificates in the EFF data set is even higher, almost grotesque: 124,387. The ratio

73

4. Analysis of the X.509 PKI using active and passive measurements

0

500

1000

1500

2000

Date

C
ou

nt

Intermediate certificates
Certification chains

1/
1/

20
10

1/
1/

20
11

Figure 4.14. – Temporal development of the number of distinct intermediate certificates
(squares) and the number of distinct certificate chains (triangles) across the
scanning data sets.

of certificates/intermediate certificates for the top 1 million hosts is about 335 (scan of
April 2011); in contrast, it is about 91 for the whole IPv4 space. This means that the
top 1 million hosts use less intermediate certificates than hosts in the whole IPv4 space
do.

To analyse chains, we computed a unique ID for every distinct certification chain we
found. For this, we discounted the end-host certificate and any self-signed intermediate
certificate in a chain as a potential root CA, as we did before. The remaining certi-
ficates were sorted, concatenated and hashed. Recall that the number of intermediate
certificates is very small compared to the number of end-host certificates. Correspond-
ingly, we found only a small number of certificate chains: about 1300 in November
2009 (compared to over 2000 intermediate certificates). This means that the X.509
certification ‘tree’ (end-hosts are leaves) shrinks rapidly from a wide base to very few
paths leading to the root CAs. In the EFF’s data set, we find an unexpected number of
different chains: 17,392, which is much higher than the number in our scans. The ratio
of distinct intermediate certificates to distinct certification chains in our own scans was
between 0.6 (November 2009) and 0.76 (April 2011, no SNI). The numbers are plotted
in Figure 4.14. For the EFF data set, it was 0.13. This indicates that the convergence
to very few certification paths is much more expressed for the global IPv4 space than
for the popular Alexa hosts.

Overall, our finding here is that too many intermediate certificates are encountered
(leading to an unnecessary attack surface). The dimension of the problem is not huge,
however. In the top 1 million hosts, the situation is better than in the IPv4 space as a
whole.

74

4.4. Certificate analyses

Scan Suspicious Differences to
certificates TUM, April 2011

Santa Barbara 1628 5477
São Paulo 1643 6851
Melbourne 1824 7087
İzmir 2069 7083
Boston 2405 5867
TUM, April 2011 3245 —
Shanghai 10,194 9670
Bejing 10,305 9901
Moscow 10,986 11,800

Table 4.4. – Occurrences of suspicious certificates per location, and number of certificates
different to those seen from TUM.

4.4.12. Different certificates between locations

We investigated how many downloaded certificates were different between locations.
Our motivation was twofold. A Web site operator may offer duplicated or different
content depending on geographic region; CDNs are a large-scale example of this. In
this case, it is possible that certificates are bought from different CAs. It is also possible
that an operator switches CAs but fails to propagate the move to all sites in a timely
fashion.

Another possible reason can be of a malicious nature: a router can intercept traffic
and swap certificates transparently on the fly (man-in-the-middle attack). We labelled
hosts as ‘suspicious’ when their certificate was identical from most locations and only
differed in one to three locations. Table 4.4 shows the results from each vantage point.

Although the suspicious cases seem to occur particularly often when scanning from
China and Russia, this might be simply the result of localised CDN traffic. We thus
examined differences between the 2011 scans from Shanghai and Germany. The number
of different certificates between these two locations was 9670, which is about 1% of all
certificates in the data set for Germany. Only 213 of the corresponding sites were in the
top 10,000; the highest rank was 116. We can surmise that if operators of high-ranking
sites use CDNs for their hosting in these regions, then they deploy the same certificates
correctly. From manual sampling, we could not find a man-in-the-middle interception.

We checked how many of the differing certificates from Shanghai were actually valid
(correct chain, CN, etc.). This yielded just 521 cases—and only in 59 cases, the certi-
ficate was absolutely valid in the data set for Germany but not in the one for Shanghai.
We checked the corresponding domains manually; not one of them could be identified
as highly sensitive (e.g., politically relevant, popular Web mailers, anonymisation ser-
vices, etc.). About a quarter of certificates were self-signed but different in the two
locations. The reason for this is unknown to us.

While we are reluctant to offer compelling conclusions here, we do wish to state
the following. First, there are not many differences between locations. High-ranked
domains using CDNs seem to properly distribute their certificates. Maybe this is the
most interesting finding, given the overall administrative laxness that is revealed by the
many badly maintained certificates. Second, the number of different certificates was
significantly higher from the vantage points in China and Russia. However, we found
no indication of an attack. Third, we emphasise that we did not manually investigate
all domains—the hope that other researchers would carry out their own investigations
was one of our reasons to publish our data sets.

75

4. Analysis of the X.509 PKI using active and passive measurements

Comodo CA Limited
none (localhost)

Thawte Consulting cc
Thawte

The USERTRUST Network
SomeOrganization (localhost.localdomain)

Parallels
Equifax

VeriSign
GoDaddy.com

0 5000 10000 15000 20000 25000

Figure 4.15. – Top 10 of issuers in data set of April 2011 (no SNI), distinct certificates.

4.4.13. Certificate issuers

We were interested to see which issuers occur most commonly. This is interesting for
two purposes: first, it gives some insight into market share. Second, the respective CAs
may be at higher risk of attacks as they may be perceived as more valuable (e.g., an
attacker might hope his attack remains unnoticed for a longer time because the issuing
CA for his rogue certificates has not changed, or he might want to steal the larger
customer database).

We therefore determined the most common issuers for certificates in the data set
from April 2011. We first investigated the case of the distinct certificates—this allows
us to gain an insight into how many certificates were issued by different entities. We
found 30,487 issuer strings in total. However, many different issuer strings may actually
represent issuing entities that belong to the same organisation. As the subordinate CAs
or even intermediate certificates used by CAs are generally not known (root stores do
not keep track of them), we used the following method to obtain an approximation of the
top 10 most common issuers. We extracted the ‘Organisation’ part of the issuer field—
in most cases, this will already identify the organisation that runs the issuing entity.
We then grouped by this field and counted all occurrences in end-host certificates.
Figure 4.15 shows the result.

We find GoDaddy as the top issuer, followed by VeriSign and Equifax. At the time of
writing, the latter two are actually both owned by Symantec. We find a high number of
issuers identifying themselves as ‘Parallels’—this is a virtualisation software by Plesk.
Two issuers, ‘SomeOrganization’ and ‘none’, are found in self-signed certificates and
are likely a form of default certificates as their CNs (in the issuer) always indicated
‘localhost’ and ‘localhost.localdomain’, respectively. The USERTRUST Network is a
CA that is part of Comodo.

We then proceeded to investigate the issuers over all certificates, i.e., allowing for
certificates reused on hosts. The picture was somewhat different. Figure 4.16 presents
this top 10. The USERTRUST Network was suddenly at the top, with GoDaddy
second, and Comodo ranking much higher. This means certificates from these CAs are
reused on several hosts much more often. We also find GeoTrust, another CA owned
by Symantec, and Google, who run a subordinate CA certified by Equifax. The high
number of Google certificates is likely due to the use of Google certificates on Google’s
many services.

76

4.4. Certificate analyses

none (localhost)

Google

VeriSign

SomeOrganization (localhost.localdomain)

GeoTrust

Parallels

Comodo CA Limited

Equifax

GoDaddy.com

The USERTRUST Network

0 10000 20000 30000 40000 50000 60000 70000

Figure 4.16. – Top 10 issuers in data set of April 2011 (no SNI), all certificates.

4.4.14. Further parameters

We inspected the serial numbers in valid certificates and looked for duplicates by the
same issuing CA. We did not find any in the last three scans. This is a good finding as
a certificate’s serial number is intended to be a unique identifier (recall that blacklisting
of certificates in revocation lists is done via the serial numbers).

We also investigated a certificate property that is of less relevance for security, but
interesting nonetheless: X.509 version 1 has been outdated for years. The current
version is X.509 version 3. We investigated the data sets of November 2009 and April
2011 in this regard. In November 2009, 86.01% of certificates were version 3, 13.99%
were version 1. In April 2011, 85.72% were version 3 and 14.27% version 1.

Although our first guess was that this was an artefact of measurement, we found
that 33,000 certificates with version 1 had not been seen in any previous scan. None of
them had valid certificate chains, however, and 31,000 of them were self-signed. Of the
others, the biggest issuer was a Russia-based company. We investigated all issuers that
had issued more than two certificates and found that all of them seemed to employ a
PKI of their own, but without root certificates in Firefox. The reasons for this use of
version 1 are unknown to us, but plausible causes are software default settings or an
arbitrary choice to use the simpler format of version 1. Version 1 lacks some extensions
that are useful to limit the ways in which a certificate can be used, however, so this is
not a wise choice.

4.4.15. Certificate quality

We conclude our analysis with a summarising view of certificate quality. Figure 4.17
shows a classification of certificates in three categories, which we termed ‘good’, ‘accept-
able’ and ‘poor’. Good certificates have correct chains, correct hostnames, exactly one
intermediate certificate8, do not use MD5 as a signature algorithm, use non-Debian-
weak keys of at least 1024 bits, and have a validity of at most 396 days (a year plus
a grace period). For acceptable keys, we require the same but allow two intermediate
certificates, and validity is allowed to be up to 25 months (761 days). Poor keys rep-
resent the remainder of keys (with correct chains and hostnames, but otherwise failing
to meet our criteria). Figure 4.17 shows certificate quality for the scan in November
2009 and for the scan in April 2011 (no SNI).

First of all, the figure reveals that the share of valid certificates (total height of the
bars) is negatively correlated with the Alexa rank. This does not come as a surprise,
since operators of high-profile sites with a higher Alexa rank can be expected to invest

8As before, we do not filter out sites that send more than one chain.

77

4. Analysis of the X.509 PKI using active and passive measurements

Tu
e

To
p

10

T
U

M
 T

op
 1

0

Tu
e

To
p

50

T
U

M
 T

op
 5

0

Tu
e

To
p

10
0

T
U

M
 T

op
 1

00

Tu
e

To
p

50
0

T
U

M
 T

op
 5

00

Tu
e

To
p

1k

T
U

M
 T

op
 1

k

Tu
e

To
p

5k

T
U

M
 T

op
 5

k

Tu
e

To
p

10
k

T
U

M
 T

op
 1

0k

Tu
e

To
p

50
k

T
U

M
 T

op
 5

0k

Tu
e

To
p

10
0k

T
U

M
 T

op
 1

00
k

Tu
e

To
p

50
0k

T
U

M
 T

op
 5

00
k

Tu
e

To
p

1M

T
U

M
 T

op
 1

M

Poor
Acceptable
Good

S
ha

re
 in

 r
an

k
ra

ng
e

0%

10%

20%

30%

40%

50%

60%

Figure 4.17. – Certificate quality in relation to Alexa rank for the data sets of November 2009
(Tue) and April 2011 (TUM). Note that the figure shows only valid certificates,
and thus the numbers do not add up to 100%.

more resources into a working HTTPS infrastructure. What is surprising, however,
is that even in the top 500 or 1000—i.e., truly high-ranking sites—only just above
40% of certificates are absolutely valid. Only the top 10 sites seem to be an exception
here. Interestingly, although the more high-profile sites are more likely to deliver valid
certificates, the share of poor certificates among their valid certificates is higher when
compared to the entire range of the top 1 million sites.

Concerning development over time, we find interesting trends. Overall, the fraction
of sites with valid certificates increased over our observation period. While the difference
in the top 10 is marginal, we see a consistent development over the entire range. The
relative fractions (good versus acceptable versus poor) do not seem to change much;
only the fraction of good-quality certificates shrank slightly. A possible explanation may
lie in our criterion for the number of intermediate certificates in chains: we know that
this number increased over time. We do not view this as a critical finding: compared to
other flaws in certification, the impact of using one versus two intermediate certificates
is marginal.

4.5. Related work and aftermath

Since our analysis of the X.509 PKI covers the years 2009–2011, we group our discussion
of related work into two groups: publications before our own, and publications after
ours that, in part, built upon it.

78

4.5. Related work and aftermath

4.5.1. Previous work

We are aware of two previous contributions on certificate analysis for TLS. Both were
given as talks at hacking symposia, but were not published as articles. Between April
and July 2010, members of the EFF and iSEC Partners conducted what they claimed
to be a full scan of the IPv4 space on port 443 and downloaded the X.509 certificates.
Initial results were presented at DEF CON 2010 [184] and 27C3 [245]. The authors
focused on determining the certification structure, i.e., number and role of CAs, and
several noteworthy certificate properties like strange subjects (e.g., localhost) or is-
suers.

Ristić conducted a similar scan like the EFF in July 2010 and presented some res-
ults in talks at BlackHat 2010 [251] and again (now including the EFF data) at In-
foSec 2011 [202]. The initial scan was conducted on 119 million domain names, and
additionally on the hosts on the Alexa Top 1 Million list [133]. Ristić arrived at
about 870,000 servers to assess, although the exact methodology cannot be derived
from [251, 202]. However, the information about certificates and ciphers collected is
the same as in our scans, and together with the EFF data set our data sets provide a
more complete coverage.

Vratonjic et al. presented a shorter study of a one-time scan of the Alexa Top 1
Million list [75], which was published while our own contribution was under submission.
Their results confirm ours.

Lee et al. also conducted a scan of TLS servers [45]. In contrast to our work, they
did not investigate certificates but focused on properties of TLS connections (symmetric
ciphers, MACs, etc.) and the cryptographic mechanisms supported by servers. The
number of investigated servers was much lower (20,000).

Yilek et al. investigated the consequences of the Debian OpenSSL bug of 2008 [79].
The authors traced the effect of the error over a time of about 200 days and scanned
about 50,000 hosts.

The problem with the above scans, particularly of the IPv4 space, is that more hosts
are included that are likely not intended to be accessed with TLS and thus provide
invalid (and often default) certificates. The percentages given in [184, 245, 251, 202]
thus need to be treated with caution. This is particularly true for the scan by the EFF
as this scan covered IP ranges used for dynamic IP address allocation. Combined with
the long duration of the scan, this leads to an inaccuracy. Our actively obtained data
sets concentrate on high-ranked domains from the Alexa Top 1 Million list, and observe
these domains over a long time period. Note that high-ranked domains can be assumed
to be aimed more at use with TLS. This should at least be true for the top 1000 or top
10,000.

Our monitoring does not suffer significantly from the problems mentioned above,
either. Thanks to it, we were not only able to estimate the deployment of the TLS
infrastructure, but were also able to analyse which parts of the PKI are actively used and
therefore seen by users. Furthermore, our view on the TLS deployment is not a single
snapshot at an arbitrary time, but includes changes that operators have conducted in
1.5 years. By analysing TLS data that has been obtained from all over the world, we
could also estimate how users see the TLS-secured infrastructure in other parts of the
world.

4.5.2. Later work

A number of publications carried out investigations that were similar to ours and, in
some cases, built upon it.

79

4. Analysis of the X.509 PKI using active and passive measurements

Lenstra et al. published an analysis of the strength of DSA and RSA keys in
2012 [46]. They built a data set of public keys from three sources: their own collection
of public keys, the EFF data set and our data sets. They investigated the properties
of the keys. One of their primary findings was that more RSA than DSA keys showed
weaknesses. Their conclusion was that generating RSA keys carries significantly higher
risk than generating DSA keys.

A similar analysis was carried out by Heninger et al. and published very shortly
afterwards [35]. In contrast to the work by Lenstra et al., Heninger et al. created their
database of keys from their own IPv4-wide scans. They confirmed the finding of a higher
proportion of weak RSA keys, but came to an entirely different conclusion. Thanks
to their active probing, they could show that a number of weak keys are the result of
devices with poor entropy during key generation—they even noted that we had found
such keys in our own analysis in the form of ‘duplicate’ keys in different certificates.
The authors could also show that devices with poor entropy are at extreme risk of
revealing their private key when using DSA: here, the entropy must be high enough
every time the algorithm is used for signing, not just on key generation. The conclusion
by Heninger et al. was thus that device properties were responsible for the weak keys,
and that DSA is in fact the more dangerous algorithm to use. The team also found
duplicate keys that were caused by other issues—we return to this in our own discussion
of SSH public keys in Chapter 6.

Durumeric et al. presented their tool to scan the entire IPv4 space at line speed
in [21]. Among other things, they also presented early results on HTTPS adoption over
one year and found an increase of almost 20%. Durumeric et al. followed this up with
a larger study in [20]. The focus of the latter study was on the certification structure as
created by CAs and subordinate CAs, and to a lesser degree on the properties of end-
host certificates as we investigated them. Among other things, the authors investigated
the number of trusted CAs and found a large number of intermediate certificates, on
the same order as we had found in the EFF data set. Disturbingly, they find that a
very large number of certificate chains contain the same intermediate certificate. This
would mean a compromise of this certificate would cause a major key rollover on the
Internet. The authors draw a picture of the distribution of subordinate CAs and find
many non-commercial entities. They also found unexpected security-relevant issues,
like locally scoped names in CNs (e.g., localhost), which were signed by CAs (recall
we did not find any of these for the Alexa Top 1 Million list of domains).

Asghari et al. presented a study of HTTPS from a security-economical point of view
in [7]. Based on lessons learned from CA compromises, they also conclude that the
weakest CA is the ‘weakest link’ in the HTTPS authentication model. Their primary
contribution is an in-depth analysis of CA market share, with a surprising finding: the
more expensive CAs hold a significantly larger market share than the cheaper CAs.
They conclude that the market is not primarily driven by price. Using a qualitative
approach (interviews with buyers), they conclude that buyers are aware of the weakest
link argument, but continue to buy from more expensive vendors. One of the reasons is
that large CAs are considered too large to be removed from browser root stores—i.e.,
buyers do not have to fear that their sites are suddenly without HTTPS access in case
of compromise. Another reason is that larger CAs often offer accompanying services
like extended support.

Akhawe et al. provided a study [1] in which they used passive monitoring to obtain
a large number of certificate chains, based on measurements in networks with a total
of over 300,000 users and over nine months. One of their contributions was a better
understanding of how browser libraries make authentication decisions, which was so far
very poorly documented—among other things, they found that the NSS library as used

80

4.6. Summarising view

by Firefox is more lenient in certificate verification than OpenSSL. Where OpenSSL
accepted 88% of chains, NSS would accept 96%. This means that Firefox users are
slightly less likely to see warnings than previous studies, including ours, suggested.
The authors also measured the frequency of TLS errors in their study and gave recom-
mendations on how to design the authentication decision in browsers better and with
less false-positive warnings for users.

Amann et al., finally, presented an analysis of the trust graph in the HTTPS eco-
system [6], together with an analysis of known man-in-the-middle attacks, where the
certificate chain of the rogue certificate was different. Their goal here was to determine
whether malicious certificates are well detectable, e.g., by noting the sudden changes in
the certificate chain, for example due to the change of the root CA or an intermediate
certificate. They found that this is not the case as too many such changes exist and are
of a routine nature rather than an attack. The authors discussed the implications for
one of the concepts to improve X.509 security, namely Certificate Transparency (CT).
We return to this aspect in Chapter 8.

4.6. Summarising view

By combining and evaluating several actively and passively obtained data sets, which
were in part also obtained over 1.5 years, we were able to derive a very comprehensive
picture of the X.509 infrastructure as used with TLS. Our analysis supports with hard
facts what has long been believed: that the X.509 certification infrastructure is, in
great part, in a sorry state.

The most sobering result for us was the percentage of certificates that a client using
the Mozilla root store would accept without a warning: just 18%. This can be traced
to both incorrect certificate chains (40% of all certificates exhibit this problem), but
even more so to incorrect or missing hostnames in the subject or SAN. With self-
signed certificates, where conscientious operators would have an incentive to use the
correct hostname, the situation was much worse. The only positive point is that the
percentages of absolutely valid certificates increased since 2009, but then again only
very slightly. Recall that these numbers refer to the top 1 million hosts—the percentage
of certificates where the chains are correct was lower for the full IPv4 space than for
the top sites as we found by examining the EFF data set.

Moreover, many certificate chains showed more than one error. Expired certificates
were common, and so were certificates for which no root certificate could be found. A
further problematic finding is that all our data sets revealed a high number of certificates
that were shared between a large number of hosts. This was even the case for high-
profile Web hosters—and often, the hostnames did not match the certificates there,
either. Although offered by several CAs, EV certificates do no seem to be in wide use.

This truly seems a sorry state. It does not come as a surprise that users are said to
just click away warnings, thus adding to the general insecurity of the WWW. As few
CAs are responsible for more than half of the distinct certificates, one should think the
situation should be better or at least easier to clean up.

There are some positive tendencies that should be mentioned, however. Our evalu-
ation shows that the more popular a given site is, the more likely it supports TLS, and
the more likely it shows an absolutely valid certificate. On the whole, key lengths seem
not to constitute a major problem. The same is true for signature algorithms. Keys
with short bit lengths are becoming fewer, and the weak MD5 algorithm is clearly being
phased out. Over the 1.5 years, we also found an increase in the use of intermediate
certificates while chain lengths remained remarkably short. This is a good development

81

4. Analysis of the X.509 PKI using active and passive measurements

as end-host certificates should not be issued by a root certificate that is used in online
operations.

Concerning our passive monitoring, the data we obtained allowed us to evaluate
negotiated properties of TLS connections, which cannot be obtained with active scans.
We were able to determine the negotiated ciphers and digest mechanisms. At the time,
most connections used ciphers considered secure, at acceptable key lengths, with a good
security margin. However, recent developments have put pressure on some of the used
algorithms, and it will be interesting to carry out a similar monitoring run to determine
whether TLS implementations choose different ciphers now.

With the above mentioned problems in certificates, however, we have to conclude
that the positive movements do not address the most pressing problems, which are the
certification structure and deployment practices.

4.7. Key contributions of this chapter
In this chapter, we addressed Research Objective O2.1. We analysed the properties of
the X.509 PKI using active and passive measurements. Our general finding was that
the X.509 PKI is not well deployed. Our key contributions were as follows.

Long-term distributed scans We scanned the servers on the Alexa Top 1 Million list
over the course of 1.5 years, between November 2009 and April 2011. In addition,
we scanned the servers from eight further vantage points across the globe in April
2011. This allowed us insights into the X.509 PKI as it is deployed on HTTPS
servers. At that time, ours were the largest and longest scans of this kind.

Passive monitoring We extended our data sets with certificates won from monitoring
TLS connections in the Munich Scientific Network (MWN). This yielded insights
into the X.509 PKI as it is encountered by users accessing sites according to their
browsing habits. It also allowed us to determine the symmetric ciphers used in
TLS connections.

Third-party data set As a reference, we also analysed data from a third party, namely
the EFF, who had carried out a three-month long scan of the IPv4 space and
collected roughly 11 million certificates. This data set allowed us to compare
the X.509 PKI as used for the most popular Web sites with the PKI as a whole.
However, due to the nature of the EFF’s scan, the results for their data set must
be treated with some care (no domain information, loss of accuracy due to IP
address reassignments).

Secured connections We found a clear correlation between a site’s rank on the Alexa
list and the probability it would offer TLS-secured access. Interestingly, the
percentage of sites that have an open HTTPS port is higher for the top 1 million
than for the top 1000 or even top 10,000 sites. The explanation we can offer
are default configurations for hosts on the lower ranks of the list and conscious
decisions to disable TLS for the higher-ranking sites, possibly for performance
reasons. However, when connecting to the sites with an open HTTPS port, we
found that only about 60% offered HTTPS, although this percentage was much
higher for the 1000 most popular sites (over 90%) and even the top 10,000 most
popular sites (roughly 80%). While a good finding for the top sites, it is a rather
poor result as a whole.

Security of deployment The majority of certificates chained to a root certificate in the
Mozilla Firefox’s root store and was not expired nor showed other errors in the

82

4.7. Key contributions of this chapter

chain. However, almost 20% of certificates were expired, showing insufficient de-
ployment practice. We found that only 18% of certificates were verifiable and
issued for the correct hostname. Worse, the trend showed only slight improve-
ments over time. This result is very disappointing and shows little care is applied
in deploying certificates. Almost 30% of certificates in our data sets were self-
signed (and more than 40% in the EFF’s data set). We could show that the
majority of them were issued without regard to hostnames: less than 1% were
issued for the right hostname. Although we found some extreme cases, validity
periods for certificates were mostly sufficiently short and no reason for concern.
We also found that many certificates are reused on many domains. Where do-
mains are hosted on different machines, this is a security weakness as it increases
the attack surface. This is one area where improvements are needed.

Certification structure We could show that most certificates are issued via a rather
short chain of intermediate certificates. This is a relatively good finding: short
chains reduce the attack surface, but allow to keep the root certificate offline.
However, the number of intermediate certificates is high, pointing to a rather
skewed distribution of the length of certificate chains.

Cryptography Our findings concerning the length of public keys were mostly positive.
Short key lengths were still too common, but the trend showed a clear movement
towards longer keys. Vulnerabilities like the Debian bug were already very rare.
We could also show that MD5 is in the process of being phased out. This is a
good finding as this algorithm cannot be relied on any more. Our monitoring
showed that cryptography is generally not a weakness as both strong ciphers and
long keys are used. At the time of our monitoring, the most common symmetric
algorithms were AES in CBC mode and RC4. In the light of new attacks on both
CBC and RC4, however, these are not optimal choices. It would be insightful
to carry out monitoring again and determine whether clients and servers have
moved to other block modes and moved away from RC4.

Issued certificates vs. encountered certificates Where sensible, we compared our find-
ings for the data sets from active scans versus the ones from passive monitoring.
The differences were rarely drastic. However, the data from our second, later
monitoring run showed a clear increase of correct certificate chains. Furthermore,
we found a number of very short-lived certificates in our data, which we attributed
to the Tor network.

Development over time For several of the issues we investigated, we traced the devel-
opment of the X.509 PKI over time. We found little development in fundamental
TLS connectivity or properties of certificate chains. However, we found a trend
to use more intermediate certificates (and short chains) and a movement towards
longer key lengths. Unfortunately, the really critical issues (like correct chains,
correct hostnames) did not show significant improvements. We note that the more
dangerous attacks on the X.509 PKI happened after our investigation period (see
Chapter 3). It would be interesting to determine whether the attacks caused a
move towards more security in HTTPS configurations.

Influence of geographic factors We could show that results from our other vantage
points did not differ crucially. The operators of CDNs seem to carry out cer-
tificate deployment with due care.

Correlation to rank We could determine that the quality of certificates (correct chains,
hostnames, sensible values for validity and key length) correlated with the Alexa

83

4. Analysis of the X.509 PKI using active and passive measurements

rank, but in a surprising way. We determined three categories of valid certificates:
‘good’, ‘acceptable’ and ‘poor’. While the ratio of valid certificates was higher for
the top-ranking sites, the fraction of ‘poor’ certificates among them was also
higher.

Our overall conclusion is that the X.509 PKI is in a poorly maintained state, with a
high fraction of certificates not being absolutely valid for the host where they are used.
There is also very little improvement over time. The primary efforts in improving the
X.509 PKI thus need to focus on sensible deployment and certification practices.

4.8. Statement on author’s contributions
This chapter is an improved and extended version of the following paper: R. Holz,
L. Braun, N. Kammenhuber, G. Carle. The SSL landscape—a thorough analysis of the
X.509 PKI using active and passive measurements. Proc. 11th ACM SIGCOMM Inter-
net Measurement Conference (IMC), Berlin, Germany, November 2011 (reference [37]).

The author of this thesis carried out all scans and carried out the post-processing
of the thus obtained data. He also carried out the post-processing of certificates in
the data sets from monitoring. The author made major contributions to all results
that concern evaluation of host properties (Section 4.3) and evaluation of certificates
(Section 4.4). The author made major contributions to the paper.

For this chapter, the author reanalysed the data sets. Deviations to the numbers in
the paper are due to this improved methodology. In the original publication, we used
a simpler script to extract root stores that would include certificates in its output that
were not meant to issue server certificates (e.g., root certificates for S/MIME) or were
blacklisted (the demonstration MD5 certificate from [260] and Mozilla test certificates).
Server certificates are not expected to be issued from such certificates. For this chapter,
the author extracted all root stores again with the more precise script by Langley [211],
which the author extended into a tool suite to work on older root stores, too [200]. The
author’s re-evaluation using this new method produced only marginal differences.

In the original paper, our results showed minor deviations due to two oversights.
First, we accepted expired intermediate certificates as valid. In the new methodology,
the author corrected this. The differences were again marginal (the re-evaluation of our
data sets with respect to expired certificates showed differences of only 0.1%–0.7%).
Second, an undocumented behaviour in OpenSSL had caused our instance to fall back
on root certificates installed by the Linux distribution in addition to the correct root
store. This means we slightly overestimated some numbers, e.g., the number of veri-
fiable certificates. The re-evaluation showed the differences to be marginal. Further-
more, this OpenSSL behaviour actually emphasised our message as we overestimated
the number of correctly issued certificates.

Static properties of certificates and hosts (i.e., such properties that do not depend
on verification steps) were not analysed again. Using the new methodology, the author
made a number of additions to the original results, and also added some corrections:

Section 4.3.1 The author added an analysis how many hosts (correlated to rank) had
an open port 443. The author put this in relation to how many hosts actually
offered TLS on this port.

Section 4.3.2 The author reanalysed the results in the lights of cryptographic devel-
opments since 2011, in particular with respect to Diffie-Hellman key exchanges,
AES in CBC mode, and RC4.

Section 4.4.1 A mistake in the number of Wordpress certificates has been fixed.

84

4.8. Statement on author’s contributions

Section 4.4.2 The author corrected a mistake in the plot.

Section 4.4.3 Marginal deviations in the percentages were fixed (less than 0.1%).

Section 4.4.5 Minor errors in the numbers were fixed by the author (deviation of about
2% in the case of matching CNs).

Section 4.4.8 The author added a comparison between distinct and non-distinct cer-
tificates and found that Debian-weak keys are less likely to be reused on multiple
hosts.

Section 4.4.9 The author added a comparison with distinct certificates, where a num-
ber of extremely short-lived certificates could be associated with probable use of
Tor.

Section 4.4.10 The author added results for multiple chains. He also analysed chain
lengths a second time, with self-signed end-host certificates excluded, and com-
pared the results. This analysis provides even stronger evidence for the move
towards using more intermediate certificates. The author also added an analysis
of the differing chain lengths for the second monitoring run and determined the
reason to be the very different distribution of popular sites.

Section 4.4.11 The author fixed a mistake in the text describing the plot and clarified
the statement on the convergence of certification paths from end-host certificates
towards root certificates.

Section 4.4.13 The author reanalysed the data with a new method for counting and
added a comparison to issuers in distinct certificates. The new results show that
certificates from certain CAs are more likely to be reused on multiple hosts.

Section 4.4.15 The author reanalysed the data with improved criteria for the categor-
ies and added a comparison between earlier and later scan.

The author changed the above sections to reflect the additions and results from
the new methodology. The following sections are also adapted from the paper. For
Section 4.2, the author added details about the scans and added a discussion of the
inaccuracy in the third-party data set. He also rewrote the section on the monitoring
setup. For Section 4.4.2, the author added the algorithm to determine expired certi-
ficates. In Section 4.4.8, the author added a statement concerning the later work by
Heninger et al., who found an explanation for the duplicate keys we had found. Sec-
tion 4.5 is an extended version from the paper, too. The author split the section into
earlier and later work, and added related work for the latter category.

The following sections are from the paper, with only stylistic changes: 4.4.6, 4.4.7,
4.4.12, 4.4.14, and 4.6. Section 4.4.4 is a shortened version from the paper. All plots
in this chapter are by the author.

85

5 Chapter 5.

Analysis of the OpenPGP Web of Trust

This chapter is an extended version of our previous publication [73]. Please
see the note at the end of the chapter for further information.

Webs of Trust are an approach to PKI that is quite orthogonal to the hierarchically
structured X.509 PKI that we analysed in Chapter 4. In aWeb of Trust, every entity can
certify any other entity. One particularly important Web of Trust is the one established
by implementations of the OpenPGP standard (RFC 4880, [93]), e.g., Pretty Good
Privacy (PGP) and the GNU Privacy Guard (GnuPG). In this chapter, we describe
the results of a thorough investigation of the Web of Trust as established by users of
OpenPGP.

5.1. Introduction and investigated questions

OpenPGP was conceived primarily as an encryption tool for private users, to be used in
applications like email. Email constitutes one of the primary uses of OpenPGP to this
day1. This use case is entirely different from the WWW: OpenPGP is not intended
to be used to certify myriads of Web sites. Instead, OpenPGP means to establish
cryptographic links between real persons and to exploit relationships between them to
make it possible to assess the authenticity of their public keys. Due to its entirely
different use case, the research questions to ask are different from those for the X.509
PKI—they have less to do with problems that are due to deployment and more with
the relationships between keys. The latter are reflected in signatures.

OpenPGP does not need central entities that act as dedicated issuers of certificates.
A ‘certificate’ in OpenPGP is simply a signature on a name (with email address), public
key, expiry date, and optionally an indication of how thoroughly an entity’s identity
was verified by the signing party. Thus, one often speaks of ‘signatures’ and ‘keys’
instead of certificates when discussing OpenPGP.

The key to understanding OpenPGP lies in analysing the structure of the graph
that the OpenPGP Web of Trust constitutes. It is possible to state certain properties
that a ‘good’ Web of Trust must exhibit, and these are accessible to graph analysis.
Using this form of analysis, we investigated the following research questions.

Fundamental statistics The first question to ask is what the size of the Web of Trust is,
and how many keys with certification paths (i.e., signature chains) exist between
them. This gives an insight for how many users the Web of Trust is potentially
useful in the sense that they can use it to authenticate other keys or have their
keys authenticated by others.

1OpenPGP is also often used in Linux distributions to sign software packages.

87

5. Analysis of the OpenPGP Web of Trust

Usefulness of the Web of Trust A good Web of Trust must allow to find certification
paths from one key to many others, otherwise it is not useful. This degree of
usefulness is the next question we investigate. The length of the paths is also
important: short paths reduce the number of entities on the path that a user has
to trust and thus increase a user’s chances of accurately assessing a key’s authen-
ticity. Giving and receiving many signatures is important, too: it increases the
chances of several redundant paths between keys, which is beneficial for GnuPG’s
trust metrics.

Robustness Keys in the Web of Trust are stored on key servers, from where they can
be retrieved. They are subject to the usual life-cycles in a PKI, i.e., they may
expire, be withdrawn, and possibly be compromised. The effect would be that
certification paths would break. We thus decided to investigate how the Web of
Trust reacts to the random and targeted removal of keys, i.e., to which degree
keys remain connected via (redundant) certification paths.

Social relations A good Web of Trust should model social relations and social clustering
well: where communities of users exist, the chances of being able to accurately
assess trustworthiness of users within the same community increase. We decided
to investigate community structures in the Web of Trust and attempt to map them
to social relations. Furthermore, we decided to investigate whether the Web of
Trust shows the so-called Small World effect, which is common in networks of
social origin.

Cryptography Just as with X.509, the cryptographic algorithms and keys in use in
OpenPGP should be sufficiently strong. We decided to investigate whether this
is the case.

Historical development The Web of Trust graph is unique in the sense that all certific-
ation information in the Web of Trust is preserved on key servers. Hence, it is
possible to derive the historical development of the Web of Trust since its concep-
tion in the 1990s. As previous studies of the Web of Trust dated back almost ten
years, we were interested to see to which extent the Web of Trust had changed.

5.2. Methodology
We used primarily methods from graph analysis to determine properties of the Web of
Trust. In this section, we describe how we extracted the graph topology and summarise
the metrics we used.

5.2.1. Graph extraction

As mentioned in Section 2.5, a system of publicly accessible key servers allows users to
upload their keys together with the signatures so other users can retrieve them. The
keys servers synchronise via the Synchronizing Keyservers (SKS) protocol. Keys are
never removed from a key server—consequently, a snapshot of a key server’s database
contains the history of the entire Web of Trust. We modified the SKS software to
download a snapshot of the key database as of December 2009.

Table 5.1 shows properties of our data set after the extraction. The data set contains
about 2.7 million keys and 1.1 million signatures. Of these, about 400,000 keys were
expired, another 100,000 revoked. About a further 52,000 keys were found to be in a
defective binary format. The actual Web of Trust, which consists only of valid keys
that have actually been used for signing or have been signed, is made up of 325,410

88

5.2. Methodology

Total number of keys 2,725,504

Total number of signatures 1,145,337
Number of expired keys 417,163
Number of revoked keys 100,071
Number of valid keys with incoming or outgoing signatures 325,410
Number of valid signatures for the latter set of keys 816,785

Table 5.1. – Our data set for the analysis of the OpenPGP Web of Trust.

keys with 816,785 valid signatures between them. Consequently, the majority of keys
in the data set is not verifiable (no signature chains lead to them) and does not belong
to the Web of Trust.

Note that our method implies an important caveat. Users are not required to upload
their keys. Yet there is no centralised or structured way to search for and download
keys other than key server networks. Consequently, our data set has the inherent bias
that it contains only keys from users who took the extra step to upload their keys. As
the data set is relatively large, statistical analysis will still yield meaningful results,
but it is important to keep this limitation in mind. The number of unpublished keys is
unknown, unfortunately.

When representing the Web of Trust as a graph, we represented keys as nodes and
signatures as directed edges. This was a deliberate choice. An alternative would have
been to map keys to individual persons. However, such a mapping is not easy to
define: different users may have the same names, or the same users may spell their
names differently every time they create and upload a new key, or they may simply use
pseudonyms. Although the user ID in an uploaded key contains an email address, this
is not particularly reliable, either, as these can change, too. Ultimately, it is keys that
sign other keys, and we thus chose to analyse a key-based graph.

5.2.2. Terms and graph metrics

Based on the common notions of graph theory, we define some terms, following [83]
herein. In the following, let V be the set of nodes of the graph G, with ∣V ∣ = n. u and
v indicate nodes.

Strongly Connected Components (SCCs) An SCC is a maximal connected subgraph of
a directed graph where there is at least one directed path between every node pair u, v.
Note that the paths from u to v and v to u may incorporate different nodes.

Distances between nodes The distance d between two nodes is the length of the shortest
path between them.

Distances in the graph The characteristic distance of a graph, d̄, is the average over all
distances in the graph, i.e., the average path length:

d̄ = 1
n2 − n ∑

u≠v∈V
d(u, v) (5.1)

Eccentricity The eccentricity of a node u, ε(u), is defined as the maximum distance to
another node, i.e.

89

5. Analysis of the OpenPGP Web of Trust

ε(u) = max{d(u, v)∣v ∈ V } (5.2)

Graph radius and diameter The diameter of a graph is defined as the maximum over
all eccentricities:

dia(G) = max{e(u)∣u ∈ G} (5.3)

The radius is defined as the minimum over all eccentricities:

rad(G) = min{e(u)∣u ∈ G} (5.4)

Node neighbourhoods We define the h-neighbourhood of a node v as the set of all
nodes from which the distance to v is at most h:

Nh(v) = {u ∈ V ∣d(v, u) ≤ h} (5.5)

Clustering coefficient The clustering coeffcient indicates the probability that two neigh-
bours of a node have an edge between them, i.e., are neighbours themselves.

Let G = (V,E) be the undirected graph. A triangle △ = {V△,E△} is a complete
subgraph of G of size 3, i.e., ∣△ ∣ = 3. The number of triangles of a node v is given by
λ(v) = ∣{△ ∶ v ∈ V△}∣. A triplet of a node v is a subgraph of G that consists of v, two
edges, plus two more nodes such that both edges contain v. The number of triplets of
a node v can be given as τ(v) = (d(v)

2). The local clustering coefficient of v is defined as

c(v) = λ(v)
τ(v) (5.6)

c(v) indicates how many triplets of v are triangles. The global clustering coefficient
of G can then be defined as:

C(G) = 1
∣V ′∣ ∑v∈V ′

c(v) (5.7)

with V ′ = {v ∈ V ∶ d(v) ≥ 2} to disallow non-defined values for τ(v).

Correlation of node degrees as defined by Pastor-Satorras et al. Following Pastor-Satorras
et al. [59], we define a measure for the correlation of node degrees:

knn =∑
k′
k′Pc(k′∣k) (5.8)

gives the average node degree of neighbours of nodes with degree k. Pc(k′∣k) indic-
ates the probability that an edge that starts at a node with degree k ends at a node
with degree k′.

Assortativity coefficient The assortativity coefficient [55] is a measure whose purpose is
similar to the function defined in Definition 5.8. It measures the degree of assortative
mixing in a graph: nodes with high degree that are connected mainly to other nodes
with high degree. The assortativity coefficient takes values between -1 and 1. Positive
values indicate assortative mixing, negative ones do not. According to Newman [55],
assortative mixing is a property that distinguishes social networks from other real-
world networks (e.g. technical or biological ones). It can thus be used to differentiate

90

5.3. Results

between similar graphs that exhibit the so-called Small World effect. We return to this
in Section 5.3.2.

5.3. Results

In this section, we present the results of our analysis. We begin with an analysis of the
Web of Trust’s macro structure.

5.3.1. Macro structure: SCCs

An SCC defines a subset of the graph where there is at least one signature chain
between every key pair. SCCs are important for participants of the Web of Trust:
mutual verification of key authenticity is only possible for participants within the same
SCC. An optimally meshed Web of Trust should be one giant SCC.

We computed the SCCs of the graph, and found 240,283 SCCs in the Web of Trust.
However, more than 100,000 of these consisted of a single node and about 10,000
SCCs consisted of node pairs. The Largest Strongly Connected Component (LSCC)
consisted of about 45,000 nodes. The remaining SCCs mostly had a size between 10
and 100 nodes. Figure 5.1(a) shows the distribution. Many SCCs have unidirectional
edges to the LSCC, but extremely few have edges between each other. The SCCs can
be arranged in a star formation around the LSCC in the middle (Figure 5.1(b)).

Out of all smaller SCCs, about 18,000 nodes showed a unidirectional edge into the
LSCC, making it (in principle) possible for such a key to verify keys from the LSCC.
In the other direction, 92,000 keys outside the LSCC are reachable from a key within
the LSCC. We found three interesting hubs in the LSCC and one regional particularity.
The German publisher Heise, the non-profit CA CAcert and, until recently, the German
association DFN-Verein2 operate or have operated CAs to sign keys. Together, they
signed about 4200 keys in the LSCC in our data set. The Heise CA alone signed, in
total, 23,813 keys—yet only 2578 of these were in the LSCC.

This SCC structure gravely impacts the usability of the Web of Trust. First of all,
the large number of smaller SCCs means that even among those users who have made
the effort to upload their keys to a key server, most do not participate actively in the
Web of Trust. Otherwise, their SCCs would already have merged with the LSCC (one
mutual signature is enough). This is also emphasised by the following comparison. The
ratio of edges to nodes in the LSCC is 9.85; the same ratio for the total Web of Trust is
2.51. Signature activity in the LSCC must thus be much higher than in the rest of the
Web of Trust—such strong user activity is very desirable to achieve a better meshing
in the Web of Trust.

Second, a high percentage of participants in one of the smaller SCCs is unable to
verify most keys in the Web of Trust. The LSCC is really a structure of paramount
importance: the keys in the LSCC constitute only 14% of the keys in the Web of Trust,
but only the owners of these keys can really profit from the Web of Trust to verify
the authenticity of unknown keys. They can build signature chains to all keys in the
LSCC plus to twice as many keys outside the LSCC. Thus, a recommendation for new
participants would be to obtain a signature from a member of the LSCC as early as
possible to make their key verifiable. A good choice is also to get a (mutual) signature
of one of the CAs in the LSCC. With such a signature, paths can be built to all keys
in the LSCC, plus to a large number of keys outside the LSCC that are only reachable
via the CA. This emphasises that a Web of Trust can benefit from CAs.

2This entity also acts as a subordinate CA in the X.509 PKI, where it operates a large network of
RAs.

91

5. Analysis of the OpenPGP Web of Trust

1e
+0
0

1e
+0
1

1e
+0
2

1e
+0
3

1e
+0
4

1e
+0
5

component size

qu
an
tit
y

1 2 4 8 16 40 117 44952

(a)

10

459

413

47

8

5

287

233

147

318

153
120237

151149
324

236

301

173

167

360

392

430

12

16

195

21

19

268

14
261

210

160

431

33

130

135
190

141 144

133

138

23
434

297

91

90

191

230

312

293
295

437

117

415

111

401102

381

150

87

96

484

154

152

36

423

88

441

366

336

179
300

338 364

429

362

148

139

146

110

203

143

136

433

246

290

258

317

248

410

276

370

358

397
69

483

473

399

368

488
334

123

330

255

332

170

479

418

451
223

469

427

254

493

240

242

159

64

244

81

292

238

414

353

486

487

186

496

299
467

333

331

6462
337

178
335

386

95 245
243

239
241

247
263

369

137

77

367

340

365

411

400

82

18

402

53

398

371

417
234

461

294

221

373

249

291

346

447

29873

296 24 155382396

482

472

428

426
351

322

40

166
452

314
464

438

416 443

262

468

132

129 361

205

134

379

377

7

9

28

3

4
284

1

2

446

444

432

408

394

61

260

100

498

13

458
229

11445

306

315

17

470

22

15

20
494

(b)

Figure 5.1. – (a) Size distribution of SCCs. (b) Plot of SCCs down to a size of 8.

The remainder of our analysis focuses on the LSCC as the most relevant component
for participants.

5.3.2. Usefulness in the LSCC

‘Usefulness’ is a term that is difficult to express formally. It can be defined in several
dimensions. We presented the most relevant ones in Section 5.1. When discussing the
implications of distances between nodes, we will generally refer to the default settings of
GnuPG as this is a popular implementation of OpenPGP. There is a further important
issue to take into account here. In OpenPGP, a signature does not store the so-called
‘introducer trust’ (see Section 2.5), i.e., information how much a given user trusts
another user to verify a participant’s identity accurately before issuing a signature.
Such information is always stored locally and never released. This has an important
consequence for us: when we discuss the usefulness of theWeb of Trust, we really assume
that the links between keys, which are expressed as signatures, would be considered
trustworthy by a verifying entity and thus would be usable to this entity. In other words,
we can only assess the ‘best case’ for the Web of Trust rather than the average or worst
case, because we do not have the information how introducer trust is distributed in the
Web of Trust.

Distances

We first analysed distances between keys in the graph. The average distances between
nodes in the LSCC (see Figure 5.2(a)) range between 4–7, which is at best just below
GnuPG’s limit, which by default allows a maximum path length of 5 in assessing a key’s
authenticity. At worst, these values exceed it. The characteristic distance of the LSCC
is 12.14. Its eccentricity is much higher: it is almost exclusively between 26–31. To
determine the implications for usefulness, we identified how many keys are reachable
from a given key within a certain distance.

We computed the set of verifiable keys as the nodes in a h-neighbourhood for
h = 1, . . . ,5. Figure 5.3 shows the cumulative distribution function of h-neighbourhoods.
For the 2-neighbourhood, we see a steep incline, from which we can conclude that this

92

5.3. Results

(a)

1
10

10
0

10
00

10
00
0

indegree

qu
an
tit
y

1 2 4 7 12 22 41 75 149 332 884

(b)

Figure 5.2. – Distribution of (a) average distances, (b) indegree in LSCC.

0 5000 10000 15000 20000 25000 30000 35000 40000

0.
0

0.
3

0.
6

0.
9

number of nodes in h-neighbourhood

Fn
(x
)

h=2 h=3 h=4 h=5

Figure 5.3. – CDF of reachable nodes due to h-neighbourhoods.

neighbourhood must be relatively small for all nodes. The size of the neighbourhoods
grows considerably for increasing h. For h = 3, the third quartile is about 3300. For
h = 4 and h = 5, it becomes 16,300 and 30,500, respectively.

Our findings indicate that signature chains within GnuPG’s restrictions are sufficient
to make a very large fraction of the keys in the LSCC verifiable. This is a good result
for usefulness and shows that the LSCC is meshed quite well. However, for h = 5, the
maximum number of reachable keys we found was 40,100. This means that, on average
for all keys, there will be almost 5000 keys (a tenth of the LSCC) to which no path at
all can be found within GnuPG’s restrictions.

Small World effect and social links

The size of 5-neighbourhoods shows that paths are frequently very short. A possible
explanation for this is a Small World effect, which—following [56]—can be informally
understood to be the phenomenon that the average path length between any two nodes
is significantly shorter than could be expected by judging from graph radius and dia-
meter. A high clustering coefficient is often viewed as indicative. We investigated this
in the LSCC. As there does not seem to be a universally accepted definition of the

93

5. Analysis of the OpenPGP Web of Trust

clustering coefficient for directed graphs, we reduced the directed graph to an undir-
ected one (omitting the direction of edges and merging duplicates). The clustering
coefficient we computed is C = 0.46. This indicates that, on average, roughly half of
all neighbours of a node have edges between them. The value is on the same order as
described in [56] for social networks with strong clustering. The characteristic distance
in the LSCC is 6.07, while the diameter of the graph is 36 and the radius 16. Our
finding is that the LSCC does indeed show a Small World effect. This indicates social
clustering. Together with the short paths, this would make trust assessments easier for
users. We further explore the social nature of the Web of Trust in Section 5.3.4.

Node degrees

GnuPG’s trust metrics view redundant and distinct signature chains as beneficial in
assessing a key’s authenticity. A high node indegree thus means that the corresponding
key is more likely to be verifiable by other keys. A high outdegree increases the likeliness
to find redundant signature chains to other keys.

We computed the average indegree (and outdegree) in the LSCC as 9.29. However,
as can be seen in Figure 5.2(b), the distribution of indegrees in the LSCC is skewed.
The vast majority of nodes have a low indegree (1 or 2). The result for the outdegrees
is very similar: as can be seen in Figure 5.4(a), there is a positive correlation between
indegree and outdegree of a node. The plot for outdegrees is indeed so similar to the
one for indegrees that we omitted it here. About a third of the nodes in the LSCC
have an outdegree of less than 3. Together, these results mean that the Web of Trust’s
usefulness has an important restriction: many nodes need to rely on single certification
paths with ‘full’ introducer trust and cannot make use of redundant paths.

Mutual signatures (reciprocity of edges)

If many Web of Trust participants cross-sign each other, this would be a great improve-
ment in the overall verifiability of keys. We computed the reciprocity of edges, i.e., the
fraction of unidirectional edges for which there is also a unidirectional edge in the other
direction. The LSCC has a reciprocity value of 0.51. This shows that there is room for
improvement: the LSCC would profit much if more mutual signatures were given.

5.3.3. Robustness of the LSCC

The robustness of the LSCC is also an interesting topic: how is the LSCC connected
internally, and hence how sensitive is it to removal of keys? In the context of OpenPGP,
the random removal of a node can be the result of an event like key expiration or
revocation, which invalidates paths leading over the key in question. These events can
and do occur in practice. Targeted removal of a key, however, is very hard to accomplish
as SKS never deletes keys and stays synchronised. An attacker would need an unlikely
high amount of control over the SKS network to make a key disappear.

Scale-free property

Scale-freeness in a graph means that the node degrees follow a power law, i.e., the
distribution of degrees can be expressed as a function f(x) = axk. Connectivity-wise,
scale-free graphs are said to be robust against random removal of nodes, and vulnerable
against the targeted removal of hubs (which leads to partitioning). This is usually
explained by hubs being the nodes that are primarily responsible for maintaining overall
connectivity [2]. We thus investigated first to which extent the Web of Trust shows this
property.

94

5.3. Results

1e-03 1e-01 1e+01

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ratio indegree/outdegree

Fn
(x
)

(a)

1 5 10 50 500

50
10
0

20
0

outdegree

kn
n

(b)

Figure 5.4. – (a) CDF of ratio indegree to outdegree in LSCC. (b) Correlation of node degrees
according to Definition 5.8: average outdegree (knn) of neighbours of nodes with
degree k.

The double-log scale in Figure 5.2(b) could lead one to the conclusion that the
distribution of node degrees follows a power law. However, Clauset et al. argued in [15]
that this is not indicative and methods like linear regression can easily be inaccurate
in determining a power law distribution. We followed the authors’ suggestion instead
and used the Maximum Likelihood method to derive power law coefficients and verified
the quality of our fitting with a Kolmogorov-Smirnov test. The authors of [15] give a
threshold of 0.1 to safely conclude a power law distribution. Our values for indegrees
and outdegrees were 0.012 and 0.011, respectively. As this is off by a factor of ten, our
conclusion is that a power law distribution is not plausible. Consequently, the graph
cannot be scale-free in the strict sense of the definition. This finding is contradictory
to earlier works by Boguñá et al. [9] and Čapkun et al. [74].

The question is yet whether the graph is still similar to a scale-free one. Apart
from high variability of node degrees, a set of high-degree nodes that act as inter-
connected hubs are characteristic for scale-free graphs [2, 49]. The positive correlation
between the degree of nodes and the average degree of their neighbours (Figure 5.4(b))
suggests that nodes with high outdegrees do indeed connect to other such nodes with
high probability. To bolster our finding, we computed the assortativity coefficient and
obtained a value of 0.113. This is similar to what has been computed for other social
networks with a hub structure [56]. Our conclusion is that the graph is similar to a
scale-free one and exhibits a hub structure, but is not scale-free in the strict sense.

Random removal of nodes

Based on this finding, we investigated how the LSCC reacts to random removal of nodes.
We removed nodes and recomputed the size of the remaining LSCC as an indication of
loss in overall connectivity. For random removal, we picked the nodes from a uniform
distribution. Figure 5.5 shows our results. The graph is very robust against the random
removal of nodes: we have to remove 14,000 nodes to cut the LSCC’s size by half. To
reduce it to a quarter, we have to remove more than half the nodes (25,000).

The conclusion here is that events like key expiry or revocation do not greatly
influence the robustness, and consequently the usability, of the Web of Trust.

95

5. Analysis of the OpenPGP Web of Trust

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0

number of removed nodes

si
ze

 L
S

C
C

random
targeted

Figure 5.5. – Removing nodes at random and in a targeted fashion and recomputing the size
of the LSCC.

Targeted removal of nodes and CAs

For targeted removal, we chose nodes with highest degrees first. The graph was more
robust than expected. When we removed all nodes with a degree of more than 160 (240
nodes), the size of the LSCC was still 40,000. Only when we proceeded to remove all
nodes with a degree of more than 18 (about 5000 nodes), the LSCC was half its size.
Removing 2500 more nodes, we finally cut the LSCC down to about one ninth of its
original size. This means that nodes with lower degrees (less than 18) play a significant
role in overall connectivity (although the decay of the LSCC is quite pronounced once
they are also removed). The rather slow decay stands in contrast to the rapid decay
upon removal of the best-connected nodes that is commonly observed in scale-free
networks. Targeted removal of keys does not greatly affect the Web of Trust, and is
not an efficient attack. The hub structure is not the single reason for highly meshed
connectivity in the Web of Trust.

We decided to strengthen the attack by removing the keys of the three CAs. Our
finding was similar: the LSCC split into one LSCC of size 42,455 and 1058 very small
SCCs. This means that the CAs, although beneficial in making keys verifiable, are not
responsible for holding the LSCC together.

5.3.4. Community structure of the Web of Trust

Social clustering is an important property in a Web of Trust: it is more likely that
members of a cluster know each other at least to some extent and can thus assess the
trustworthiness of particular keys better. The Small World property was a first hint at
social clustering. Newman and Park noted that a high degree of clustering is typical
for social networks [58]. Fortunato [25] calls such subsets of nodes ‘communities’ if the
nodes have high intra-connectivity in their subset, but the subset as such shows a much
lower connectivity to nodes outside.

Community detection

We analysed the Web of Trust with state-of-the-art algorithms for community detection
to determine whether a pronounced community structure exists and can be mapped to

96

5.3. Results

Method Modularity Communities found (size > 3)
BL (l = 2) 0.70 936
BL (l = 5) 0.71 186

COPRA (v = 1) 0.78 1421
COPRA (v = 3) 0.79 1354

Table 5.2. – Dissection of the LSCC into communities: algorithms BL and COPRA. Note
that the definition of modularity for overlapping communities is different. The
values for BL and COPRA are thus not directly comparable.

‘real-world’ relationships. We also attempted to determine whether signing events like
Key Signing Parties can be identified in the graph. These are organised events where a
large number of participants come together in person and cross-sign each other’s keys.

Unfortunately, algorithms for community detection are often defined for undirected
graphs. Signatures also store little information that could help identify social links and
events in time. We decided to use DNS domains in user IDs and timestamps of signature
creation as a basis. As an algorithm for a directed graph, we chose the one by Rosval
et al. [66]. For undirected graphs, we chose the algorithms by Blondel et al. [8] (BL) and
COPRA [31], based on suggestions in [44]. COPRA allows overlapping communities,
but is non-deterministic. We ran it ten times and computed the differences. As a
measure for the quality of a dissection, we used modularity [57], which relates the
amount of intra-cluster edges of a graph with communities to the expected value for
a graph without communities. Note that the definition for overlapping communities is
different, so the values for COPRA and BL cannot be compared directly.

Only the algorithms by Blondel et al. and COPRA yielded useful results. The
algorithm by Rosval et al. computed a dissection into 2869 communities, almost all
of them without any intra-cluster edges. The lack of intra-cluster edges means that
the algorithm did not detect any true communities at all. We thus had to consider its
results unreliable. We ignored them in our subsequent evaluation.

BL and COPRA

Table 5.2 shows the results of dissections with BL and COPRA for communities of
size less than 3. Both BL and COPRA are configurable: BL can be repeated in
iterative phases and COPRA requires a (user-chosen) parameter v to reflect the degree
of overlapping. For BL, phase 2 (l = 2) yielded the best results (plausible number of
communities, high modularity). For COPRA, values of v up to 3 were found best. We
know from [14] that modularity values larger than 0.3 indicate a significant community
structure. Depending on the algorithm and chosen parameters, between 94% (COPRA)
and 99% (BL) of nodes in the LSCC belonged to such a community.

BL and COPRA agree on the same orders of magnitude with respect to the number
of communities and nodes therein. The high modularity values and the general shape
of community distributions by size (see Figures 5.6(a) and 5.6(b)) are also similar.
Most communities are very small, but a significant number of large or very large com-
munities exist. Similarities, however, end here. COPRA indicates one extremely large
community of 19,000–21,000 members. BL finds more communities of medium size
(100–500) and mid-large size (500–5000). To further investigate this, we analysed how
communities are connected. COPRA found that most small communities are clustered
around the largest community and mostly link only to this community. BL found
several large communities to which the smaller communities connect.

97

5. Analysis of the OpenPGP Web of Trust

5 50 500 5000

1
5

50
50
0

50
00

community size

qu
an
tit
y

COPRA v=3

(a)

5 50 500 5000

1
5

50
50
0

50
00

community size

qu
an
tit
y

BL l=2

(b)

Figure 5.6. – Distribution of communities by size.

Method dominated assignable dominated assignable signatures
by TLD to TLD by SLD to SLD within 30d

BL (l = 2) 53% 45% 4% 27% 12%
BL (l = 5) 47% 47% 8% 21% 14%

COPRA-1 58% 40% 13% 30% 40%
COPRA-3 58% 38% 14% 31% 41%

Table 5.3. – Community structure with respect to membership in top-level domains (TLD)
and second-level domains (SLD).

Mapping to domain names and keysigning parties

We analysed how the community dissections mapped to top-level and second-level do-
mains (TLDs and SLDs) in the user IDs. If the same TLD or SLD occur very frequently
in a cluster, this would be an indication that the cluster represents a true community
of users. We say a community is dominated by a domain if at least 80% of its nodes
belong to that domain. We say a community can be assigned to a domain if at least
40% of its nodes belong to it.

Table 5.3 shows the results. For both BL and COPRA, we found that a large per-
centage of communities are dominated by a top-level domain: between 47% and 58%. If
a community was not dominated, we checked if it could at least be assigned. A further
38%–47% could be said to be assignable to a TLD. This result did not change much
when we disregarded generic TLDs (.com, etc.): with COPRA, 38% of communities
were dominated by a country’s TLD and a further 23% were still assignable. Results
for BL were similar. Together, assigned and dominated communities make up by far
the largest part of communities found (98% for BL-2 and COPRA, v = 1). However,
the picture changes for second-level domains. With COPRA, only about 13% of com-
munities are dominated by an SLD and only a further 30% of communities can be
assigned to an SLD.

98

5.3. Results

Keysigning Parties are events where one can expect signatures to be uploaded to
key servers within a short time frame. Table 5.3 shows the percentage of nodes in the
communities where signatures were created within a month. We find poor results for
BL, but much better ones for COPRA. In about 40% of communities, the signatures
were created within 30 days of each other.

Conclusion with respect to community detection

Concerning community detection, it is difficult to reach compelling conclusions. We
provide ours as a basis of discussion. Both algorithms agreed that a large number
of smaller communities exist. Given the huge number of TLDs and SLDs and given
that the Web of Trust graph spans more than a decade, the results seem statistically
significant enough to conclude that the community structure does indeed capture some
‘social’ properties of the Web of Trust. However, grouping by TLD is a blunt measure,
and the mappings to SLDs were by far not as compelling. Our tentative conclusion is
that the signing process in the Web of Trust is indeed supported, to a traceable extent,
by real-world social links. The social nature of the Web of Trust is not a myth. At least
where certification paths are short, the community structure should make it easier for
users to assess the trustworthiness of a key. Beyond this result, however, community
detection is yet too imprecise to offer more succinct conclusions.

5.3.5. Cryptographic algorithms

We present results which cryptographic algorithms were used in our data set.
Tables 5.4(a) and 5.4(b) present results for hash and public key algorithms, respect-
ively. Keys with a length of less than 1024 bits were rare. The key lengths would have
been secure for 2009. Today, it is fair to say that a move towards longer key lengths
should be made rather sooner than later. Concerning hash algorithms, the stronger
SHA1 algorithm is by far the most frequent. The weak MD5 algorithm is still present
at about 10%. SHA2 variants are a small minority. Concerning public key algorithms,
ElGamal/DSA constitutes the vast majority (four times more than RSA).

The OpenPGP standard allows to set certain values when signing a key to indic-
ate how thoroughly a key owner’s identity has been checked before signing. Precise
semantics are not defined, however. The standard value is ‘generic’, which is also the
most common value found (67.1% of signatures in the LSCC), but 26.8% of signatures
are issued with the highest value ‘positive’ and 6.4% with ‘casual’. As setting a value
other than ‘generic’ requires user-interaction, it shows that at least a part of the users
in the Web of Trust takes the signing process seriously. The values that these users set
can be helpful for others when they have to assess the authenticity of a key.

5.3.6. History of the Web of Trust

We also examined the Web of Trust’s history. Recall that SKS servers never delete keys;
thus our snapshot of the Web of Trust contains its entire history. Our investigation
starts in 1991, when PGP was released. Figures 5.7(a) and 5.7(b) show the development
of the Web of Trust and the LSCC, respectively. A significant growth occurred only
after 1997. This correlates with the founding of PGP Inc., the release of version 5 of
the PGP software, and the beginning of the German Heise CA’s work. The growth of
the total Web of Trust slowed down after 2001, and the growth of the LSCC after 2005.
We do not surmise any specific reason for this. Possible explanations are saturation or
the advent of S/MIME, a rivalling standard. Figures 5.8(a) and 5.8(b) show the rate
at which new PGP keys were added to the Web of Trust and the LSCC, respectively.

99

5. Analysis of the OpenPGP Web of Trust

Algorithm Occurrences
SHA1 398,849
MD5 41,700
SHA256 5031
SHA512 2472
SHA224 532
RIPE-MD/160 122

Signatures total 446,325
(a)

Algorithm Occurrences
ElGamal/DSA-1024 36,555
RSA-1024 3903
RSA-2048 2408
RSA-4096 1198
RSA-768 257
RSA-512 203
RSA-3072 96

Keys total 44,952
(b)

Table 5.4. – Occurrences of (a) hash algorithms, (b) public key algorithms.

(a) (b)

Figure 5.7. – Development of key population of Web of Trust (a) and LSCC (b) over time.

ElGamal/DSA keys make up the largest part, probably due to RSA’s once-strict licence
requirements. In 2009, RSA became the default—this is reflected in the plot of the total
Web of Trust. Interestingly, the switch is almost untraceable in the LSCC. The LSCC
seems to show more resilience to changes. Our findings do not have direct implications
for security. It is known that ElGamal/DSA signatures need strong pseudo-randomness
during execution in order to be secure, and this has been found to be problematic in the
case of embedded devices used in conjunction with protocols like SSH [35]. However,
we find it plausible that the majority of OpenPGP keys are used on desktop machines
or even stronger hosts, where entropy is not a problem. Concerning earlier results for
the scale-free property, we find that the Web of Trust was much smaller at the time of
these previous analyses—thus, previous work analysed a very different network.

5.4. Related work

The OpenPGP Web of Trust has been the subject of investigation before, albeit at
other stages of its development and with a focus that was less on security-relevant
properties.

100

5.5. Summarising view

1992 1996 2000 2004 2008

0
10
00
0

20
00
0

30
00
0

40
00
0

time

nu
m

be
r o

f n
ew

 k
ey

s

DSA
RSA

(a)

1992 1996 2000 2004 2008

0
40

80
12
0

16
0

20
0

time

nu
m

be
r o

f n
ew

 k
ey

s

DSA
RSA

(b)

Figure 5.8. – Rate of new PGP keys added to the whole Web of Trust (a) and the LSCC (b).

Čapkun et al. [74] analysed several structural aspects of the Web of Trust of 2001.
They did not investigate aspects like communities but presented a model to create sim-
ilar graphs. They found a small characteristic distance and a high clustering coefficient.
The authors claimed to have found a power law distribution for node degrees. Our own
findings are that a power law distribution is not plausible. However, the graph is similar
to a scale-free one, although its hub structure is not solely responsible for robustness.
Note however that the rigid methods in [15] were generally not as widely in use then.
Boguñá et al. [9] also analysed a PGP graph from 2001. They converted the graph
to an undirected one and analysed node degrees and clustering coefficient. They also
claimed a power law for node degrees and determined a clustering coefficient on the
same order as the one we found. The authors also applied an (older) algorithm for
community detection. They claimed the community distribution follows a power law,
too. All of the above have in common that they used significantly older data sets,
and the focus was less on security issues like usefulness and robustness. Furthermore,
our community dissection was conducted with more recent algorithms, with the aim of
mapping communities to real-world groups.

The OpenPGP community has also contributed some effort in analysing the Web
of Trust’s structure. The first study that we know of was by Burnett in 1996 [217],
which was followed by another study in 1997 [218]. The Web of Trust was small at that
time, with the LSCC at about 2000 keys (1996) and 3100 keys (1997), although some of
the difference may be attributable to the different sources (Burnett used two different
publicly available key sets). The average distance between nodes was about six in both
years. The wotsap project [153] creates snapshots of the signatures in the Web of Trust.
However, it only considers the LSCC and does not store other key properties. We also
found the data set to be incomplete (10% of keys missing), due to a bug. Penning [246]
used the wotsap data set to determine aspects like distances, node distribution and
robustness based on node removal.

5.5. Summarising view

In the following, we bring the different findings of the last section together to provide
a summarising view.

101

5. Analysis of the OpenPGP Web of Trust

We found that only keys in the LSCC can really profit from the Web of Trust in
the sense that they can verify the authenticity of a large number of other keys and
find redundant certification paths to them. Unfortunately, this also means that the
reach of the Web of Trust is limited to a fraction of its users: only about 45,000 keys
out of two millions can use the Web of Trust without restrictions. A large fraction of
keys in the smaller SCCs can make very little use of the Web of Trust (or none at all).
However, for users with keys in the LSCC, the situation is much better. We found their
certificate chains to be relatively short. There is also a pronounced Small World effect.
We followed this up with an investigation of the community structure of the Web of
Trust. While algorithms for community detection can capture the social groups of the
Web of Trust only on a very coarse level, the graph does exhibit a strong community
structure.

Another positive aspect is that about 40,000 of 45,000 keys are reachable within
GnuPG’s restrictions, and several thousand even via just three hops or less. This is
positive for the Web of Trust as it can aid users in making better trust assessments
regarding other keys that are close and in the optimal case also in the same community.
The CAs we found greatly help make keys verifiable, although they are not relevant
for holding the graph together. Random removal of keys (e.g., due to expiration or
revocation) is not a problem for the robustness of the Web of Trust. The Web of Trust
is also very robust against targeted attacks.

However, we found that low indegrees and outdegrees are far too common. This
reduces the number of redundant paths between keys, which means that many users
would need to have ‘full’ introducer trust in known entities. More mutual cross-signing
would help here.

In essence, our conclusion is that the Web of Trust is likely to be quite an effective
PKI structure within smaller node neighbourhoods, and particularly for those users
that frequently sign other keys and are active in the Web of Trust. The cryptographic
algorithms that are in use can generally be considered to be still secure. However, keys
that have issued MD5-based signatures should be replaced and signatures renewed.
Also, a stronger move towards key lengths of more than 1024 bits is desirable.

5.6. Key contributions of this chapter

This chapter addressed Research Objective O2.2: we analysed the PKI established by
the OpenPGP Web of Trust. The purpose of this PKI is different to the X.509 PKI for
HTTPS: instead of authenticating WWW servers, the Web of Trust serves the purpose
of authenticating bindings of keys to user identities. This PKI is not accessible to scans;
but a snapshot is easy to create due to the availability of key servers. Analysing the
Web of Trust requires a different methodology, however, namely graph analysis. Our
key contributions are as follows:

Fundamental statistics We extracted the Web of Trust as of December 2009 and de-
termined the fundamental statistics. We found that 2.7 million keys exist, but
there are only 1.1 million signatures. About 400,000 keys are expired; 100,000
are revoked. We determined the actual size of the Web of Trust to be much lower
than the 2.7 million keys we found: only 325,000 keys had valid signatures. This
grave mismatch means that the vast majority of keys that were uploaded to key
servers are not verifiable within OpenPGP’s trust model. Mutual verification of
keys is only possible within the SCCs of the Web of Trust. More than 240,000
SCCs exist, but the vast majority is very small, with sizes mostly one or two
and some larger ones of sizes in the range of 100 keys. The largest SCC (LSCC)

102

5.6. Key contributions of this chapter

contains just 42,000 keys. The Web of Trust is really only useful for the owners
of these keys.

Usefulness We computed to which degree the LSCC is useful for its users to verify
the authenticity of a large number of other keys. To this end, we computed
the number of keys reachable via 1–5 hops. We found that, on average, only
a relatively small number of keys was reachable via two hops, but the number
increased drastically for three hops and reached about 40,000 keys for five hops.
This is a large number and shows the usefulness of the Web of Trust; however, it
also means that, from any chosen key, about one eighth of keys in the LSCC could
not be verified. With keys represented as nodes, we computed the node degrees
within the LSCC. The node degrees correspond to signatures given or received.
We found that a third of keys have received less than three signatures. Within
OpenPGP’s trust model, these keys can only be used by the signing parties, but
not by other entities. More mutual signatures would be beneficial.

Robustness We investigated the robustness of the LSCC by determining its size after
random and targeted removal of keys. The LSCC is not scale-free in the strict
sense—it contains more inter-connected keys acting as hubs than the scale-free
property would suggest. This helps make the network very robust against removal
of keys. We found that random removal had little effect, and the LSCC was more
robust against targeted removal than would be typical for a scale-free network.

Social relations We investigated the social structure of the Web of Trust. We computed
the clustering in the LSCC and found that it exhibits a strong Small World ef-
fect. This hints at a strong social structure. We used state-of-the-art community
algorithms to determine whether communities exist in terms of common top-level
domains and common second-level domains. While we could show that the Web
of Trust does exhibit a community structure, the amount of key-related inform-
ation is generally not sufficient to draw strong conclusions. We also investigated
whether keys in a community have signing dates that are within short time spans
(one month), which would hint at social events during which signatures were cre-
ated. One algorithm, COPRA, indicated that this was the case for about 40% of
communities.

Cryptography With respect to cryptography, we did not find much reason for concern
in the LSCC, at least for the time that our data set is from: most hash algorithms
were from the SHA family, with MD5 used in only 10% of signatures. Key sizes
were sufficient—sizes of less than 1024 bits were extremely rare. However, these
findings need to be evaluated again in the light of new findings since 2009. 1024-
bit keys are not recommended any more as their security margin has become very
small.

Historical development We investigated the growth of the Web of Trust over the years.
We found that it experienced a significant growth after the year 2000, and was
still growing at the time we created our data set, although at a slower rate.
Earlier work analysed a network that was markedly different from the one we
investigated.

The conclusion we draw from analysing our data is that the Web of Trust is indeed a
very useful construction, although its usefulness is limited primarily to verifying keys
in the ‘neighbourhoods’ that are only a short hop count away (in terms of signatures).
The main factor working against usefulness is the low outdegree of keys. Unfortunately,
introducer trust is not a property that is stored on key servers, and thus our findings

103

5. Analysis of the OpenPGP Web of Trust

describe the best case of usefulness in the Web of Trust. In any case, users should give
and receive enough signatures so they can verify keys over at least three redundant
paths. This would relieve them from the requirement of having ‘full’ introducer trust
into every key on a verification path.

5.7. Statement on author’s contributions
This chapter is an extended version of the following paper: A. Ulrich, R. Holz, P. Hauck,
G. Carle. Investigating the OpenPGP Web of Trust. Proc. 16th European Symposium
on Research in Computer Security (ESORICS), Leuven, Belgium, September 2011 (ref-
erence [73]). The publication is based on the results of Alexander Ulrich’s intermediate
thesis that the author initiated and advised: A. Ulrich. Analyse des OpenPGP Web
of Trust. Studienarbeit, Universität Tübingen, Fakultät für Informations- und Kogni-
tionswissenschaften, Tübingen, Germany, June 2010 (reference [72]).

The author of this thesis initiated and guided the Web of Trust project. Alexander
Ulrich obtained all empirical results. For the chapter, the author added the results on
the history of the Web of Trust, which are also from [72], as well as more background
on GPG’s default trust metric, to which Alexander Ulrich provided significant input.
The author also reassessed the cryptographic algorithms in the light of cryptographic
developments since 2010. The paper was written entirely by the author; Alexander
Ulrich created the plots and edited the paper during the shepherding phase.

The following sections are adapted from the paper. All modifications were made
by the author of this thesis. Section 5.1 is an adapted version of sections 1 and 2 in
the paper, extended with an introduction of the investigated questions. Section 5.2
combines section 3 and the appendix from the paper, with only minor stylistic changes
made by the author. Section 5.3 combines sections 4–6 of the paper. The author
added the results concerning the history of the Web of Trust. He added clarifications
and made some stylistic changes. Section 5.4 is an extended version of the section on
related work in the paper, with very early related work on the Web of Trust added.
Section 5.5 is from the paper (section 8), with only stylistic changes made.

104

6 Chapter 6.

Analysis of the PKI for SSH

This chapter is an extended version of our previous publication [28]. Please
see the note at the end of the chapter for further information.

In this chapter, we address Research Objective O2.3: we analyse and assess the
deployment of the SSH infrastructure. As explained in Chapter 2, SSH uses a ‘False
PKI’: in its primary mode of operation, there are no TTPs and no CAs. Instead,
administrators distribute host keys to their users out-of-band or rely on trust-on-first-
use authentication. This is largely due to SSH’s widespread use as a protocol for remote
(shell) access. In contrast to X.509, where the purpose is world-wide authentication of
hosts, an analysis of this ‘False PKI’ has to focus on the effects of network management
practices, which are reflected in key generation and key deployment. Properties of
public keys and their deployment characteristics are at the focus of this investigation.

The SSH PKI is accessible to active scanning: when a client carries out the hand-
shake, it receives the server’s host key. However, SSH is a particularly security-relevant
protocol as it allows access to protected resources. Thus, certain ethical considerations
must be taken into account when scanning SSH.

In the context of SSH, the algorithm DSA is commonly referred to by the name of
the corresponding NIST standard, DSS. In this chapter, we follow this use.

6.1. Investigated questions

We gave a short introduction to SSH and its PKI model in Section 2.6. In the following,
we motivate and outline our research questions. To find answers to these questions, we
carried out three Internet-wide scans and combined the results of our scans with data
sets from further measurements.

Protocol versions Two versions of SSH exist. The older version 1 is known to contain
cryptographic flaws and should not be used. SSH in version 2 is a complete re-
design. It added support for Perfect Forward Secrecy (PFS) by introducing a
Diffie-Hellman key exchange as part of the connection establishment. Adminis-
trators should enable only SSH 2. We investigated which versions of SSH are in
use.

SSH servers Several implementations of SSH servers exist. From time to time, new
vulnerabilities become known. It is important to keep servers up to date. We
investigated which SSH servers are in use.

Host keys SSH uses public keys (the host keys) to identify a host. There are several
important properties that such keys must fulfil. In the following, we give a list of
properties we chose to investigate.

105

6. Analysis of the PKI for SSH

Strength of host keys Host keys can be RSA or DSS keys (including elliptic curve
versions), and they must be of sufficient length to be cryptographically se-
cure. We decided to investigate the distribution of key lengths and key
types.

Cryptographically weak keys The security of keys can be compromised despite
them being of sufficient length. Examples are the Debian bug [175], which
we already discussed in Chapter 4, but also weaknesses that are introduced
due to poor entropy on the system generating a key. Heninger et al. ana-
lysed both phenomena in their study of 2012 [35]. The authors scanned TLS
and SSH servers Internet-wide and downloaded a total of about six million
SSH host keys. The primary focus of their work was on determining crypto-
graphically weak keys and the reasons they existed. They could show that
pseudo-random number generators were often the cause: 0.03% of RSA keys
and about 1% of DSS keys were vulnerable due to poor random number
generation. The results by Heninger et al. pointed at a problem in many
embedded devices: they have too little entropy for cryptographic operations.
The work by Heninger et al. is our point of reference here: we set ourselves
the goal to reproduce their results and determine whether the quality of keys
has improved in the year since their publication.

Duplicate keys Heninger et al. also found a number of keys that were not cryp-
tographically weak yet occurred on many IP addresses. They were able to
identify some of these keys as default keys deployed as part of the manufac-
turing process. The authors did not investigate this more deeply, however,
and stated that ‘the lack of uniquely identifying host information [prevented
them] from distinguishing default keys from keys generated with insufficient
entropy’ [35]. We decided to investigate these keys in more detail, for two
reasons. First, while default keys in devices may be one cause for the phe-
nomenon, it is necessary to determine where these devices occur (in which
networks, or in which geographic locations) to estimate the potential impact
on security. Second, some keys may be the consequence of intentional ad-
ministrative decisions, like SSH gateways, or setups in certain shared hosting
environments. These are relevant network management practices, and it is
an interesting question whether the corresponding keys are used safely or
not. Of course, some keys might simply be reused out of convenience and
deployed on hosts within the same administrative domain. The consequence
in this case would be a multiplication of the attack surface.

SSHFP SSH can make use of the SSHFP resource record in DNS. This allows to store
the fingerprint (a hash value) of a host key in the DNS. We decided to investigate
to which degree this is deployed, whether the information in the DNS is accurate,
and whether it is secured by DNSSEC.

Cryptography Finally, SSH deployment should choose secure ciphers, symmetric session
keys of sufficient length, and secure hash algorithms. We investigated this.

6.2. Scanning process and data sets

In the following, we describe our approach to obtaining the data sets and document
our scanner and our scanning runs. We enriched our data sets with data obtained from
other active scans and databases, specifically DNS scans using a fast custom scanner,
AS and WHOIS lookups, as well as a geo-IP database.

106

6.2. Scanning process and data sets

6.2.1. Scanner

We scanned from a single IP address from our own AS, AS56357. Our scanner consists
of three components: an IP address generator, a port scanner and the actual SSH
scanner. We implement a producer-consumer model. The IP generator is responsible
for producing IP addresses that are uniformly distributed over the IPv4 space in order
to minimise the impact for networks with contiguous IP ranges. Our method of choice is
a Linear Congruential Generator (LCG). Our LCG is constructed in the same way that
Leonard and Loguinov [48] described. The LCG executes the functionXn+1 = (a⋅Xn+c)
(mod m). Our values for a, c and m are a=1,664,525, c = 1,013,904,223 and m = 232,
following a suggestion by Knuth and Lewis in [88]. The LCG generates pseudo-random
numbers that are uniformly distributed over the output domain and are guaranteed
to never repeat. We interpret these numbers as IP addresses. Our construction also
allows us to pause and restart the scanner at will, by using the last output as a seed
for the restarted run.

Before we feed the IP addresses to our port scanner, we first compare them against
a blacklist, which consists of two parts. The first, largest part contains IP addresses
(prefixes) that are not announced via BGP and thus not routable. We determined
these prefixes by collecting all announced prefixes on the border routers of our AS and
computing the complement. The second part of our blacklist consists of IP ranges
whose owners asked us to exclude them from our scans. At the time of writing, the
latter part contains only about one million IP addresses. We elaborate on this in more
detail in Section 6.4. IP addresses that are not on the blacklist are passed on to the
port scanner. This scanner consists of an array of wrappers around nmap instances that
probe TCP port 22.

Only IP addresses for which this port is found open are passed on to the actual
SSH scanner. This scanner consists of threads of modified instances of OpenSSH. Each
instance attempts to carry out a full handshake with the remote party and, if successful,
stores the full authentication information of the handshake, including the remote host’s
host key (this would normally not be part of OpenSSH’s output, thus our modification).

6.2.2. Scanning periods and data sets

We carried out three scans: in January, April and July 2013. Each scan took about 5-12
days. The resulting data set is presented in Table 6.1, with the number of hosts with
which we could carry out SSH handshakes, and the keys we downloaded. Naturally,
the difficulty in giving a precise account of hosts lies in the fact that the equation
‘distinct IP address = distinct host’ does not hold. Hosts may have several interfaces,
and interfaces may also be assigned more than one IP address. For simplicity, we still
use the term ‘host’, but it should be kept in mind that when we give numbers for hosts,
these are upper bounds.

We found SSH servers in 32,000 ASes in each scan. This is interesting as the current
estimate of the Internet’s size is around 40,000 ASes, meaning that a quarter of ASes
either block public SSH access, do not use SSH, are not announced, or are on our
blacklist.

The number of IPs with SSH servers decreased from scan to scan. One confirmed
reason, although likely the less dominating factor, is that our blacklist grew over time.
One large hosting provider asked for the blacklisting of 830,000 addresses. The other
factor, although plausible, is harder to confirm: systems blacklisted our IP address, at
least for port 22, despite the measures we describe in Section 6.4.

The number of IP addresses for which we could carry out the SSH handshake, and
which occur in both the January and April scans, was 6 millions; and those that occur in

107

6. Analysis of the PKI for SSH

Scan Jan 2013 Apr 2013 Jul 2013

Scanning period 5–12 January 18–29 April 23–27 July
IPs with SSH 12.0M 10.2M 8.8M
Keys 21.9 M (9.8 M) 18.5M (8.7M) 16.0M (7.4 M)

SSH 2
. . . RSA 10.9M (4.6M) 9.2M (4.0M) 8.0M (3.6M)
. . . DSS 9.3M (4.3M) 7.8M (3.7M) 6.7M (3.3M)
. . . NIST-P256 734k (450k) 758k (493k) 780k (519k)
. . . NIST-P384 54 (35) 48 (34) 45 (31)
. . . NIST-P521 696 (556) 655 (517) 734 (529)

SSH 1
. . . RSA 984k (538k) 721k (417k) 528k (310k)

Table 6.1. – Data sets from our scans. Numbers in brackets indicate distinct keys. NIST-x
indicates an elliptic curve algorithm. Note that SSH 1 uses only RSA keys.

both the April and July scans was 4 millions. About 2.8 million IP addresses appeared
in all three scans, i.e., between 24–32% of the IP addresses in the respective scans. AS
reassignments were not responsible for this: only 92,000 IP addresses changed their AS
during the scanning period. However, we know from [34] and [78] that a large portion of
the IPv4 space is dynamically assigned and IP occupancy often shorter than 24 hours.
This suggests that many SSH installations are actually found on dynamic IP addresses.
This is in line with our findings concerning broadband access devices (see Section 6.3).

6.2.3. Enriching data sets

We used data from other sources to enrich our data sets where needed. These were
DNS lookups, AS lookups, WHOIS lookups, and finally geographic location.

DNS querying Our tool of choice was dns-scraper by Ondrej Mikle [225]. This tool
is capable of querying several million records in a relatively short time (several millions
per day). It uses its own resolver and is able to perform DNSSEC validation. We used
it to query the PTR records for IP addresses and also in our investigation of domains
with SSHFP records. We elaborate on this in Section 6.3.

AS lookup We used pyasn [138] to determine the number of the AS to which an IP
address belonged. This tool can carry out historical lookups using the Route Views
archive [131]. We used one archive per scan to lookup the IPs in that scan, namely the
archive that was the most recent one just before the scan started.

WHOIS We used Team Cymru’s WHOIS service [264] to carry out WHOIS lookups
for ASes, based on their numbers.

Geolocation Finally, we mapped IP addresses to country and city using the Maxmind
geo-IP databases [216].

108

6.3. Results

6.3. Results

We present the results we obtained from our scans to answer the research questions we
formulated in Section 6.1.

6.3.1. Protocol versions

SSH servers may support SSH 2, SSH 1, or both. They indicate this in the first message
they send. Support for older versions is either indicated by sending a string of the form
1.x, which means support for SSH 1 only, with x between 3 and 51, or of the form
1.99 (to indicate support for both SSH 1 and SSH 2). As mentioned, it is now agreed
that SSH 1 should not be used due to several fatal weaknesses that, for example, allow
an attacker to inject text into the cipher text without a receiver being able to detect
this. Given that all major SSH clients today support SSH 2, there is really no reason
to leave SSH 1 enabled. To the best of our knowledge, major Linux distributions also
ship with SSH 1 disabled by default. We were thus interested which protocol versions
servers offered.

We found all three groups in our scans. In all three scans, more than 90% of all SSH
servers supported only SSH 2, which is a good finding. The share of hosts that support
both SSH 1 and SSH 2 is decreasing: between January and July 2013, it fell from 7.9%
to 6.2%, while the share of SSH 2-only hosts increased by 2%. The use of SSH 1 (0.5%
in July) could be said to be almost negligible—but this percentage corresponds to an
absolute value of 42,000 hosts. We believe these are probably older systems. Overall,
however, this distribution can be viewed as very good. If any recommendation can be
given at all, then it should be to disable SSH 1 for good on clients and servers.

6.3.2. Server versions

The server string sent to the client reveals which SSH implementations from which
vendors are used on server side. To some degree, this allows to identify older, non-
updated SSH servers. Updates are an important process to remove vulnerabilities, and
proper network management should take care of this. There is an important caveat
to take into account here: since our scanner executes the SSH protocol faithfully, we
can only report the server string as sent to us. However, SSH servers may have been
(manually) patched without this being reflected in their server strings, or they may
intentionally mislead the client (e.g., to obscure the attack surface).

Figure 6.1 shows the most frequently used SSH servers and the development of their
share over time. For better visualisation, we grouped OpenSSH versions with the suffix
p together with the original version. The p identifies ports to non-OpenBSD systems.
We find that OpenSSH is by far the most popular SSH server, running on about 65%
of hosts. Dropbear is used on 20% of the scanned hosts. Other servers occurred much
less frequently. Worth mentioning are Cisco implementations (4%) and ROSSSH, a
MikroTik implementation on about 2% of hosts. All other servers occurred on less
than 1% of hosts.

Some SSH servers use custom vendor identifiers. The variance is high: in our April
scan, we found more than 40,000 vendor strings that occurred at most five times.
However, almost all of these were either random-looking or Base64-like strings. In
some cases, we also found what looked like hex-encoded characters—possibly signs
that these strings were chosen intentionally. We also found strings that very definitely
described the patch level1. The random-seeming strings point at some kind of creation

1E.g., OpenSSH_4.3p2-1.9_test4.cern-hpn-CERN-4.3p2-1.9_test4.cern.

109

6. Analysis of the PKI for SSH

●

●
●

S
ha

re
 o

f s
er

ve
r

ve
rs

io
ns

 in
 %

Jan2013 Apr2013 Jul2013

0

5

10

15

20

● OpenSSH 4.3
OpenSSH 5.3
Dropbear 0.46
OpenSSH 5.5
Dropbear 0.51
OpenSSH 5.1

Figure 6.1. – Most frequently encountered SSH server versions over all scans.

Server version Published in Known CVEs
OpenSSH 4.3 2/2006 4
Dropbear 0.46 7/2005 3
OpenSSH 5.3 10/2009 2
Dropbear 0.52 11/2008 1

Table 6.2. – Selection of server versions that occurred in our scans for which CVEs have been
published.

mechanism during install or compilation time, although their exact purpose remains
unknown to us.

Concerning the age of servers, we found that OpenSSH 4.3 dominates the SSH
landscape, even though it is from early 2006. There are several known vulnerabilities
for this version. Fortunately, we can also see that the use of OpenSSH 4.3 is declining
(but more than 1.5 million servers remain). Only 6.6% of OpenSSH servers in our July
2013 scan have a version number of 6.0 or above. OpenSSH 6.0 was released in April
2012. The latest OpenSSH version at the time of writing, 6.2, was published in March
2013. It appears in only 1% of version strings in our scan of July. Similarly, only 6.5%
of Dropbear servers are more recent than February 2012 (version 2012.55). Whatever
one’s view on the rate of patched vs. unpatched systems may be, we find it intriguing
that the adoption of new SSH server versions seems to be extremely slow.

Although we cannot establish directly whether a server implementation was patched
or not, we do wish to state that vulnerabilities are known for several of the version
strings that we encountered. Using [173] as a vulnerability database, we compiled
Table 6.2. It shows release dates and number of CVEs2 for some server versions we
encountered in our scans. Determining whether a server reporting a vulnerable version
is patched or not would require, at the very least, very intrusive scans. We consider such

2CVE is short for Common Vulnerabilities and Exposures. The CVE system constitutes a unified
framework to report vulnerabilities.

110

6.3. Results

Heninger et al. Jan 2013 Apr 2013 Jul 2013
0.03% 0.016% 0.013% 0.014%

Table 6.3. – Co-prime weak RSA keys across all hosts.

scans unethical. We thus cannot provide further evidence here, and restrict ourselves
to the statement that it is at least possible that a fraction of these servers was not
patched. We view our judgement as supported by the overall slow rate of change that
we generally observe for server-side software—both for SSH as well as previously for
TLS (also see Chapter 4).

6.3.3. Weak keys

We investigated how many SSH servers presented RSA keys that must be considered
cryptographically weak due to irregularities during key generation. In doing so, we
reproduced the results by Heninger et al. and determined to which degree the situation
has improved since the authors’ disclosure.

Co-prime weakness

Heninger et al. showed in [35] that a number of RSA public keys exist whose moduli
share one prime number with the modulus of a different public key. In such cases, the
private keys can be calculated very fast. The authors reported that about 0.03% of RSA
keys had this problem. They initiated a responsible disclosure process, too. We used
the original authors’ implementation [198] to determine how many co-prime vulnerable
keys still exist. Table 6.3 summarises our results. While the numbers seem to have
fallen in the year that passed, they also do not seem to change any more—the changes
in the last two scans are likely due to measurement inaccuracy and rounding effects.
With numbers so low, it is hard to tell if this is a result of the responsible disclosure
by Heninger et al.—normal routine updates may also be involved. Furthermore, the
numbers are so low now in any case that it is becoming difficult to attribute changes
to updates of any kind rather than measurement inaccuracies.

We were surprised by one effect: when we filtered for SSH 1 keys, we found that about
2.4% of them had a co-prime weakness, and the number is not decreasing. This hints
that entropy problems were present from the beginning of deployment. Furthermore, it
may be an indication that the very old systems do not receive attention any more. As
SSH 1 should not be used anyway, it does not constitute a major weakness, however.

Debian-weak keys

A second well-known vulnerability is the use of SSH keys created on Debian-based Linux
systems with a version of OpenSSH that contained a serious bug in the algorithm for
key generation [175]. These flawed versions were distributed from 2006 to 2008. Their
public-private key pairs can be precomputed with reasonable effort. H. D. Moore
published a list [227] of known-weak keys which we used, too. The good news is that,
five years after the bug was found, Debian-weak keys are rare and becoming even less
common, thus continuing the trends documented in [37, 35]. In January, 0.017% of
SSH 1 keys were vulnerable, and 0.077% of SSH 2 keys. In July, the numbers had
decreased to 0.011% and 0.063%, respectively. The fact that more SSH 2 keys seem to
be affected may hint that the majority of SSH 1 keys were generated before 2006 and
these servers do not receive updates.

111

6. Analysis of the PKI for SSH

1 100 10000

Number of hosts per key =: X

P
r[

 #
ho

st
s

>
 X

]

1e−5

1e−4

1e−3

0.01

0.1

0.2
SSH2−RSA
SSH2−DSS
SSH1

Figure 6.2. – CCDF: frequency of case ‘key occurs on more than X hosts’ (for July 2013).

Jan 2013 Apr 2013 Jul 2013
SSH-1.x 530 k (54.16%) 364 k (50.70%) 261 k (49.51%)
SSH-2.0 12.7 M (61.03%) 10.5 M (59.02%) 8.9 M (57.46%)

Table 6.4. – Duplicate host keys fetched during the scans.

6.3.4. Duplicate non-weak keys

More than half of all fetched host keys were used on multiple IP addresses. This
phenomenon was also reported by Heninger et al., who distinguished weak keys on
devices with poor entropy (see above), devices with default keys, and simple reuse of
the same key on different hosts. We were interested in the latter two phenomena as they
relate to network management practices. We investigated which of the two phenomena
occurs in which networks, and to which degree it constitutes a security weakness. Our
analysis was mostly carried out on the data set from July 2013, with the exception of
one AS.

The first thing to note is that duplicate yet non-weak keys occur much more fre-
quently than cryptographically weak keys. Ranking their occurrences together, the first
weak key appeared on rank 1337 in our data set. Figure 6.2 visualises how commonly
the case ‘a key is found on more than X hosts’ occurs over the entire IPv4 space.
Table 6.4 shows the number of non-unique keys for all three scans.

In our study, we investigated the 10 most frequent duplicated keys, which together
account for about 6% of all keys. We also added one particularly interesting case that we
could identify with the help of an ISP. We first enriched our data set with the DNS PTR
resource record for all IPs in our data set. This yielded 6.2 million names, of which 5.8
million were distinct. Second, we determined the operators of ASes and their registered

112

6.3. Results

O
pe

nS
S

H
 4

.3

D
ro

pb
ea

r
0.

46

O
pe

nS
S

H
 5

.9

D
ro

pb
ea

r
0.

51

O
pe

nS
S

H
 5

.1

C
is

co
 1

.2
5

S
ha

re
 o

f s
er

ve
r

ve
rs

io
ns

 in
 %

0

5

10

15

20
Unique
Duplicate

Figure 6.3. – Market share of servers with unique and duplicate keys.

location on the globe. Third, we used the Maxmind geo-IP database to retrieve country
and city of an IP address. Fourth, for the cases of mixed hosting/broadband access,
we also carried out nmap service scans. One fact to take into account here was that
most IP addresses we investigated were dynamic, and some changed on a daily basis.
As service scans on several ports take longer, it was not possible to match IP addresses
unambiguously to SSH keys and running services. Hence, we used the service scans
primarily to gain a picture how the AS was used.

General findings Figure 6.3 relates duplicate keys to the market share of server versions.
Some servers, such as OpenSSH 4.3, are responsible for a large portion of duplicate
keys. Dropbear 0.46 distributes almost exclusively duplicate keys. It is known that
Dropbear is often used in embedded systems, so this points at devices with default
keys. However, it is interesting that Dropbear 0.51 offers unique keys more commonly,
which could mean it is primarily used in different environments. For the following
analysis, we group by probable cause of key duplication.

Mixed hosting/broadband AS Among the top 10 keys, we found a pattern for key
duplicates in ASes where we found IPs to be used for both (Web) hosting and broadband
access devices. For example, the most common key in our data set was an RSA key
found primarily in just ten ASes; i.e., more than 99% of 360,000 occurrences in July,
and 560,000 in January, were in these ten ASes. The only feature that all these hosts
seemed to share was that they employed Dropbear 0.46. This particular key had already
been found by Heninger et al., although only 240,000 times. The key was of particular
interest because 80% of occurrences were found in the two ASes of the same Taiwanese
ISP (which we will call TW1 and TW2), particularly in Taipei, and another 16% in that
of a mainland Chinese ISP (CN). The rest were distributed over Central America, the
Caribbean and the US. This geographic pattern was the same across all scans. Almost
all (99.5%) of DNS names in Taiwan and China contained the string ‘dynamic’, which
already pointed at use for broadband access devices. Thanks to the database created

113

6. Analysis of the PKI for SSH

by the authors of [35], we learned that they had identified the key as a default key in
a DSL device, too. It seems plausible that it is a device sold primarily in the above
mentioned markets, at least with this key. The AS in question did not only present this
key, however—we found a large number of other keys. Figure 6.4 shows the distribution
for TW1. The security finding here is that the use of a shared key among so many
different systems is a weakness as it cannot be safely used for purposes like remote
administration. We found two other extremely common keys in TW1 (ranks 5 and 6;
66,000 and 60,000 times, respectively). We informed the ISPs, but did not receive a
reply.

(Mostly) safe broadband access devices We found a similar device as above for the
key ranked number 9 in our database. The corresponding IP addresses were almost
exclusively in Singapore and belonged to a broadband provider (SG). The PTR records
were unique strings in that provider’s domain. The SSH server was overwhelmingly
Dropbear 0.52 (99%). Again, this seemed to be a case of a default key in a device
for broadband access. The situation was better here than above, however: all bar 38
devices were within this AS. However, we did find the other 38 occurrences as far away
as New Zealand. We can only speculate how the ‘escaped keys’ got there—possibly by
simple labour relocation. Figure 6.4 shows the distribution for AS SG—once again, it
seems to be used for multiple purposes as there is a large number of other keys, some
of which are even unique.

Home entertainment devices We encountered an entirely different case of key reuse for
an RSA and a DSS key that occurred 58,000 times and 50,000 times in our scans (ranks
7 and 8), respectively—but distributed across well over 1500 ASes in more than 50 coun-
tries. More than 80% of the IP addresses were in the US or a closely related market
like the UK, Canada, or Australia, however. The SSH server revealed the solution as it
contained a vendor-specific string that belongs to a home entertainment solution by a
well-known and globally acting corporation. One of their products is a fully configured
‘off-the-shelf’ Linux-based entertainment server solution. We verified this by scanning
port 80, which revealed itself to use a Red Hat-based Apache version, which this par-
ticular vendor also advertised as a feature of their product. Connecting to several of
the IP addresses with a browser, we confirmed the brand. Additional credibility was
lent to this as in 38% of cases this key occurred in an AS where the WHOIS entry
contained the term ‘cable’—this type of broadband access is fast. Needless to say, this
kind of setup is extremely dangerous in terms of security.

SSH gateways We encountered an entirely different setup for the second most common
key in our database, found in the AS of a large German ISP (DE, 95,000 occurrences).
The key was strictly limited to this one AS. It occurs on 75% of hosts that we found
in that AS, although many different keys are used there (see Figure 6.4). The next
most frequent key in that AS occurred only 41 times. Resolving the IPs to host names
(PTR record), we found that a third of them pointed to just one domain; the rest
resolved mostly to different domains. The SSH server was always a modified Dropbear
version and the service scans showed that only the Apache Web server was used. This
seemed to point at a hosting situation with a very different setup. Two plausible reasons
were that we were either facing an SSH gateway or that virtual machine images with
the same key had been deployed. The former would be a good solution, the latter
a very poor one. Unfortunately, these setups are hard to distinguish without very
intrusive scans like OS scans. We contacted the ISP; they confirmed we had identified
‘shared hosting’ products, and that SSH traffic is directed via a gateway. This allows

114

6.3. Results

Number of hosts per key =: X

P
r[

 #
ho

st
s

>
 X

]

●

●

●

●

●
●

●
●
●●●●

●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●

●
●
●

●
●

●

●

●

●
●

● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●
●

●
●

●

●

●

●

●
●

● ● ● ●● ●●●●●●●●●●
●
●
●
●

●
●
●
●

●

●

●

●

1 100 10,000 100,000

1e−4

1e−3

0.01

0.1

0.5

1.0

●

DE
TW1
US/JP
US
SG

Figure 6.4. – CCDF: ‘key occurs on more than X hosts’, for selected AS.

simpler management and enables them to switch SSH keys on the real machines without
customers encountering SSH host key warnings. The private key is never exposed to a
customer. When done properly, as it seemed to be the case here, this SSH setup seems
quite reasonable.

We found what seemed to be similar cases of ‘key clusters’ (ranks 3 and 4) in the
AS of a Japanese corporation’s branch in the US (US/JP), where two keys represented
80% of fingerprints. We also found a cluster in a US AS (US, rank 10). The variance
in these networks concerning SSH servers and Web servers was higher, however. We
contacted the ISPs, but did not receive an answer. Their AS setup may be a mix of
the ones in Germany and the ones in Taiwan and China.

Per-customer keys An AS of interest was that of another large German company, where
we found about 60,000 keys that occurred more than once in their AS, but no single
key was used more than 200 times. These keys did not occur in our top 10, but their
existence pointed at an entirely different management practice. Our suspicion was that
virtual machine images might be distributed to customers without regenerating the
host keys. We contacted the ISP. They confirmed that virtual machines were used,
but that SSH keys are generated at deployment time. They investigated and offered
a plausible explanation: their customers are allowed to bind several IP addresses to
an interface. In such cases, the host key would be the same for all interfaces, and
we would have mistaken distinct IP addresses for distinct machines (note our caveat
from Section 6.2). However, they could also confirm that there were some cases where
customers did indeed reuse keys across different machines. Note that the type of hosting
is entirely different here, with the responsibility of key management on the side of the
customer. This latter case of reuse is a potential vulnerability, especially if customers
run public-facing services with attack surface.

115

6. Analysis of the PKI for SSH

6.3.5. Use of SSHFP

A way to make SSH connections more secure, especially initial connections, is to use the
DNS to store the fingerprint (hash value) of an SSH key in a dedicated DNS resource
record, SSHFP. This is defined in RFCs 4255 and 6594 [120, 121]. DNSSEC can be used
to sign these records. We determined whether such records are in use and accurate. We
looked up the PTR records of IPs with active SSH servers, and then forward-resolved
the domain name obtained thereby. We restricted our analysis to such IP/domain
combinations where the two matched. Thus, our results constitute a lower bound. We
found 2070 distinct domains employing a total of 4374 SSHFP records (a domain may
have multiple records, one for every key type it uses). We considered a domain secured
with SSHFP if at least one SSHFP resource record matched a key. We found 94% of the
2070 domains were correctly secured with SSHFP records. However, only 660 of these
also had secured their SSHFP records correctly with DNSSEC. The rest transmitted
the SSHFP record via insecure DNS.

Note that the new TLSA resource record in DANE [105], which we also discuss in
Section 8.3, is intended to reproduce the functionality of SSHFP for X.509 certificates
meant to be used with TLS. It is an interesting debate whether our result allows to
draw conclusions with respect to TLSA. A relatively low number of domains deploy the
SSHFP record. It is plausible to assume that those operated by technology aficionados
(e.g., open source projects) are more likely to do so. On the one hand, one could argue
that 94% correctly deployed records are a good value. On the other hand, 6% wrong
records can be taken as an early warning that deploying security-relevant resource
records must not be taken lightly. Sites considering such a move should definitely have
their DNS and TLS administration tightly integrated.

6.3.6. Cryptographic algorithms

We investigated which cryptographic algorithms were advertised by servers. Note that
servers usually advertise an entire list of algorithms, not just one. Concerning sym-
metric ciphers, we found 111 different ciphers sent by servers. In April 2013, the most
frequently supported cipher was 3DES, offered by 99.5% of hosts. AES offers in CTR
mode, with a key length of 128 bits or more, summed up to 69.9%; in CBC mode the
number was 87.7%. RC4 was also offered frequently (67.1%). Despite recent progress
in security analysis on CBC mode [3] and RC4 [144], their usage can currently be re-
garded as safe. However, very few servers also offered weak ciphers such as DES or
RC2 (0.03%). The numbers for July were almost the same.

All servers advertised support for HMAC for integrity protection. We also found
the less CPU-intensive yet strong UMAC in 40% of advertised algorithms in the first
scan. This rose to 45% in the last scan.

Regarding key exchange mechanisms, the RFCs for SSH mandate support for two
forms of Diffie-Hellman key exchange. One is diffie-hellman-group1-sha1, the other
is diffie-hellman-group14-sha1. The former is supported by almost all hosts. How-
ever, we found that, among all scans, a non-negligible fraction of servers did not imple-
ment the latter. The number decreased from 32% in January 2013 to less than 29% by
the end of July 2013. It is known that some Dropbear implementations and very old
OpenSSH servers do not provide both methods. The reduction can thus be explained
by the changes in market share. This finding shows again that old SSH software is still
widespread.

116

6.4. Ethical considerations

Key length (bits)

P
r[

X
 <

 le
ng

th
]

●●
● ●

●●●●● ●●●●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●

● ●

●

1e−05

1e−04

0.001

0.01

0.1

0.5

0.9

0.99

0.999

0.9999

0.99999

0.999999

256 512 1024 2048 4096 8192 16384

● SSH1
SSH2−RSA
SSH2−DSS

75% quantile / median / 25% quantile

Figure 6.5. – Cumulative distribution of key lengths in July 2013. (Note the unusual atanh
scaling (double-ended pseudo-log) of the y axis.)

6.3.7. Key lengths

We investigated the lengths of host keys for SSH 1 and SSH 2. Figure 6.5 shows the
distribution for the different key types in July 2013. Concerning SSH 1, we find that
about 9% of all keys are shorter than 1024 bits. These key lengths are considered too
short by today’s standards—RSA at 768 bits was factored in 2009, and NIST recom-
mends at least 2048-bit keys [142]. However, our finding must be viewed against the
background of the relatively rare occurrence of SSH 1 and its other flaws. Furthermore,
as the plot shows, most remaining keys have 1024 bits or more. Concerning the more
important SSH 2, we see an entirely different distribution. Keys with a length of less
than 1024 bits make up for only about 5%. Keys with a length of 1024 bits make up for
more than 50%, and those with a length between 1024 bits and 2048 bits add another
44%. Longer keys are much rarer, although there are a few examples of 16,384-bit keys,
which can be regarded as extremely conservative from a security perspective. We did
not find any major changes in the key length distribution over the course of our scans.
We also compared our numbers to the findings by Heninger et al. The authors had
reported an occurrence of 0.08% of 512-bit SSH 2 keys. In April 2013, we found 0.3%
of keys to have this length. This means there are about 50,000 hosts with 512-bit keys.

6.4. Ethical considerations

Our scans for SSH are different from our TLS scans in three respects. First, we scanned
the entire (routable) IPv4 space—the number of IP addresses we scanned ranged in the

117

6. Analysis of the PKI for SSH

billions, compared to just millions for TLS. Second, to achieve this, we needed to send
our probes at a much faster rate. Third, SSH is a protocol that is generally used
to access protected resources—TLS for HTTPS is more often used to authenticate and
encrypt otherwise public content. Thus, scanning SSH is a much more sensitive activity.
In the following, we discuss the two issues of carrying out scans in a responsible way
and publishing the resulting data sets.

6.4.1. Responsible scanning

Scanning SSH on Internet scale means to probe highly sensitive ports so fast that
an AS is likely to be hit several times during a day. This means our scans trigger
certain Intrusion Detection Systems, which in turn may cause unnecessary work for
administrators. Hence, the first step is to minimise negative effects.

To this end, we implemented several cautionary measures during our scans. As
a first precaution, we notified about 20 CERTs, watch list services like the Internet
Storm Center [205], and several block list operators before our scans. As we had to
carry out full handshakes, we sought for a way to label our scans as less threatening.
First, we supplied contact information in the SSH user name3. Second, we changed the
authentication method to a non-existent one4 and added additional information with
a URL in the comment section of the SSH server string.

As a consequence of our scans, we received a number of complaints by email. We
replied to every such email in person, stating our intentions, offering to blacklist the
affected system and providing links to further information. Over the course of all three
scans, we received a total of 191 abuse emails. About 80% of these were automated
complaints sent by intrusion detection systems, firewalls or filtering software such as
fail2ban. On ten occasions, friendly conversations with administrators followed our
reply—mostly, these were requests for further information. We received only one email
mentioning possible legal consequences for us. We replied to this with a second, longer
explanatory email and blacklisted the affected system. This seemed to resolve the issue
as we did not receive any further replies.

It is vital to maintain a blacklist of parties that do not wish to be scanned. Our
blacklist now contains entries from 17 parties. Only one hosting provider requested
blacklisting for their range. The total number of IP addresses requested to be blacklisted
is roughly one million—about 830,000 of these requested by the mentioned provider.

With the above precautions implemented, we ultimately decided to carry on with
our scans on Internet scale. The position we take is that research can contribute to a
safer Internet as a whole. Furthermore, carrying out scans over a period of time has
given us valuable pointers. We recommend to always notify watchlist and blocklist
operators, CERTs, and previously affected parties as far as they are known.

6.4.2. Sharing data sets

We believe it is important for the scientific community to be able to reproduce our
results. We encourage further analysis of our data sets, which we are going to release
on our site [249]. However, to prevent abuse, certain precautions are necessary. In
part, we derive the measures we take from the practices described by Allman and
Paxson in [5]. Our goal is to avoid that an attacker can use sensitive information like
weak keys or server version to stage attacks without having to carry out the same
kind of large-scale scan that we did. Thus, we must avoid that vulnerable servers can

3university-security-research-see-https-pki-net-in-tum-de
4security-research@bozen.net.in.tum.de

118

6.5. Related work

be identified without interacting with them. Approaches like k-anonymity [70] and l-
diversity [53] have limitations when the attacker is in possession of other data sets that
he can link to ours. A better way to protect against abuse is thus to remove indications
of vulnerability from the data set and to suppress IP addresses entirely, replacing them
with random numbers. This still allows researchers to reproduce most of our statistical
results, but prohibits potential attackers from learning more from our data set than
they could learn by scanning themselves. We will also be happy to share our data sets
in their entirety with other research groups if they are willing to enter an agreement
with us that they must protect the data to the same standards and will not engage in
misuse.

6.5. Related work

A number of previous publications have addressed large-scale scans, including scans of
security-relevant protocols.

To the best of our knowledge, the first larger SSH scan was carried out by Provos and
Honeyman in 2001 [62]. They presented results of an SSH scan of 2 months’ duration.
Their scanner generated IP addresses randomly by encrypting a counter with a block-
cipher. It then proceeded to download the SSH identification string of 2 million public
IP addresses and from hosts on their local university network. They found that the
adoption of SSH 2 had risen to almost 50%, which was a favourable value at the time.
They also matched the server identifier string to a list of vulnerable versions and found
that the use of vulnerable servers in their university network had declined during the
investigation period. Since then, scanners have become much faster. Our scans, for
example, exceed theirs by a huge margin.

Scans of other security protocols have been carried out before. Yilek et al. [79]
carried out scans of TLS to determine the number of weak public keys that were caused
by the now-infamous Debian bug [175]. They scanned 50,000 hosts and found about
750 weak keys. The authors also found a slow rate of fixing. They did not scan SSH. In
2011, our own scans led to an analysis of X.509 certificates [37], which we documented
in Chapter 4. Results in another publication by Vratonjic et al. [75] supported our
statistics. In 2010, the Electronic Frontier Foundation presented data from a scan of
TLS at non-academic venues [184, 245].

In 2012, Heninger et al. presented results of an Internet-wide sweep of TLS and
SSH servers [35]. Their publication is an excellent example of combining measurement
methods and cryptographic insights. They downloaded both X.509 certificates and
SSH host keys and recovered 6.2 million unique SSH host keys. The authors’ focus was
on detecting weak keys. They showed that poor entropy in pseudo-random number
generators may cause RSA and DSS keys to be recoverable and demonstrated this for
0.03% of all RSA keys and more than 1% of DSS keys. DSS keys are described to be
more vulnerable due to the importance of good random number generators for every
message. Lenstra et al. had conducted a similar study a few months earlier [46] with
different conclusions. They studied available X.509 data and found more vulnerable
RSA than DSS keys and thus concluded that the dangers of using RSA are greater
than for using DSS. Heninger et al. argued for the opposite. They complemented their
cryptographic work with active measurements of devices. One of their findings was the
existence of embedded devices with poor entropy, particularly at start-up. This led to
the creation of keys whose moduli share a prime number. A further finding was the
existence of default keys on numerous devices. This aspect of the work by Heninger
et al. was one of our points of departure—based on their findings, we investigated the
deployment properties of SSH as a result of network management practices.

119

6. Analysis of the PKI for SSH

Concerning large-scale scans in general, Leonard and Loguinov reported on service
discovery scans on Internet scale [48]. We use their principle of IP generation, too.
In 2013, Durumeric et al. presented another fast scanner that computes target IP
addresses using modular group arithmetic [21].

6.6. Summarising view

We carried out three Internet-wide scans of the SSH protocol. These constitute the
longest observations of this protocol at this scale. Using previous work by Heninger
et al. as our point of departure, we analysed the deployment of host keys, protocol
and server versions, and the cryptography employed. We put a special focus on the
phenomenon of duplicate and frequently used keys, which cannot be explained by cryp-
tographic weaknesses, and related these occurrences to specific network setups.

We were able to reproduce the results by Heninger et al. concerning cryptographic-
ally weak keys. We found that while the number of weak keys is low and has somewhat
decreased since the disclosure, improvements are now on the border of measurement
inaccuracies. Among our key contributions is an analysis in which networks and ASes
strong yet duplicate keys occur, and what reasons this might have. We found setups
that offered varying degrees of security: we found well-kept and centralised SSH gate-
ways, geographically restricted devices with default keys; but also such ones that are
geographically wide-spread or even sold globally.

We generally found that relatively old software is still common on the Internet, and
the rate of change is slow. This finding is consistent with our earlier findings for the
TLS protocol (see Chapter 4). It is not possible to determine a server’s patch level with
our scanning method, and probably not with any scanning method that would not be
considered too intrusive by certain ethical standards. However, many vulnerabilities
have been known for years, and there is little excuse for not carrying out the necessary
updates. Our analysis might thus serve as a warning that a number of unpatched
systems exist, although it is not possible to give a definite number. On the bright side,
the SSH 2 protocol seems to have mostly displaced the flawed SSH 1. Some pockets of
SSH 1 use remain, however, and a sizeable fraction of servers offers SSH 1 as a second
protocol, too.

We also analysed the use of the SSHFP DNS resource records and found that these
were generally accurate, which gives SSH users useful feedback on the host key they
are encountering. However, many records were not secured with DNSSEC, which is a
weakness in this context. It is hard to draw conclusions with respect to other records
holding cryptographic information.

Concerning the actual ciphers and key lengths, our results show that key lengths
are sufficient in the case of SSH 2 and ciphers give practically no reason for concern.
However, the situation should be closely monitored: new findings for AES-CBC [244]
and RC4 [4] have already affected the security of the TLS protocol. While it is unclear
whether they may be applicable to SSH as well, it is an old wisdom that attacks become
only better, never worse. It is probably wise to move away from at least RC4, even in
the short term.

One summarising conclusion that we offer is, as before, that cryptography is a very
subordinate concern: some of the most important issues are caused by deployment
practices.

120

6.7. Key contributions of this chapter

6.7. Key contributions of this chapter
This chapter addressed Research Objective O2.3. We analysed the deployment of the
SSH infrastructure as an example of a ‘False PKI’, i.e., a PKI that does not rely on
TTPs. SSH keys are deployed to the clients where they are needed—a method that
does not scale, but is often used for administrative purposes. Our goal in analysing the
SSH ‘PKI’ was to determine the deployment properties of SSH as the result of network
management practices. In the following, we recapitulate the key findings.

Long-term scans We carried out three Internet-wide scans over the duration of seven
months. At Internet scale, these constitute the longest available observation of
this protocol to date.

Protocol versions We investigated which versions of the SSH protocol are in use. We
found that the vast majority of SSH servers offers SSH 2, although less than 10%
allow fallback to SSH 1. SSH 1 should definitely not be used any more.

Server versions We investigated which implementations of SSH servers are in use. We
found that older versions are very common, although it is not possible to tell from
active scans whether these have been patched manually to remove vulnerabilities.
An older version of OpenSSH from 2006 is the dominant SSH server in use.
Overall, SSH servers seem to be updated rather slowly.

Strength of host keys We investigated the lengths of SSH host keys. On the whole,
most keys were of sufficient length. We found that only about 5% of SSH 2 keys
are not of sufficient length. A significant fraction of SSH 1 keys is of a length less
than 1024 bits.

Confirmation of earlier results on weak keys We could reproduce the results of a pre-
vious publication by Heninger et al., both for the co-prime weakness of RSA keys
and weaknesses due to the Debian bug. We found that the numbers have fallen
slightly since the authors’ disclosure. This may be a sign that their disclosure
process is working. However, there are so few cryptographically weak keys that
future measurements will now be on the border of measurement inaccuracy.

Duplicate keys A special focus of our investigation was on reuse of SSH host keys that
are not cryptographically weak. We found that these constitute the vast majority
of duplicate keys. We investigated the use of the ten most common such keys in
the context of the ASes where they occurred. We found several typical patterns.
One pattern that we consider secure is the use on SSH gateways, which we could
confirm in one case and have strong reason to suspect in two more cases. The
remaining patterns were all insecure. In particular, we found key reuse due to
SSH default keys in devices that are used in mixed-purpose networks (hosting
and broadband access). In some cases, these keys occurred world-wide; in others,
they were strongly restricted to one geographical area. The latter is better, but
still not good for security. We found one particular key to be the default key in a
globally popular home entertainment device. Another reason for duplicate keys
were hosts with several IP addresses, which naturally share the same host keys.
However, the German provider where this phenomenon occurred and which we
contacted could confirm to us that several of their customers also reused keys
across physical machines, which increases the attack surface.

SSHFP We investigated the use of SSHFP, which allows to store the fingerprint of a
host key in a DNS resource record. We found this record is not used very often;

121

6. Analysis of the PKI for SSH

but when it is, it is mostly accurate. Unfortunately, it is mostly not secured with
DNSSEC.

Cryptography Our findings concerning cryptographic algorithms are in line with our
findings for TLS (see Chapter 4): although the situation should be closely mon-
itored, the vast majority of choices is currently safe.

Ethical considerations Finally, we described our guidelines concerning ethical issues
revolving around scanning for such a security-sensitive protocol. Our position is
that such scans, when carried out carefully with a view to minimising impact,
help improve the security of the SSH ecosystem as a whole.

Our overall conclusion is that, while the deployment of SSH may result in secure use in
many cases, sound network management practices are central to improving the security
of the SSH infrastructure. We found various setups: some were secure, some rather
dubious, and others even dangerous. The general rate of updates of SSH servers seems
to be slow—it seems advisable for server administrators to carry out updates more
frequently.

6.8. Statement on author’s contributions
This chapter is an extended version of the following paper: O. Gasser, R. Holz, G.
Carle. A deeper understanding of SSH: results from Internet-wide scans, Proc. 14th
IEEE/IFIP Network Operations and Management Symposium (NOMS), Krakow, Po-
land, May 2014 (reference [28]). The text is adapted from the submitted version, not
the camera-ready version.

The publication is a continuation of the work Oliver Gasser carried out in his Mas-
ter’s thesis, which the author of this thesis initiated and advised: Oliver Gasser. Un-
derstanding SSH: large-scale measurements and notary-based authentication. Master’s
thesis, Technische Universität München, Fakultät für Informatik, February 2013 (ref-
erence [27]). Oliver Gasser wrote the SSH scanner. The first scan described in this
chapter was still carried out and partially analysed during the Master’s thesis.

The author made the following contributions to the results in the paper and in
the chapter. The author contributed to carrying out the scans and made significant
contributions to the results from data analysis, in particular the analysis which host
keys occur in certain ASes as a result of network management and the analysis of
SSHFP. The author made significant textual contributions to the paper [28].

The following sections are adapted from the paper. Section 6.2 is an extended version
of section IV. The author added details on the scanner and on enriching the data sets.
Section 6.3.1 is a version of section V.A where the author added some background on
vulnerable versions. Section 6.3.2 is an extended version of section V.B. The author
added the analysis of server versions versus published CVEs and elaborated more on
the Base64-like strings in server versions. Section 6.3.3–Section 6.3.7 are from the
paper, with only minor stylistic changes and some clarifications made by the author.
Section 6.4 is a revised version of section VI, with minor changes made by the author
to explain why scanning security-sensitive protocols is problematic. Section 6.5 is a
version of section III, with some stylistic changes made by the author to better embed
it in the context of the thesis. Section 6.6 is an extended version of section VII. The
author added a discussion of the rate of change of setups on Internet servers. The
author also added a new discussion of cryptographic algorithms in the light of new
developments in this area, and put both into the context of the previous findings for
TLS (see Chapter 4).

122

Part III.

Strengthening the X.509
Public Key Infrastructure

123

7 Chapter 7.

Unified notation for X.509 reinforcements

Several schemes have been proposed over roughly the last two years to reinforce the
X.509 PKI. We are going to analyse these in Chapter 8 with respect to our recommend-
ations from Chapter 3. However, these schemes differ in both goals and methods they
propose, and often consist of subprotocols that have certain dependencies. In order
to be able to assess their properties better and compare them to each other, we first
lay some groundwork in this chapter: we define a notation to capture the essential
properties of each scheme in a succinct and concise way.

7.1. Developing a notation for PKI reinforcements

In the following, we motivate our notation and document the principal design decisions.

7.1.1. Motivation and design goals

The schemes we analyse are documented and specified in very different ways. Some
schemes are described in RFCs, others in (white) papers, some in both. Neither form is
very accessible to analysis, however. For instance, RFCs are written for implementers.
They rarely give more than a rough outline of the key ideas and focus on precise (‘wire-
level’) descriptions of protocols. Publications like academic papers, on the other hand,
serve the purpose of transporting only the key ideas. Certificate Transparency (CT) is
a good example of both methods: the key ideas are described on the homepage [154],
the actual protocols are defined in an RFC [109]. To obtain an overview of a scheme,
a reader has to collect pieces of information from different documents.

Both forms of presentation, RFCs and papers, also share one property that is a
weakness in our context: they are mostly written in prose, and where they do employ
other means of visualisation, their notations are usually very different to accommodate
the different purposes. This is particularly unfortunate in our context as we wish to
analyse schemes in a common context. A unified representation would be very helpful
here. It would certainly be possible to describe all schemes in prose, too, and structure
a discussion and analysis around that. However, there are good reasons against this:

Conciseness A description in prose that includes both the necessary level of detail and
is yet comprehensive would easily become very long, and a reader might find it
difficult once again to collect all pieces of information that are necessary to assess
a scheme.

Multiple protocols The schemes that we describe often employ more than one protocol
or procedure to achieve their goals. A good representation should make it easy
for a reader to identify these. It should also denote encapsulated blocks of func-
tionality in an accessible way.

125

7. Unified notation for X.509 reinforcements

Complex interactions We will see that protocols in our schemes often show complex in-
teractions and dependencies, which are important at different stages of a scheme.
It is harder to track such dependencies through written text than following them
through a notation where they are explicitly denoted.

Varying roles The participants in the schemes we describe are often the same. Yet
they act in different roles not only between schemes but sometimes also within
the same scheme. Consequently, they often have different responsibilities. This
should be convenient for a reader to identify.

Similarities Some schemes share common structures and concepts (like data structures,
internal procedures, or even other, embedded schemes). Describing the schemes
in prose makes it difficult to identify these notions and to determine to which
degree they are shared.

Changes to TLS Several schemes also make changes to TLS and introduce new exten-
sions. A representation in an appropriate notation makes it easier to compare
these changes to normal TLS.

For the above reasons, we chose to design a common notation in which to describe
the schemes. The above motivation can be viewed as objectives to meet. However,
our notation also has to bridge a certain gap. On the one hand, a scheme usually
defines protocols between participants, and sometimes complex actions on internal data
structures. Such factors are very relevant to security, and should be accurately reflected
in the notation. Consequently, we need to aim for a high degree of formalism here. On
the other hand, we need to include appropriate abstractions in our notation to keep it
succinct. There are some typical cases where such abstractions are sensible:

Common tokens Many schemes operate on tokens like certificates, public keys, or
nonces. Despite their core functionality being the same, these tokens can be
implemented in a variety of ways (e.g., certificates with extra attributes, public
keys of type RSA vs. ElGamal, etc.). To reduce complexity, we will abstract over
such issues.

Common algorithms Some schemes rely on algorithms which are known to be correct
and secure, but are too long to be included in a notation. A typical example
would be the verification of a certificate—which is also an example of a procedure
that is common to most schemes.

Non-technical processes Some schemes assume participants to execute certain processes
that are of a legal or business nature. A typical example would be the certification
of a domain by a CA: several of the checks that the CA applies may depend on
local jurisdictions. The checks are often only documented in legal terms in CPSes.

Complex communication patterns: queries and lookups It is common for entities on the
Internet to execute certain operations with the help of other entities, which may
remain unknown or even hidden in some cases. DNS is a typical example: when
entities query a domain name, they typically communicate with a local resolver,
which then proceeds to communicate with an unknown number of other DNS
servers (including caches) before it delivers the result back to the querier. It
would be infeasible to include this complexity in our notation. Nor do we actually
need it in the accurate description of a scheme: we only need to know the result
of the lookup, not the entities involved.

126

7.1. Developing a notation for PKI reinforcements

All of the above elements have in common that while formal descriptions could
be given in most cases (with the probable exception of legal or business processes as
their descriptions can be rather vague), doing so would incur a large overhead into the
notation and distract from its main purpose, namely a concise and succinct presentation
of how a scheme works. We will thus accommodate the above elements with appropriate
abstractions. Note that isolating elements like business processes in abstractions also
make it possible to assess a scheme’s security more readily by considering them to be
‘black boxes’ that operate either securely or insecurely. Hence, we accept a certain loss
in formality in our notation as the prize for such abstractions.

Against the background of the above requirements, we define the following—more
precise—design goals for our notation:

Participants The notation shall allow us to denote which, and how many, participants
exist in a scheme.

Protocols The notation shall allow us to denote which protocols exist in a scheme and
denote the message exchange for each protocol, including cryptographic tokens.
We denote clearly which communication channels exist.

Protocol interaction The notation shall allow us to denote how protocols interact and
which dependencies exist between them.

Use with TLS The notation shall allow us to denote the necessary changes to the TLS
protocol that a scheme requires.

Abstractions The notation shall allow us to define appropriate abstractions for certain
tokens, algorithms and procedures (in particular of a legal or business nature).

In the following, we describe the design of our notation.

7.1.2. Design elements

The design of our notation is based on the design goals listed above. In the following,
we describe the concepts we employ. We show the concrete notation for each concept
in Section 7.2.

Role scripts We use so-called role scripts in our notation. These are a concept we
borrow from the input languages of protocol model checkers, e.g., HLPSL in AVISPA
[140] or SPDL in Scyther [172]. Role scripts denote the activities of participants by
defining events to which the participants react in a prescribed way. Our notation shares
many constructions with HLPSL. We elaborate on this in Section 7.4.

Records Every token or entity in our notation is represented as a record. A record is
a ‘named container with named fields’. There are two fields we assume every record to
have. The first one is name. This field provides a globally unique identifier by default.
The second field is only used when a record represents a participant in a protocol: state.
We explain this field in Section 7.1.4.

All records can be extended by assigning arbitrary fields to them, which may hold
any value. New kinds of records can be defined as part of a scheme.

Well-known records Well-known records are our abstraction for the above mentioned
tokens that occur frequently in schemes and protocols. Section 7.1.5 gives a list of
well-known records.

127

7. Unified notation for X.509 reinforcements

Sets Records and well-known records can appear in groups, represented as unordered
sets. We use mathematical notation to refer to elements in sets or in Cartesian products
of sets. We write elements in Cartesian products as tuples. Note that tuples are not
records—records have names and fields.

Control structures and predicate logic Participants make decisions based on tokens they
send and receive in protocol message exchanges. We use control structures like For-loops
and If-clauses to express decision processes. We denote operations like the selection of
a subset of records or tests of existence with predicate logic.

Procedures We group functionality that is executed several times within a protocol in
procedures. We write calls to our procedures as we know it from many programming
languages, with parameters given in parentheses.

Well-known processes Abstractions for algorithms and processes of legal or business
nature are called well-known processes. Where well-known processes are used to denote
that some algorithm is employed, we give a reference where the precise definition of the
algorithm can be found.

Instantiation We sometimes need to express that a record, well-known record, or map
is brought into existence. A typical example would be the generation of a certificate.
We express this with an operator—see Section 7.1.7.

Maps Maps are used to group records and well-known records in a way that makes
them convenient to access. A Map holds an arbitrary number of key-value pairs and
allows to access a value by the corresponding key. We use square brackets to describe
this, e.g., m[a]. Additionally, we define a Map to be associated with two well-known
processes, which we denote as two fields in the Map, keys() and values(). These pro-
cesses yield the keys and the values stored in the Map as sets.

Note that although we do not give a formal definition here, it is easy to see that
maps are syntactic sugar. In order to define a map formally, one would first define a
key-value pair as a record with three fields, ‘key’, ‘value’, and ‘next’. One would then
define lists as nested records by having the field ‘next’ contain the next record in the
list (one would also define a special record to indicate the end of the list). The final
element would be to define a procedure to search for a record with a given key, and to
define the well-known processes keys() and values().

We also introduce a shorthand notation to indicate that a map is going to hold only
certain records or well-known records. Again, we use notation from popular program-
ming languages and indicate this with angular brackets, i.e., Map⟨. . . , . . . ⟩.

Channels Entities communicate over so-called channels. We define a channel as a
record with two associated well-known processes for sending and receiving (called send()
and recv()). The well-known record also contains the fields srcname and dstname to
store the names of the entities it connects and the fields local ip and remote ip for the
respective IP addresses (we abstract over IP version). The well-known processes are
denoted like normal fields in the record and used like normal procedures.

Channels are always understood to be asynchronous, bidirectional, and have the
properties of Dolev-Yao channels [18]. This means an attacker is allowed any action:
the attacker may eavesdrop, delay, modify and also drop messages1. However, if entities

1In our analysis, we will later assume all participants can detect delayed messages. See Section 8.1
for details.

128

7.1. Developing a notation for PKI reinforcements

Scheme name

Participants
Record name ∗
Init ?

Service name ∗
Protocol name +

Actor name +

Init ?
Procedure name ∗
Actions +

Sessions

Channels ?

Event +

Procedure name ∗

Figure 7.1. – Structure of a scheme in our notation.

send each other cryptographically protected messages, the attacker cannot break the
cryptographic primitives.

Secure channels Secure channels are syntactic sugar for channels where the commu-
nicating parties are authenticated and use encryption and integrity protection. Secure
channels occur in schemes where participating entities are, e.g., preconfigured with
cryptographic keys.

Services We address the case of queries and lookups with so-called services. Services
are participants in a scheme that represent an entire group of entities and abstract over
the interactions between them. To other participants, services appear like normal par-
ticipants, except that services have channels to every possible participant in a scheme.
We give an example in Section 7.2.

Error treatment The execution of protocols and processes often leads to error states.
In our notation, we commonly omit an explicit description how a participant reacts to
an error. Instead, we simply state the fact and assume that the participant aborts the
protocol entirely.

7.1.3. Structure of a scheme

With these design elements in mind, we are now going to explain how our notation is
structured. We employ a block structure to denote a scheme. Blocks group statements
that logically belong together. We use indentation to indicate which elements are
contained in a block. A block ends when a new block begins or the scheme ends. Note
that blocks may be nested.

Figure 7.1 shows the block structure. Some blocks may occur an arbitrary number
of times or be omitted. We use the quantifier ‘∗’ to express this. Others may occur once
or not at all (quantifier ‘?’), or must occur at least once but may otherwise occur any
number of times (quantifier ‘+’). A block that occurs exactly once is denoted without
quantifier.

In the following, we give a description of each block.

129

7. Unified notation for X.509 reinforcements

Scheme The block that contains all other blocks is Scheme.

Participants This first block denotes which kinds of entities participate in a scheme.
At the outset, a participant is a record that contains only the field name. The
purpose of this block is to group participants into different sets with different
names, e.g., ‘clients’ or ‘domains’, to denote a certain category of participant.

Record This block holds the definition of a new record. Records can be referred to by
their name. If a name appears in a nested block (and possibly also outside the
block), we assume a local scope as we know it from programming languages.

Init Entities in a scheme may be preconfigured to have certain information. For ex-
ample, all CAs need cryptographic key material. We define such initialisations in
an Init block. The Init block may also occur within an Actor block (see below).
In this case, it holds initialisations that are protocol-specific.

Procedure This block holds procedures. The block may be used either after Init—
in that case, it holds procedures that may be used by any participant in any
protocol. Or it may be used inside an Actor block—in that case, the procedure
is only available to the respective actor (i.e., participant acting in this protocol,
see below).

Service This block holds a service. Since services are a kind of participant, the block
may hold the same blocks as they also occur inside the Actor block (see below).

Protocol One Protocol block is used for each protocol in a scheme.

Actor The Actor block holds the descriptions how a participant behaves in a protocol.
We use the term Actor to indicate that this is a participant executing the protocol,
not just an element in the sets of participants.

Channels We denote channels between participants explicitly, and group all channels
in this block.

Actions This is the primary block in an Actor block. The actions that an Actor carries
out are described here.

Event We use events to define under which circumstances participants execute certain
steps. This is described in more detail in Section 7.1.4.

Sessions This block holds the description which protocols in a scheme run with which
participants, and when.

Several blocks, namely Record, Service, and Procedure, have a name to allow to refer
to them from within the scheme. The block Scheme also has a name—we use this to
refer to the execution of a scheme from within another scheme. We elaborate on this
in Section 7.2.

7.1.4. Sessions and event-driven descriptions

A concept that is commonly found in role scripts is to define steps to execute as a
reaction to events that occur during the execution of a protocol. A concept that is
related to this are sessions: the protocols of a scheme may run at different times and
also have dependencies on other protocols. We introduce both concepts together here.

130

7.1. Developing a notation for PKI reinforcements

Sessions The notation to express that a protocol is to be run takes the form of a call
as we know it from programming languages: the protocol is called like a procedure,
with parameters passed in round brackets. The parameters of a protocol are always
elements from the sets of participants. In the context of a protocol, we refer to them
as actors. We allow protocols to be run multiple times, and with different actors taken
from the sets of participants.

The need to describe dependencies between protocols is best explained by example.
Consider the case of TLS with X.509: a domain must have received a certificate from a
CA before it can authenticate itself to a client. Both the certification as well as TLS are
protocols, but one must run before the other. Section 7.2 shows the concrete notation.

Events With sessions now defined, we turn to the event-driven description of actions
of actors. Recall that actors are records, and thus have an implicit field state. In
protocols, this field is used to denote at which point in the protocol an actor currently
is (e.g., it might be waiting for a certain message). The values may be arbitrarily
chosen—we usually assign it a String (a well-known record, see Section 7.1.5). The
value of the field is initially always ‘Start’. As mentioned above, we sometimes need to
state that an error has occurred. In such cases, we simply assign state the value ‘Error’.
The state field of an actor and the events that occur determine together what steps an
actor executes next. We define two different kinds of events.

The first kind is used to start a protocol. This links the concept of sessions to the
concept of events. When we denote in a session that a protocol is run, an implicit event
Start is passed to the protocol. There must be exactly one actor defined that will react
to the event. Note that sessions allow protocols to run multiple times. Furthermore,
once the state of an actor has been set back to ‘Start’, the actor will react to the event
Start again (unless additional conditions have to be met, too).

The second kind of event is the arrival of a message on a channel. This must generally
coincide with a participant being in a certain state (for example, awaiting a reply to a
previous message). If the message matches the description given in the event, the actor
will execute the steps defined for this particular event.

7.1.5. List of well-known records

The following is a list of the well-known records in our notation.

String This represents a string of characters. We abstract over implementations in
computer systems and alphabets. When we write a String, we generally surround
it with ticks, e.g., ‘message’.

Integer This represents an integer value. We abstract over implementations in com-
puter systems.

Boolean This represents a boolean value, i.e., either true or false. We abstract over
implementations in computer systems.

Timestamp This indicates a point in time. We abstract over implementations in com-
puter systems, and also over possible calendars and time zones. Timestamps are
instead universally comparable within our schemes. We define the arithmetic op-
eration ‘difference’ on them. The difference between two Timestamp records is
an Integer, which gives the difference in seconds.

Nonce This represents a nonce, i.e., a value that is only used once across all runs of a
protocol. A nonce will have a different value every time a protocol is executed.

131

7. Unified notation for X.509 reinforcements

Sym Key This represent a symmetric key as used in symmetric ciphers. We abstract
over concrete algorithms like AES, etc.

Pub Key This is our representation of the public part of an asymmetric public/private
key pair. We abstract over concrete algorithms like RSA or ElGamal. A field
that holds a PubKey is often denoted by k.

Priv Key This represents the private (secret) part of an asymmetric key pair. We
abstract over concrete algorithms in the same way we do for Pub Key. A field
that holds a Priv Key is often denoted by k−1.

Key Pair This well-known record represents a tuple of Pub Key and Priv Key. We
introduce it here as a record of its own since we often use it when denoting the
creation of a key pair.

Cert This denotes a certificate as an entity’s name and public key, with a signature
on both. We allow two ways to denote the generation of a certificate. One is by
writing new Cert(domain). We typically use this when we only want to indicate
that a certificate for a given subject has been brought into existence, but we
do not need to indicate either specific key or signing party. The second way is
to denote these factors explicitly. We write, e.g., new Cert(d,k) to indicate the
public key k explicitly. If we also want to indicate the signing key, we write
new Certk−1(d, kd). We always assume that the public key can be accessed by
the field k.

DHParm This is our generic representation of Diffie-Hellman parameters as they are
needed in a Diffie-Hellman key exchange [17]. A DHParm is a tuple of a secret
value and public value (that is to be sent to the other party involved in a key
exchange). We abstract over multiplicative groups and primitive roots as used
in [17].

7.1.6. List of well-known processes

The following is a list of well-known processes we use in our notation. We will extend
this list later to include scheme-specific processes.

time() This well-known process yields the current time as a Timestamp. It takes a
String as an argument. now means the current moment; otherwise the argument
indicates how far in the future the timestamp will be. For example, time(‘48h’)
means ‘48 hours from now’.

hash(x) This represents the application of an ideal cryptographic hash function to the
argument x. The output of hash(x) is denoted as a String.

mac(x) This represents the application of a function to create a Message Authentication
Code (MAC) to the argument x. In cryptography, this generally involves a series
of steps like repeated hashing of input and key, and often padding. We generally
denote the key in the index and write mack. The output of mac(x) is denoted as
a String.

sig(x) This represents a digital signature on the argument x. In cryptography, this
generally involves several steps like hashing an input, adding padding, and en-
crypting the thus obtained value with a private key. We generally write the key
in the index, e.g., sigk−1 . The output of sig(x) is denoted as a String.

132

7.2. Representation of design elements in the notation

valid sigk(x, s) This denotes the process of verifying that a signature is correct. Ar-
gument x is the token on which the signature was created. Argument s is the
signature. The key is denoted in the index.

derive dh(s,p) This represents the computation of a symmetric key as the result of a
Diffie-Hellman key exchange [17]. The input values are the secret value of the
local actor, s, and the public part of the DHParm, p.

valid cert(c), valid cert(c, n) This denotes combined verification and validation of a
certificate. We understand the terms verification and validation as before: veri-
fication means correct signatures and a certificate chain that chains up to a re-
cognised root. We abstract over the concrete root store here. Validation means
validation in the style of RFC 5280 [94], in particular checks of validity periods
and correctness of subject. We do not include revocation checks as part of the
process. This well-known process may be called with the certificate to validate
or with the certificate and the name that is expected to be in the subject of the
end-host certificate.

meets cps(d) This describes the actions that a CA carries out when determining
whether it may issue a certificate for a domain. These actions are generally
defined in the CA’s CPS, and involve business processes and possibly legal checks.
d is the name of the domain.

7.1.7. Operators and comments

The final elements that we need in our notation are basic operators. The following is
a list of operators we use in our notation:

x← y expresses assignment of y to x.

x = y expresses a test of equality of x and y.

x∣y expresses concatenation of x and y. We allow concatenation of arbitrary records.

new X() This expresses the instantiation of a record X.

‘X’ This is shorthand notation for the instantiation of a String X. Note this is just
syntactic sugar to avoid using the new operator for Strings, a concession we make
for succinctness.

▷ We also allow comments in our notation and precede them with this symbol.

7.2. Representation of design elements in the notation

In the following, we show how we represent the different design elements in our notation.

Blocks A block is always denoted by its type and the name we give it. We use a colon
to indicate that a block starts and indent all parts of a block. Example:
1: Scheme TLS:
2: ▷ Rest of scheme
3: . . .

133

7. Unified notation for X.509 reinforcements

Participants Participants are denoted in a block of their own. We denote them as a
set and by the name under which we refer to them. Note that the set may be infinite
or finite. Example:
1: Participants:
2: CAs ∶ {Ca0, . . . ,Ca9} ▷ Set of CAs, finite
3: Domains ∶ {D0,D1, . . .} ▷ Set of domains, infinite

Records We define new records by giving the record a name and specifying the fields
and the well-known records they are going to hold (separated by a colon). Note that
the field name is implicit. A record can be instantiated with new and specifying the
values of the fields. Example:
1: Record Key Info:
2: owner ∶ String ▷ Name of owner as String
3: k ∶ Pub Key ▷ Public key
4: ki ← new Key Info(‘Alice’, kAlice)

Maps Maps are instantiated just like records. We can also indicate which records
they are going to hold. Access is possible with ‘array notation’ and via the well-known
processes keys() and values(). Example:
1: store ← new Map⟨String, Pub Key⟩()
2: store[‘Alice’] ← k ▷ Store k under String ‘Alice’
3: ktmp ← store[‘Alice’] ▷ Retrieve from Map
4: store.keys() ▷ Yields {‘Alice’}
5: store.values() ▷ Yields {k}

For-loops We denote For-loops as blocks and denote the records over which the loop
is going to be applied in set notation. Example:
1: for k ∈ {pubkeys}: ▷ Loop over a set of public keys
2: ▷ Carry out some actions:
3: . . .

If-clauses We denote If-clauses as blocks. An If-clause may test one condition or
several ones. In the latter case, further conditions can be added after the words and or
or. Else-clauses and Else-if clauses are possible. Example:
1: if b > 5 and c < 10:
2: . . .
3: else if b < 3:
4: . . .
5: else:
6: . . .

Initialisation Global initialisation and local initialisation blocks follow both the same
structure. We often use For-loops to initialise a number of records at once. Example:
1: Init:
2: for Ca ∈ CAs:
3: (Ca.k,Ca.k-1) ← new Key Pair() ▷ Each CA has one key pair.

Protocols Protocols are grouped in a container block, and each protocol has its own
block. An example follows.

134

7.2. Representation of design elements in the notation

1: Protocols:
2: Protocol TLS ((Cl,D)):
3: ▷ Definition of protocol follows...
4: . . .
5: Protocol Certification((D,Ca)):
6: ▷ Definition of protocol follows...
7: . . .

Sessions Protocols are called from the sessions block, where they are called in the
form of a procedure, with the participants passed as a tuple. This allows us to pass
participants from different sets. We denote dependencies as Dependency X not before
Y, with X and Y being calls to protocols. Since we usually cannot explicitly name a
particular participant as a parameter—due to protocols being allowed to run multiple
times and with different actors—we indicate variable actors with an ∗. We understand
this to mean that for any protocol with a certain combination of actors to run, the
dependency must be fulfilled for exactly these actors.

Once dependencies are defined, we write At random to indicate that there are oth-
erwise no constraints that govern when a protocol is allowed to run. The protocol calls
carry the names of actors as parameters. The following shows an example session:
1: Sessions:
2: Dependency TLS DHE(∗, ∗) not before Certification(∗,∗)
3: At random Certification with (D,Ca) ∈ Domains ×CAs
4: At random TLS DHE with (Cl,D) ∈ Clients ×Domains

Actors Actors are the specific participants in a protocol—passed to a protocol by a
call in a session. Their activities are defined in a corresponding block. Example:
1: Actor Cl: ▷ Actor Cl is a client
2: ▷ Definitions for actor follow...
3: . . .

Channels Channels are defined for each actor, in a block of their own. We denote the
existence of a channel by indicating which actors in the protocol it connects. Secure
channels are denoted analogously. Actors may use the channels to send and receive
records. When we denote that an actor sends records over a channel, we add the
records to be sent in parentheses. When we denote that it receives records, we denote
these by a name under which they can be referred to and the kind of record or well-
known record that is expected (after a colon ‘:’). Example:
1: Actor A:
2: Channels:
3: Ch: Channel(A, B)
4: Sec Ch: Sec Channel(A, C)
5: . . .
6: Ch.send(‘hello’)
7: . . .
8: Ch.recv(reply: String)

Actions, events and state Participants react to events. Their activities are defined in
the Actions block, which contains definitions for one or more events. The definition of
an event is usually a combination of the arrival of a message and the state an actor is
currently in. An example follows.

135

7. Unified notation for X.509 reinforcements

1: Actor A:
2: Actions:
3: Event state = ‘Wait’ and Ch.recv(cert: Cert):
4: state ← ‘Start’
5: . . .
Events may also be passed from within a session. The most important form of this

is the implicit passing of the Start event when a protocol is called. But events can also
be explicitly sent from within the session by adding them in parentheses. We denote
this as shown below:
1: Protocol Verification((A,B)):
2: Actor A:
3: Actions:
4: Event Start:
5: . . . ▷ React to Start event
6:
7: Actor B:
8: Actions:
9: ▷ Normal event via message

10: Event state = ‘Wait’ and Ch.recv(‘hello’):
11: . . .
12: ▷ React to directly passed event
13: Event Check:
14: . . .
15:
16: Sessions:
17: At random Verification with (A,B) ∈ Clients ×Clients
18: At random Verification(Check) with (A,B) ∈ Clients ×Clients

Well-known processes Well-known processes are denoted and used just like procedures.
Example:
1: Actor A:
2: Actions:
3: Event state = ‘Wait’ and Ch.recv(cert: Cert):
4: if valid cert(cert):
5: . . .

Services We denote services in a way that is similar to actors. There are two differ-
ences. First, services may contain Init blocks. Second, the definition of channels is
different to denote that services can communicate with all participants in a scheme.
Channels are thus denoted as sets, and when we denote the arrival of a message, we
explicitly indicate on which channel it arrived.

In the following, we define the DNS as a service. The service DNS represents the set
of all DNS servers. Domains are stored in a Map where the domain name is the key, and
the value another Map. Keys in this second map are the types of resource records; the
values are the actual resource records. There is one simplification we make: for each
type of resource record, we allow only one entry. Although the real DNS allows more,
this will be sufficient for our purposes. Note, however, that extending the description
to store sets of entries instead would be straight-forward.
1: Participants:
2: Clients ∶ {Cl0,Cl1, . . .} ▷ Set of clients

136

7.3. Example: certification in the current X.509 PKI and TLS

3: Domains ∶ {D0,D1, . . .} ▷ Set of domains
4: DNSServers ∶ {DNS0,DNS1, . . .} ▷ Set of all DNS servers
5:
6: Record RR: ▷ Generic resource record
7: ▷ We store the type...
8: type ∶ String
9: ▷ ... and the value.

10: value ∶ String
11:
12: Service DNS represents DNSServers:
13: Channels:
14: Chs ∶ {Channel(q, d) ∶ q ∈ (Clients ∪Domains),d ∈ DNSServers}
15: Init:
16: domains ← new Map⟨String, Map⟨String, RR⟩⟩()
17: Actions:
18: Event Ch ∈ Chs: Ch.recv(‘store’, d: String, rr type: String, val: String):
19: ▷ Create resource record:
20: rr ← new RR(rr type, val)
21: ▷ Store resource record:
22: domains[d][type] ← rr
23: Event Ch ∈ Chs: Ch.recv(‘load’, d: String, type: String):
24: ▷ Retrieve resource record:
25: rr ← domains[d][type]
26: Ch.send(rr)

Running a protocol from without a scheme In general, every block that carries a name
can be referenced by this name. We already described one use of this when we intro-
duced the call to protocols in sessions and when we described the notation for services.
There is one further use we introduce now: we allow to call a protocol defined in an-
other scheme directly by calling the scheme and protocol by their names, concatenated
with a dot. This allows us to let an actor run a protocol like TLS. When we do this,
we understand that the called protocol may set fields of the actor, even if these have
been set previously. The following gives an example:
1: Actor A:
2: Actions:
3: Event state = ‘Start’:
4: ▷ Actor A runs TLS DHE from TLS, with actor B.
5: TLS.TLS DHE((A,B))
6: ▷ TLS DHE stores certS in A, which can be used later.
7: certnew ← certS

7.3. Example: certification in the current X.509 PKI and TLS

We give an example how our notation can be used to describe TLS together with a
certification process in which a CA is involved. The protocol flow of TLS is the same
as described in Section 2.4, except that we omit client authentication. Listings 2 and 3
at the end of this chapter show the complete definition. In the following, we discuss
the example by going through each block.

137

7. Unified notation for X.509 reinforcements

The participants (lines 2–5) are defined as sets of CAs, domains and clients. There
is one global initialisation (lines 7–11) to take into account that every CA must have a
public and private key, as does every domain.

Looking at the Session block (lines 80–83), we see that a dependency is defined:
the protocol TLS DHE must not be run without a previous run of Certification first.
Otherwise, the protocol may be run at random. TLS DHE may run with an arbitrary
domain and client, denoted as a tuple from the Cartesian product of the respective
sets. Certification may be run with an arbitrary combination of domain and CA.

The protocol Certification (lines 14–36) describes how a domain may obtain a cer-
tificate for its public key. Note that there must be a secure channel between CA and
domain—this is because the domain must be authenticated to the CA in order to re-
ceive a certificate. The protocol is defined as follows. The actor to react to the Start
event is the domain (line 20). It causes it to send its name and public key to the CA
(line 21), and then wait for a reply. We model the latter by setting state to ‘Wait Cert’.

The message sent by the domain arrives on the channel that links the CA to the
domain. The CA must now determine whether the domain with this name meets its
requirements that it has defined in a CPS. We model this with the well-known process
meets cps (line 34). Note that this well-known process operates on the domain, not
just the domain name (line 33). We thus obtain the domain by its name from the set of
domains. If the CA determines it can issue a certificate, it creates the new certificate
(line 35) and sends it to the domain (line 36).

The domain receives the certificate on the channel that links it to the CA (line 23).
Note that it is in state ‘Wait Cert’. It stores the certificate in a field and returns to
state ‘Start’.

The TLS protocol is initiated by the client, which reacts to the Start event (line 42),
which is passed from within the session (line 83). The client generates a nonce, sends
it to the domain, and enters a waiting state (lines 43–45).

The domain receives this (line 63). It generates a nonce itself as well as the necessary
Diffie-Hellman parameters and sends both back to the client, together with a signature.
It then enters a waiting state itself (lines 64–68).

Upon receiving the domain’s reply (while in waiting state, lines 46–47), the client
first validates the domain’s certificate, with the well-known process valid cert, and
verifies the signature (line 48). It then generates its own Diffie-Hellman parameters
and uses the domain’s Diffie-Hellman parameters and its own secret Diffie-Hellman
value to compute a symmetric key with the well-known process derive_dh() (shown in
lines 49–50). This key is then used to compute the MAC over all messages so far (with
the well-known process mac()), which is sent to the domain as a String, together with
the client’s Diffie-Hellman parameters (lines 51–53). The domain receives this message
(lines 69–70). It derives the symmetric key, using the well-known process derive dh()
(line 71). It verifies if the MAC it computes itself is the same String that it received
(line 72). If this is the case, it computes a final MAC over the fields that have been
used so far (line 73). This is sent to the client. The server is finished with the TLS
connection setup (lines 76–78). The client receives the server’s final message (line 54).
It verifies if the MAC is the same it can compute itself (line 55). If this is the case, the
handshake is finished. Note that we do not model in our notation what happens after
the TLS handshake has finished.

7.4. Related work

To the best of our knowledge, there is no related work that would address the exact
question how to describe PKI schemes in a unified notation. The Universally Com-

138

7.5. Key contributions of this chapter

posable Security framework [13] allows to specify protocols in a highly formal way and
then use these descriptions to reason about their security. For our purposes, however,
the framework is too fine-grained: it lacks abstractions for typical PKI processes, and
would thus result in very long descriptions. Furthermore, some of the PKI processes
that we need to include in our notation cannot be easily defined in a formal way (e.g.,
verification against practices documented in a CPS).

Our notation has drawn inspiration from two well-known projects. The first such
project is AVISPA [140]. AVISPA is a model checker for the automatic verification of
cryptographic protocols. It supports a variety of definitions of authentication, among
them Lowe’s definition of ‘authentication as injective agreement’ [51] that we intro-
duced in Chapter 2. AVISPA defines the High Level Protocol Specification Language
(HLPSL) [139]. HLPSL definitions are role scripts: sessions determine which possible
participants may act in which protocol and execute certain steps. The arrival of a mes-
sage is modeled as the occurrence of events while an actor is in a certain state. HLPSL
served as a blueprint in the design of our notation: the building blocks of our notation
are very similar, in particular initialisation, actors, protocols and sessions, as well as
the event-based notation. In comparison with AVISPA, our notation is considerably
more high-level. There are several important differences. First, we allow to define
records and we replace AVISPA’s data types (of which there are very few) with our
well-known records. Second, the concept of services does not appear in AVISPA—in
HLPSL, all communication is from peer entity to peer entity. Third, we allow to define
dependencies between protocols. Finally, we use predicate logic to express many steps
that actors execute, which gives our notation a very high degree of flexibility. The
differences that our notation shows to AVISPA are, naturally, a consequence of the
different purpose it serves. HLPSL is intended to be a language that can be automat-
ically translated into an intermediate format, to which different model checking back
ends can be applied. HLPSL also allows to define protocol goals and violations, which
the model checker can detect. This is not a concern for our notation. It should also be
noted that we allow to abstract over very complex processes with the help of well-known
services—HLPSL cannot allow this lesser degree of formality due to the need to be a
compilable language. Instead, AVISPA and HLPSL must focus on the implementation
of selected primitives that allow it capture protocol flows (rather than entire schemes,
or even their interaction, as is the case in our notation).

The second project that uses a related notation for role scripts is Scyther [172]. Like
AVISPA, Scyther is a tool for the automatic verification of protocols. Its input language,
SPDL, shows similarity to AVISPA but is less verbose. Scyther has some advantages
over AVISPA when it comes to verifying protocols for an unbounded number of parallel
protocol sessions, and it also supports multiple definitions for authentication.

7.5. Key contributions of this chapter
This chapter addressed the first part of Research Objective O3.1. We introduced a
formalised notation to capture schemes that describe how to enhance or reinforce the
X.509 PKI. Our contributions in this chapter were as follows:

Concise presentation Our notation makes it easy for a reader to determine the key
elements in a scheme: participants, channels, and protocols. It allows several
protocols per scheme, allows to define how they interact and which actions par-
ticipants in each protocol execute.

Design decisions We made several design decisions to keep our notation concise yet
powerful. Event-based role scripts define the behaviour of participants. Math-

139

7. Unified notation for X.509 reinforcements

ematical set notation, predicate logic, For-loops and If-clauses allow to model
decision processes in protocols in a succinct way. Records are our basic repres-
entation for entities and tokens, enhanced with Maps. Well-known processes,
well-known records and services are abstractions over descriptions that would be
lengthy or impossible to formalise.

Example: TLS We gave an example how our notation can be used to describe the
current CA-based certification process in the context of TLS.

Listing 2 Scheme of TLS with CA certification, Part 1.
1: Scheme TLS:
2: Participants:
3: CAs ∶ {Ca0,Ca1, . . .} ▷ Set of all CAs
4: Domains ∶ {D0,D1, . . .} ▷ Set of all domains
5: Clients ∶ {Cl0,Cl1, . . .} ▷ Set of all clients
6:
7: Init:
8: for Ca ∈ CAs:
9: (Ca.k,Ca.k-1) ← new Key Pair() ▷ Each CA has one key pair.

10: for D ∈ Domains:
11: (D.k,D.k-1) ← new Key Pair() ▷ Each domain has one key pair.
12:
13: Protocols:
14: Protocol Certification((D,Ca)):
15: Actor D: ▷ Actor D is a domain
16: Channels:
17: ▷ Certification requires a priori secure channel
18: Ch: Sec Channel(D, Ca) ▷ domain ↔ CA
19: Actions:
20: Event Start:
21: Ch.send(name, k) ▷ name is implicit field in every record
22: state ← ‘Wait Cert’
23: Event state = ‘Wait Cert’ and Ch.recv(certnew: Cert):
24: cert ← certnew
25: state ← ‘Start’
26:
27: Actor Ca:
28: Channels:
29: Ch: Sec Channel(Ca, D) ▷ domain ↔ CA
30: Actions:
31: Event Ch.recv(domain name: String, krcv: Pub Key):
32: ▷ Get domain with this name:
33: d ← (di ∈ Domains ∶ di.name = domain name)
34: if meets cps(d):
35: cert ← new Certk−1(domain name, krcv)
36: Ch.send(cert)

140

7.5. Key contributions of this chapter

Listing 3 Scheme of TLS with CA certification, Part 2.
37: Protocol TLS DHE((Cl,D)):
38: Actor Cl: ▷ Actor Cl is a client
39: Channels:
40: Ch: Channel(Cl, D) ▷ Client ↔ domain
41: Actions:
42: Event Start:
43: nCl ← new Nonce()
44: Ch.send(nCl)
45: state ← ‘Wait Kex’
46: Event state = ‘Wait Kex’ and Ch.recv(nD: Nonce, certD: Cert,
47: dhD: DHParm, sgn: String):
48: if valid(certD, D.name) and valid sigcertD.k(nC|nD|dhD, sgn):
49: a, dhCl ← new DHParm() ▷ Generate DH parameters
50: k ← derive dh(a, dhD) ▷ Compute symmetric key
51: msg mac ← mack(nCl|nD|certD|dhD|sgn|dhCl)
52: Ch.send(dhCl, msg mac)
53: state ← ‘Wait Accept’
54: Event state = ‘Wait Accept’ and Ch.recv(fin mac: String):
55: if fin mac = mack(nCl|nD|certD|dhD|sgn|dhCl|msg mac):
56: . . .▷ TLS handshake done
57: state ← ‘Start’
58:
59: Actor D: ▷ Actor D is a domain
60: Channels:
61: Ch: Channel(D, Cl) ▷ Domain ↔ client
62: Actions:
63: Event state = ‘Start’ and Ch.recv(nCl: Nonce):
64: nD ← new Nonce()
65: (b, dhD) ← new DHParm() ▷ Generate DH parameters
66: sgn ← sigk−1(nC|nD|dhD) ▷ Create a signature
67: Ch.send(nD, cert, dhD, sgn)
68: state ← ‘Wait Kex’
69: Event state = ‘Wait Kex’ and
70: Ch.recv(dhCl: DHParm, rcv mac: String):
71: k ← derive dh(b, dhCl)
72: if rcv mac = mack(nCl|nD|cert|dhD|sgn|dhCl):
73: fin mac ← mack(nCl|nD|cert|dhD|sgn|dhCl|rcv mac)
74: ▷ The last MAC is necessary for confirmation:
75: ▷ an attacker cannot fake it
76: Ch.send(fin mac)
77: ▷ TLS handshake done
78: state ← ‘Start’
79:
80: Sessions:
81: Dependency TLS DHE(∗, ∗) not before Certification(∗,∗)
82: At random Certification with (D,Ca) ∈ Domains ×CAs
83: At random TLS DHE with (Cl,D) ∈ Clients ×Domains

141

8 Chapter 8.

Proposals to replace or strengthen X.509

In this chapter, we present schemes to reinforce the X.509 PKI for TLS. The approaches
they employ can be categorised by the technologies they use: DNS, pinning, notaries,
and public logs. For our analyses, we choose one representative of each technology. We
describe each scheme with the notation we developed in the last chapter and give an
assessment with regard to three aspects.

The first aspect is evaluation of a scheme with respect to the criteria we developed
in Chapter 3 to improve the status quo. We also take conclusions from Chapter 4 into
account. We thus structure this part of the analysis as follows:

Out-of-band protection The first question we ask is whether a scheme increases the
security for clients by introducing out-of-band communication channels.

Incident detection The second question is whether a scheme allows to identify rogue
certificates or rogue CAs fast and react to the incident.

Transparency by observation The third question is split into three sub-questions:

Transparency of certification We showed in Chapter 3 that it is helpful to increase
the level of transparency in the certificate issuance process. Our question
is thus: does a scheme facilitate an (ideally continuous) monitoring of the
X.509 PKI, in particular certifications?

Transparency of deployment We showed in Chapter 4 that deployment of certi-
ficates is too often quite poor. We thus investigate whether a scheme makes
contributions towards monitoring this factor.

Transparency of scheme itself Finally, we ask whether a scheme lends itself well
to monitoring in the sense that external parties can determine its correct
operation.

The second aspect we address is the security of a scheme in the face of attackers,
i.e., its robustness. To this end, we define three threat models to describe attackers of
different strength. These are inspired by the attackers we described in Chapter 3.

The third aspect, finally, is an assessment of the changes that would be necessary to
deploy a scheme on the Internet, in particular which entities need to make changes to
their systems. This is a key factor for a scheme’s success.

8.1. Threat models

We present three threat models for different kinds of attackers, in order of rising
strength. Our threat models form a hierarchy: the stronger attacker has all capab-
ilities of the weaker attackers plus several additional ones.

143

8. Proposals to replace or strengthen X.509

Our attackers have in common that we allow them near-complete control over com-
munication channels in certain parts of the network. In the parts of the network an
attacker controls, he may eavesdrop on, alter, or delete any message. This is almost the
Dolev-Yao model [18], except that we disallow the attacker to delay messages. Instead,
we assume all our clients to set timeouts. Messages that are delayed but still arrive
before the timeout are not rejected and not considered suspicious. Messages that arrive
after the timeout are treated as if they had never arrived. The rationale here is twofold.
First, Internet communication can show considerable delays, which are hard to predict,
and developing a policy to treat delayed messages is error-prone. Second, none of the
schemes we describe in this chapter discusses the notion of delayed messages, either.

As in the Dolev-Yao model, our attackers cannot break cryptographic primitives.
Where entities use cryptography to provide authentication, encryption, and integrity
protection, the attacker cannot tamper with the traffic in any way that would not be
detected. We thus refer to these channels as secure.

Finally, none of our attackers is allowed to break the integrity of end-systems, i.e.,
clients and servers. The rationale here is that such an attack would trivially break the
entire protection that TLS and X.509 can offer anyway.

Model A: local and resource-restricted attacker

Our first threat model represents an attacker with relatively few resources at his disposal
who has nevertheless managed to compromise a local network by gaining access to a
gateway device. This corresponds to the idea of an attacker working out of mischief
or for financial gain and without the resources of an organisation at his disposal. We
will generally discuss two different kinds of victim systems in this threat model. The
victim system may be a local stub network, e.g., a private wireless network, which is
attached to an Internet broadband provider via a gateway device (e.g., a wireless access
point). In this case, the attacker is able to tamper with all traffic to and from the home
network going through the gateway, but his control ends when the traffic is sent further
upstream to the Internet provider.

Or the victim system may be the local network of an organisation that uses it for
hosting purposes—e.g., a commercial Web server. This network is again linked to the
global Internet via a router, which we assume the attacker to be in control of. Again,
the attacker’s control ends at the gateway to the public Internet. Note that, in both
cases, the attacker is not in control over any end-host systems (client devices or servers).

Concerning further resources, this attacker cannot compromise any entities in a
scheme. When this attacker stages a man-in-the-middle attack against TLS, his hope
is that a portion of clients accepts a rogue (invalid) certificate despite a browser warning.
Studies like [36] have shown that this number may be relatively high, so this is not an
unreasonable assumption.

Model B: regional attacker

Our second threat model is meant to capture the notion of attacks running on a regional
level, as was alleged in the case of DigiNotar. The motivation here is to model the
possible actions of a rogue authoritarian state.

We extend the control of this attacker to routers that are geographically located
inside his country. This means the attacker is in control of all routers in ASes that
are located entirely within this region. Where an AS extends beyond the region, we
assume that the attacker still only controls routers within his country. The rationale
here is to model an attacker who, by means of state authority, can force access to these

144

8.1. Threat models

Attacker local, weak (A) regional (B) global (C)
in control of
. . . network localised to victim AS in country AS in country
. . . routing no no BGP, or control

over selected routers
. . . entities no limited number limited number
. . . DNS full control full control over local full control over

over local traffic and regional DNS regional and some
traffic global DNS traffic

. . . DNSSEC no zone of his country, additionally temporarily
permanent over selected zones

Table 8.1. – Summary of threat models representing the weak attacker (A), the regional at-
tacker (B), and the globally active attacker (C).

devices. Consequently, this attacker has full control over all traffic entering and leaving
the country, and all traffic within it.

We allow this attacker to be more powerful in terms of his capacity to compromise
other systems, however. When we use the model, we allow the attacker to control a
limited number of (chosen) entities in a scheme as long as they are not end-systems.
For example, when discussing a scheme in the context of this threat model, we will
allow the attacker to compromise a CA, which means the attacker is always able to
obtain a rogue CA-signed certificate.

Furthermore, we give our attacker partial control over the DNS, even when it is
protected with DNSSEC1. The rationale here is to model an attacker who, by legal or
authoritarian means, can modify DNS entries in the zone that belongs to his region.
Commonly, this would be the zone that represents his country’s top-level domain. The
attacker can tamper with any unprotected DNS traffic entering and leaving the region
(and any DNS traffic within the region). However, where entries are protected with
DNSSEC, we limit his influence to queries and replies concerning the DNS zones that
the attacker has control over.

Model C: globally active attacker

This attacker is the most powerful attacker we consider. In addition to the powers
of the regional attacker, we give this attacker some possibilities as they have not yet
been documented in attacks. The intention is to model a ‘lawless’ attacker with the
resources of a country at his disposal, who is willing to engage even in such activities
as they might be condemned by other states. We acknowledge this attacker model is
more extreme. However, with the Internet being a backbone of many societies now, it
is not impossible that such attackers will exist, especially if we take into account that
several countries have created departments for ‘cyber-warfare’ [193]. Compared to the
regional attacker, we allow this attacker additional technical capacity.

The globally active attacker has partial control over selected routing paths on the
Internet. Such control can be achieved by (at least) two means. The attacker may
advertise BGP routing announcements (e.g., in the style of Hepner [199]) to route
traffic through his own systems. Or he may be able to compromise chosen routers on
the Internet and tamper with the traffic that flows through them. This is possible: in
2012, an unknown person used poorly protected devices, routers among them, to create
a large botnet and carry out network scans [136].

1See Section 8.3.1 for an introduction to DNSSEC.

145

8. Proposals to replace or strengthen X.509

We also allow this attacker the political, legal, and technical means to exercise
partial control over the DNS, even with DNSSEC. This means this attacker is able to
compromise the signing keys for selected zones that are outside his own legal authority.
However, we do not allow unlimited control over all zones, and we assume the attacker
cannot sustain the attack on DNSSEC for more than a few days.

Table 8.1 summarises our three threat models. With these defined, we will now
present the different proposals.

8.2. Pinning

The term pinning refers to the concept of keeping a local database of known mappings
from entities to their respective public keys. Entries in the database can be created
the first time an entity contacts another entity and learns about its public key. The
combination of entity and public key is stored so it can be compared with the public
keys presented during subsequent contacts. If the keys are the same, this is a strong
indication that the authentication is secure. If there is a mismatch, there might be
an ongoing man-in-the-middle attack. Unfortunately, pinning generally suffers from a
problem, namely that there are legitimate reasons why a key might change. In SSH,
for example, a host might simply have updated its host key, without any activity from
an attacker. In TLS, there are many more legitimate reasons for changes of public keys
or certificates, which increases the potential for false-positive warnings.

Several proposals to improve the resistance of X.509 against attacks rely on pinning.
In the following, we present a particularly promising approach: Trust Assertions for
Certificate Keys (TACK).

8.2.1. Choice of TACK as subject to study

Until a few years ago, pinning for TLS was not a feature of Web clients, despite an
(abandoned) attempt at IETF standardisation [103]. The benefits were recognised when
Google’s method to ship the public keys of Google services with its Chrome browser
helped detect the DigiNotar compromise. At about the same time, several add-ons were
developed to implement pinning for the Firefox browser, e.g., [271, 275]. These did not
just track a host’s public key but also often stored information about the identity of
the issuing CA as this was also seen as a way to detect possible compromise.

These approaches faced a serious problem, however: there are too many legitimate
cases where certificates and public keys may change. Some Web sites may use several
certificates, even from different CAs. Potential reasons can be load balancing mech-
anisms or CDNs2. Hence, pinning may produce false-positive warnings. This can be
quite problematic. For example, we know from studies like [36] that it is actually eco-
nomically rational for users to develop a lax attitude towards warnings as as a result
of encountering false positives too often.

TACK proposes to address this problem by integrating additional information from
server-side. It should be noted that a similar approach has also been proposed recently
as a way to extend HTTP. The corresponding Internet-Draft [101] defines a way for
a domain to indicate the currently valid certificate to a browser. This is similar to
how TACK operates. However, TACK’s approach is more flexible and adds explicit
life-cycle management for pins. It is thus the concept we chose to study.

2During our early scans of X.509, we found anecdotical evidence of domains like microsoft.com
serving different certificates from the same IP address.

146

8.2. Pinning

8.2.2. TACK operation and representation in our notation

TACK makes two key observations. First, server operators have an incentive to help
their clients (and users) connect to the right server. Second, they can help them by
signalling clients information about the current certification status. The idea behind
TACK is that server operators do not just hold a key pair for their certificate, but also
create a second key pair that they use to sign assertions about their currently valid
certificate. TACK also adds methods to address life-cycle-management, such as TLS
key roll-over, key compromise, and replacement of the signing keys for the assertions.

TACK proposes a TLS extension that is currently defined in an Internet-Draft [112].
It has been implemented in several popular libraries and for some Web servers [215].

TACK does not require a certificate to be issued by a CA. Although normal X.509
certification may be used, TACK works just as well with self-signed certificates or
certificates signed by a CA that is not included in a browser’s root store. The only
participants in the scheme are domains and clients. Note that while several domains
may run on the same hardware, TACK treats every domain as a separate participant.

In the following, we will describe how TACK operates. Listings 4–6 denote TACK
in our notation.

Initialisation (deployment)

The participants in TACK are denoted as two sets, clients and domains (lines 2–4).
TACK requires every domain to create a key pair, which we show in the global initial-
isation block (line 20). The private key is called the TACK Signing Key (TSK). It is
used in the creation of a tack. A tack, shown in lines 6–13, is a signed data structure
that holds the public part of the TSK, the hash value of the domain’s X.509 public
key, and validity information. The latter is expressed in terms of an expiry timestamp
plus two so-called generations. A generation is essentially a version number that rises
monotonously during the lifetime of a domain. Together, a minimum and current gen-
eration in the tack define a window of currently valid generations. A tack also holds
a boolean flag that determines whether the tack is in so-called active state3. In our
listings, we initialise all tacks for a validity period of one year. This value is just an
example and may be chosen arbitrarily.

Tack life-cycle

The life-cycle management of TACK is represented as a protocol with just one parti-
cipant, the domain. We show it in lines 34–72. The events correspond to the life-cycle
of a tack. The major events that may occur are expiry of a tack, roll-over of a TLS
key, compromise of the TLS key, and roll-over of the TSK itself. Domains store their
tacks in a tack store, and update them to reflect changes.

Tacks expire and must be updated when their expiry date is exceeded (line 37). All
expired tacks are replaced with new tacks. The minimum generation of the new tack
is set to a new value that is higher than the highest minimum generation of any tack
in the store. The current generation is also updated. The new tack stores exactly the
old tack’s information about TSK and TLS key and is set to active.

When a domain updates its TLS key (line 47), it creates a new tack (set to active)
and stores it in the tack store (the old tacks that refer to the old key are not needed
any more). The generation of the tack is the old minimum generation.

3In the RFC, this flag is sent as a value outside the tack, but inside the same TLS extension. In our
notation, we add the flag to the tack itself, but do not sign it either. This is semantically equivalent.

147

8. Proposals to replace or strengthen X.509

The situation is different if a domain needs to replace its TLS key due to compromise
(line 55). It needs to signal that earlier tacks are to be considered revoked. Just as in
the expiry case, it increments both the minimum and current generations when creating
a new tack. The new tack replaces all other tacks in the store and is set to active.

The only case left in the life-cycle of tacks is when a domain’s TSK is compromised
or must be replaced (line 64). In this case, the domain will generate a new TSK. It
creates a new tack and increments both the minimum and the current generation to
values that invalidate all tacks that refer to the old TSK. The new tack will be sent
together with the old tacks; however, all old tacks are first set to inactive. This serves
as a signal to clients that they must not be used any more.

Modified TLS protocol and pins

Tacks are used to express which public key a domain currently considers a valid choice
for TLS. Domains send their tacks to clients, which use the information to create pins.
Instead of referring to a domain’s TLS key, a pin refers to the TSK. The data structure
of a pin is shown in lines 15–18.

Pins are used within TLS. The modified TLS protocol is denoted in lines 74–135.
There are two participants, domains and clients. Note that we only denote the parts
of TLS where there are changes to the protocol; all other parts remain the same as
previously shown in Listings 2 and 3. The most important changes occur when the
client receives the tacks at the beginning of the handshake (lines 94–95) and when it
processes them at the end of the TLS handshake (line 102 ff.). We define one procedure
to determine the validity of a tack (lines 79–86). Within this procedure, we make use
of the well-known process valid sig(). The well-known process valid cert() is a part of
a client’s evaluation of a server certificate.

A pin has a life time. When a client connects for the first time, the life time is set
to 0 to indicate the pin is not yet active (line 120). It will be activated (and its life
time extended) when the client reconnects and encounters valid tacks and TLS keys
(line 117). The client also stores the minimum generation it learns from a tack. This
serves as an invalidation and revocation feature: any (subsequent) tack encountered by
the client that has a current generation less than the minimum generation stored by
the client is considered invalid.

The life-cycle of pins is managed by clients as part of the TLS protocol. A client
signals its support for TACK via a special message in the extension (line 91). The
server will react to this message by adding its tacks in its reply. Upon receiving the
tacks in the domain’s reply, the client executes the usual steps to determine the validity
of a certificate.

The client must determine revocations of TSKs. It verifies if any active pins refer to
TSKs where the tack’s minimum generation is less than the minimum generation stored
by the client. If no revocation is found, the client updates the locally stored minimum
generation (lines 107–110). Next, the client determines whether any active pins exist
that refer to TSKs for which no tacks have been sent (lines 111–113). This can only
occur if the client had previously connected to the domain on several occasions and
created an active pin. If this is the case, and the client finds a pin that is not matched
by any TSK in a tack, it must not consider the connection secure.

The final step a client executes is to update its pins. Pins that are not active yet
and for which no tack has been found are removed (lines 115–116). This can happen if
the client has connected to the domain only once before and the domain has changed
its TSK in the meantime. Pins with a matching tack are activated or their life time
extended. The life time that TACK proposes is 30 days or the time span since pin
creation, whichever is lower. The client also adds new, inactive pins for those tacks

148

8.2. Pinning

Listing 4 Scheme of TACK with TLS, Part 1.
1: Scheme TACK:
2: Participants:
3: Domains ∶ {D0,D1, . . .} ▷ Set of all domains
4: Clients ∶ {Cl0,Cl1, . . .} ▷ Set of all clients
5:
6: Record Tack:
7: tsk ∶ Pub Key ▷ TACK Signing Key
8: gmin ∶ Integer ▷ minimum generation
9: gcur ∶ Integer ▷ current generation

10: exp ∶ Timestamp ▷ expiry date
11: hash ∶ h(Pub Key) ▷ Hash of TLS key
12: sig ∶ sig(Pub Key∣Integer∣Integer∣Timestamp∣h(Pub Key)) ▷ Signature
13: active ∶ Boolean ▷ Tack activation flag
14:
15: Record Pin:
16: init ∶ Timestamp ▷ Initialisation date
17: end ∶ Timestamp ▷ Expiry date
18: tsk ∶ Pub Key ▷ TACK Signing Key
19:
20: Init:
21: for D ∈ Domains:
22: (D.tsk, D.tsk−1) ← new Key Pair() ▷ TACK Signing Key
23: (D.k, D.k−1) ← new Key Pair() ▷ TLS key
24: D.cert ← new Cert(D.name, D.k) ▷ Certificate
25: ▷ New tack, valid for 1 year, set to active
26: D.tack ← new Tack(D.tsk, 0, 0, time(‘1y’), h(D.k),
27: sigD.tsk−1(D.tsk|0|0|time(‘1y’)|h(D.k)),true)
28: ▷ Initiate tack store
29: D.tacks ← {tack}
30: for Cl ∈ Clients:
31: Cl.pins ← new Map() ▷ Initialise pin store, per domain
32: Cl.gens ← new Map() ▷ minimum acceptable generations, per domain
33:
34: Protocol TACKLife(D):
35: Actor D:
36: Actions:
37: Event expiry check:
38: ▷ Get expired tacks and compute generations:
39: tacksexp ← {t ∈ tacks ∶ t.exp < time(‘now’)}
40: for texp ∈ tacksexp:
41: ḡmin ← max(t.gmin ∶ t ∈ tacksexp) + 1
42: ḡcur ← max(t.gcur ∶ t ∈ tacks) + 1
43: tacknew ← new Tack(tsk, ḡmin, ḡcur, time(‘1y’), texp.hash,
44: sigtsk−1(tsk∣ḡmin∣ḡcur∣time(‘1y’)∣texp.hash),
45: true)
46: tacks ← (tacks∖ {texp}) ∪ {tacknew}

149

8. Proposals to replace or strengthen X.509

Listing 5 Scheme of TACK with TLS, Part 2.
47: Event tls key roll over:
48: (k, k−1) ← new Key Pair()
49: cert ← new Cert(name, k)
50: ḡmin ← max(t.gmin ∶ t ∈ tacks)
51: ḡcur ← max(t.gcur ∶ t ∈ tacks) + 1
52: tnew ← new Tack(tsk, ḡmin, ḡcur, time(‘1y’), h(k),
53: sigtsk−1(tsk∣ḡmin∣ḡcur∣time(‘1y’)∣h(k)), true)
54: tacks ← {tnew}
55: Event tls key compromise: ▷ TLS key compromised
56: (k, k−1) ← new Key Pair()
57: cert ← new Cert(name, k)
58: ▷ Revoke by incrementing gmin
59: ḡmin ← max(t.gmin ∶ t ∈ tacks) + 1
60: ḡcur ← max(t.gcur ∶ t ∈ tacks) + 1
61: tnew ← new Tack(tsk, ḡmin, ḡcur, time(‘1y’), h(k),
62: sigtsk−1(tsk∣ḡmin∣ḡcur∣time(‘1y’)∣h(k)), true)
63: tacks ← {tnew}
64: Event tsk roll over: ▷ Renewal of TSK
65: for {t ∈ tacks ∶ t.active = true}:
66: t.active ← false ▷ De-activate old tacks
67: (tsk, tsk−1) ← new Key Pair() ▷ New TACK Signing Key
68: ḡmin ← max(t.gmin ∶ t ∈ tacks) + 1
69: ḡcur ← max(t.gcur ∶ t ∈ tacks) + 1
70: tnew ← new Tack(tsk, ḡmin, ḡcur, time(‘1y’), h(k),
71: sigtsk−1(tsk∣ḡmin∣ḡcur∣time(‘1y’)∣h(k)), true)
72: tacks ← tacks ∪ {tnew}
73:
74: Protocol TLS DHE TACK((Cl,D)):
75: Actor Cl:
76: Channels:
77: Ch: Channel(Cl, D) ▷ Client ↔ Domain
78:
79: Procedure valid tack(t: Tack, cert: Cert, gmin: Integer):
80: ▷ Check generations, especially against locally stored gmin
81: if t.gmin ≥ gmin and t.gcur ≥ t.gmin and time(‘now’)< t.exp
82: and h(cert.k) = t.hash
83: and valid sigt.tsk(t.tsk|t.gmin|t.gcur|t.exp|t.hash, t.sig):
84: return true
85: else:
86: return false
87:
88: Actions:
89: Event Start:
90: nC ← new Nonce()
91: Ch.send(nC, ‘tack req’) ▷ request tack
92: state ← ‘Wait Kex’

150

8.2. Pinning

Listing 6 Scheme of TACK with TLS, Part 3.
93: Event state = ‘Wait Kex’ and
94: Ch.recv(nD: Nonce, certD: Cert, dhD: DHParm, sgn: String,
95: tacks: {Tack}):
96: . . .
97: ▷ Tacks received, continue normally. . .
98: Event state = ‘Wait Accept’ and Ch.recv(fin mac: String):
99: . . .
100: ▷ Finish handshake normally, then check: all tacks valid?
101: ▷ Also, only one tack per key is allowed.
102: gmin ← gens[D]
103: if (∀t ∈ tacks ∶ valid tack(t, certD,gmin))
104: and (∀ti, tj ∈ tacks ∶ ti.hash ≠ tj.hash):
105: ▷ Check tack generations
106: for (p, t) ∈ pins[D] × tacks:
107: if p.tsk = t.tsk and pin.end > 0 and t.gmin ≤ gmin:
108: state ← ‘Error’ ▷ pin active, but tack revoked
109: else if p.tsk = t.tsk and pin.end > 0 and t.gmin > gmin:
110: gens[D] ← t.gmin ▷ update gmin
111: ▷ Determine store status
112: if (∃p ∈ pins[D] ∶ (p.end > 0 ∧ (∄t ∈ tacks ∶ t.tsk = p.psk))):
113: state ← ‘Error’ ▷ No tack for active pin
114: ▷ Pin activation
115: for p ∈ {p̄ ∈ pins[D] ∶ p̄.end = 0 ∧ (∄t ∈ tacks ∶ t.tsk = p̄.psk)}:
116: pins[D] ← pins[D] ∖{p} ▷ remove inactive pins
117: ▷ Activate all pins with matching tacks:
118: for (p, t) ∈ {(p̄, t̄) ∈ pins[D] × tacks ∶ t̄.active ∧ (t̄.tsk = p̄.tsk)}:
119: p.end ← time(‘now’) +min(30d, time(‘now’) − p.init)
120: ▷ Add inactive pins for unmatched tacks:
121: for t ∈ {t̄ ∈ tacks ∶ t̄.active ∧ (∄p ∈ pins[d] ∶ p.tsk = t̄.tsk)}:
122: pnew ← new Pin(time(‘now’), 0, t.tsk)
123: pins[D] ← pnew
124: . . .▷ TLS connection setup finished
125: else: ▷ invalid tacks found
126: state ← ‘Error’
127:
128: Actor D:
129: Channels:
130: Ch: Channel(D, C)
131: Actions:
132: Event state = ‘Start’ and Ch.recv(nC: Nonce, ‘tack req’):
133: . . .▷ normal TLS
134: Ch.send(nD, cert, dhD, sgn, tacks)
135: . . .▷ Continue with normal TLS
136:
137: Sessions:
138: At random TACKLife(expiry check) with D ∈ Domains
139: At random TACKLife(tls key roll over) with D ∈ Domains
140: At random TACKLife(tls key compromise) with D ∈ Domains
141: At random TACKLife(tsk roll over) with D ∈ Domains
142: At random TLS DHE TACK with (Cl,D) ∈ Clients ×Domains

151

8. Proposals to replace or strengthen X.509

that are active but for which no pins exist yet (see above). This is important when a
domain is in the transition phase from one TSK to the next: the current TSK would
still be accepted due to the previous step, but the client is prepared for a new TSK for
the next connection. After this final step, the TLS session setup is finished.

We define five calls to protocols in the session block (lines 137–142). The first four
refer to the events in a tack’s life-cycle; we call these at random. The TLS protocol
is also executed at random—note that the initialisation takes care that all necessary
tacks are available.

8.2.3. Assessment of TACK

We assess the contributions that TACK makes towards a more secure X.509 PKI and
discuss its robustness against attackers of varying strength. We also discuss possible
difficulties in deploying TACK.

Reinforcement of X.509

TACK makes the following contributions to the security of X.509.

Out-of-band mechanism TACK aims to strengthen the authentication in TLS. Servers
use a second key pair to signal a client whether an encountered key is genuine and
correct. Although this information is transmitted in a TLS extension, the second key
pair makes it a true out-of-band mechanism. TACK aims directly at improving the
security for clients, doing so in an entirely transparent way.

Incident detection TACK does not provide any means to determine the cause of key
mismatches automatically nor to report them, and the authors of TACK do not men-
tion incident detection as a motivation for TACK. Although TACK is able to detect
mismatches of keys, such a detection would only be conclusive evidence of a man-in-the-
middle attack if one could assume that all server operators who use TACK execute their
duties faithfully. This assumption seems questionable: in our scans (see Chapter 4),
we found a certain laxness concerning certification (e.g., expired certificates, self-signed
certificates without correct hostname). Given that TACK requires domain owners to
renew expired tacks and carry out key roll-overs with care, there seems to be good
reason to assume that mismatches will occur in benign situations, too.

Transparency by observation TACK is not concerned with monitoring certification nor
with the deployment of X.509 certificates. In fact, the scheme can even work without
any CAs at all. Concerning its own transparency, the concept lends itself well to
observation by external parties. It is easy to determine whether a given deployment
is problematic or not: tacks contain all the information that is necessary to compare
the configuration of TACK with the actual certification of a domain. As they are
transmitted as part of a TLS extension, tacks can be obtained with active scans.

Robustness against attackers

The security provided by TACK depends entirely on the security of the first contact. If
this contact remains uncompromised, the scheme yields an authenticated secure channel
for later use. Working under the assumption that the first contact was secure, TACK is
a remarkably strong concept. This is due to the fact that TACK avoids TTPs. As none
of our threat models allows servers or clients to be compromised, tacks and pins can
thus be created safely. Consider our strongest attacker from Model C. Even if we allow

152

8.3. Storing certification information in the DNS

this attacker to compromise all CAs and control all network paths on the Internet, he
can only suppress TACK communication, but not alter it in a way that would have
impact. Our strongest attacker has all the possibilities of the weaker attackers of Models
A and B. We can conclude that TACK can withstand attacks even by globally active
attackers with the resources of countries.

Note however that TACK’s omission of TTPs is also its primary weakness. In
extremely security-critical scenarios, e.g., political dissidents using Web mail from a
foreign provider, it seems unwise to put trust into the security of a first contact. The
authors of TACK are aware of this problem and hint at a solution in their RFC.
Although not yet specified, it may be suitable on a smaller scale: the authors propose
that a TACK client is initialised with pins from a trusted source. These could be
propagated out-of-band, e.g., on an external medium. Note that the tack values could
be determined semi-automatically with the help of active scans—ideally, from several
different vantage points to avoid attackers in certain networks.

Deployment

TACK is proposed as an extension to TLS. This means it does not require any upgrades
on client-side: a client that is not aware of TACK will simply not use the extension.
This makes it possible for TACK to be deployed gradually.

Unfortunately, TACK puts a significant burden on server operators. First of all, they
need to upgrade their TLS implementations to support the TACK extension. Second,
they must execute their duties very carefully, in particular with respect to tack life-cycle
management. We know from Chapter 4 that certification misconfigurations are quite
common and it seems not implausible to assume that TACK configurations will often
suffer the same fate. Web servers number in the high millions—it is quite likely that a
certain fraction would exhibit TACK misconfigurations.

However, one factor may come to TACK’s aid here: the RFC requires a client to drop
a connection for which it cannot confirm an existing pin. This gives a site operator—in
particular the operator of an important site—a strong incentive to carry out proper
life-cycle management. Larger sites generally also have the necessary funds to finance
such activities. Hence, TACK’s chances of deployment are greatest for popular sites,
which is in-line with its primary purpose of protecting clients. The fact that it can be
rolled out gradually and does not require an opt-in from all WWW servers helps, too.

8.3. Storing certification information in the DNS

Two recent proposals use the Domain Name System (DNS) to store cryptographically
secured information about the certification status of a domain: Certification Authority
Authorization (CAA) and DNS-based Authentication of Named Entities: TLS Anchor
(DANE-TLSA).

The DNS can be used to store arbitrary data about a domain, and several RFCs
exist that exploit this fact. For example, RFC 6594 [121] defines a way to store the
fingerprints of SSH host keys in the DNS. RFC 4398 [107] defined an early way to store
certificates and OpenPGP keys in the DNS (although it seems to be mostly forgotten
today). CAA and DANE-TLSA are the latest entries, and they explicitly address X.509
and make use of the Domain Name System Security Extensions (DNSSEC). We thus
chose them as the two most relevant approaches to study. To better explain their use,
we first give a short introduction to DNSSEC.

153

8. Proposals to replace or strengthen X.509

8.3.1. DNSSEC

DNSSEC is defined in a set of RFCs, of which [98, 90, 91, 110] may be the most
prominent ones. The goal of DNSSEC is to add integrity protection to the otherwise
insecure transmission of DNS replies. DNSSEC can be applied to all types of resource
records.

DNSSEC defines a PKI for its purpose. The PKI structure follows the zone hierarchy
of the DNS and starts with the root zone. The root zone is the trust anchor of the PKI—
a single TTP. Every DNS zone is associated with two public/private key pairs: a Zone
Signing Key (ZSK) and a Key-Signing Key (KSK). The ZSK is used to sign the records
in the zone, plus the ZSK itself. The KSK is used to sign the ZSK. This scheme allows
easier key roll-over and makes it possible to keep ZSKs at the length that is currently
required to be cryptographically secure. This is beneficial for performance. Delegation
of authority, from parent zone to child zone, is enabled in DNSSEC by having the
parent zone publish the key that is used in a child zone and sign the corresponding
resource records. This scheme propagates down the entire DNS hierarchy.

When a resolver queries the DNS, it has to verify the chain of signed delegations
linking up to the root zone. As the public key of the root zone is the trust anchor of
the DNSSEC PKI, it must be distributed out-of-band to all verifiers.

DNSSEC is a relatively complex technology as caching and transmission issues must
be taken into account. Deployment of DNSSEC has been very slow, in fact, and has
introduced new sources of failures. Lian et al. showed this in their study of 2013 [50].
They found that DNSSEC-enabled resolvers are rare (they determined an upper bound
of 2.7%) and that failure rates were slightly higher compared to normal DNS lookup.
One source for the failures could be determined to be the larger size of DNSSEC
replies. However, the authors also found a relatively strong geographic dependency,
which relativises the results to some degree. The size of DNSSEC records, however,
has been criticised previously as it could help attackers stage amplification attacks in
a denial-of-service attack [143].

Concerning deployment, it is also of note that many DNS stub resolvers on client
computers currently do not validate DNSSEC records themselves. This task is thus
left to the resolvers, which may be positioned in an ISP’s network. This introduces a
certain weakness on the ‘last mile’ to the client.

The technical complexity of DNSSEC is not the only concern. The DNS is a database
that is distributed over many countries and legislations, each with their own interests.
To address concerns that one such country may abuse its power, the cryptographic
material for the root zone was generated in two key ceremonies in 2010, with a number
of so-called Trusted Community Representatives4 present to oversee the correctness of
the process [204].

The root zone, however, may be the lesser concern. Countries and governments
exercise legal control over their own top-level domains (and thus the corresponding
zones). This allows them to alter DNSSEC-protected records. Since it is quite common
for organisations and companies to own domains outside their own legal jurisdictions,
such national control over their resource records makes them vulnerable to what one
could call an ‘attack by legal means’. This attack is particularly troublesome as it can
easily be a tool to censor free access to the Internet. Soghoian and Stamm described
the same attack for X.509 certificates in [67]: they warned that governments might be
willing to compel a CA operating within their jurisdiction to issue rogue certificates for
the purpose of interception of encrypted traffic.

4The Trusted Community Representatives were chosen by ICANN after a solicitation process among
the ‘Internet community’ [203].

154

8.3. Storing certification information in the DNS

Listing 7 Service abstraction for DNSSEC.
1: Participants:
2: DNSServers ∶ {DNS0,DNS1, . . .} ▷ Set of all DNS servers
3:
4: Record RR: ▷ Signed resource record
5: type ∶ String
6: value ∶ String
7: sig ∶ sig(String|String|String) ▷ On domain name, RR type, and value
8:
9: Service DNSSEC represents DNSServers:

10: Channels:
11: Chs ∶ {Channel(q, d) ∶ q ∈ (Clients ∪Domains),d ∈ DNSServers}
12: Init:
13: (k, k−1) ← new Key Pair()
14: domains ← new Map⟨String, Map⟨String, RR⟩⟩()
15: Actions:
16: Event Ch ∈ Chs: Ch.recv(‘store’, d: String, rr type: String, val: String):
17: ▷ Signature on domain name, type and value:
18: rr sig ← sigk−1(d∣rr type∣val)
19: ▷ Create resource record:
20: rr ← new RR(rr type, val, rr sig)
21: ▷ Store resource record:
22: domains[d][type] ← rr
23: Event Ch ∈ Chs: Ch.recv(‘load’, d: String, type: String):
24: ▷ Retrieve resource record:
25: rr ← domains[d][type]
26: Ch.send(rr)
27:
28: Protocol . . . (. . .):
29: Actor . . . :
30: Init:
31: kdns ← DNSSEC.k ▷ Actors need to know DNSSEC’s public key

8.3.2. Representing DNSSEC in our notation

We showed in the last chapter how the DNS can be represented as a service in our
notation. Adding DNSSEC does not require many changes. The important thing to
note is that, for the purpose of our notation, we do not actually need to represent the
complex resolution and validation steps that a resolver carries out. The only function-
ality we need to model is a service that signs and stores resource records, and allows
to retrieve them on request. In assessing a scheme, we can then discuss its security by
allowing this service to be compromised or not.

In our notation, we thus treat DNSSEC just like DNS, except that we assign it a key
pair to sign resource records. The public part of this key pair needs to be distributed
to all entities participating in the scheme. We show this in Listing 7.

8.3.3. Certification Authority Authorization (CAA)

The first DNS-based scheme we describe is CAA. CAA defines a mechanism whose
primary purpose is to support the verification processes of CAs. It is specified in

155

8. Proposals to replace or strengthen X.509

RFC 6844 [104]. The specification recommends to protect the CAA records with
DNSSEC signatures, but does not actually mandate it.

CAA requires a domain owner, who is assumed to be in control of the corresponding
DNS resource records, to add one or more CAA resource records to the existing resource
records. A CAA record stores three so-called properties:

issue This property allows to specify who may issue certificates for the domain in
question. The value is meant to be a unique identifier for a CA.

issuewild This property allows to define who may issue wild card certificates for the
domain, i.e., certificates with wild cards denoting possible subdomains.

iodef This property allows to specify a URL where CAs violating the rules specified in
the previous two records can be reported (i.e., CAs issuing a certificate for the
domain despite the CAA record pointing to another CA).

The information that CAA provides can be quite useful for CAs. Recall the case of
StartSSL in 2008 (see Section 3.3, p. 37): the CA was able to thwart an attack because
it kept a list of high-value domains and treated certificates for domains from this list
differently. CAA can be seen as a generalisation of this approach.

8.3.4. CAA operation and representation in our notation

Listings 8 and 9 show the CAA scheme. We only show the property issue in our listing.
The property issuewild is really only an extension for subdomains and does not add
any new insight on a semantic level5. Concerning the property iodef, CAA does not
specify under which circumstances, or how, a CA should report a violation.

The protocol flow of CAA is simple: the only changes are in the certification process.
The domain owner publishes the CAA records in the DNS (line 46). The remaining
process remains unchanged from his point of view: he requests a certificate from the
CA and waits for the reply.

The CA, on the other hand, must retrieve the CAA record when it receives a cer-
tification request for the domain. We show the process in lines 60–69. It must verify
that the signature in the CAA record is correct and that its own name is stored as a
value in the record. The remaining steps remain the same. Note that, in particular,
the entire definition of TLS remains the same.

8.3.5. Assessment of CAA

In the following, we assess CAA’s contributions to the security of X.509 according to
the criteria we defined. We determine its robustness in our attacker models and assess
potential deployment issues.

Reinforcement of X.509

CAA makes the following contributions to X.509.

Out-of-band mechanism CAA gives CAs an additional mechanism to include in their
operational practices when determining whether to issue a certificate for a given do-
main. Security for clients is only indirectly improved. However, if all CAs followed the
procedures of CAA, the bar for attacks would be raised.

5The property can be modelled by introducing string matching to the notation, e.g., by introducing
a well-known process as an abstraction of pattern matching with regular expressions.

156

8.3. Storing certification information in the DNS

Listing 8 Scheme of CAA, Part 1.
1: Scheme CAA:
2: Participants:
3: CAs ∶ {Ca0,Ca1, . . .} ▷ Set of all CAs
4: Domains ∶ {D0,D1, . . .} ▷ Set of all domains
5: Clients ∶ {Cl0,Cl1, . . .} ▷ Set of all clients
6: DNSServers ∶ {DNS0,DNS1, . . .} ▷ Set of all DNS servers
7:
8: Record RR: ▷ Signed resource record
9: type ∶ String

10: value ∶ String
11: sig ∶ sig(String|String|String) ▷ On domain name, RR type, and value
12:
13: Init:
14: for Ca ∈ CA:
15: (Ca.k, Ca.C.k-1) ← new Key Pair()
16: for D ∈ Domain:
17: (D.k, D.k-1) ← new Key Pair()
18: for Cl ∈ Clients:
19: . . .▷ Normal TLS initialisation
20:
21: Service DNSSEC represents DNSServers:
22: Channels:
23: Chs ∶ {Channel(q, d) ∶ q ∈ (CAs ∪Domains),d ∈ DNSServers}
24: Init:
25: (k, k−1) ← new Key Pair()
26: domains ← new Map⟨String, Map⟨String, RR⟩⟩()
27: Actions:
28: Event Ch ∈ Chs: Ch.recv(‘store’, d: String, rr type: String, val: String):
29: ▷ Signature on domain name, type and value:
30: rr sig ← sigk−1(d∣rr type∣value)
31: ▷ Create resource record:
32: rr ← new RR(rr type, value, rr sig)
33: ▷ Store resource record:
34: domains[d][type] ← rr
35: Event Ch ∈ Chs: Ch.recv(‘load’, d: String, type: String):
36: ▷ Retrieve resource record:
37: rr ← domains[d][type]
38: Ch.send(rr)

Incident detection CAA provides a clearly designated point of reference where third
parties (domain owners, clients, browser vendors) can report violations of the rules
specified in the CAA record: the iodef property. This makes it easier to take appro-
priate steps if a violation is detected. However, CAA does not define a process nor a
mechanism for the actual detection mechanism. This is unfortunate as the detection
could be easily automated. It would be worthwhile to scan both DNS records from
domain lists (e.g., from zone files) and then certificates from TLS connections.

157

8. Proposals to replace or strengthen X.509

Listing 9 Scheme of CAA, Part 2.
39: Protocol Certification((D,Ca)):
40: Actor D:
41: Channels:
42: DNSCh: Channel(D, DNSSEC) ▷ Domain ↔ DNS
43: SecCh: Sec Channel(D, Ca) ▷ Domain ↔ CA
44: Actions:
45: Event Start:
46: DNSCh.send(‘store’, name, ‘CAA’, Ca.name)
47: SecCh.send(name, k)
48: state ← ‘Wait Cert’
49: Event state = ‘Wait Cert’ and SecCh.recv(certnew: Cert):
50: cert ← certnew
51: state ← ‘Start’
52:
53: Actor Ca:
54: Channels:
55: DNSCh: Channel(Ca, DNSSEC) ▷ Ca ↔ DNS
56: SecCh: Sec Channel(Ca, D) ▷ CA ↔ domain
57: Init:
58: kdns ← DNSSEC.k
59: Actions:
60: Event state = ‘Start’ and SecCh.recv(named: String, kd: Pub Key):
61: DNSCh.send(‘load’, named, ‘CAA’)
62: state ← ‘Wait CAA’
63: Event state = ‘Wait CAA’ and DNSCh.recv(rrd: RR):
64: if rrd.type = ‘CAA’ and rrd.value = name
65: and valid sigkdns(named|rrd.type|rrd.value, rrd.sig)
66: and meets_cps(named):
67: cert ← new Certk−1(named, kd)
68: SecCh.send(cert)
69: state ← ‘Start’
70:
71: Protocol TLS_DHE_CAA(Cl, D):
72: . . .
73: ▷ There are no changes to the TLS protocol.
74:
75: Sessions:
76: Dependency TLS_DHE_CAA(∗,∗) not before Certification(∗,∗)
77: At random Certification with (D,Ca) ∈ Domains ×CAs
78: At random TLS_DHE_CAA with (Cl,D) ∈ Clients ×Domains

Transparency by observation CAA is not concerned with monitoring X.509 deployment
nor with certification. However, it is a relatively transparent scheme: misconfigurations
of CAA can be easily detected with active scans by comparing a site’s X.509 certificate
with the CAA record from the DNS.

158

8.3. Storing certification information in the DNS

Robustness against attackers

The protection that CAA can offer depends on the strength of the attacker. A particular
weakness of CAA is that it does not mandate the use of DNSSEC.

Consider the weak attacker from our Model A. There are two ways how this attacker
might succeed. Either he is in control of the channel over which a domain owner sets
the CAA record, or he controls the channel over which a CA communicates with the
respective DNS servers to query the CAA record. In the first case, he would have to
be a man-in-the-middle between the DNS server and the administrator. This may be
possible in the case of hosting providers operating nameservers for their customers and
allowing them to change records via a Web interface. In such a setting, the attacker
would have to intercept the communication with the Web interface, which is only
possible if it is not secured (or assuming an administrator would ignore a warning
in his browser about an invalid certificate). This attack seems somewhat unlikely to
succeed, although it cannot be ruled out entirely. The second option for the attacker
would be to attack the communication between a CA and the responsible nameserver.
One way to achieve this would be to compromise the gateway host of a CA. This seems
not very likely as CAs have particularly good reasons to invest in the security of their
infrastructure. The more likely option may be that the attacker is able to compromise
the host where the CAA record is stored, i.e., the nameserver, or poison the cache of
a non-authoritative nameserver that is queried first. Both attacks could be thwarted
with DNSSEC. The conclusion to draw here is that CAA works well against the weak
attacker from our Model A. The attacker has very little to no chance of success, in
particular if DNSSEC is used.

CAA loses much of its security in our other two threat models, however. Consider
the attacker in our Model B: this attacker may compromise a CA of his choosing. This
means he can simply bypass the CAA checks and issue a rogue certificate, which trivially
breaks CAA. But even if we disallow the attacker to compromise a CA to this degree,
there are still ways for him to defeat CAA. One attack vector is directed against CAs
inside the attacker’s own country: the attacker controls the necessary paths to tamper
with their traffic. If DNSSEC is used, he is limited to such domains that are in the
top-level domain he operates. CAs outside the attacker’s country are at risk when they
need to issue a certificate for a domain whose DNS entries are served by a nameserver
to which the attacker controls the network path. If DNSSEC is used, the attacker is
again limited to his control over certain zones.

CAA starts to fall apart entirely when confronted with our globally acting attacker
of Model C. We allow this attacker to reroute DNS traffic. He is thus able to change
the value of the CAA record to a CA that he also controls. DNSSEC is not a good
barrier, either, as we allow the attacker to compromise several zones that are outside
his direct organisational control.

The conclusion here is that CAA is only a protection against the weaker kinds of at-
tackers. It is insightful to relate this to actual events. In the more devastating incidents
like Comodo (2011) or DigiNotar (2011), the CAs’ issuance process was compromised.
CAA would not have provided any security.

Deployment

CAA has the advantage of being a very simple concept with low implementation costs.
It can also be rolled out gradually, and DNS operators could opt in once their software
supports the new record. CAA does not require any changes to the TLS protocol, either.
This eases deployment and makes it possible for early adopters to create CAA records.
Indeed, at the time of writing, Google has begun to deploy CAA records for their

159

8. Proposals to replace or strengthen X.509

domains6 [209]. Although the number of nameservers that need updates may be high,
the overall conclusion here is that CAA encounters very few barriers to deployment.
At the same time, it raises the barriers for attackers and, more importantly, makes it
possible to establish a better incident detection.

8.3.6. DNS-based Authentication of Named Entities: TLS Anchor (DANE-TLSA)

DANE is a working group within the IETF. According to its charter [174], its objective
is to define a method to store bindings between names and public keys in the DNS,
secured with DNSSEC. The first proposal the working group published is called DANE-
TLSA and is specified in [105].

The corresponding resource record—TLS Anchor (TLSA)—defines an alternative
way to verify a certificate. The record can store either a certificate or a public key, and
several options to carry out the verification process are defined. TLSA does neither
mandate nor prohibit the usual CA certification processes. Domains can have their
certificates issued normally from a CA and use TLSA as an additional trust anchor or
they may simply use certificates that are either self-signed or from a CA that is not
part of any root store.

The resource record has fairly simple semantics. A record consists of the following
four fields.

Certificate Usage This field indicates what kind of certificate is defined in the trust
anchor. There are four options.

• The first is to specify the certificate or public key of a CA. When clients
verify the certificate chain, this certificate or public key must appear in it.
The record is useful to limit which CAs may issue certificates for a domain
and can thus be used as a stand-in for CAA.

• The second option is to specify the certificate or public key of an end-entity,
i.e., commonly a server. Such a certificate is assumed to have been issued
by a CA. The option allows to define which certificate is considered valid for
a domain.

• The third option is to specify the certificate or public key of the root certi-
ficate that is to be used when verifying the certificate chain. This option is
meant to be used when a domain uses certificates from a CA that is, e.g.,
not generally recognised by root stores.

• The last option is to specify an end-entity’s certificate without requiring
issuance by any CA. This option can be used for self-signed certificates.

Selector This field indicates whether a complete certificate is stored or just the public
key. The advantage of storing a public key instead of the certificate is that the
TLSA record does not have to be updated when a certificate is renewed (with the
same public key).

Matching Type This field indicates whether the full certificate or public key is specified
in the resource record or whether a hash value is used.

Certificate Association This field contains the certificate or public key to which the
domain name is bound.

6The command dig +short -t TYPE257 google.com, available on GNU/Linux systems, shows this.

160

8.3. Storing certification information in the DNS

8.3.7. DANE-TLSA operation and representation in our notation

The RFC for TLSA leaves the choice when to send the query for the TLSA record to the
client. In our listings 10–12, we show the case of querying the record during the TLS
handshake. We do not model all of the different options described above but model only
the case where the hash value of the certificate (chain) is stored in the TLSA record.
As a simplification, we do not distinguish between certificates and certificate chains.
We also omit a potential fallback to normal TLS in case no usable TLSA information
is received by the client.

Our listings show the creation of the TLSA record as part of the certification process.
Certification is the normal process as we know it from TLS (line 40 ff.)—also see
listings 2 and 3. A domain sets the TLSA record once it has received its certificate
(line 50). We model this by sending the domain name and the hash value of the
certificate to the DNSSEC service.

Lines 64–81 show which changes occur on client side when using TLSA. The flow
of the TLS protocol remains unchanged up to the point when the client receives the
server certificate. The client verifies the correctness of the certificate by retrieving the
TLSA record from the DNSSEC service. Once the record is received, the client proceeds
with the verification process of the server certificate. Note that we do not verify the
server certificate before the client receives a reply from the DNSSEC service. The
motivation is to avoid any computation until the record is received. The verification
process consists of the normal server certificate verification and the verification of the
TLSA record, i.e., whether it is issued for the correct domain name, carries the correct
hash value of the server certificate, and is correctly signed.

If the verification process succeeds, the TLS connection continues as in normal TLS.
Note that there are no changes at all on server side.

8.3.8. Assessment of DANE-TLSA

In the following, we present our assessment of DANE-TLSA.

Reinforcement of X.509

DANE-TLSA makes the following contributions to the security of X.509.

Out-of-band mechanism The purpose of DANE-TLSA is to provide confirmation of a
server certificate over a second, supposedly secure channel. This is exactly the out-of-
band mechanism that we identified as a necessary step to improve the security of X.509
for clients (see Chapter 3). In contrast to CAA, the protection is a direct one: domains
set the record, clients use it. DANE-TLSA also mandates DNSSEC; thus an attacker’s
options are limited to attacking DNSSEC itself.

Incident detection DANE is not designed to report detected mismatches of TLSA re-
cords and server certificates. However, incidents could be uncovered more easily with
a monitoring infrastructure that scans both DNS entries as well as server certificates.
DANE-TLSA lacks an important property of CAA, namely a way to define a point of
reference to report incidents.

Transparency by observation DANE-TLSA addresses neither X.509 certification nor
deployment. But it is a very transparent scheme, just like CAA. DANE-TLSA requires
the certification status of a domain to be closely synchronised with up-to-date DNS
records. Monitoring would be beneficial in uncovering unintentional mismatches.

161

8. Proposals to replace or strengthen X.509

Listing 10 Scheme for DANE-TLSA, Part 1.
1: Scheme TLSA:
2: Participants:
3: CAs ∶ {Ca0,Ca1, . . .} ▷ Set of all CAs
4: Domains ∶ {D0,D1, . . .} ▷ Set of all domains
5: Clients ∶ {Cl0,Cl1, . . .} ▷ Set of all clients
6: DNSServers ∶ {DNS0,DNS1, . . .} ▷ Set of all DNS servers
7:
8: Record RR: ▷ Signed resource record
9: type ∶ String

10: value ∶ String
11: sig ∶ sig(String|String|String) ▷ On domain name, RR type, and value
12:
13: Init:
14: for Ca ∈ CA:
15: (Ca.k, Ca.k-1) ← new Key Pair()
16: for D ∈ Domain:
17: (D.k, D.k-1) ← new Key Pair()
18: for Cl ∈ Clients:
19: . . .▷ Normal TLS initialisation
20:
21: Service DNSSEC represents DNSServers:
22: Channels:
23: Chs ∶ {Channel(q, d) ∶ q ∈ (CAs ∪Domains),d ∈ DNSServers}
24: Init:
25: (k, k−1) ← new Key Pair()
26: domains ← new Map⟨String, Map⟨String, RR⟩⟩()

Robustness against attackers

We assess the security of DANE-TLSA in our three threat models. The first thing to
note is that the security of DANE-TLSA does not just depend on the strength of the
attacker, but also on whether a client uses a validating stub resolver (i.e., validates a
TLSA record itself) or whether this is done by the DNS resolver via which it queries
DNS records. The difference between these two cases is fundamental.

Let us consider the question of the stub resolver first. Consider our weakest at-
tacker, from Model A, in a scenario where he has control over a gateway, and the client
computer uses one of today’s off-the-shelf operating systems. At least at the time of
writing, these operating systems do not yet provide DNSSEC-validating stub resolvers,
and thus the DNS resolvers of the client’s ISP are queried. Neither query nor reply are
protected in any way; and the attacker can rewrite any DNS reply. DANE-TLSA can
thus only be secure if validating stub resolvers are used. An alternative would be to
use methods like TSIG [123], which establish an integrity-protected channel between
stub resolver and recursive resolver. Otherwise, DANE-TLSA fails even in the weakest
threat model.

In the following, we assume a client with a validating stub-resolver or an equivalent
protection. We also assume that a missing or incorrect DNS reply causes our client to
abort the TLS connection. The security of TLSA depends now entirely on whether an
attacker is able to change DNS entries. Our attacker from Model A is powerless. The
situation in the other two threat models is somewhat different, however.

162

8.3. Storing certification information in the DNS

Listing 11 Scheme for DANE-TLSA, Part 2.
27: Actions:▷ Define actions for service
28: Event Ch ∈ Chs: Ch.recv(‘Store’, d: String, rr type: String, val: String):
29: ▷ Signature on domain name, type and value:
30: rr sig ← sigk−1(d∣rr type∣val)
31: ▷ Create resource record:
32: rr ← new RR(rr type, val, rr sig)
33: ▷ Store resource record:
34: domains[d][type] ← rr
35: Event Ch ∈ Chs: Ch.recv(‘Load’, d: String, type: String):
36: ▷ Retrieve resource record:
37: rr ← domains[d][type]
38: Ch.send(rr)
39:
40: Protocol Certification((D,Ca)):
41: Actor D:
42: Channels:
43: DNSCh: Channel(D, DNSSEC) ▷ D ↔ DNS server dD
44: SecCh: Sec Channel(D, Ca) ▷ domain ↔ CA
45: Actions:
46: Event Start:
47: SecCh.send(name, k)
48: state ← ‘Wait Cert’
49: Event state = ‘Wait Cert’ and SecCh.recv(certnew: Cert):
50: DNSCh.send(‘store’, name, ‘TLSA’, h(cert))
51: cert ← certnew
52: state ← ‘Start’
53:
54: Actor Ca:
55: Channels:
56: SecCh: Sec Channel(Ca, D) ▷ CA ↔ domain
57: Actions:
58: Event SecCh.recv(named: String, kd: Pub Key):
59: if meets_cps(named): ▷ Check against CPS
60: cert ← new Certk−1(named, kd)
61: SecCh.send(cert)
62:

Our regional attacker from Model B may compromise any CA he chooses. However,
his control over DNSSEC-secured entries is restricted to the zones over which he is given
control. Thus he can only attack domains within these zones. DANE-TLSA provides
protection to all other zones.

The position of our globally active attacker is better. His control over DNSSEC
extends to several other zones outside his direct organisational control. This means
such an attacker can do damage outside his own region. As we also allow him to
reroute traffic, this attacker is powerful enough to carry out man-in-the-middle attacks
that cannot be prevented by TLSA.

To summarise, DANE-TLSA provides a high degree of security against all attackers
that have less resources than what may be associated with countries. However, DANE-
TLSA can be compromised by regionally active attackers (in control of DNS) or the

163

8. Proposals to replace or strengthen X.509

Listing 12 Scheme for DANE-TLSA, Part 3.
63: Protocol TLS_DHE_TLSA((Cl,D)):
64: Actor Cl:
65: Channels:
66: Ch: Channel(Cl, D)
67: Init:
68: kdns ← DNSSEC.k
69: Event Start:
70: . . .▷ Normal TLS until server cert arrives
71: Event state = ‘Wait Kex’ and
72: Ch.recv(nD: Nonce, certD: Cert, dhD: DHParm, sgn: String):
73: DNSCh.send(‘load’, D.name, ‘TLSA’)
74: state ← ‘Wait TLSA’
75: Event state = ‘Wait TLSA’ and DNSCh.recv(rrD: RR):
76: if valid cert(certD) and valid sigcertD.k(nC|nD|dhD, sgn)
77: and rrD.type = ‘TLSA’ and rrD.value = h(certD)
78: and valid sigkdns(D.name|‘TLSA’|h(certD), rrD.sig):
79: . . .▷ Normal TLS continues
80: else:▷ Else, we abort:
81: state ← ‘Error’
82:
83: Actor D:
84: . . .▷ No changes to server required
85:
86: Sessions:
87: Dependency TLS_DHE_TLSA(∗,∗) not before Certification(∗,∗)
88: At random Certification with (D,Ca) ∈ Domains ×CAs
89: At random TLS_DHE_TLSA with (Cl,D) ∈ Clients ×Domains

globally acting attacker. The potentially more interesting question here is whether
attacks would be detectable and whether attackers are willing to take the risks that are
associated with detection. A monitoring infrastructure that employs several vantage
points would be very useful—it would be able to detect whether DANE-TLSA records
change suddenly and whether the certificates also change, as determined by all vantage
points. If misconfigurations can be excluded as a reason, this would be an indication
of compromise.

Deployment

Like CAA, DANE-TLSA has the advantage of relatively low deployment costs. It can
be rolled out gradually and does not require changes to the TLS protocol itself. It
requires changes to common implementations to support the additional queries and
evaluation of DNS records, however. On the whole, it seems unlikely that either of
these constitutes a serious barrier.

A more pressing question may be whether DNS servers support the new record soon
enough. With DNSSEC deployment still relatively slow (see, e.g., the study by [50]),
DANE-TLSA is not a solution that can be useful on a large scale immediately.

Our biggest concern, however, is that TLSA records need to be closely synchronised
with a domain’s current certification state. This is particularly true when hash values
of certificates are stored in the resource record rather than hash values of public keys.

164

8.4. Notary concepts

Every time a domain changes its server certificate, it needs to update its DNS entries
immediately. If only the public key is changed, this need may occur more rarely.
However, forgetting to set the TLSA record or failure to propagate it within the DNS
may cause domains to be unreachable for a brief period of time.

Since DNSSEC is not yet widely deployed, one can only speculate if this may become
an issue or not. Recall, however, that we have data points from our analysis of the
SSHFP resource record, whose functionality is the same as TLSA’s: we found about
6% of records were inaccurate. This would be a rather high number in the case of
the WWW, especially with clients aborting connections on encountering a mismatch
between certificate and TLSA record.

The conclusion we draw here is that deployment of DANE-TLSA shows a strong
dependency on DNSSEC and must be done with great care. Organisations wishing to
use DANE-TLSA should consider bundling the responsibility for DNS and TLS in one
administrative team, with the necessary deployment steps defined precisely to avoid
mistakes.

8.4. Notary concepts
In this section, we discuss the so-called notary concept by example of Perspectives [77],
the first such published approach. The fundamental assumption underlying any notary
concept is that an attacker is extremely unlikely to control all or almost all routing paths
on the Internet. Notary concepts propose well-known servers, distributed globally,
whose public keys have been distributed out-of-band by some mechanism. Clients can
query notaries for certain assessments. In the case of TLS and Perspectives, such
an assessment could be the public key a notary has stored for a given domain. The
assessment has the function of a ‘second opinion’ that the client can request every time
it connects to the domain in question.

8.4.1. Choice of Perspectives as subject to study

To the best of our knowledge, Perspectives was the first published notary concept and
the first to deliver source code [247]. It employs the concept described above, with
some optimisations to achieve better performance. It also features a rather elaborate
and interesting cross-validation mechanism.

Perspectives is currently not the only notary concept. In 2011, Marlinspike presented
Convergence [268]. The fundamental concept of Convergence is not different from
Perspectives (on which it explicitly builds). Convergence adds some improvements and
optimisations. First, Convergence follows a stronger on-demand approach (a notary
only connects to a domain when explicitly queried by a client). Second, Convergence
notaries are free to provide their service for other properties of a domain, not just
certificates (e.g., DNS records). Third, Convergence puts more emphasis on privacy and
uses so-called notary bouncing, i.e., clients use one notary as a forwarder to others. This
is a simplified form of onion routing [29]—in this particular case, it can be circumvented
if forwarder and responding notary collude.

For the purpose of this section, we choose Perspectives as it is the original concept
and detailed design documents exist. There is no design document for Convergence.

8.4.2. Operation and representation in our notation

The participants in Perspectives are domains, clients and notaries. This makes Per-
spectives one of the concepts that can be employed with and without CAs. As described
above, notaries are entities that can be queried for information about remote domains.

165

8. Proposals to replace or strengthen X.509

Listing 13 Scheme of Perspectives, Part 1.
1: Scheme Perspectives:
2: Participants:
3: Domains ∶ {D0,D1, . . .} ▷ Set of all domains
4: Clients ∶ {Cl0,Cl1, . . .} ▷ Browsers, etc.
5: Notaries ∶ {N0,N1, . . . ,Nn} ▷ Limited number of notaries
6:
7: Record Period: ▷ Represents a time interval
8: min ∶ Timestamp ▷ Start of period
9: max ∶ Timestamp ▷ End of period

10:
11: Record Observation: ▷ Holds all observation periods for a key
12: k ∶ Pub Key ▷ Public key this observation refers to
13: pds ∶ {Period} ▷ Observation periods
14: sig ∶ sig(Pub Key∣ {Period}) ▷ Signature
15:
16: Record Obs Sig: ▷ Signed observations—shadows use this
17: obs ∶ {Observation}
18: sig ∶ sig({Observation})
19:
20: Init:
21: for N ∈ Notaries:
22: (N.k, N.k-1) ← new Key Pair()
23: history ← new Map⟨String, {Observation}⟩()
24: for D ∈ Domains:
25: D.cert ← new Cert()
26: for Cl ∈ Clients:
27: . . .▷ Initialisation as in normal TLS

Clients choose from the available notaries which ones they want to trust with ‘second
opinions’. Listings 13–18 describe Perspectives in our notation.

The role of notaries in Perspectives is to store a history of observations for a number
of domains. The term observation refers to occurrences of the same public key in server
certificates, for a given domain. Observations are stored as a set of periods (lines 7–9)
during which the notary observed only the public key in question for the given domain.
Every notary has its own key pair (lines 21–23). We model observations as a record
which holds periods and a signature (lines 11–14).

Notaries scan a list of domains from time to time and store their observations. This
behaviour is intended to reduce their reaction time for client queries—they do not have
to scan on-demand when a client queries them. The original paper does not explain
which domains a notary is expected to scan or whether a client can request a notary to
include a domain in future scans. We thus do not model it here either, but note that
it would be easy to add.

We describe this continuous scanning as a Protocol in our notation (see Listing 16).
The protocol is called at random, but before any run of TLS (lines 252–257 in List-
ing 18). Notaries do not validate their observations in any way—their role is that
of a neutral party that is simply logging what it encounters. Observations for new
domains (i.e., those previously not scanned) are stored directly when they are made
(lines 136–140).

166

8.4. Notary concepts

Listing 14 Scheme of Perspectives, Part 2.
28: Procedure sane obs(obs: {Obversation}):
29: pds ← ⋃

o ∈obs
o.pds

30: if (∀p ∈ pds ∶ p.min ≤ p.max):
31: return true
32: else:
33: return false
34:
35: Procedure overlap obs(obs: {Obversation}):
36: pds ← ⋃

o ∈obs
o.pds

37: if (∃p1,p2 ∈ pds,p1 ≠ p2 ∶ p1.min ≤ p2.max):
38: return true
39: else:
40: return false
41:
42: Procedure consistent obs(obsold: {Obversation}, obsnew: {Obversation}):
43: for oold ∈ obsold:
44: onew ← (o ∈ obsnew ∶ oold.k = o.k) ▷ Get observation for same key
45: if onew = ∅: ▷ Old observation for k missing in new observations
46: return false
47: else: ▷ Check consistency of periods:
48: pdsold ← oold.pds
49: pdsnew ← onew.pds
50: for p ∈ pdsold: ▷ Old periods contained in new ones?
51: if (∄ p̄ ∈ pdsnew ∶ (p.min = p̄.min) ∧ (p̄.max ≥ p.max)):
52: return false
53: return true
54:
55: Service Notarising represents Notaries:
56: Channels:
57: Cl Chs ∶ {Channel(cl, n) ∶ cl ∈ Clients,n ∈ Notaries} ▷ With clients
58: S Chs ∶ {Channel(n, s) ∶ n ∈ Notaries, s ∈ Notaries} ▷ With shadows
59:
60: Actions:
61: ▷ Return shadows of all notaries indicated by name:
62: Event Ch ∈ Cl Chs: Ch.recv(‘get shd’, names: {String}):
63: shd map ← new Map⟨String, {String}⟩()
64: ▷ Get notaries with these names:
65: for N ∈ {N̄ ∈ Notaries ∶ N̄.name ∈ names}:
66: shd map[N.name] ← N.shadows
67: Ch.send(shd map)
68: ▷ Return histories of all notaries indicated by name, for a domain:
69: Event Ch ∈ Cl Chs:
70: Ch.recv(‘get hst’, nameD: String, names: {String}):
71: hst map ← new Map⟨String, {Observation}⟩
72: ▷ Get notaries with these names:
73: for N ∈ {N̄ ∈ Notaries ∶ N̄.name ∈ names}:
74: hst map[N.name] ← N.history[nameD]
75: Cl Chs.send(hst map)

167

8. Proposals to replace or strengthen X.509

Listing 15 Scheme of Perspectives, Part 3.
76: Service Shadows represents Notaries:
77: Channels:
78: Cl Chs ∶ {Channel(cl, s) ∶ cl ∈ Clients, s ∈ Notaries}
79: N Chs ∶ {SecChannel(n, s) ∶ n ∈ Notaries, s ∈ Notaries}
80:
81: Init:
82: (k, k-1) ← new Key Pair() ▷ Shadows key; used to sign stored data
83: ntr keys ← ∅ ▷ Notaries’ public keys
84: for N ∈ Notaries:
85: ntr keys[N.name] ← N.k
86: ▷ Notary observations: Map⟨Notary, Map⟨Domain, Observations⟩⟩
87: ntr obs sig ← new Map⟨String, Map⟨String, Obs Sig⟩⟩()
88:
89: Actions:
90: Event Ch ∈ N Chs: Ch.recv(‘store’, nameN: String, nameD: String,
91: obsnew: {Observation}):
92: ▷ We only act if all signatures are correct:
93: kN ← ntr keys[nameN]
94: if (∀o ∈ obsnew ∶ valid sigkN(o.k|o.pds, o.sig)) :
95: obs map ← ntr obs sig[nameN]
96: ▷ No entry for notary—just store:
97: if obs map = ∅:
98: obs map ← new Map⟨String, Obs Sig⟩()
99: obs map[nameD] ← new Obs Sig(obsnew, sigk−1(obsnew))
100: ntr obs sig[nameN] ← obs map
101: ▷ No previous observations for domain?
102: else if obs map[nameD] = ∅: ▷ None? Just store.
103: obs map[nameD] ← new Obs Sig(obsnew, sigk−1(obsnew))
104: ntr obs sig[nameN] ← obs map
105: ▷ Else, do consistency checks with old observations:
106: else:
107: obsold ← obs map[nameD]
108: if sane(obsnew) and ¬overlap(obsnew)
109: and consistent(obsold,obsnew):
110: ▷ Replace old observations:
111: obs map[nameD] ← new Obs Sig(obsnew, sigk−1(obsnew))
112: else: ▷ Checks failed—store proof
113: obsproof ← obsnew ∪ obsold
114: obs map[nameD] ← new Obs Sig(obsproof, sigk−1(obsproof))
115: ntr obs sig[nameN] ← obs map
116:
117: Event Ch ∈ Cl Chs: Ch.recv(‘get’, nameD: String, names: {String}):
118: reply map ← new Map⟨String, Obs Sig⟩ ▷ Contains reply
119: for N ∈ names:
120: obssig map ← ntr obs sig[nameN] ▷ Fetch Map for notary
121: reply map[N] ← obssig map[nameD] ▷ Add observations
122: Ch.send(reply map)

168

8.4. Notary concepts

Listing 16 Scheme of Perspectives, Part 4.
123: Protocol Monitoring(N, {Ns,1, . . . ,Ns,j}):
124: Actor N:
125: Channels:
126: Shd Ch ∶ SecChannel(Cl, Shadows)
127:
128: Init:
129: shadows ← {Ns,1.name, . . . ,Ns,j.name}
130:
131: Actions:
132: Event scan_domains:
133: for d ∈ Domains:
134: TLS.TLS_DHE(N,d) ▷ N will get server cert: certD
135: kseen ← certD.k
136: if history[d] = ∅: ▷ Domain never observed
137: pnow ← new Period(time(‘now’), time(‘now’))
138: sig ← sigk−1(kseen|{pnow})
139: o ← new Observation(kseen, {pnow}, sig)
140: obsnew ← {o}
141: else: ▷ Earlier observations exist
142: ok,seen ← o ∈ history[d] ∶ o.key = kseen
143: obselse ← {o ∈ history[d] ∶ o.key ≠ kseen}
144: if ok,seen = ∅: ▷ Key has never been observed
145: pnow ← new Period(time(‘now’), time(‘now’))
146: sig ← sigk−1(kseen|{pnow})
147: o ← new Observation(k, {(pnow)}, sig)
148: obsnew ← obselse ∪ {o}
149: else: ▷ Key has been observed before
150: ▷ Is key the current one? Then extend period.
151: if (∃p ∈ ok,seen.pds ∶
152: (p.max > p̄.max ∀p̄ ∈ ⋃

ō ∈obsk,else
ō.pds)):

153: ▷ Get last period:
154: plast ← (p ∈ ok,seen.pds ∶
155: (∀p̄ ∈ ok,seen.pds,p ≠ p̄ ∶ p.max > p̄.max))
156: pnew ← new Period(plast.min, time(‘now’))
157: pdsnew ← (ok,seen.pds ∖ {plast}) ∪ {pnew}
158: ok,seen.pds ← pdsnew
159: ok,seen.sig ← sigk−1(kseen|pdsnew)
160: obsnew ← obselse ∪ {obsk,seen}
161: ▷ Key was seen, but is not latest one. Append period:
162: else:
163: pnew ← new Period(time(‘now’), time(‘now’))
164: pdsnew ← ok,seen.pds ∪ {pnew}
165: ok,seen.pds ← pdsnew
166: sig ← sigk−1(kseen|pdsnew)
167: obsnew ← obselse ∪ {ok,seen}
168: history[d] ← obsnew
169: Shd Ch.send(‘store’, name, d.name, obsnew) ▷ To shadows

169

8. Proposals to replace or strengthen X.509

Listing 17 Scheme of Perspectives, Part 5.
170: Protocol TLS DHE Perspectives((Cl, D), {NCl,1, . . . ,NCl,i}):
171: Actor Cl:
172: Channels:
173: Ch: Channel(Cl, D)
174: Ntr Ch ∶ Channel(Cl, Notarising)
175: Shd Ch ∶ Channel(Cl, Shadows)
176:
177: Init:
178: notaries ← {NCl,1.name, . . . ,NCl,i.name}
179: ntr keys ← ∅
180: for N ∈ {NCl,1.name, . . . ,NCl,i.name}:
181: ntr keys[N.name] ← N.k
182: k shd ← Shadows.k
183: key cache ← new Map⟨String, {Pub Key}⟩
184:
185: Actions:
186: Event Start:
187: ▷ Obtain list of shadows from notaries:
188: Ntr Ch.send(‘get shd’, notaries)
189: state ← ‘Wait Shd Lst’
190: Event state = ‘Wait Shd Lst’ and Ntr Ch.recv(shd map: Map) :
191: shadows ← shd map
192: . . .▷ Continue with normal TLS
193:
194: Event state = ‘Wait Accept’ and Ch.recv(fin mac: String):
195: if certD.k ∈ key cache[D.name]: ▷ Key in cache?
196: ▷ TLS handshake can be finished as usual
197: . . .
198: else:▷ Else, start queries to notaries
199: Ntr Ch.send(‘gst hst’, notaries)
200: state ← ‘Wait Hst’
201: Event state = ‘Wait Hst’ and
202: Ntr Ch.recv(hst: Map⟨String, {Observation}⟩):
203: responders ← ∅
204: for N ∈ hst.keys():
205: obsN ← hst[N] ▷ N’s observations
206: kN ← ntr keys[N]
207: ▷ We only consider observations with valid signatures:
208: obsN ← {o ∈ obsN ∶ valid sigkN(o.obs, o.sig)}
209: olatest ← (o ∈ obsN ∶ (∃ p ∈ o ∶ p.max > p̄.max,
210: ∀p̄ ∈ ⋃

ō ∈ (obsN∖{o})
ō.pds))

211: if olatest.k = certD.k:
212: responders ← responders ∪ {N}

170

8.4. Notary concepts

Listing 18 Scheme of Perspectives, Part 6.
213: if ∣responders∣ ≥ 2

3 ∣notaries∣: ▷ Quorum reached?
214: responder shd ← ⋃

r ∈ respondrs
r.shadows

215: Shd Ch.send(‘get’, D.name, responder shd)
216: state ← ‘Wait Shd’
217: else:
218: state ← ‘Error’
219: Event state = ‘Wait Shd’ and
220: Shd Ch.recv(reply map: Map⟨String, Obs Sig⟩):
221: for N ∈ reply map.keys():
222: o sig ← reply map[N]
223: if ¬valid sigkshd(o sig.obs, o sig.sig): ▷ Verify shadow signature
224: state ← ‘Error’
225: obsN ← hst[N] ▷ Observations received directly from notary
226: ▷ Filter for key in question:
227: obsshd,k ← {o ∈ o sig.obs ∶ o.k = certD.k}
228: obsN,k ← (o ∈ obsN ∶ o.k = certD.k)
229: ▷ More than one observation from shadow means conflict:
230: if ∣obsshd,k∣ > 1:
231: state ← ‘Error’
232: ▷ Test if all observations are sane
233: if ¬sane obs({obsshd,k} ∪ {obsN,k}):
234: state ← ‘Error’
235: ▷ Test if there are overlapping periods
236: if ¬overlap obs(o sig.obs) and ¬overlap obs(obsN):
237: state ← ‘Error’
238: ▷ Test if consistent between shadow and notary
239: if ¬consistent obs(obsshd,k, obsN,k):
240: state ← ‘Error’
241: ▷ Done: 2

3 of notaries have reported the key, and shadows
242: ▷ have corroborated their observations. Store key in cache.
243: cache[D.name] ← (cache[D.name] ∪ {certD.k})
244: ▷ Finish normally
245: . . .
246:
247: Actor D:
248: Channels:
249: Ch: Channel(D, Cl)
250: . . .▷ No changes at all to servers!
251:
252: Sessions:
253: Dependency TLS Perspectives(∗, ∗) not before Monitoring(∗,{∗})
254: At random Monitoring with
255: N ∈ Notaries,{NS,1, . . . ,NS,j} ⊂ Notaries ∖ {N}
256: At random TLS Perspectives with
257: (Cl,D) ∈ Clients ×Domains,{NCl,1, . . . ,NCl,i} ⊂ Notaries

171

8. Proposals to replace or strengthen X.509

If earlier observations exist, the process depends on whether the domain’s public
key is a new one or has been seen before. In the former case, a new observation is
added (lines 144–148), with start and end time of the period being the current time.
In the latter case, the notary updates the observation periods, either by extending the
last period (for an ongoing observation) or by appending a new one. This is shown in
lines 150–167. Note that notaries sign their observations with their private key.

Notaries are queried by clients: a client asks for a notary’s observations for a domain
and receives a full copy of these observations. We model this as a Service Notarising
in our notation (lines 55–75 in Listing 14). We denote the requests that a client makes
by having the client send the service the list of notaries whose observations it wishes
to obtain. The service returns them as a Map with one entry per queried notary.
This gives us a simple way to express that each client may communicate with different
notaries, over different channels.

Perspectives introduces an additional concept to make the scheme robust against
misbehaving or faulty notaries. Every notary acts as a so-called shadow for a number
of other notaries. A notary is required to send new observations for a domain to its
shadows. This is shown in line 169. A shadows stores the observations and does a sanity
check on them. In our notation, we represent the shadowing as a service—this reflects
that a number of shadows exists per notary, although they all execute the same steps7.
Listing 15 shows the shadowing. A shadow verifies that a period has sane timestamps
(end not before beginning) and that the observations do not overlap (this would be a
faulty execution of the scanning protocol). We model these checks as procedures in
lines 28–33 and lines 35–40, respectively. If the shadow has older observations from
this notary, it verifies that the old observation periods are entirely contained within the
new (i.e., either are the same or periods have been extended due to new observations
of the same key). This is shown in lines 105–115. If the new observations are found
to be consistent and sane, they replace the old ones. If they contradict them, they are
stored as proof of misbehaviour. A shadow signs the data it stores with its own key.
Our shadows do not accept observations from notaries where they cannot verify the
notary’s signatures8.

The final piece in this description of Perspectives consists of the changes it makes to
the TLS protocol flow. We show this in Listings 17 and 18. A run of TLS is initiated
from within the Sessions block by passing the client participant and the notaries to use
as arguments to the Protocol TLS DHE Perspectives (line 257). The protocol begins
with a client requesting the list of shadows9 (lines 187–191). Normal TLS follows, up
to the point when the client receives the server’s last message. In our notation, we
use a simple caching concept for clients—keys that have previously been corroborated
by notaries and shadows are added to a cache (line 243). The client checks if the key
is in the cache (line 195). If it is, it will simply finish the TLS handshake, without
any further notary checks. Otherwise, it queries the notaries for their observations
(line 199). Perspectives allows to define the evaluation of both notary observations and
shadow corroborations in a client policy. In general, however, a quorum of notaries is
required to reply to queries. We use a somewhat relaxed policy in our example: two
thirds of notaries must reply, and all of them must report the same public key that

7The publication on Perspectives does not reveal how exactly the data between notaries and shadows
is protected in transit. The notaries’ signatures protect the observations, but at least the name of
the observed domain should be additionally protected. For simplicity, we chose to model this as a
secure channel in our notation.

8This is not mentioned in the original paper, but we introduce it to avoid arbitrary notaries being
able to flood shadows with nonsensical entries.

9The original paper does not describe how clients learn about shadows. We thus use this simple
method.

172

8.4. Notary concepts

the client observed as the latest known key (lines 204–214). If the quorum is reached,
the client queries all shadows and requests their logged observations for the notaries
in question (line 215). The policy requires that all of their observations are consistent
with what the notaries sent the client. If not, the policy causes the client to reject
the key and stop the protocol. This is shown in lines 221–240. If all observations are
consistent, the client will accept the key.

As can be seen from the above descriptions, Perspectives does not make any changes
to the behaviour of servers. Servers do not even need to be aware that clients use
Perspectives. Note furthermore that clients do not check the validity of the server
certificate—the only important factor is the public key the server uses.

8.4.3. Simplifications and choices in representation

Compared to the original paper, we made several minor simplifications. At some points,
it was also necessary to interpret the intention in the original publication.

First, notaries in Perspectives observe ‘services’, i.e., combinations of host, port and
protocol. This allows Perspectives to be used with any TLS-based protocol, not just
HTTPS10. In our notation, the notaries observe domains and we assume HTTPS is the
protocol used.

Second, Perspectives groups notaries in so-called notary groups, in which one notary
is authoritative and can add and remove other notaries from its group. We omit this
in our notation, which is consistent with the discussion in the original paper.

Third, the original publication allows clients to select a subset of shadows and define
a second quorum on them. We use all shadows by default, which keeps the description
more succinct.

Fourth, the original publication hints at more elaborate caching schemes and client
policies. In our notation, we opted for the simplest possible caching: a key is added to
the cache whenever notaries and shadows confirm it. We omit emptying and refilling
the cache for now.

Finally, the original publication does not clearly specify the protocol flow a client
executes when querying the shadows. In particular, it does not specify whether clients
query shadows in parallel to notaries or afterwards. In our notation, we chose the
second option as it results in a clearer protocol flow.

It should be noted that Perspectives is not yet fully implemented. At the time
of writing, Perspectives notaries are run primarily by the designers of Perspectives
themselves, based at Carnegie Mellon University, USA. Only five other notaries are
listed on the project’s homepage [247]. The designers stress that they could not carry
out full background checks on notaries to assert their good intentions. Shadows are not
yet implemented [255].

8.4.4. Assessment of Perspectives

We assess Perspectives with regard to its contributions to reinforcing the X.509 PKI,
its robustness against different attackers and potential deployment issues.

Reinforcements to X.509

Perspectives makes the following contributions to reinforcing the X.509 PKI.

10In fact, the authors of Perspectives emphasise that it can also be used for SSH, although this does
not seem to be implemented.

173

8. Proposals to replace or strengthen X.509

Out-of-band mechanism The purpose of Perspectives, as presented in the original pub-
lication, is to improve security for clients and protect them against man-in-the-middle
attacks. The scheme supports the established certification processes, but does not re-
quire them: certificates do not have to be issued by CAs in Perspectives. As such,
Perspectives is both an out-of-band mechanism to reinforce the current PKI as well as
a replacement for it.

Incident detection Although Perspectives is well suited for incident detection, it does
not actually support it. Mismatches between notary observations (and shadow corrob-
orations) and server certificates could be indications of an ongoing man-in-the-middle
attack, but Perspectives does not define any mechanisms to report these. The original
publication mentions that shadows may store conflicting notary observations as a way
to prove notary misbehaviour to some entity. This would be very useful—unfortunately,
Perspectives does not describe a method to achieve this. Although Perspectives’ pur-
pose is not incident detection, this seems a viable path for improvement.

Monitoring and transparency Perspectives does not concern itself with observations of
the X.509 PKI, neither with certification nor with deployment. While notaries store
observations of the PKI, their data set is necessarily incomplete as notaries scan only
a certain number of domains. Perspectives treats the corroborations for the authen-
ticity of public keys as the single criterion for correctness. Misconfigurations, such as
mismatches between a certificate subject and a hostname, are not considered.

Perspectives shows a good degree of transparency: notaries observe other notaries
as their shadows. The transparency is limited, however, by the number of notaries
that exist—at the time of writing, the number is rather small. Worse, the concept
of shadows is not yet implemented. This level of transparency is thus inferior to the
transparency offered by concepts that are accessible to, e.g., active scans. It is possible
to extend Perspectives such that greater transparency is achieved. This would require
an additional API that allows to download all of a notary’s observations at once.

Robustness against attackers

Perspective’s security rests on three pillars: its ability to communicate with notaries
at different vantage points, the quorum needed for a client to accept a key, and clients
acting on cached historical key information.

The authors of Perspectives discuss several attacks in their publication [77] and
distinguish between localised attacks (similar to our Model A), attacks against paths
to the server, and attacks against notaries. We structure our discussion in a similar
way, but describe possible attacks in the context of our threat models.

In our analysis, we make the assumption that a client expects that at least a quorum
of notaries replies to its query (with observations), plus all shadows for these notaries.
Everything else is considered suspicious and the client aborts the connection attempt.

Model A We consider the weaker attacker of Model A. This attacker cannot comprom-
ise any entities, and is limited to attacking network paths in either the client or the
server’s vicinity. We consider proximity to the client first. In this case, the attacker
cannot modify messages to and from notaries without detection and is limited to delet-
ing them. Deletion affects the quorum that a client requires. It is thus a way to force a
client to reject a key that might be valid. However, the attacker cannot force the client
to accept a forged server key.

If the attacker is in the vicinity of the server, e.g., in control of a border router
of a local network, he can stage a man-in-the-middle attack that affects all notaries

174

8.4. Notary concepts

connecting to the server. The security that Perspectives offers in this case depends
entirely on the client’s policy concerning historical data about keys. In a conservative
setting, a client may assume a cached key to have been compromised in the meantime,
and uncached keys to be invalid.

Note that stricter client policies may require observations by notaries to report the
key in question for a certain period of time. This would increase confidence in the key:
an attacker would have to maintain his attack for a prolonged period of time, which
increases his risk of exposure.

Model B The attacker in Model B can control more network paths and also comprom-
ise entities. The entities of interest in this case are the notaries (recall that Perspectives
aims at the authenticity of server keys, not at the correctness of certificate issuance). If
clients inside the attacker’s region use notaries outside the region, the attacker’s control
over network paths leads to results that are similar as in the discussion of Model A.
There is one major difference: if the victim server is inside the attacker’s region, the at-
tacker can stage a man-in-the-middle attack against all notaries. Perspective’s defence
would be reduced to the historical observations of keys.

The attacker’s chances are much better if we allow him to compromise notaries.
In this case, the victim server’s location does not matter, nor do network paths to
notaries or shadow servers matter. The attacker can change the observations stored
by the notaries themselves. Note that this also removes the need to continue the
attack for a prolonged period. If the victim server is outside the attacker’s region,
Perspective’s cross-validation protocol still affords some protection. If the attacker
cannot compromise the shadow servers of the notary either, their reply to the client
would yield conflicting observations. As clients can theoretically choose arbitrarily from
the set of notaries, the attacker cannot predict which notaries and shadows to attack.
If Perspectives succeeded in offering hundreds of notaries, the number of entities that
the attacker would have to compromise in order to have a very good chance quickly
reaches a large number—this should be detected sooner or later.

Model C As DNS and DNSSEC are not relevant for Perspectives, the greater strength
of our attacker in Model C compared to Model B consists only of his more arbitrary
control over paths on the Internet. Against this background, the most favourable case
for this attacker is control over all paths from notaries to the server. The impact would
be the same as in Model B, except that the attacker can also affect servers outside his
region. Concerning the compromise of entities, the attacker in Model C has the same
capacity as the one in Model B.

Deployment

Perspectives has two requirements for deployment: an infrastructure of notaries (doub-
ling as shadows) and changes to the TLS implementations on client side. Server software
does not need to be changed. We view this as a strong advantage as there is a very
large number of Web servers, and we know from Chapter 4 and Chapter 6 that the
pace of change on server-side seems to be slow. Concerning client-side implementations,
Perspectives can be rolled out gradually.

Very likely, however, there is an entirely different obstacle that hinders fast deploy-
ment. In theory, clients should be able to choose from a larger set of notaries (or notary
groups). At the time of writing, just a handful of notaries exist, and most are operated
by private persons. Ideally, notaries should have a very high availability to avoid errors
or warnings on the side of the clients.

175

8. Proposals to replace or strengthen X.509

Even if such notaries were available, however, it is an open question how users would
select them in their client applications. Google engineer Adam Langley discussed this
problem in [207] in the context of Convergence, which at that time was the better known
notary system. To avoid frequent warnings, Langley argues that vendors like Google
themselves would have to run notaries (to achieve high availability) and enable their
notaries by default. Langley expresses concern that the vast majority of users would
never change the default settings, making Google the single party everyone trusts. This
would defeat the concept of distributing trust to many notaries.

Perspectives, like all notary concepts, has a further issue that may hinder deploy-
ment: notaries learn from queries which domains clients visit. They can thus track
their activities on the Internet. Even if a notary does not engage in such an activity,
such data can be a promising target for attacks on notaries. Caching key information
on client-side allows to limit the impact on privacy to some degree. For users who still
find the privacy issue unacceptable, the designers suggest a DNS-based proxy scheme.
At the time of writing, this scheme is not implemented [272]. As Convergence demon-
strates, the problem can be somewhat mediated by a simple form of onion routing.

In summary, the concept of notaries shows remarkable strength against attacks.
However, its usefulness is severely limited due to obstacles to deployment.

8.5. Public log-based proposals: Certificate Transparency

Certificate Transparency (CT) is the last scheme we discuss. It is based on so-called
public logs. Public logs are services that store certain information in a way that makes
it accessible and verifiable for other parties. A fundamental property of public logs is
that they are append-only data structures.

8.5.1. Choice of Certificate Transparency as subject to study

We are aware of only two PKI schemes that make use of public logs. CT is a proposal
initiated by Google. The primary objective of the scheme is to make the certification
process auditable by a larger public: every certificate that a CA issues is logged in
a data structure that is extremely hard to tamper with (without such activity being
detectable). CT does nothing to improve the security of the certification process itself—
if a CA is compromised, the attacker can issue certificates. However, with CT, the CA
cannot deny the compromise and it is known which certificates the attacker has issued
as these must have been logged. At the time of writing, CT is in the last stages of the
design phase, with a concept that is stable enough to discuss here. CT is described
in several documents on the project homepage, and source code exists [154, 155]. An
experimental RFC is available, RFC 6962 [109]. Still, some parts of CT are not fully
specified yet, and as minor design decisions can still be made we advise the reader that
some sections in the RFC are still subject to change.

Sovereign Keys (SK) is a project initiated by the Electronic Frontier Foundation
(EFF) [187, 186, 185]. It was first proposed in 2011 [157]. The approach it takes is
different from CT, despite the use of similar technology. The idea is that every domain
owner registers a binding of a public key to a service running on the domain (e.g.,
HTTPS) in a public log. This ‘sovereign key’ is later used to cross-sign any operational
keys that are deployed, i.e., TLS keys in our example. SK works like a directory
of certification information that stores keys and evidence of domain ownership. SK
bootstraps from other technologies to provide such evidence. The authors suggest,
e.g., DNSSEC or X.509. However, SK is by far not as mature as CT. Despite an initial

176

8.5. Public log-based proposals: Certificate Transparency

release of code, the project does not seem to have made significant progress since the
early documents, although the EFF still plans to continue it11.

Although SK is a very interesting concept, too, we chose CT as the subject to
investigate here. It is the more mature scheme, with protocol flows and data structures
developed to a degree that make it accessible to analysis. Furthermore, Google recently
took first steps towards deployment. In a post to the CA/Browser forum’s mailing list,
Google announced that it would make CT obligatory for EV certificates in its Chrome
browser [258].

8.5.2. Operation and representation in our notation
The objective of CT is to make it impossible for a CA to issue a certificate for a domain
illegitimately without being detected. In particular, the owner of the domain should
be able to notice it and take action against it (e.g., by legal means, notification of
browser vendors and CAs, etc.). CT stores the information which CA has issued which
certificate in publicly accessible and append-only logs. Logs are not synchronised—they
do not exchange entries.

Logs issue a proof of inclusion when they accept a new entry. Domains use this to
prove to clients that their certificate has been logged. As logs allow to retrieve logged
certificates, domain owners and CAs can set up their own systems to observe which
certificates a log contains and which ones are added to it. Domain owners and CAs
can determine whether other certificates for a given domain have been issued and thus
detect rogue certificates. An infrastructure of so-called monitors and auditors ensures
the logs themselves cannot alter entries maliciously without that being detected. The
public log mechanism is thus a defence against compromises as in the DigiNotar case
(see Section 3.3). With CT, the legitimate domain owners, and possibly monitoring
and auditing parties, would have been able to notice the attack at an early stage and
countermeasures could have been taken earlier. Furthermore, DigiNotar would not have
been able to hide the compromise for long.

CT is relatively complex and the RFC specifies alternative paths through the scheme,
too. In the following, we restrict ourselves to the core mechanisms. We describe these
in our notation in listings 22–27, where we made sensible choices where alternatives
were possible. We will briefly describe what the alternative would have been for each
decision we made.

CT introduces three new types of participants to X.509: public logs, monitors and
auditors (lines 3–8). Public logs form the backbone of CT: they keep track of issued
certificates (including certificate chains) and store additional information: issuing CA,
time of issuance, and domain for which the certificate was issued. Logs maintain a list
of acceptable root certificates (line 27); certificates must chain to a CA in the list. This
list of root certificates is a defence against malicious parties trying to flood the logs
with nonsensical entries. It is not meant to be a trust anchor: logs are not TTPs. Logs
have a public/private key pair (line 28), which they use in their interactions with other
parties.

Data structures

Logs use an efficient data structure, namely a Merkle hash tree. This data structure
was originally defined in [219]. A binary Merkle hash tree is a binary tree where input
values are represented as leaves. These are hashed to yield nodes. Moving up in the
tree towards the root, two hashes are concatenated and hashed to yield a parent node.
New inputs are added (from the right) by hashing them and recomputing the tree.
11This was confirmed to the author in private email.

177

8. Proposals to replace or strengthen X.509

a b c d e f

g h i j

k l

m

d6

d0 d1 d2 d3 d4 d5

Figure 8.1. – Merkle hash tree as used in CT. Entries di are new certificates (including the
chains). Figure follows RFC 6962.

Listing 19 Algorithm to compute a Merkle Tree Hash (MTH) as defined in RFC 6962.
1: Algorithm Compute MTH
2: Requires: Ordered list of byte strings D[n] = {d0,d1, . . . ,dn-1}
3: Output: Merkle Tree Hash of list
4: Procedure mth(D[n]):
5: if D = ∅:
6: return hash(ε) ▷ Hash of empty string
7: if |D| = 1:
8: return hash(‘0x00’∣d0) ▷ prefix with null byte
9: else:

10: k ← 2i ∶ (∄j ∶ 2i < 2j < n) ▷ Largest power of 2 smaller than n
11: D[0:k] ← {d0,d1, . . . ,dk-1}
12: D[k:n] ← {dk,dk+1, . . . ,dn-1}
13: return hash(‘0x01’|mth(D[0:k])|mth(D[k:n]) ▷ prefix with 1 as byte

Thus, the final root hash is essentially a hash over the entire tree and changes with
every new entry. Figure 8.1 shows a binary Merkle hash tree. Listing 19 gives the
algorithm to compute the tree. Its final output is the root hash. In our case, the inputs
di are certificates or certificate chains—as we have done before, we do not distinguish
between them in our notation.

In our notation, we define a Merkle hash tree as a well-known record Merkle Tree
that is associated with several well-known processes. A Merkle Tree holds leaves and
nodes of the tree in an appropriate data structure (we abstract over the concrete imple-
mentation). The root hash of the tree is called Merkle Tree Hash (MTH)12. It is stored
in a field mth. The value of this field is a String as that is the output of applying the
well-known process hash(). A field size in the Merkle Tree stores the current number of
entries. We allow two ways to instantiate a Merkle Tree with the operator new: either
as a fresh Merkle tree without any entries, or by passing a set of entries. In the latter
case, we assume the Merkle tree to be built from the entries13.

The first well-known process associated with aMerkle Tree is add(), which we denote
as a field. Every time a new certificate (chain) is added to the Merkle tree, this process
is executed. The result is an updated tree, where the fields mth and size have been
12Not to be confused with the Merkle hash tree, which is the entire tree.
13The Merkle tree must also be implemented in such a way that it allows arbitrary access to an entry

by its index.

178

8.5. Public log-based proposals: Certificate Transparency

Listing 20 Algorithm to compute an audit path, as defined in RFC 6962.
1: Algorithm Compute audit path
2: Requires: Ordered list of byte strings: D[n] = {d0,d1, . . . ,dn-1},
3: input to compute audit path for: dm, 0 <m < n
4: Output: Concatenated minimal list of nodes (hash values) to compute MTH
5: Procedure audit path(m, D[n]): ▷ dm is m + 1th input
6: if m = 0 and D[n] = {d}: ▷ One-element D[n]
7: return ε ▷ Return empty string
8: else:
9: k ← 2i ∶ (∄j ∶ 2i < 2j < n) ▷ Largest power of 2 smaller than n

10: D[0:k] ← {d0,d1, . . . ,dk-1}
11: D[k:n] ← {dk,dk+1, . . . ,dn-1}
12: if m < k:
13: return audit path(m, D[0:k]) | mth(D[k:n])
14: if m ≥ k:
15: return audit path(m − k, D[k:n]) | mth(D[0:k])

updated, too. The second well-known process is retrieve(). Called without a parameter,
it returns all entries. Called with two parameters from and to, it returns all entries
from the from-th to the to-th entry.

CT uses two more data structures: Signed Certificate Timestamps (SCTs) and
Signed Tree Hashes (STHs). SCTs are used to prove to a client that a value has been
accepted for inclusion by a log. They are shown in lines 16–20 in Listing 22 and contain
a timestamp and the certificate (chain) in question, signed with the log’s private key.
Note that the log includes the hash value of its public key in the SCT: this value serves
as a log’s identifier in the scheme. It is not signed as these public keys are supposed to
be distributed out-of-band: they are preconfigured in client software (line 37), much in
the same way CA root certificates are distributed in root stores today. STHs, shown in
lines 10–14, are used as part of consistency checks. They contain the log’s current size
(number of entries), a timestamp, and the current MTH, signed with the log’s private
key.

The Merkle hash tree and an initial STH are initialised as part of the global Init in
our notation (lines 26–31). STHs are tracked and used by both monitors and auditors;
they thus also initialise fields to hold them (line 33 and line 39).

Consistency and consistency checks

Merkle trees have one important advantage: a small subset of nodes and leaves is enough
to verify the correctness of the MTH. This, in turn, allows to verify the append-only
property, and also that a certain input was included in the tree at some point. We refer
to the latter as consistency property. Violations of either append-only or consistency
property indicate tampering with the log or incorrect behaviour. Monitors and auditors
are responsible for carrying out checks that no violation has occurred. In CT, logs that
are found to exhibit a violation are considered untrustworthy.

CT defines the terms audit path and consistency proof. An audit path allows to
determine whether a certificate has been incorporated into the log. An audit path for a
leaf in the Merkle tree is a minimal set of other nodes that are needed to compute the
current MTH. It is exactly the list of missing nodes (hash values) from an entry to the
root (i.e., the MTH). The RFC describes a recursive algorithm to determine an audit
path [109]; we show the algorithm in Listing 20. Note that our output is a concatenated

179

8. Proposals to replace or strengthen X.509

Listing 21 Algorithm to compute a consistency proof, as defined in RFC 6962.
1: Algorithm Compute consistency proof
2: Requires: Ordered list of byte strings: D[n] = {d0,d1, . . . ,dn-1},
3: input to compute proof for: mth(D[0:m]), 0 <m < n
4: Output: Minimal and unique list of nodes to verify mth(D[0:m])
5: Procedure cons proof(m, D[n]): ▷ dm is m + 1th input
6: return sub proof(m, D[n], true) ▷ Call sub proof with flag set to true
7:
8: Procedure sub proof((m, D[n], flag):
9: if m = n:

10: if flag = true:
11: return ε
12: else:
13: return mth(D[m])
14: ▷ If m < n
15: else:
16: k ← 2i ∶ (∄j ∶ 2i < 2j < n) ▷ Largest power of 2 smaller than n
17: D[0:k] ← {d0,d1, . . . ,dk-1}
18: D[k:n] ← {dk,dk+1, . . . ,dn-1}
19: if m ≤ k:
20: return sub proof(m, D[0:k], flag) | mth(D[k:n])
21: else:
22: return sub proof(m − k, D[k:n], false) | mth(D[0:k])

list of hash values—as hash functions have a fixed output length, it is no problem to
derive the separate hash values from the output. Based on this algorithm, we assume
a well-known process to exist in our description of CT: audit path() represents this
algorithm. The first parameter is a certificate, which is supposed to be an entry in the
log. The second parameter is the size of the log as given in an STH. Furthermore, we
assume a well-known process verify audit path() that computes a root hash from the
entry in question (given as an index, see Figure 8.1) and the audit path (given as a set
of Strings as nodes in the audit path are hash values, which we represent as Strings).
It checks whether the result matches the given MTH.

The append-only property can be proved with so-called consistency proofs. The
necessary algorithm is also defined in the RFC; we reproduce it in Listing 21. Given
the root hash of the current and the root hash of the Merkle tree at a previous time,
the proof consists of the set of nodes in the Merkle tree that are required to verify that
both trees are equal up to the point when the previous tree was created. We omit the
exact description here and refer the reader to RFC 6962 [109]. For our notation, we
assume the existence of two well-known processes: cons proof() computes the proof,
and verify cons proof() verifies it.

Certification and sending the SCT to clients

Logs cooperate with CAs in the certification process. The RFC describes several op-
tions. In our listing, we show the straight-forward one. A domain initiates the certi-
fication process by sending a request to a CA (line 62). The CA carries out its normal
duties in validating the request and then generates the certificate. It sends the cer-
tificate to the log for inclusion, together with its root certificate. This is shown in
lines 47–52. The log verifies the CA is in its list of acceptable CAs and incorporates

180

8.5. Public log-based proposals: Certificate Transparency

the certificate. The log creates an SCT and also an STH. The SCT is sent back to
the CA. Lines 75–82 show this. Upon receiving it, the CA sends the certificate to the
requesting domain, together with the SCT (lines 53–55).

There are two alternatives here. The certification as we presented it above has a
drawback: a server that participates in CT needs to send the SCT to clients as part
of the TLS handshake (this is shown in lines 150–151). It must thus support TLS
extensions. The alternative is to have the CA embed the SCT in the server certificate.
In this case, a CA must issue a so-called precertificate and send this to the log instead
of the real server certificate. This certificate carries special X.509 extensions that mark
it as unusable, but otherwise holds the complete information. The log incorporates the
information from the precertificate. This alternative has the advantage that servers
do not need to change their configurations at all. The second alternative, which also
avoids having to reconfigure servers, is to deliver SCTs as a part of an OCSP reply. In
other words, every time a client carries out a revocation check (also see Section 2.7),
an SCT is included in the reply.

Monitoring and auditing

Monitors and auditors are responsible for detecting log misbehaviour. Both activities
are underspecified in the RFC at the time of writing14.

Monitors A monitor verifies the consistency of one or more logs. Lines 83–139 show
the monitoring process.

A monitor may keep copies of the Merkle trees of logs it observes. Monitors require
comparatively many resources—they are meant to act on behalf of less powerful entities,
such as domain owners or clients (e.g., browsers). Monitors could be operated by, e.g.,
ISPs or CAs. For each log that they observe, monitors carry out the same steps at
periodic intervals.

The process begins with fetching the current STH from a log (line 92 ff.). Initially,
the monitor will have stored an empty last-known STH, so the new STH is not mean-
ingful to it yet. Thus, once it has verified the signature in the STH, it fetches all entries
for this STH (line 99). The monitor reconstructs the Merkle tree from the entries and
compares the MTH with the MTH stored in the STH (lines 106–111). If they do not
match, that would be an indication of misbehaviour.

If the monitor is already in possession of earlier STHs, the process is slightly different.
It first queries all entries since the last STH (line 104). This is primarily an availability
check: logs must make entries available on request. However, the monitor may carry
out any checks it wishes—it could, for example, verify now that no new certificates for
a certain domain have been added. After this check, the monitor proceeds to request a
consistency proof from the log (line 117). The log responds with such a proof (shown in
lines 137–139), which allows the monitor to verify that the logs’ entries are identical up
to the point of the previous STH (line 123). These checks can be repeated arbitrarily
from this point on. Note that the log does not need to recompute the Merkle tree
for this verification of consistency—although it is free to keep an up-to-date copy. A
monitor is expected to report any kind of misbehaviour on the part of the log. At the
time of writing, CT does not define concrete actions that monitors must take, however.

Auditors Auditors in CT are entities that, in general, have less computational resources
than monitors. They hold just enough information about the full Merkle tree to verify
that some property they are interested in is consistent (and remains consistent) with
14The RFC version that we use in our analysis dates from June 2013.

181

8. Proposals to replace or strengthen X.509

the log. The process of auditing is currently only described in a short paragraph in
the RFC, with two basic forms mentioned. One are the consistency proofs from above,
with auditors just verifying that there is a correct consistency proof between two STHs,
but not storing or validating any other information. The second form uses audit paths:
in this case, an auditor is, e.g., a client who has carried out an TLS handshake earlier
and is now in possession of an SCT. It can request STHs and audit paths from the log
to verify that the certificate remains stored in the log. We present this second form
in our listing (lines 174–220). We assume an earlier run of TLS, where the SCT has
been acquired. If no previous STH is known, the auditor queries the log for one and
just validates the signature (lines 187–199). If a previous STH exists and the auditor
finds that it has received a newer one, it acts differently. We show this in lines 200–207.
The auditor additionally queries an audit path from the log. It verifies that the path is
correct—this proves that the certificate (for which the SCT has originally been issued)
is still included in the log. The RFC also proposes that auditors obtain consistency
proofs to verify the append-only property from STH to STH. We do not show this in
our listing as the protocol is the same as for monitoring, except that auditors would
usually not store or further validate the entries but delete them once they have verified
a new STH.

Cross-validation The RFC recommends that clients, auditors and monitors should ex-
change information they have received from logs. The suggested method is to use a
gossiping protocol; however, the current version of the RFC does not specify this any
further.

Simplifications

In our listings, we made two simplifications. First, CT always stores the intermediate
certificates in a chain. The rationale is that a CA might issue a certificate to a domain
using an intermediate certificate and later choose to replace the intermediate certificate
with another one, where the public/private keys are the same but the expiry date
is different. CT views this as a new certification. We do not model this to avoid
unnecessary complexity.

Second, logs do not update their Merkle trees every time a new certificate is added.
Instead, they indicate an allowable delay. If they fail to carry out inclusion within this
time span, this counts as log misbehaviour and the log is considered untrustworthy.
This mechanism does not contribute to security (but contributes to performance). We
did not model it either.

8.5.3. Assessment of Certificate Transparency

We give an assessment of CT’s contributions to X.509 and its robustness in our threat
models. We also analyse potential deployment issues.

Reinforcements to X.509

We analyse which contributions CT makes to reinforce the current X.509 PKI.

Out-of-band mechanism CT is not a preventive mechanism but a reactive one. The
scheme does not aim to protect clients directly. Clients get more reassurance than in
the normal TLS protocol, however. The information in the SCT tells them that the
server’s certificate has been logged. CA compromises and malicious behaviour become
detectable with CT, and parties like browser vendors are expected to react quickly to

182

8.5. Public log-based proposals: Certificate Transparency

news of a CA compromise. An SCT is a reassurance, albeit not a perfect one, that the
certificate issuance was correct and the certificate in question is the intended one for
the respective domain.

Incident detection Incident detection is the primary purpose of CT: it makes it possible
to track and verify changes in the certification of domains. Every time a certificate is
issued, this fact is stored in a log, in a way that is very hard to forge. This makes
it possible for domain owners to determine whether the current entry in a log is the
correct one, and CAs can verify whether other certificates for a certain domain exist.

Monitoring and transparency CT’s explicit goal is to monitor the issuance of X.509
certificates and make these processes verifiable. Logs store issued certificates together
with their intermediate certificate. However, as logs do not synchronise and exchange
entries, they can only store partial information about the X.509 infrastructure. Fur-
thermore, CT does not monitor the actual deployment, i.e., whether certificates are
used on the intended host or other configuration problems exist. The concept is not
easily extensible to achieve this, either. However, CT reaches into a region that is not
accessible to active probing: certification events where certificates are never deployed on
servers. This allows insights into CA activities that would otherwise remain unknown
(e.g., mistakenly issued certificates with immediate revocation).

CT makes it extremely easy to assess its correct functioning from the outside: the
notion of monitors and auditors allows to retrieve the entire data that is stored in a log
and observe its correct behaviour.

Robustness against attackers

In the following, we assess the robustness of CT in the context of our threat mod-
els. Note that the scheme defines secure channels between logs and other participants
(clients, monitors, auditors) as the logs’ public keys are well-known and distributed
out-of-band. Logs can always send authenticated information to other entities. At the
same time, they only need to receive authenticated information at one point in the
scheme, namely when they receive a certificate from a CA that is to be logged. The
certificate itself carries the CA’s signature, and thus this communication is secure.

Model A This attacker is located either close to the victim server or close to the victim
client, and he is unable to compromise entities in the scheme. We show now that this
attacker is defeated by CT.

We discuss the position close to the server first. The attacker cannot tamper with the
certification process as the channel between domain and CA is secure (recall that this
is a general assumption necessary to allow certification in the first place). He cannot
tamper with SCTs sent from the server to the client, either: the transmission of SCTs
is secure in all three variants. If it is sent in the TLS extension or embedded in the
certificate, it is protected either by the TLS handshake itself or by the CA’s signature
on the certificate. If the SCT is delivered via OCSP, this attacker is additionally also
in the wrong position to intercept it as the CA is queried for the SCT, not the domain.

Let us assume now the attacker is close to the client. The only part of CT that he
can attack are again the SCTs. Once again, this transmission is secure, for the same
reasons as above.

In summary, CT defeats the weak attacker as long as the domain in question is
certified by a CA that appears in the log’s list of acceptable CAs. Note, however, that
other cases are not covered by CT (e.g., certificates issued from non-recognised CAs).

183

8. Proposals to replace or strengthen X.509

Models B and C As mentioned, the channels between logs and other participants
(including clients) are secure, as is the channel between domain and CA. As we showed
above, the attacker cannot interfere with the transmission of an SCT, either. Recall
that he difference between Models B and C is the attacker’s control over DNS and
DNSSEC as well as his control over selected network paths. As a result, the options
for the attackers in Model B and C are the same, and we discuss them together here.

We first assume the attacker was able to compromise a CA and obtain a forged
certificate, but was not able to trigger the mechanism that causes the certification to
be logged. In this case, he would not be in possession of an SCT, and his attempt to
use the certificate would result in the client rejecting the connection. In order to be
successful against CT, an attacker must thus compromise a CA to the degree he can
control the entire process of certification, including the interaction with logs.

Let us now assume the attacker has compromised a CA and issued himself a rogue
certificate, and he was able to trigger the interaction with the log. He is now in
possession of an SCT. Initially, this attack works. However, it is detectable, although
not by a client. Recall the monitoring process (see Listing 24): here, a monitor retrieves
entries from the log and can monitor them for suspicious changes. The new certificate
will be suspicious if, for example, the monitor is operated by the rightful CA that
issued the real certificate. This example shows the importance of other parties running
monitors. We can also see here that CT shows properties that are useful for forensics: it
cannot prevent the attack, and some clients may be harmed, but it helps raise the alarms
earlier and identify the responsible parties. The more decisive question is how long the
delay between rogue issuance and detection is. This depends on how many monitors
exist and whether they cover all logs and carry out their verifications in reasonably
short intervals. If this is the case, CT shows great resistance to attacks against CAs.
Let us now assume that the attacker attempts to compromise at least a part of CT’s
infrastructure in order to evade detection and sustain his attack. He must thus attempt
to compromise a log and send false information to requests. Logs are distributed, run
by different parties, and (at least with the current RFC) there is no mirroring between
them. This means the attacker would not only have to compromise a CA but also
the log with which this CA usually cooperates. If a CA pushes a certification to a
larger number of logs, the attacker would need to compromise all of them. Even then,
however, his attack is still detectable by the monitors and auditors who verify that
the log is consistent and append-only. The attacker would have to compromise these
entities, too—all without being detected even once. If we assume that CT becomes a
popular concept and many monitors exist, this is a true obstacle, even for the globally
active attacker of Model C.

The conclusion to draw is that even the most sophisticated attackers will find it
difficult to make non-detectable changes to the logging infrastructure. CT’s power lies
in its capacity to allow detection of incidents shortly after they have occurred. However,
much will depend on how many logs exist, how many monitors observe them, and at
which intervals. Furthermore, CT offers only an indirect defence for clients. It it thus
a useful complement for other methods to strengthen X.509, like TACK or notaries.

Deployment

CT introduces new participants to the X.509 PKI. Consequently, it has a number
of requirements for deployment. The first question is which entities should operate
logs. Logs need to guarantee a high availability, which translates into relatively high
operating costs. The incentives for operators must be correspondingly high. The rel-
evant parties that (arguably) have the strongest interest to improve X.509 are browser
vendors and CAs. These parties generally also have the resources and the expertise

184

8.5. Public log-based proposals: Certificate Transparency

to construct systems with high availability. The question will be whether CT provides
enough benefits for them: in an email to the CA/Browser Forum’s public mailing list,
Symantec revealed that this was not the case for them [134]. At the time of writing,
Google already operates a log [154]. It remains to be seen if and when other entities
will follow. However, as Google has announced that it will enforce CT at least for EV
certificates [258], it is conceivable that other parties will begin to run logs, too, if only
out of peer pressure. It is an interesting question how many logs should exist, and
how many will. The project’s homepage remains rather vague on this topic—it gives a
number of ‘more than 10 but much less than 1000’ [154]. At the time of writing, it is
too early to make any reasonable predictions.

Running monitors and auditors is much less costly than running logs. These systems
do not need to have high availability as they do not communicate with clients. It seems
quite conceivable that CAs and ISPs run monitors and several auditor add-ons may be
developed for browsers. This would establish a very strong system of cross-validation.
As we have seen in our discussion of attackers in Models B and C, it is crucial that a
large number of such entities exist.

Assuming the hurdles towards deploying new infrastructure for logs, monitors and
auditors are overcome, there is still a crucial issue to resolve: the need to make changes
to existing systems and configurations. Clients are not the pressing problem here:
modern browsers often have an auto-update functionality. The problem lies with CAs
or alternatively with servers. In the same email to the CA/Browser Forum mailing list,
Symantec argued that all of CT’s delivery mechanisms for SCTs are flawed. It is true,
at least, that each option requires at least one group of entities to make significant
changes. If SCTs are to be delivered by a server in an TLS extension, this means
server software must be upgraded to support newer TLS versions and the extension
required by CT. The number of Web servers is immensely high, and we know from our
results from active scans that changes are rarely made on server-side. Delivering SCTs
embedded inside the server certificate seems to be the better option here as servers
do not need to make any changes at all. However, the onus is now on CAs: they
would need to change their issuance processes and create precertificates. According to
Symantec, this is an extensive effort. As the security of this process is essentially a
CA’s product, a certain reluctance on the side of CAs is to be expected. A similar
argument holds for delivering SCTs as part of the OCSP protocol: CAs would still
bear the onus. With no middle ground left that would serve as a viable solution, it will
remain to be seen whether the benefits that CT offers are incentive enough (for CAs)
to make the necessary changes to adopt CT. The CA GlobalSign, at least, announced
that it would adopt the scheme [201].

To summarise, success or failure is hard to predict for CT. There is a delicate trade-
off between very strong security benefits and associated costs, with opt-in required from
CAs. With Google advocating the concept, however, there seems to be a reasonable
chance that CT will be deployed.

185

8. Proposals to replace or strengthen X.509

Listing 22 Scheme of CT, Part 1.
1: Scheme Certificate Transparency:
2: Participants:
3: CAs ∶ {Ca0,Ca1, . . .} ▷ Set of all CAs
4: Domains ∶ {D0,D1, . . .} ▷ Set of all domains
5: Clients ∶ {Cl0,Cl1, . . .} ▷ Stand-alone, browsers, etc.
6: Logs ∶ {L0,L1, . . . ,Ll}, 30 ≤ l ≤ 100 ▷ Number of logs is an example here
7: Monitors ∶ {M0,M1, . . .} ▷ Work on complete log information
8: Auditors ∶ {A0,A1, . . .} ▷ Work on partial log information
9:

10: Record STH: ▷ Signed Tree Hash
11: size ∶ Integer ▷ Current size of Merkle tree
12: t ∶ Timestamp
13: mth ∶ String ▷ Merkle Tree Hash, see Listing 19
14: sig ∶ sig(Integer|Timestamp|String)
15:
16: Record SCT: ▷ Signed Certificate Timestamp
17: klog ∶ h(Pub Key) ▷ Hash of log’s public key, acts as ID
18: t ∶ Timestamp
19: cert ∶ Cert ▷ Certificate of server
20: sig ∶ sig(Timestamp|Cert)
21:
22: Init:
23: for Ca ∈ CAs:
24: (Ca.k, Ca.k-1) ← new Key Pair()
25: Ca.root ← new CertCa.k-1(Ca.name|Ca.k)
26: for L ∈ Logs:
27: root list ← {Ca.root ∶ Ca ∈ CAs} ▷ Logs know CAs’ root certificates
28: (L.k, L.k-1) ← new Key Pair()
29: L.mtree ← new Merkle Tree() ▷ See Figure 8.1 and Listing 19.
30: sig ← sigL.k−1(0, time(‘now’), mtree.mth)
31: sth ← new STH(0, time(‘now’), mtree.mth, sig)
32: for M ∈ Monitors:
33: last sth ← ε ▷ Last known STH, initially empty string
34: for D ∈ Domains:
35: (D.k, D.k-1) ← new Key Pair()
36: for Cl ∈ Clients:
37: log keys ← {L.k ∶ L ∈ Logs} ▷ Clients have logs’ public keys
38: for A ∈ Auditors:
39: A.sth list ← ∅ ▷ initialise set of STHs

186

8.5. Public log-based proposals: Certificate Transparency

Listing 23 Scheme of CT, Part 2.
40: Protocol Certification((Ca, D, L)):
41: Actor Ca:
42: Channels:
43: SecChD: Sec Channel(Ca, D) ▷ CA ↔ domain
44: ChL: Channel(Ca, L) ▷ CA ↔ log
45:
46: Actions:
47: Event state = ‘Start’
48: and SecChD.recv(nameD: String, kD: Pub Key):
49: if meets cps(nameD):
50: certD ← new Certk-1(nameD|kD)
51: ChL.send(certD, root)
52: state ← ‘Wait SCT’
53: Event state = ‘Wait SCT’ and ChL.recv(sct: SCT):
54: SecChD.send(certD, sct)
55: state ← ‘Start’
56:
57: Actor D:
58: Channels:
59: SecCh: Channel(D, Ca) ▷ domain ↔ CA
60: Actions:
61: Event Start:
62: SecCh.send(name, k)
63: state ← ‘Wait Cert’
64: Event state = ‘Wait Cert’ and
65: SecCh.recv(certnew: Cert, sctnew):
66: cert ← certnew
67: sct ← sctnew
68: state ← ‘Start’
69:
70: Actor L:
71: Channels:
72: Ch: Channel(L, Ca)
73:
74: Actions:
75: Event Ch.recv(certD: Cert, root: Cert):
76: if root ∈ root list and valid cert(certD) : ▷ Only verification
77: t ← time(‘now’)
78: sct ← new SCT(h(k), t, certD, sigk−1(t|certD))
79: mtree.add(certD) ▷ Update tree, recompute MTH
80: sth ← new STH(mtree.size, t, mtree.mth,
81: sigk−1(mtree.size|t|mtree.mth))
82: Ch.send(sct)

187

8. Proposals to replace or strengthen X.509

Listing 24 Scheme of CT, Part 3.
83: Protocol Monitoring((M, L)): ▷ L is log to monitor
84: Actor M:
85: Channels:
86: ChL: Channel(M, L)
87:
88: Init:
89: klog ← L.k
90:
91: Actions:
92: Event Start:
93: ChL.send(‘get sth’) ▷ Fetch current STH from log
94: state ← ‘Wait STH’
95: Event state = ‘Wait STH’ and ChL.recv(sth: STH):
96: if valid sigklog(sth.size|sth.time|sth.mth, sth.sig):
97: ▷ If monitor is just starting up:
98: if last sth = ε:
99: ChL.send(‘get entries’, 0, sth.size)
100: last sth ← sth
101: state ← ‘Wait Init Entries’
102: else if last sth ≠ sth: ▷ Log has been updated
103: ▷ Fetch new entries
104: ChL.send(‘get entries’, last sth.size + 1, sth.size)
105: state ← ‘Wait New Entries’
106: Event state = ‘Wait Init Entries’ and ChL.recv(entries: {Cert}):
107: mtree ← new Merkle Tree(entries)
108: if mtree.mth ≠ sth.mth:
109: . . .▷ Report misbehaviour (not defined at time of writing)
110: else:
111: state ← ‘Start’ ▷ Monitor is bootstrapped
112: Event state = ‘Wait New Entries’ and ChL.recv(entries: {Cert}):
113: ▷ Availability check
114: if entries ≠ ∅:
115: . . .▷ Monitors may run any checks they want on entries
116: ▷ Now get consistency proof
117: ChL.send(‘get cons proof’, last sth.size + 1, sth.size)
118: state ← ‘Wait Cons Proof’
119: else:
120: . . .▷ Report misbehaviour (logs must supply entries)
121: Event state = ‘Wait Cons Proof’ and ChL.recv(proof: {String}):
122: ▷ If consistency proof is correct, monitor is done:
123: if verify cons proof(last sth, sth, proof):
124: state ← ‘Start’
125: else:
126: . . .▷ Report misbehaviour (not defined at time of writing)

188

8.5. Public log-based proposals: Certificate Transparency

Listing 25 Scheme of CT, Part 4.
127: Actor L:
128: Channels:
129: ChM: Channel(L, M)
130:
131: Actions:
132: Event ChM.recv(‘get sth’):
133: ChM.send(sth)
134: Event ChM.recv(‘get entries’, from: Integer, to: Integer):
135: entries ← mtree.retrieve(from, to)
136: ChM.send(entries)
137: Event ChM.recv(‘get cons proof’, from: Integer, to: Integer):
138: proof ← mtree.cons proof(from, to)
139: ChM.send(proof)
140:
141: Protocol TLS_DHE_CT((Cl, D)):
142: Actor Cl:
143: Channels:
144: Ch: Channel(Cl, D)
145:
146: Actions:
147: Event Start:
148: . . .▷ Normal TLS
149:
150: Event state = ‘Wait Kex’ and Ch.recv(nD: Nonce, certD: Cert,
151: dhD: DHParm, sgn: String, sct: SCT):
152: ▷ SCT received, continue normally
153: . . .
154: Event state = ‘Wait Accept’ and Ch.recv(fin mac: String):
155: . . .▷ Finish handshake normally
156: ▷ Determine log’s public key and verify SCT:
157: ksig ← (k ∈ log keys ∶ h(k) = sct.klog)
158: if valid sigksig(sct.time|sct.cert, sct.sig)
159: and sct.cert = certD:
160: . . .▷ Finish normally
161: else:
162: ▷ One of the checks failed
163: state ← ‘Error’
164:
165: Actor D:
166: Channels:
167: Ch: Channel(D, Cl)
168: Actions:
169: Event state = ‘Start’ and Ch.recv(nCl: Nonce):
170: . . .▷ Normal TLS, but we add the SCT:
171: Ch.send(nD, cert, dhD, sgn, sct)
172: state ← ‘Wait Kex’
173: . . .▷ Otherwise, normal TLS

189

8. Proposals to replace or strengthen X.509

Listing 26 Scheme of CT, Part 5.
174: Protocol Auditing((Cl, L)):
175: Actor Cl:
176: Channels:
177: ChL: Channel(Cl, L) ▷ Auditor to log
178:
179: Init:
180: klog ← L.k
181: last sth ← ε
182:
183: ▷ We assume auditor has previously run TLS DHE CT and
184: ▷ already has an SCT: sct.
185: Actions:
186: Event Start:
187: ChL.send(‘get sth’)
188: if last sth = ε:
189: state ← ‘Wait Init STH’
190: else:
191: state ← ‘Wait STH’
192: Event state = ‘Wait Init STH’ and ChL.recv(sth: STH):
193: if valid sigklog(sth.size|sth.time|sth.mth, sth.sig):
194: last sth ← sth
195: state ← ‘Start’
196: Event state = ‘Wait STH’ and ChL.recv(sth: STH):
197: if valid sigklog(sth.size|sth.time|sth.mth, sth.sig):
198: if sth = last sth:
199: state ← ‘Start’
200: else:
201: ▷ Newer STH – fetch audit path. certD is domain cert.
202: ChL.send(‘get audit path’, certD, sth.size)
203: state ← ‘Wait Path’
204: Event state = ‘Wait Path’ and
205: ChL.recv(index: Integer, path: {String}:
206: if verify audit path(index, path, sth.mth):
207: state ← ‘Start’ ▷ Audit path leads to correct result
208: else:
209: . . .▷ Report misbehaviour (not defined at time of writing)
210:
211: Actor L:
212: Channels:
213: ChCl: Channel(L, Cl)
214:
215: Actions:
216: Event ChCl.recv(‘get sth’):
217: ChCl.send(sth)
218: Event ChCl.recv(‘get audit path’, leaf: Cert, size: Integer):
219: (index, path) ← audit path(leaf, size)
220: ChCl.send(index, path)

190

8.6. Assessment of schemes

Listing 27 Scheme of CT, Part 6.
221: Sessions:
222: Dependency TLS DHE CT(∗, ∗) not before Certification(∗, ∗, ∗)
223: Dependency Auditing(∗, ∗) not before TLS DHE CT(∗, ∗)
224: At random Certification with (Ca,D,L) ∈ CAs ×Domains × Logs
225: At random Auditing with (Cl,L) ∈ Auditors × Logs
226: At random Monitoring with (M,L) ∈Monitors × Logs

8.6. Assessment of schemes
Based on our findings, we derive a summarising assessment now which scheme is a
hopeful candidate for a reinforcement of the X.509 PKI. We base this on the criteria
we stated at the beginning of this chapter.

8.6.1. Contributions to security and robustness
In the following, we summarise the contributions of each scheme and contrast this with
the strength it shows against attackers from out threat models A, B, and C. Table 8.2
provides a graphical reference for this section.

Protecting clients with out-of-band mechanisms The first criterion is to which degree a
scheme can protect clients by using out-of-band mechanisms. Three of the schemes we
discussed serve this goal directly, namely TACK, DANE-TLSA, and Perspectives. CT
and CAA serve it indirectly.

Among these, TACK is the only scheme that can protect clients even against the
strongest attacker. However, the prerequisite is that the first contact to a remote
domain must have been secure or the client must have been bootstrapped with secure
out-of-band information.

DANE-TLSA does not have this prerequisite, but fails against the two stronger
attackers who are able to tamper with DNSSEC-protected resource records in zones
that they control.

The security that Perspectives provides depends entirely on the locations of the
clients and servers. Perspectives shows a very good strength against the attacker of
Model A, although it has some weaknesses during prolonged attacks if the attacker is
in control over the final segment of a network path to the server. The regional and
global attackers (Models B and C) may additionally use their power to compromise
notaries. However, under the assumption that a larger number of notaries exist and
shadow notaries are employed, such attempts can be assumed to be detected after a
short time. The global attacker does not have an advantage over the regional attacker.

CT does not address security for clients directly, but it allows them to verify that
a certificate has been logged. The scheme aims at enabling domain owners, ISPs, and
CAs to detect incidents early enough to raise the alarm. Effectively, CT shortens the
time window during which an attacker can be successful.

CAA gives a CA additional means to decide whether it should issue a certificate for
a given domain or not. This aims at the case where an attacker attempts to obtain a
certificate from a CA without actually attempting to compromise it. One drawback of
CAA is that it does not mandate DNSSEC. This means it fails in all settings where
an attacker controls the network paths between a CA and the responsible DNS server.
Even if DNSSEC is used, the protection offered by CAA remains relatively weak. Even
the weak attacker may be able to get into a useful position to damage the system,

191

8. Proposals to replace or strengthen X.509

namely if he is able to control the path over which an administrator sets the DNS
record. CAA fails entirely for both the regional and global attackers as these can
compromise CAs and thus side-step CAA. To summarise this, CAA is only a very
indirect protection for clients and the weakest one we discussed.

Incident detection The second criterion we specified was (fast) detection of incidents.
Two schemes address this: CAA and CT.

CAA’s primary aim is to prevent misissuance of certificates. However, the iodef
part of the resource record allows to set a contact address where deviation from the
configured behaviour can be reported. This is a very interesting contribution as it
constitutes an easy way to determine where to direct an incident report. Notably, all
other schemes we discuss lack such a reporting mechanism, and CAA is thus useful
as a complement to other schemes. We already discussed the strength of CAA in the
previous paragraph. Everything that was said there applies to the use of the iodef
property of the CAA record as well.

CT is a powerful scheme to monitor certification events. The premise is that many
CAs opt into the scheme: logs do not exchange information, and without the funda-
mental understanding that many parties have opted into the scheme, its reach is very
limited. CT’s cross-validation and constant monitoring and auditing make it extremely
difficult for attackers to be successful. Even the regional and global attacker would
have to compromise a relatively high percentage of logs and monitors in order to stage
a sustained attack.

Monitoring and transparency Our final criteria were whether a scheme facilitates ob-
servation of the X.509 PKI, in terms of certification and deployment, and whether it
can be assessed via observations itself.

Concerning the latter, almost all schemes we discussed provide great transparency
and allow to assess their correct working from the outside. The only exception here is
Perspectives: while the concept provides good transparency via shadows, these are not
actually implemented.

Concerning observations of X.509, most schemes are not concerned with either ob-
serving certification events nor deployment issues. Only one scheme addresses this: CT.
Under the assumption that many parties opt in, CT is a very powerful logging mech-
anism that also tracks historical changes in certification. Active scans can theoretically
achieve the same, but are more resource-intensive and cannot detect certification events
where the certificate was never deployed. Thus, CT offers somewhat more transparency
than what could be achieved with scans alone.

However, CT does not address an issue that we identified as critical in our own scans
(see Chapter 4), namely the poor state of deployment, which has historically resulted
in too many Web sites showing incorrect certificates and triggering browser warnings.
To detect such problems, one will still need active scans.

8.6.2. Issues of deployment
The schemes we discussed have very different requirements to deployment. There are
two factors to consider: introduction of additional parties in X.509 processes and num-
ber of entities that have to make changes to their software and configurations.

The strongest concept, TACK, is also the one that needs a very high number of en-
tities to opt in, namely server operators. This may or may not be a serious problem. If
TACK comes packaged with popular Web servers and can be activated by just setting
a small number of options, it may have a reasonable chance to see wide-spread deploy-
ment. Clients can simply ignore the TLS extension if they do not support it, which

192

8.6. Assessment of schemes

should mediate potential fear on the side of server operators that they may lose clients
when enabling TACK. As TACK is a pure client-server concept, it does not introduce
new infrastructure.

CAA and DANE-TLSA require changes in the configuration of DNS, but do not
introduce any new infrastructure or participants to the X.509 PKI (DNS is already
needed by TLS clients to resolve hostnames). They do not require support by servers,
either. However, clients only achieve strong security if they validate DNSSEC records
themselves and do not leave this to their ISP. This may well be the most important issue
to resolve. Recent studies showed that deployment of DNSSEC has grown, although
operational problems remain [50]. Much will depend on DNS administration and Web
server configuration to remain in a synchronised state. Larger organisations should
have less problems with this as they operate their own IT services.

Different considerations apply to Perspectives. The scheme has the benefit that
only clients need to support it but servers do not. Clients—especially browsers—are
easier to update, whereas server operators always have to consider whether they can
still support all clients after they have made a change. Perspectives needs to introduce
new infrastructure to the PKI, however, and this may be crucial. Several years after its
introduction, the number of notaries remains low and, worse, there are no assurances
that notaries that are not run by the project itself are trustworthy (although there is no
evidence to the contrary, either). In our discussion of Perspectives, we showed that a
concentration on very few notaries is damaging to the concept as a whole. In summary,
Perspectives has to overcome higher hurdles than TACK or the DNS-based schemes.

CT, finally, is a particularly interesting case. While it can be rolled out gradually,
it needs to win the support of most CAs to become truly useful. As we showed in our
discussion, this can be quite difficult with the distribution of SCTs being the central
problem. If precertificates are used, CAs need to make an important change to their
issuance processes. If OCSP is used, CAs need to invest in changing their OCSP
infrastructure. Both are hurdles, although the potential gains seem to outweigh this.
If neither precertificate nor OCSP are used, CT shows an entirely different problem:
it would need support by server operators as these need to change their software to
support the TLS extension. This is probably much harder to achieve than convincing
CAs to support the scheme. CT has the unique advantage here that it is supported by
one of the largest Internet corporations that currently exist.

8.6.3. Choosing the appropriate candidate

TACK is the scheme that shows the highest resistance to attacks. At the same time, it
provides the strongest security for clients. It is a relatively simple scheme that can be
further improved by introducing two forms of monitoring of the X.509 PKI. The first
form would help with bootstrapping: scanning the most important WWW sites over a
longer period, and from different points of view, would help create a set of pins that
can be preloaded into user clients. This would be a notary element within TACK. The
second form would be monitoring of the tacks that servers offer. The only real issue
seems to be the need to make changes to server software, although this is somewhat
balanced by the fact that TACK can be rolled out gradually. Our conclusion here is
that TACK is a very worthwhile concept to deploy as it is the only one that addresses
the global attacker satisfactorily.

We also argue that TACK should be reinforced with at least one strong mechanism to
detect attacks. In this category, only CT prevails against stronger attackers. However,
CT may suffer from a deployment problem if it cannot win the support of CAs. At this
time, it is too early to predict the outcome, but it is worthwhile to note that CT is the
only scheme that provides strong guarantees that incidents are detected.

193

8. Proposals to replace or strengthen X.509

local, weak (A) regional (B) global (C)
Pinning
TACK: succeeds (TOFU) succeeds (TOFU) succeeds (TOFU)
client protection

DNS/DNSSEC
CAA: fails if attacker fails on CA fails on CA
rogue issuance controls DNS compromise compromise

configuration

DANE-TLSA: succeeds if clients fails for all TLDs fails for all TLDs
client protection validate records attacker controls attacker controls

themselves

Notaries
Perspectives: may fail in case may fail if only may fail if only
client protection of longer attack few notaries exist few notaries exist

on path to server

Public logs
Certificate succeeds succeeds if enough succeeds if enough
Transparency: logs, monitors, and logs, monitors, and
rogue issuance, auditors exist auditors exist
incident detection

Table 8.2. – Summary of contributions the schemes make in reinforcing X.509 and evaluation
of robustness against attackers from Models A, B, and C. TOFU is short for
Trust-On-First-Use.

We view TACK and CT together as the two schemes that should be used to reinforce
the X.509 PKI. They provide the largest benefit while requiring only a reasonable
number of changes to enable deployment.

However, this is not to say that the other schemes should not be implemented.
CAA, for example, is unique in that it provides a pointer where to report incidents.
Concerning DANE-TLSA, much will depend on whether clients will be enabled to
validate DNSSEC records themselves. If so, DANE-TLSA is reasonably simple to
deploy and gives relatively good security guarantees, except in the case of the state-
level attackers.

There are two issues that we see with all schemes. One is that they all fail to consider
the deployment of certificates on servers, which we know to be problematic. CT only
logs certification events. For the moment, it seems that active scans are the best way
to detect faulty configurations.

The other issue is that only one scheme addresses the issue of reporting incidents—
CAA, which is the least secure of all schemes. Unfortunately, CAA does not prescribe
a coordinated way of reporting. Furthermore, it would be very worthwhile to obtain
more information about an incident. In particular, it remains unclear in all schemes
where the actual attack is happening. The concept that could form a basis here is the
notary concept. We address this topic in the next chapter.

194

8.7. Related work

8.7. Related work
All discussed schemes are rather new proposals, and thus there is relatively little (aca-
demic) work that would have analysed them, in particular with threat models like ours
and taking deployment issues into account.

Grant provides a summary of issues with Perspectives, Convergence, DANE-TLSA,
CAA, and CT and carries out a brief analysis of the concepts in her thesis [30]. She
proposes several categories to rate the systems and then assigns a score to each one.
The author does not define or employ a threat model in her analysis, and it is not
entirely clear how the score is derived other than being based on a verbal summary of
properties. She concludes that ‘there is no cure-all for the weaknesses identified in the
existing [CA] infrastructure’ and ‘the current [CA] architecture is arguably the strongest
and most scalable system’ [30]. We agree with the first conclusion, but not with the
second, and cite the incidents documented in Chapter 3 as well as the revocation issues
of the current PKI (see Section 2.7) as counterexamples.

Soltani provides another analysis of Perspectives, CT, and DANE-TLSA in her
Master’s Thesis [80]. The schemes are not rated but summarised with respect to security
risks, improvements, usability and costs. Deployment is not discussed. The analysis
does not use attacker models, either.

In [252], Ritter very briefly summarises the problems of today’s X.509 PKI and the
key concepts of Perspectives and CT in a white paper. In his conclusion, he emphasises
that users are unlikely to change default settings and also states that an important
question for deployment is which entities have to make the necessary changes.

Osterweil et al. develop a methodology to define and quantify the attack surface
of the current CA system versus the CA system together with DANE-TLSA. Their
approach is to decompose the respective system into its constituents, expressed as
processes and graphs. Using their model, they derive a much smaller attack surface for
DANE-TLSA than for the current X.509 PKI.

Gutmann, finally, provides a case study of DNSSEC in general in [86]. His criticism
is directed at the fact that use of DNSSEC constitutes the use of a second channel.
Should this second channel fail to work, DNSSEC-based name resolution requires the
client to abort its operation. The result would be a very poor usability for every
DNSSEC-based concept. It is unclear to which extent this argument may hold. Lian
et al., at least, showed that the current DNSSEC deployment is slightly more likely to
cause failure of name resolution [50].

8.8. Key contributions of this chapter
In this chapter, we addressed Research Objective O3.1. We briefly recapitulate our
contributions:

Threat models We defined three threat models based on the attack vectors we identified
in Chapter 3. These are the local attacker (close to client or server), the regional
attacker with the capacities of a country, and the global attacker, with the ca-
pacities of a country plus added possibilities and willingness to control network
paths and the DNS.

Schemes and key technologies We described and analysed schemes to reinforce the
X.509 PKI, using the notation we introduced in Chapter 7 to highlight parti-
cipants, their interactions, and the existence of (secure) communication channels.
The key technologies the schemes employ are pinning (TACK), DNS/DNSSEC
(CAA, DANE-TLSA), notaries (Perspectives), and public logs (CT). Perspectives

195

8. Proposals to replace or strengthen X.509

and CT also use a fifth technology: cross-validation. This greatly improves their
robustness against attacks.

Protecting clients Three schemes serve the purpose to protect clients: TACK, DANE-
TLSA and Perspectives. TACK is the only one strong enough in the presence of
the strongest attacker, but requires the first contact to a domain to be secure.
Perspectives provides good security, too, with some weaknesses in the face of very
powerful attackers. DANE-TLSA fails in the face of the two stronger attackers.

Schemes to detect incidents CAA and CT serve the primary purpose to detect incid-
ents and raise the alarm. CAA is a weaker scheme, in particular as it does not
mandate DNSSEC. It also fails against the two stronger attackers as they may
compromise CAs. CT is a very robust construction that is strong enough to resist
even the globally active attacker.

Deployment The schemes suffer from deployment issues to varying degrees. Unfortu-
nately, TACK is a scheme that requires many participants, namely server operat-
ors, to make changes to their configuration. This hinders deployment. Perspect-
ives has a similar requirement, but for clients. The weakest scheme that protects
clients directly, DANE-TLSA, has the lowest requirements for participants, but its
success depends on operational practices, namely the synchronisation of WWW
and DNS administration.

Highest potential and improvements The two schemes that show the highest potential
to reinforce the X.509 PKI are TACK and CT, each for its own purpose. TACK
could be improved by creating a set of pins to preload in clients—this requires
longer-term monitoring of important WWW hosts. Scans of TACK-enabled hosts
can also help add transparency where WWW hosts, and thus WWW services,
have been compromised. CT is a very useful tool to detect incidents and determine
the responsible CA. However, it lacks a way to determine the position of the
attacker.

196

9 Chapter 9.

Crossbear: detecting and locating
man-in-the-middle attackers

This chapter is an extended version of our previous publication [38]. Please
see the note at the end of the chapter for further information.

9.1. Introduction
We have analysed the state of the X.509 PKI in previous chapters. In Chapter 3, we
showed that a number of attacks on CAs have happened in the past, some of which
were very successful and could be linked to man-in-the-middle attacks. In Chapter 4,
we showed that the X.509 PKI is in a poor state to begin with and in dire need
of reinforcement. In Chapter 8, we analysed schemes that aim to strengthen X.509
against attacks and, among other things, investigated the schemes with respect to
incident detection. Although at least one scheme provides important functionality in
this respect, we found that no scheme so far provides an automated mechanism for
attack detection or reporting. This correlates with another finding: while we have
strong reasons to suspect man-in-the-middle attacks have happened, there is a curious
lack of documentation of such incidents. Most reports seem to exist only in the form
of blog posts or forum entries. The most famous incident concerned DigiNotar, where
the incident was reported in a Google forum [145]. There are also less well-reported
incidents like the discovery of a misbehaving wireless access point in a hotel [188].
Generally it seems that affected users are very unlikely to store the rogue certificate
they encounter; nor do they provide information how they connected to the Internet
during the incident or to which server. Such information, however, would be very
valuable. The security community would be able to learn where man-in-the-middle
attacks are carried out and possibly even by which parties. Proper documentation
would likely help raise public pressure against these parties.

This section presents our own approach to incident detection: Crossbear. It is
intended as a response to the lack of hard data and aims to gather information about
man-in-the-middle incidents and provide supporting evidence. We pursue two goals
with Crossbear, which we define as our research questions:

Automated detection and reporting Detect an ongoing man-in-the-middle attack on the
Internet and report this to a central entity. The report will include the position
of the victim, the time of the attack, and details about the affected connection.

Localisation and reporting After detection, initiate a process to locate the attacker’s
position with a fair degree of confidence. The central entity will enrich data from
reports with information obtained from other (public) sources to support manual
inspection of reports.

197

9. Crossbear: detecting and locating man-in-the-middle attackers

9.2. Crossbear design and ecosystem

In the following, we describe how we designed Crossbear and explain how it achieves
its goals.

9.2.1. Methodology

We chose to build Crossbear on a notary concept as we know it from our discussion
of Perspectives in Chapter 8.4. This is, in part, based on the findings in our analysis:
notary concepts allow to detect man-in-the-middle attacks while they are ongoing.
The difference to Perspectives is that there is a central Crossbear server with dedicated
functionality. Just like Perspectives, Crossbear can also warn users of an ongoing
attack and report it automatically. More importantly, however, we make use of the
geographical distribution of notaries and add an important twist that ‘conventional’
notary systems do not share: Crossbear does not just confirm or disconfirm a server’s
public key. Rather, Crossbear clients are distributed over the Internet and use their
position to participate in so-called hunting. On request, they can retrieve and compare
certificates from a TLS server and record the IP route they have to that TLS server.
This is reported to Crossbear’s central server, where certificates and routes can be
analysed and further hunting initiated. A comparison of the IP routes from hunters that
are affected by the man-in-the-middle and by those who are not yields an approximation
of the attacker’s location in the network. The accuracy increases with the number of
hunters that participate.

Based on the incomplete reports of man-in-the-middle attacks, and our findings of
X.509 weaknesses from Chapter 3, we designed Crossbear under a working hypothesis
concerning the types of attackers we expect to encounter. We assume the first kind of
man-in-the-middle attacks to be carried out by an attacker who is operating in close
proximity to the victim client (in terms of network hops). This is a subclass of the
attacker in our Model A: the attacker is only allowed to occupy a position close to the
client, but not close to the server. A typical example would be a poisoned wireless access
point or company networks that eavesdrop on incoming and outgoing traffic without
benign intent or the consent of their employees. These attackers are in a position to
control traffic going into and coming out of a local network. The second kind of attacker
is practically identical to the regional attacker of our Model B. We assume an attacker
with the power of a country who is in control of the traffic flowing into and leaving a
geographically restricted region. A typical example would be a state with tight control
over its ISPs and with surveillance devices planted on border routers that connect the
networks to the outside world. The typical goal of such an attacker would be to inspect
traffic for external services, e.g., Web mailers or social networks.

By its very nature, Crossbear is a tool to counter attacks that are already ongo-
ing. There is a very important effect to take into consideration here: Crossbear is a
reactive system, and the attacker always has the first move and may also attempt to
counter a step that Crossbear takes. This leads to a practical limitation in Crossbear’s
effectiveness in locating the attacker (but not in detecting him). We discuss this in
Section 9.3.3. Also note that Crossbear must be prepared to defend itself against an
attack on its own infrastructure. We discuss this in Section 9.3.4.

9.2.2. Intended user base

There is an important design choice we made: Crossbear is not intended as a tool for
common Internet users without deeper technical knowledge and without a willingness
to be active in efforts to improve Internet security. Although it provides protection

198

9.2. Crossbear design and ecosystem

against man-in-the-middle attacks and warns users, this is not its primary purpose.
Rather, Crossbear is intended as a useful tool for those participants in the security
community that may be referred to by the description of ‘travelling hacktivists’.

Part of the rationale is that Crossbear users need to be knowledgeable concerning
certificates and, to some degree, also concerning TLS. They need to accept a (relatively
rare) false-positive warning as an unavoidable annoyance in contributing to the analysis
of man-in-the-middle attacks. To allow them to interpret a warning, Crossbear provides
them with information about server certificates and its own observation history.

There is a further important point to consider: Crossbear is a tool that has the
potential to uncover malicious activities as they may be carried out by repressive gov-
ernments. As such, these governments may attempt to threaten or even harm users of
Crossbear. Any user should be aware of the political situation in the country where he
or she chooses to use Crossbear and, when in doubt, should not use it. In particular,
we discourage use of Crossbear if the sole goal is protection of the TLS connection.
For such users, we recommend tools like Perspectives or Convergence, which provide a
similar level of security but are not associated with the counter-analysis activities that
Crossbear carries out.

9.2.3. Principle of operation

In the following, we describe Crossbear’s principle of operation. We refer the reader to
Figure 9.1 for a visual reference.

Key ideas Crossbear is based on two mechanisms: attack detection and attacker loc-
alisation. Clients are called hunters, and Crossbear deploys a large number of them on
the Internet, distributed over as many ASes and networks as possible. We distinguish
two forms of hunters: one that carries out both detection and localisation, and one that
carries out only the latter.

The first kind of hunter is designed to monitor a user’s normal surfing behaviour:
for every TLS connection, it queries the Crossbear server whether it encounters the
same certificate for the host in question. If it finds a mismatch, it reports this to the
server. The Crossbear server creates a so-called hunting task, which it sends to the
hunter. The hunter will then carry out a traceroute and send the result to the server.

The second kind of hunter is only concerned with localisation. It connects periodic-
ally to the Crossbear server to download and execute new hunting tasks. The hunting
tasks are executed by connecting via TLS to the reportedly attacked servers, extracting
the certificate chain each server sends, and recording the IP route to each server by
doing a traceroute. This information is then sent to back to the central server, where
it can be analysed.

We implemented both kinds of hunters. The first kind has been implemented as
an add-on for the Mozilla Firefox browser. It can additionally also act like the second
kind of hunter, i.e., download and execute hunting tasks that are not related to its own
detection processes. The second kind of hunter has been implemented as a stand-alone
application that can be deployed on test beds like PlanetLab [248].

Detection and localisation When a request for verification of a certificate is received, the
Crossbear server determines whether a hunting task should be created. We elaborate
on this in Section 9.2.4. Naturally, a user of the browser add-on is warned if an ongoing
man-in-the-middle is detected.

The position of the attacker can be approximated by cross bearing, i.e., comparing
the routes that hunters recorded and determining the intersection points for routes that

199

9. Crossbear: detecting and locating man-in-the-middle attackers

Victim server
Crossbear
server

Hunting task

Observations

Victim client

Attacker

Hunter

Hunter

Hunter

S2

S1

S3

S4

S5

S6

database

database

Figure 9.1. – Components of the Crossbear system.

have been found to be poisoned and those that have been found to be clean. This can
be done on the router-level or on the level of ASes.

For a visualisation, consider Figure 9.1: the victim client would report a poisoned
connection and a certificate mismatch to the Crossbear server. At the same time, the
other hunters would report clean connections (and the correct certificate). This allows
the Crossbear server to estimate that the attacker is located in the vicinity of the
victim, most likely on system S5, because it connects the victim client to S4, which we
know not be to compromised thanks to the reports from other hunters. This accurate
way of cross bearing works in many, but not all scenarios; we discuss its effectiveness
against attackers at various positions and with different strategies in Section 9.3.

Further vantage points Crossbear also retrieves observations made by other notary sys-
tems. Currently, Crossbear uses Convergence [268] as a source of independent obser-
vations from other vantage points. At the time Crossbear was developed, Convergence
was more popular than the related Perspectives project. Information from Convergence
notaries is also always forwarded to users of the Firefox add-on in order to allow them
to make a more accurate assessment of a certificate used in a TLS connection.

At the time of writing, we found the Perspectives project to be gaining momentum
again and offering notary servers that could be used by Crossbear. Whether Crossbear
will additionally enable use of Perspectives or not has not been decided yet.

Out-of-band information sources Reports about alleged attacks consist only of the en-
countered certificates and the network paths from hunters. To facilitate better analysis
of reports, the Crossbear server carries out several more lookups and stores informa-
tion from other sources every time a report is received. We currently use the following
sources:

AS and WHOIS We retrieve the AS number of all hosts in a traceroute and retrieve
further information with WHOIS queries, e.g., the name and registered location
of the organisation running the AS.

200

9.2. Crossbear design and ecosystem

Geolocation Hosts in a traceroute are looked up in geo-IP databases. Although im-
perfect, this gives us a rough estimate which countries were on the network path
from hunter to alleged victim server.

CAs used We store which CAs a domain seems to use. The motivation is that certain
domains like, e.g., Google have always remained customers of the same CAs for
longer periods of time1. We set triggers when the issuing CA for a domain changes
as this could be an indication of an attack.

Certificate properties We extract certificate fields from each certificate we receive. This
helps us determine whether two forged certificates share similar properties. Fields
like issuer, public key, and serial number have the highest relevance here. The
rationale is that attackers may use similar configurations when creating forged
certificates. Naturally, this applies (mostly) to certificates that attackers forge
without prior compromise of a CA.

Clustering reports by source Thanks to the information we store about the countries
from which reports reach us (geographic position and official country of registra-
tion of the corresponding AS), it becomes possible to identify clusters of reports
from the same country.

We elaborate on the use of this information in Section 9.3.

9.2.4. Details of detection and hunting processes
Typically, man-in-the-middle attacks are detected with the add-on for the Web browser.
In the following, we provide details about this process. Listings 28–33 provide a refer-
ence in our notation.

Protecting the communication with the server

All Crossbear clients (add-ons and hunters) communicate with the Crossbear server via
TLS. To protect this channel against man-in-the-middle attacks, the server’s public key
is hard-coded into clients. We express this as secure channels in lines 76 and 205. If a
client finds that the key in the received server certificate does not match the hard-coded
one, its current behaviour is to refuse to operate and offer the user to send an automatic
email to the Crossbear team that contains all details about the incident (including the
forged certificate). We do not show this latter feature in our listings.

Convergence as a service

We represent Convergence as a service. As is also the case in our current implement-
ation, we only use two Convergence notaries. When queried, the service returns the
observation histories of the notaries. Note that we do not give a full description of
Convergence in our listings but represent it in the style of the API that we use in our
implementation. Convergence’s methodology is very similar to Perspectives, however.
The service is shown in lines 62–71.

Certificate verification

Listings 30–33 show how certificate verification via the Crossbear server works. In the
following, we use the term client to refer to a hunter implementation in the browser
add-on, i.e., a hunter that implements both hunter types (see Section 9.2.3).

1For Google, this has been confirmed to the author in private email.

201

9. Crossbear: detecting and locating man-in-the-middle attackers

When a client connects to a Web server via TLS and the connection is under attack
by a man-in-the-middle, it may receive a forged certificate (lines 227–228). Thus, the
client always sends a request to the Crossbear server at the end of the handshake to
verify the certificate (line 236). The message includes the observed certificate and
the domain name of the server. When the server receives this message (line 145), it
connects to the domain itself (line 148) and stores the result. In the next step, it
queries the Convergence service for known certificates for the domain (line 153). When
the response arrives, it checks the signatures (lines 160–162). If the server’s observation
matches the certificate and Convergence reports it has also observed the certificate in
question, the Crossbear server stores the certificate in its observation database. This
is shown in lines 165–178. It does not do this if it has conflicting views or Convergence
never encountered the certificate. This is a protection against an attacker who tries
to flood the Crossbear server with observations of a rogue certificate in an attempt to
tamper with the score Crossbear computes (we elaborate on the latter below).

The Crossbear server will create a hunting task in one of two cases (lines 180–185).
Either, the server was not able to carry out a handshake with the domain in question.
This may be an indication that traffic may be dropped somewhere and is thus a reason
to investigate. The other case is when the Crossbear server encountered a different
certificate and Convergence never encountered the reported certificate, either.

The Crossbear server sends the result of its observation back to the client in a so-
called assessment (lines 187–201). In particular, the assessment includes whether the
Crossbear server encountered the same certificate in its handshake to the domain. If
the server decided to create a hunting task, it sends it together with the assessment to
the client. We explain the information in the assessment next.

Assessment and score

The Crossbear server sends information to the clients that allows them to compute a
score. The motivation for this score is to give the human user a quick summarising
view of what might be happening to his or her TLS connection, while the assessment
itself is meant to allow them to make an informed decision about whether to continue
with the connection. In our notation, the evaluation of the assessment is defined in a
procedure (lines 208–221).

The score is a weighted sum over a number of properties. The primary criterion in
the score is the comparison of the certificates that client and server have encountered,
which is sent as a String that may be either ‘yes’, ‘no’ or ‘none’. We also take the
last continuous observation period (LCOP) into account, which is very similar to what
Perspectives and Convergence compute, except that it is expressed as an interval. The
LCOP states for how long only the certificate in question has been observed. Further
criteria are the number of previous observations and the LCOP that Convergence re-
ports (which is 0 if Convergence has no record of the certificate). Our weights are
chosen thus that ‘critical’ combinations of properties yield a score of less than 100.
This is a threshold value that is user-adjustable. When a score is below the threshold,
the add-on displays a warning, together with the data in the assessment. We list the
relevant factors for the score in Table 9.1. Each information item is sent by the server
to the client in the assessment.

When the certificate score is above the threshold, the add-on accepts and caches the
observed combination of host and certificate. The latter is a performance optimisation
that we do not include in our listings. When the threshold is not reached and a warning
is displayed, the user is asked if the combination should be exempted (accepted) and
cached. We show this in lines 240–243. If the server also sent a hunting task, the client
it going to execute it by doing a traceroute, just like any hunter (line 246).

202

9.2. Crossbear design and ecosystem

Property and score Rationale
Certificate comparison:
80 if Cc = Cs S observes same certificate
0 if Cc ≠ Cs Potential attack
−100 if S cannot get certificate from V S likely blocked

LCOP:
days⋅2

3 if LCOP ongoing Cc still observed
days

3 if LCOP ended in the past Cc observed in the past only

Observations:
count

30 High number of observations
makes certificate more trustworthy

Convergence:
days⋅2

3 if certificates match Confirmation
−20 if never observed Weak indication of attack
0 if no reply from Convergence Inconclusive

Table 9.1. – Parameters used in computing a score for a reported certificate. Cc is the certi-
ficate observed by the client, Cs the certificate observed by the Crossbear server
(S). V is the victim server.

We experimented with our default settings over the course of several months and
found that false positives occur rarely enough to be acceptable for the savvy user base
that we assume.

Details of the hunting process

Hunting is the process of determining a suspected attacker’s network location, i.e., his
position in an AS, subnetwork or (with the help of a geo-IP database) approximate
geographic position. The latter is done by the Crossbear server; we use well-known
processes in our notation to describe the corresponding lookup processes. Table 9.2
provides a summary of them.

In the following, we describe the hunting process as it is implemented in the second
kind of hunter (see Section 9.2.3). Note, however, that the first kind of hunter naturally
also includes this functionality (see above). Listings 29 and 30 show the hunting process.
Every hunter pulls the list of active hunting tasks from the Crossbear server at regular
intervals (line 79 f., called from the Sessions block in line 262 ff.). The hunter then
executes the tasks (lines 81–93). The hunting starts with a full TLS handshake with
the alleged victim server to extract the certificate chain. The next step is to record
the route that IP packets take towards the destination. This is done with a standard
ICMP traceroute (line 89). Certificate chain and route are reported to the Crossbear
server (line 92).

When the server receives results from hunting tasks (line 103), it will update its data-
base of hunting tasks (lines 104–118). For each hunting task, it extracts the traceroute
and then carries out lookups for each hop: geographical location, AS number and
WHOIS information. This is stored in the database.

The Crossbear server deactivates hunting tasks that are older than a certain time or
for which enough results have been received. This is shown in the Protocol Maintenance
in lines 252–260.

203

9. Crossbear: detecting and locating man-in-the-middle attackers

Listing 28 Scheme of Crossbear, Part 1.
1: Scheme Crossbear:
2: Participants:
3: Domains ∶ {D0,D1, . . .} ▷ Set of all domains
4: Clients ∶ {Cl0,Cl1, . . .} ▷ Browsers
5: Hunters ∶ {H0,H1, . . .} ▷ Stand-alone hunters
6: Server ∶ {S} ▷ Crossbear server
7: Cnv Ntr ∶ {Cn0,Cn1} ▷ Two Convergence notaries
8:
9: Record Observation: ▷ Crossbear observation

10: cert ∶ Cert
11: times ∶ {Timestamp}
12:
13: Record Period: ▷ Represents a time interval
14: min ∶ Timestamp ▷ Start of period
15: max ∶ Timestamp ▷ End of period
16:
17: Record Cnv Observation: ▷ Convergence’s observations
18: hash ∶ h(Cert)
19: p ∶ Period
20: sig ∶ sig(h(Cert)∣Period)
21:
22: Record Assmnt: ▷ Assessment, sent to client
23: domain ∶ String ▷ Domain name
24: match ∶ String ▷ Result from Crossbear server: matching cert?
25: lcopCB ∶ Integer ▷ LCOP from Crossbear server
26: lcopCnv ∶ Integer ▷ LCOP from Convergence
27: ongoing ∶ Boolean ▷ Is cert observation ongoing?
28: num obs ∶ Integer ▷ Number of observations by Crossbear server
29:
30: Record Hunting Task:
31: domain ∶ String
32: t ∶ Timestamp
33: active ∶ Boolean
34:
35: Record Hunting Result: ▷ Result, sent by hunter
36: htname ∶ String ▷ Name of hunting task (acts as identifier)
37: t ∶ Timestamp
38: cert ∶ Cert ▷ Encountered cert
39: trace ∶Map⟨Integer, String⟩ ▷ Traceroute
40:
41: Record IP Info: ▷ Additional information about an IP address
42: ip ∶ String ▷ IP address
43: geoloc ∶ String ▷ Geographic location
44: asn ∶ String ▷ AS number
45: whois ∶ String ▷ Information from WHOIS

204

9.2. Crossbear design and ecosystem

Listing 29 Scheme of Crossbear, Part 2
46: Record Ext Hunting Result: ▷ This is how Crossbear server stores results
47: hunter ip ∶ String ▷ Reporting hunter
48: hunting time ∶ Timestamp ▷ Time of hunting
49: domain ∶ String ▷ Domain in question
50: cert ∶ Cert ▷ Certificate observed
51: ext trace ∶Map⟨Integer, IP Info⟩ ▷ IP Info for every hop on trace
52:
53: Init:
54: S.history ← new Map⟨String, {Observation}⟩() ▷ Observations
55: S.hunting db ← new Map⟨Hunting Task, {Ext Hunting Res}⟩()
56: for D ∈ Domains:
57: D.cert ← new Cert()
58:
59: ▷ The Convergence API allows to obtain observations as defined in record
60: ▷ Cnv Observation. Convergence returns a set of Cnv Observation for the
61: ▷ domain. We assume these are stored internally in a field ‘history’.
62: Service Cnv represents Cnv Ntr:
63: Channels:
64: Chs ∶ {Channel(N, S) ∶ N ∈ Cnv Ntr} ▷ S is Crossbear server
65: Actions:
66: ▷ When asked, return the notaries’ histories:
67: Event Ch ∈ Chs: Ch.recv(‘get hst’, nameD: String):
68: hst map ← ∅
69: for N ∈ Cnv Ntr:
70: hst map[N.name] ← N.history[nameD]
71: Ch.send(hst map)
72:
73: Protocol Hunting((H,S)):
74: Actor H:
75: Channels:
76: SecCh: Sec Channel(H, S) ▷ S’s cert is hard-coded into hunter!
77: Actions:
78: Event Start:
79: SecCh.send(‘get ht list’) ▷ Request hunting task list
80: state ← ‘Wait HT’
81: Event state = ‘Wait HT’ and Ch.recv(ht list: {Hunting Task}) :
82: results ← ∅
83: for ht ∈ ht list:
84: ▷ Connect via TLS DHE to domain and retrieve cert:
85: Dht ← (d ∈ Domains: d.name = ht.domain)
86: TLS.TLS DHE(H, Dht) ▷ Dht’s cert now in certD
87: t ← time(‘now’)
88: ▷ Do a traceroute to domain:
89: trD ← traceroute(Dht)
90: resht ← new Hunting Result(ht.name, t, certD, trD)
91: results ← results ∪{resht}
92: SecCh.send(results)
93: state ← ‘Start’

205

9. Crossbear: detecting and locating man-in-the-middle attackers

Listing 30 Scheme of Crossbear, Part 3
94: Actor S:
95: Channels:
96: SecCh: Sec Channel(S, H)
97:
98: Actions:
99: Event SecCh.recv(‘get ht list’):
100: ▷ Retrieve active hunting tasks:
101: ht list ← {ht ∈ hunting db.keys() ∶ ht.active = true}
102: SecCh.send(ht list)
103: Event SecCh.recv(hunting results: {Hunting Result}):
104: for r ∈ hunting results:
105: ▷ Fetch corresponding hunting task:
106: ht ← (h ∈ hunting db.keys() ∶ h.name = r.htname)
107: ▷ Create Map for extended traces with additional info:
108: ext trace ← new Map⟨Integer, IPInfo⟩()
109: for hop ∈ r.trace.keys(): ▷ Loop over all hops
110: geo ← lookup geo(r.trace[hop])
111: asn ← lookup as(r.trace[hop])
112: whois ← lookup whois(r.trace[hop])
113: ext trace[hop] ←
114: new IP Info(r.trace[hop], geo, asn, whois)
115: ext res ← new Ext Hunting Result
116: (hunter ip, r.t, ht.domain, r.cert, ext trace)
117: new res ← hunting db[ht] ∪ {ext res}
118: hunting db[ht] ← new res
119:
120: Protocol TLS CB((Cl, D), S):
121: Actor S:
122: Channels:
123: Ch: Sec Channel(S, Cl) ▷ Crossbear server ↔ client
124: Cnv Ch: Channel(S, Cnv) ▷ Channel to Convergence
125: Init:
126: cnv keys ← new Map⟨String, Pub Key⟩()
127: for N ∈ Cnv Ntr:
128: cnv keys[N.name] ← N.k
129:
130: Procedure assess cnv(obs: {Cnv Observation}):
131: if obs = ∅:
132: return 0
133: return longest period(⋃

o ∈obs
{o.p})

134: Procedure longest period(pds: {Period}):
135: if pds = ∅:
136: return 0
137: ▷ Get the periods of longest duration:
138: pdslong
139: ← {pi ∈ pds ∶ (∀pj ∈ pds, i ≠ j ∶ pi.max − pi.min ≥ pj.max − pj.min)}
140: ▷ All resulting periods are of equal length, choose any:
141: return (p.max − p.min),p ∈ pdslong

206

9.2. Crossbear design and ecosystem

Listing 31 Scheme of Crossbear, Part 4
142: Actions:
143: ▷ Cert verify request received:
144: Event state = Start
145: and SecCh.recv(‘ver req’, nameD: String, certD,Cl: Cert):
146: D ← (d ∈ Domains ∶ d.name = nameD)
147: certD ← ∅
148: TLS.TLS DHE(S, D) ▷ TLS handshake with D
149: ▷ D’s cert is now in certD.
150: ▷ If TLS failed, certD = ∅.
151: ob time ← time(‘now’)
152: ▷ Observations from Convergence:
153: Ch Cnv.send(‘get hst’, nameD)
154: state ← ‘Wait Cnv’
155: Event state = ‘Wait Cnv’
156: and Ch Cnv.recv(hst: Map⟨String, {Cnv Observation}⟩):
157: cnv obs ← ∅
158: own ob ← ∅
159: all obs ← history[nameD] ▷ All observations of S
160: for nameN ∈ hst.keys(): ▷ Check signatures
161: kN ← cnv keys[nameN]
162: obsval ← {o ∈ hst[nameN] ∶ valid sigkN(o.k|o.pds, o.sig)}
163: ▷ Filter observations for cert in question:
164: cnv obs ← cnv obs ∪ {o ∈ obsval ∶ o.hash = h(certD,Cl)}
165: cert match ← ‘no’
166: if certD = certD,Cl:
167: cert match ← ‘yes’
168: else if certD = ∅:
169: cert match ← ‘none’
170: ▷ Store observation if certs match and Convergence confirms
171: if cert match = ‘yes’ and ∣cnv obs∣ ≠ ∅:
172: ▷ Fetch own observation:
173: own ob ← (o ∈ all obs ∶ o.cert = certD,Cl)
174: if own ob ≠ ∅: ▷ Add new timestamp for observation
175: own ob.times ← (own ob.times ∪ {ob time})
176: else: ▷ Create new observation
177: new ob ← new Observation(certD,Cl, {ob time}
178: history[nameD] ← {new ob}
179: ▷ Create hunting task:
180: ht ← ∅
181: if cert match = ‘none’
182: or (cert match = ‘no’ and ∣cnv obs∣ = ∅):
183: ht ← new Hunting Task(nameD, ob time, True)
184: ▷ Store hunting task as key in hunting db:
185: hunting db[ht] ← ∅
186: ▷ Prepare assessment. First, get times. . .
187: timesall ← ⋃

o ∈obs all
o.times ▷ . . . for all observations

188: timescert ← ⋃
o ∈own obs

o.times ▷ . . . for observations for cert

207

9. Crossbear: detecting and locating man-in-the-middle attackers

Listing 32 Scheme of Crossbear, Part 5
189: ▷ Is observation ongoing (latest timestamp)?
190: ongoing ← False
191: if timescert ≠ ∅ and max(timesall) = max(timescert):
192: ongoing ← True
193: ▷ Determine LCOP. Choose continous periods first:
194: cont pds ← {new Period(t1, t2), t1, t2 ∈ timescert ∶
195: (∄t ∈ timesall ∶ (t ∉ timescert ∧ (t1 < t < t2)))}
196: lcopCB ← longest period(cont pds)
197: lcopCnv ← assess cnv(cnv obs)
198: ▷ Send assessment:
199: assmnt ← new Assmnt(nameD, cert match, lcopCB, lcopCnv,
200: ongoing, ∣own obs∣)
201: SecCh.send(assmnt, ht)
202:
203: Actor Cl:
204: Channels:
205: Ch: Sec Channel(Cl, S)
206: Ch: Channel(Cl, D)
207:
208: Procedure assess(a: Assmnt):
209: if a.match = ‘yes’:
210: score ← 80
211: if a.match = ‘none’:
212: score ← -100
213: score ← score + ⌊a.num obs

30 ⌋
214: if a.lcopCnv = 0:
215: score ← score − 20
216: else:
217: score ← score + ⌊a.lcopCnv

86400 ⋅ 2
3⌋

218: if a.ongoing:
219: return (score + (a.lcopCB.max−a.lcopCB.min)

86400 ⋅ 2
3)

220: else:
221: return (score + (a.lcopCB.max−a.lcopCB.min)

86400 ⋅ 1
3)

222:
223: Actions:
224: Event Start:
225: ▷ Normal TLS until end of handshake
226: . . .
227: Event state = ‘Wait Kex’ and Ch.recv(nD: Nonce, certD: Cert,
228: dhD: DHParm, sgn: String):
229: ▷ The server certificate may be forged.
230: ▷ We check this at the end of the handshake.
231: . . .▷ Continue for now.
232: Event state = ‘Wait Accept’ and Ch.recv(fin mac: String):
233: ▷ Normal TLS checks
234: . . .
235: ▷ And now, start check with Crossbear server
236: SecCh.send(‘ver req’, D.name, certD)
237: state ← ‘Wait Assmnt’

208

9.2. Crossbear design and ecosystem

Listing 33 Scheme of Crossbear, Part 6
238: Event state = ‘Wait Assmnt’
239: and SecCh.recv(assmnt: Assmnt, ht: Hunting Task):
240: if assess(assmnt) ≥ 100:
241: . . .▷ Score large enough, finish normally
242: else:
243: . . .▷ User decides whether to accept this connection
244: if ht ≠ ∅:
245: ▷ Client acts as hunter and executes steps from
246: ▷ Hunting protocol, beginning with line 88
247: . . .
248:
249: Actor D:
250: . . .▷ No changes to domains
251:
252: Protocol Maintenance(S):
253: Actor S:
254: Actions:
255: Event Start:
256: ▷ Deactive hunting tasks if enough results or too old:
257: three days ← 259200 ▷ 3 days in seconds
258: for ht ∈ hunting db.keys():
259: if ∣hunting db[ht]∣ > 30 or (ht.t - time(‘now’) > three days):
260: ht.active ← False
261:
262: Sessions:
263: At random Hunting with (H ∈ Hunters,S)
264: At random Maintenance with S
265: At random TLS CB with ((Cl,D) ∈ Clients ×Domains,S)

Name Explanation Result
traceroute(d: Domain) Traceroute Map⟨Integer, String⟩

mapping hop number
to IP for d

lookup geo(ip: String) Lookup in geo-IP String representing
database position

lookup asn(ip: String) Lookup of AS number String representing
for IP AS number

lookup whois(ip: String) WHOIS lookup for IP String representing
WHOIS result

Table 9.2. – List of well-known processes in the Crossbear scheme.

209

9. Crossbear: detecting and locating man-in-the-middle attackers

9.2.5. Simplifications for the representation in our notation
The current implementation of Crossbear makes some performance optimisations that
we did not describe yet and did not include in our notation.

Before a hunter can send results to the Crossbear server, it must obtain a so-called
public IP notification from the server. This data structure contains the public IP
address of the client that the Crossbear server observes plus a HMAC of it, keyed with
a secret key that only the Crossbear server knows and changes every 30 minutes. It
can be obtained via a simple HTTP request to the server. The rationale is as follows:
hunters pull the hunting task list relatively frequently, but skip hunting tasks which
they have executed recently from the current IP address. However, hunters may be
positioned behind Network Address Translation (NAT) devices like middle-boxes, and
thus they need to know their public IP address to decide whether a hunting task can
be skipped or not.

A further optimisation that we make is that the Crossbear server sends hash values
of known certificates for the domain in question with each hunting task. This allows
hunters to simply reply with the hash value instead of the full certificate unless they
encounter a previously unknown certificate.

Although we do not show this in the notation, the Crossbear server actually stores
all received information greedily, including observations of certificate mismatches. It
just does not use this information in its internal counts, e.g., the number of previous
observations.

9.3. Analysis and discussion of effectivity
In the following, we analyse the degree to which Crossbear can be an effective tool. We
also discuss counter-attacks against Crossbear.

9.3.1. Attacker model
We first define the threat model for Crossbear. Our attackers are refined versions of
the attackers described in Section 8.1. In general, our attacker is always assumed to
have the full control over a ‘system’ on the path from the client to the victim server.
A system can be either a router or an entire AS through which traffic is forwarded.
The attacker does not control any other path in the network. An attacker controlling
several systems is modelled as separate attacks carried out by the same attacker. The
attacker can ‘impersonate’ IP addresses (i.e., spoof them and intercept replies addressed
to them) from the system he controls or systems that are attached to it, and whose
upstream and downstream traffic is routed through it.

We structure our discussion along two dimensions. First, we distinguish attacker
types by their selectivity against clients:

Non-selective attacker: The non-selective attacker stages his man-in-the-middle attack
against all clients attached to his system.

Selective attacker: The selective attacker stages his attack against a subset of clients
attached to the system he controls.

Second, we distinguish by the position of the attacker in the network. The positions
we consider are essentially those in our threat models from Section 8.1.

Localised attack We assume one kind of attacker to be either positioned towards the
periphery of the Internet and close to the client, or towards the periphery and
close to the victim server (Model A).

210

9.3. Analysis and discussion of effectivity

Regional attack Furthermore, we consider the regional attacker of Model B who is in
control of border routers or entire ASes.

Attack in the core Finally, we also allow the attacker a position in the core of the
network. This is a refined version of the attacker in Model C.

Our focus will be on the first two positions: these were the positions of the alleged
attackers in the reports we have, such as [188, 183, 145].

Figures 9.2(a)–9.2(d) depict attackers at different positions and with either selective
or non-selective behaviour. Figure 9.2(a) shows a non-selective attacker who operates
close to the client, e.g., a poisoned wireless access point. Figure 9.2(b) shows the much
more powerful but still non-selective attacker who controls an entire system to which
several subsystems are attached. This corresponds to the regional attack.

Figures 9.2(c) and 9.2(d) show attackers that cross bearing, and indeed any tracing
system, are less effective against. Figure 9.2(c) depicts a selective attacker that is
located close to the client but acts only against a subset of the clients attached to the
system he controls. Note that this is still an attacker in our Model A, just with a
different behaviour. Figure 9.2(d) is a very powerful and cunning attacker: he is in
control of an important system in the Internet core (e.g., an important transit AS) and
stages his attack against just a subset of client systems at the periphery. This is our
Model C, once again with a special kind of behaviour on the attacker’s side. A possible
example is state-condoned industrial espionage where a government agency stages a
man-in-the-middle attack on traffic passing through their AS. Note that man-in-the-
middle attacks become more difficult the more the attacker moves towards the core of
the network: the attacker needs to modify both directions of the traffic; but phenomena
such as hot-potato routing [71] and BGP peering policies like valley-free routing [63]
often cause IP packets to take different return paths.

We discuss now how effective Crossbear is for each scenario and which additional
steps can be taken to aid detection and localisation.

9.3.2. Detection

In general, all ongoing man-in-the-middle attacks can be reliably detected by Crossbear
because the queried Crossbear server observes a different certificate for the victim
server. This is true for all attacker types we focus on and for all attackers in Figure 9.2,
except for the last, and then only if he chooses to manipulate BGP (see below). Note
that if the attacker chooses to attack the connection to the Crossbear server, this is
detected and the add-on will react to it (see Section 9.2.4).

The only attack that cannot be reliably detected by certificate comparison is when
the attacker is on all paths to the victim server. This is a weakness all notary systems
share. Such an attacker would either have to hijack BGP routes (as proposed in [199]),
and covered by our Model C) or position himself at a point in the network where
all paths to the destination have already converged, i.e., close to the victim server.
If the victim server has been observed previously, however, Crossbear can still profit
from historical information available at the server and from previous observations by
the Convergence notaries. When important certificate properties like the issuing CA
change, this will flag a client report for manual verification.

9.3.3. Localisation

Excluding the attacker who controls all paths to the victim server, the ability to ac-
curately trace the attacker’s position in the network depends entirely on the attacker

211

9. Crossbear: detecting and locating man-in-the-middle attackers

(a) (b)

(c) (d)

Figure 9.2. – (a) Non-selective attacker in vicinity of client. (b) Non-selective state-level at-
tacker. (c) Selective attacker in vicinity of client. (d) Selective (super-)attacker
in core of network.

acting selectively or non-selectively. In the following, we describe localisation for the
non-selective and the selective attacker.

The non-selective attacker

The non-selective attacker lends itself well to localisation. In order for this to work,
Crossbear needs a traceroute from the victim client and from at least one hunter that
is attached to an upstream system (from the attacker’s point of view) which reports
a clean connection. The accuracy increases the closer that upstream system is to-
wards the attacker’s own position and if that view is corroborated by other hunters
either downstream (reporting poisoned connections) or upstream (reporting clean con-
nections). Giving a precise estimate of the accuracy is a difficult undertaking as there
is a definite lack of data about routing paths on the Internet. However, it is still pos-
sible to give a rough estimate of how many hunters are required in order to locate a
non-selective attacker. To this end, we require a number of simplifying assumptions to
make the model suitable for analysis, a fact that we fully acknowledge.

Basic observation In the following, we derive a closed-form model to estimate the
average number of hunters needed to locate a man-in-the-middle attacker with a certain
probability. Our analysis is based on an observation that holds for most Internet traffic:
once two traffic flows with the same destination converge at a point in the network, they
will not separate again until they reach their target. This is a characteristic of standard
IP routing, which is based on the destination but not on the source address. Exceptions
exist (e.g., ECMP [122]) but are rare; hence our model will hold for most cases. Given
a path from victim client to victim server via an attacker, traceroutes from hunters

212

9.3. Analysis and discussion of effectivity

will join the path at some point. Due to the genericity of our model, we can apply
it at router level (i.e., to find the router conducting the man-in-the-middle attack) as
well as at AS level (i.e., to find the AS conducting the attack). In the following, we
will thus use the generic term node to denote a router or an AS. Our model will only
require the distribution of path lengths between victim client and victim server and the
distribution of node degrees as input. Such data can be derived from publicly available
sources and from measurements from our own university network.

Closed-form model for estimating the number of hunters We construct our model for the
case of exactly one victim client, called C, and one victim server, called V . We use the
symbol↭ to denote a path between source to destination, i.e., an ordered set of nodes,
and write C ↭ V . We denote the nodes on the path as Xj . X1 = V is the victim server,
and X2 is connected to X1, and so forth. X` is connected to C. Figure 9.3 shows a
visualisation, with X` = X7. We now denote an ongoing man-in-the-middle attack on
the path C ↭ V by denoting the position of the attacker on the path as M =∶ Xm. In
our example in Figure 9.3, we have M =X5.

We now let the hunting process begin, i.e., we assume that C has caused a certific-
ate verification by the Crossbear server S, and S found a mismatch according to the
conditions we defined (certificate mismatch and certificate unknown to Convergence).
Hunters H1, . . . , Hn begin their work and carry out TLS handshakes with V , fol-
lowed by tracerouting. The question we want to answer is what value n must take for
localisation to be accurate.

Figure 9.3 gives this intuition. The attacker can be accurately located if, at the
very least, traffic from a hunter joins the path to V exactly at Xm (in our example,
this hunter would be H1) and if traffic from another hunter joins the path at the first
unpoisoned system Xm−1 (here: H2 and X4). The goal of our model is thus to give a
formula to estimate the probability of hunters being placed in these positions.

Assumptions We need to make some simplifying assumptions in order to be able to
derive a model that can be evaluated with the few data sources that are available about
Internet routing:

1. We assume the attacker behaves as described in our threat model and there is
only one point in the network where the interception takes place: node M .

2. The attacker must work non-selectively.

3. We assume symmetric traffic paths, i.e., V ↭ C is symmetric, even if the path
leads over M or a hunter Hi. This assumption may often not hold in real-world
routing, where paths can be asymmetric. However, our final model will only
depend on path lengths. This means that even if asymmetric routing occurs, our
model will still remain relatively accurate if the lengths of the asymmetric paths
are not significantly different.

4. We assume packets are forwarded based only on their destination addresses. Only
the attacker M is exempted here as he may divert traffic. In particular, if two
traffic flows have converged at some node and have the same destination node,
they will not separate again. For real-world routing, this assumption will mostly
hold. Exceptions may occur, however. One example is so-called hot-potato rout-
ing on the level of ASes when traffic streams from two nodes have ingress points
far away from each other.

213

9. Crossbear: detecting and locating man-in-the-middle attackers

X
7

X
6

X
2

H
3

H
4

X
1

X
5

X
4

X
3

H
2

H
1

C

unlikelynot allowed

impossible

M= V=

Figure 9.3. – Visualisation to derive closed-form model.

5. We assume the hunters are distributed uniformly over the network—i.e., the
likelihood that a hunter is placed at a certain location is the same as for any other
location. In real-world scenarios, this assumption may often not hold as Crossbear
clients are more likely to be distributed in stub ASes. Different distribution
functions could be used, but they would need to pass a plausibility test, too. They
would also complicate the model considerably and make it much less accessible
to analysis.

6. Finally, we assume the following. Let H1 be a randomly placed hunter node
carrying out a traceroute to S. Let Xj be an intermediate node on the path, and
Xj−1 its successor. We denote the probability that traffic from H1 passes Xj−1 as
Pr[Xj−1]. We now assume thatXj forwards traffic to all its neighbours with equal
probability (this includes successor Xj−1). The only node that will not receive its
traffic is Xj−2 as this would imply a routing loop: H1 Xj−2 →Xj−1 →Xj−2. In
Figure 9.3, we label this the ‘impossible’ path.

Probability that a hunter covers a node With these assumptions in mind, our first step
in deriving the model is to determine the probability that traffic from a hunter H1,
which is placed randomly, will traverse a given intermediate node Xj . We only analyse
one traffic direction here, namely the one that is of most interest: from sources towards
the server V .

We denote the degree of node Xj (i.e., its incoming and outgoing links) as dj .
Due to our assumption of equal probability, the probability that traffic arriving at H1
does so via Xj can be given as 1/(dj − 1). Taking the entire path into account, we
can give the overall probability that some traffic from H1 passes Xj as the product
Pr[Xj] =∏j

k=1 1/(dk − 1).
Interestingly, this assumption works in favour of our model as our estimate is lower

than what might be expected realistically: in real settings, certain neighbours are never
possible due to routing behaviour like hot-potato routing, valley-free routing, or simply
certain topological positions. In our figure Figure 9.3, for instance, we place H4 ‘close’
to X2 to hint that a direct path between them is more likely than a long route via other
hops (which we labelled ‘unlikely’). Applied to our computation of the probability, this
means that dj is often smaller than we assume it. Consequently, the probability that
H1’s traffic goes via Xj is higher than we denote it in the model.

Probability for correct placement The next step we have to execute is to determine
the probability that two hunters are placed in the position they need to be in. Recall
our two requirements from above. If we want to accurately determine the position
of the attacker to be Xm, there must be one hunter H1 who experiences the attack
because traffic coming from it crosses Xm, but not Xm+1 (i.e., traffic coming from C
and from H1 merges exactly at Xm). We also need another hunter H2 who does not
experience the attack any more because its traffic crosses the next hop towards V from
the point of view of M , i.e., the node Xm−1. The first requirement dictates that the
traffic cannot have come via Xm+1. It cannot have come via Xm−1, either: this node

214

9.3. Analysis and discussion of effectivity

is the successor of Xm, and thus this would be a routing loop, which we forbid. Our
assumption 6 allows us now to derive the probability that the first requirement is met:
we can express this as Pr[req I] = (dm − 2)/(dm − 1) ⋅ Pr[Xm]. This is the probability
that traffic from H1 crosses Xm, times the probability that this traffic does not cross
Xm+1. The probability that the second requirement is met can be expressed in the
same way, namely as Pr[req II] = (dm−1 − 2)/(dm−1 − 1) ⋅Pr[Xm−1].

We now use assumption 5 and exploit the fact that hunters are distributed uniformly
over the network—in other words, the placement is a Bernoulli trial (either a hunter is
placed at a certain position or not). This allows us to express the probability that at
least one out of n hunters meets the second requirement, namely as 1−(1−Pr[req II])n.
Our goal is now that at least one of the n−1 remaining hunters meets the first require-
ment: this can now be expressed as 1 − (1 −Pr[req I])n−1.

Since both first and second requirement must be fulfilled, we can derive the
total probability that the attacker can be located at Xm as the following product:
Pr[locate(Xm)] ∶= (1 − (1 −Pr[req II])n) ⋅ (1 − (1 −Pr[req I])n).

Note that the formula can be extended to express the following: if we are satisfied
with less accuracy, e.g., with locating the attacker with an uncertainty of one or even
more hops, we can express this as letting the traffic flows of our hunters cross nodes
further away or closer to C or V , respectively.

Arbitrary positions for C, V , and M So far, we have always assumed that our path
between C and V is of a fixed length, which we call `. Naturally, path lengths on
the Internet vary, and we need to reflect the dependency between a non-fixed path
length and the possible positions of the attacker on such a path in our model as well.
The probability of localisation can be expressed as an aggregated probability, namely
summing over all possible path lengths while summing over all possible locations the
attacker may then have for this path length. This yields the following formula, which
is also our final closed-form model:

Pr[locate] ∶=
max path length

∑
k=1

(Pr[` = k] ⋅
k

∑
m=1

Pr[locate(Xm)])

Topological data for the closed-form model With our closed-form model developed, we
now need to determine input data in order to obtain concrete probabilities. The input
to our model is two-fold: we need a distribution that gives us `, i.e., path length, and
we need a distribution for the node degrees dj . We thus collected data for both, on the
level of Internet routers as well as ASes.

For node degrees on router-level, we used topological data provided by the Rocketfuel
project [68]. Unfortunately, the data set does not reveal whether a node was a client
or a server in a measurement. We thus computed the average node degree d̄ = 3.98 and
set dj = d̄ in our model. We acknowledge this is imperfect, but with more precise data
sets available, it is easy to do our computations again.

For the path lengths (on router-level), we relied on traceroute measurements from
our own university network. We chose 30,000 random hosts from the Alexa list of the
top 1 million most popular Web hosts [133] and determined the distribution of path
lengths. We found a range of 5–28 hops, with a mean value of 15.28 and a median of 15
hops. In order to determine whether these values are representative for other vantage
points as well, we downloaded the traceroute data sets from CAIDA [152], originally
used in [52]. We determined both mean and average values for UDP traceroutes2
that contained the complete path. Table 9.3 shows the results—our values fall into

2This is called Method 3 in [52]. The files are named *3meth.[location.warts.gz].

215

9. Crossbear: detecting and locating man-in-the-middle attackers

Location Mean Median
Barcelona, Spain 15.08 15
Daejeon, Korea 16.24 16
Helsinki, Finland 17.72 18
Washington D.C., USA 15.03 15
San Diego, USA 16.27 16
Sydney, Australia 14.23 14

Table 9.3. – Path lengths for the CAIDA data set.

the middle of the range they span. We thus decided to use the distribution we had
determined ourselves.

Concerning input data on the AS level we relied on the Route Views archive [131].
We downloaded the data set (MRT-formatted full-table RIBs3) for 7 July 2011 (12:00)
for the following vantage points: Oregon IX, Equinix Ashburn, ISC/PAIX, KIXP,
LINX, DIXIE/WIDE, RouteViews-4, Sydney, and São Paulo. We combined them and
determined the average number of neighbour ASes that an AS has. We obtained an
average node degree of 3.51. Path lengths were in the range 1–17, with a mean of 3.25
and a median of 3.

Results using the model We computed the localisation probabilities for two different
settings: on AS-level and on router-level. For the latter, we computed values for exact
localisation and for an uncertainty of one and two hops. Figure 9.4 shows the results.
On the level of ASes, we find that a small number of hunters already gives quite
satisfying results. About 100 hunters are enough to make the probability of accurate
localisation rise to nearly 100%. Findings at the router-level are less encouraging, at
least at first glance. Although 100 hunters are sufficient for a localisation probability
of roughly 25%, this increases only slowly with a (much) higher number of hunters.
1000 hunters increase it to only 40%, and even 100,000 hunters cannot increase it
beyond 60%.

Both results must be viewed in the context of the attackers that Crossbear is designed
to work against, however. Considering the weaker attacker who is only in control
of a wireless access point (see Figure 9.2a), a successful localisation needs placement
of hunters in the exact same ISP network anyway—it is only to be expected that a
large number of hunters is required for this purpose. Considering the regional attacker
(see Figure 9.2b), localisation on the level of the AS is sufficient evidence. Thus,
the localisation probabilities on this level show that Crossbear works well against our
attackers.

The challenge of selective attackers

Selective attackers can neither be localised directly nor on-the-fly. Indeed, the pos-
sibility of selective attackers requires that every reported attack is carefully analysed
manually.

Consider Figures 9.2(c) and 9.2(d): no hunter, not even downstream, experiences the
attack. As far as tracerouting is concerned, these attackers become indistinguishable
from the one in Figure 9.2(a). A major challenge thus lies in telling them apart. The
approach to take here is to look for clues that the attacker left behind. In particular,

3Routing Information Base, i.e., BGP dumps.

216

9.3. Analysis and discussion of effectivity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of hunters

A
tta

ck
er

 lo
ca

lis
at

io
n

pr
ob

ab
ili

ty

10 100 1000 10,000 1e+5 1e+6

AS
Router (uncertainty=2)
Router (uncertainty=1)
Router (exact)

Figure 9.4. – Estimating the number of hunters required to pinpoint an attacker. Note the
logarithmic x-axis.

raising the out-of-band information described in Section 9.2.3 may help find evidence
that reveals the nature of the attack.

Let us assume a selective attacker, and let us assume that we are in possession of
traceroutes from hunters that are affected by the man-in-the-middle. Ideally, we have
traceroutes from seemingly non-affected hunters in the same AS, and ASes in the same
country, and ASes that are attached to an AS that is further upstream towards the
victim server. One mechanism that comes to our aid here is that the attacker cannot
easily forge additional traceroutes and send us rogue traceroutes with forged source
addresses. The hunting reports require him to carry out full TCP handshakes with
the Crossbear server4, i.e., intercept replies to the IP address he is spoofing. Thus, he
can only choose his source IP from the system he controls or one that is attached to it
further downstream. Also recall that a traceroute can be tested for plausibility, albeit
only to some degree, with available BGP data (e.g., [131]). The hints we are looking for
now are poisoned routes from different stub ASes, i.e., ASes on the network periphery.
If we find such routes in our data, we can at least conjecture that the man-in-the-middle
is located either where traffic streams from these ASes converge (the earliest possible
location) or further upstream.

One plausible alternative would be simultaneous attacks against multiple ASes. This
is expensive, but possible. One way to tell the two cases apart is to investigate if the
forged certificates share properties (like issuer, key lengths, X.509v3 extensions). If
they do, this points to a common rule set for creation, and hence two separate man-in-
the-middle attacks are less likely.

The next step to execute is now to look up the ASes and countries of all hops in
the traceroutes. A hint that a selective state-level attacker is indeed at work is then
if we find that the source IPs in the traceroutes belong to an AS or country which
we associate with radical monitoring of their own population. If the earliest possible
location is already in that country, that is another hint.

If we do not find anything of the kind, however, our chances become slimmer. One
pattern that is still worthwhile to look for is the one that the selective super-attacker in
the core of the network (Figure 9.2(d)) should show. If the purpose of the attacker is in-
dustrial espionage, one may expect that the man-in-the-middle reports and traceroutes
are primarily from organisations within a select few countries.

Naturally, all of the above is a mere test of plausibility, and we acknowledge that
the proposed methods require (comparatively) intensive manual labour. However, we

4The public IP notifications have the same effect before hunting even starts.

217

9. Crossbear: detecting and locating man-in-the-middle attackers

wish to point out that until now the research community has practically no data at all
about man-in-the-middle attacks occuring in the wild. Any such report providing hard
data will advance current research. The man-in-the-middle attack in [183], for example,
became known thanks to external reports and because someone made the effort to try
and inform the outside world. Receiving automated reports is thus useful even where
automatic localisation is not possible. This is why we advertise Crossbear as a tool to
record as much data as possible about attacks, but not as a silver bullet in exposing
attackers.

9.3.4. Attacks against Crossbear

We analyse to which degree Crossbear is vulnerable to attacks itself. Due to Crossbear’s
open nature, there are several options for particularly aggressive attackers. Many of
these cannot be entirely avoided and have to be dealt with in a reactive way.

Denial-of-service attacks against the Crossbear server

The Crossbear server is, naturally, a single point of failure. There are a variety of
denial-of-service attacks that can be staged against it. On the level of TCP/IP, the
usual (pro-active and reactive) defences must be taken, e.g., firewalls, remote shell
access to the server must be limited to trusted hosts, etc.

The Crossbear server must accept TLS-secured connections (HTTPS) for certificate
verification requests. TLS shows some vulnerability to denial-of-service attacks as the
TLS handshake requires more resources on server-side than on client-side. This is a
vulnerability that cannot be well mediated (and is, in fact, shared by all TLS-secured
hosts). One defence is to use TLS acceleration in hardware, which offloads the cryp-
tographic operations to dedicated hardware. As an academic project, Crossbear does
not (yet) employ such hardware.

Crossbear uses the Tomcat Java application container. Attacks are thus possible
against weaknesses of Tomcat (which is itself written in Java). Both Tomcat and Java
have so far a good security record in this regard. Continuous updates must be applied
and libraries kept up to date, however.

A denial-of-service attack as described above would only render the Crossbear service
unusable for the duration of the attack. As Crossbear’s primary role is that of a data
gathering tool, not a PKI reinforcement, we consider such attacks to be of only minor
criticality for Internet security. After all, a denial-of-service attack on Crossbear would
indicate that Crossbear is viewed as a threat by some parties—and it might actually
leave forensic evidence behind that could be analysed later.

False reports and malicious hunters

Two other kinds of attacks have the potential to be much more damaging to Crossbear.
One way to cause high load on the Crossbear server is to flood it with a large

number of reports of alleged man-in-the-middle attacks. This would cause Crossbear
to initiate a hunting task for every report it has received. In turn, every participating
hunter would pull and execute the tasks, and send reports to the server. At current
deployment plans, the stand-alone hunters on PlanetLab alone would cause up to 150
reports per hunting task—a considerable amplification.

An attacker could pursue two goals with such an attack: either stage a more sophist-
icated denial-of-service attack or make real man-in-the-middle attacks hard to find in a
mass of reports. Unfortunately, Crossbear’s nature as an open reporting system makes
it very hard to counteract such attacks. Clients and hunters do not have to register

218

9.4. Status of deployment and cooperation with OONI

nor do they have IDs. This was a conscious choice to encourage user participation. As
is true for all such systems, however, one consequence is that attackers can freely send
forged data to the server. There is really only one defence: continuous monitoring of
requests and reports, with special regard to the rate at which these are received, and
alerts when the rate suddenly changes drastically. In such cases, it is more reasonable
to assume an attack than a sudden increase in the number of Crossbear users.

There are a number of reactions the server can take, although none of these have
been implemented yet. A fine extension would be to switch to a forensic mode. As
long as resources are not nearing exhaustion, the server would still accept requests
to verify certificates. Only when the system is approaching a critical state would the
server deactivate the listening on TCP port 443. In the meantime, hunting tasks would
still be created, but not written to the Hunting Task List for distribution to hunters.
Instead, the received requests would be analysed with respect to origin (IP address,
AS, and geolocation). Human intervention would be required from this point on to
determine if the attack shows a certain pattern that is worth publishing and passing
on to interested parties. Recurring entries would be of great interest. It is conceivable
that an attacker makes use of a botnet to stage this attack. This would probably make
the forensic data much less interesting as the attack would be distributed over a large
number of systems. However, it would also require dedicated code implemented in the
bot—this would be a highly interesting find in itself.

The above attacks can be further refined if the attacker employs ‘malicious hunters’.
Here, the attacker first drops the connections of all honest hunters in the system he
controls or that are attached to it (note that this may lead to out-of-band reports).
Then, his malicious hunters send forged reports stating that the connection via the
attacker is fine and no man-in-the-middle is detected. The Crossbear server will thus
have received only one report of a possible attack (from the original client victim) and
a large number of forged reports. This hides the nature of the attack as it seems that
only the original client is affected. The only defence that Crossbear has here is that
the attacker’s source IP is ascertained. As long as the attacker is not in the core of the
network, this will result in a suspicious cluster of reports from the same AS or country.

Ultimately, the conclusion to draw here is that Crossbear is effectively always in-
volved in an arms race. Unfortunately, this arms race favours the attacker: the attacker
is (in all likelihood) in control of parts of the network and can introduce new attacks at
his discretion. Crossbear can only react. This is a weakness it shares with all tools for
observation. There is, by its very nature, very little that an observer can do to prevent
an attacker from tampering with the observation data if the attacker has some control
over the observed object.

9.4. Status of deployment and cooperation with OONI

The Crossbear server is hosted at Technische Universität München. Crossbear is cur-
rently available in version 1.5 in the master branch of the code repository [250]. The
current roadmap envisages the release of Crossbear 2.0.

As a result of a technology grant, the Crossbear protocol has also been implemented
for the Open Observatory for Network Interference (OONI) [24], a project supported by
Tor [269]. Crossbear is now available as a module for OONI. We expect this to increase
our user base considerably, in particular as OONI’s intended audience is practically
identical to ours. Within the same project, we developed a visualisation component
that displays traceroutes from several hunting reports and highlights the intersection
points, while providing meta information like the AS and country where a certain hop
is located.

219

9. Crossbear: detecting and locating man-in-the-middle attackers

The original stand-alone hunters were implemented in Java and deployed on the
PlanetLab test bed, peaking at 150 instances at one time. At the time of writing,
they have been deactivated in preparation for a new Python-based stand-alone hunter.
The experience with Java was that automated deployment is too difficult in a changing
environment like PlanetLab due to the need for a modern run-time environment. The
new Python-based hunters are a spin-off of the implementation of Crossbear for OONI.
They will resolve the problems the Java-based hunters had.

There are several features that we plan to add to Crossbear. Among these, TCP-
based tracerouting has a high priority as it gives us another, and possibly more con-
clusive, way to detect intermediate hosts and networks on the routing paths. Another
option we investigate is whether we can route certificate verification requests and hunt-
ing reports via the Tor anonymisation network [269]—not to increase privacy, but due
to its good properties in bypassing network blockades.

A further extension is to have the server sign its messages so clients can verify them
even over a poisoned connection. This feature has been added in the meantime and
found to be stable enough for the next major release of Crossbear, version 2.0.

At the time of writing, our database contains about 4000 certificate observations
conducted by our server plus another 2000 retrieved from Convergence notaries. Results
have been reported from more than 150 unique sources. We have not found indications
of man-in-the-middle attacks so far, however.

9.5. Related work

Crossbear is a part of the movement that started after the DigiNotar incident showed
how disastrous the compromise of a single CA can be.

Concerning its notary concept, Crossbear’s closest relatives are, naturally, Perspect-
ives [77] and Convergence [268]. A primary difference to Perspectives is that Crossbear
does not employ a data redundancy protocol (i.e., cross-validation). It features both
the spatial and temporal redundancy, however, as the Crossbear server uses Conver-
gence notaries and keeps track of observations. Crossbear also initiates verification on
demand. This is one of the changes that distinguishes Convergence from Perspectives,
too. Just like Perspectives, Crossbear can include data from active scans of the IPv4
space for reference, however. Such data is available from our own empirical measure-
ments (see Chapter 4). In contrast to both Convergence and Perspectives, Crossbear is
designed to raise additional information about the hosts involved in the TLS handshake
and on the IP path.

All notary concepts share the problem of lack of privacy: notary operators know
which sites users access. Convergence employs a simplified onion-routing to mediate
this. The original paper on Perspectives proposes a DNS-based method to limit the
impact on privacy; this has not yet been implemented. Crossbear does not address
privacy issues: as its purpose is to collect and report data about real attacks, privacy
was a subordinate design goal. However, we do follow developments in this field and
introducing privacy-sensitive modes remains an option.

Concerning reporting of attacks, Crossbear’s closest relative is the Open Observatory
for Network Interference (OONI) [24]. In contrast to Crossbear, OONI is a more
comprehensive framework to report all kinds of interference with network connections,
e.g., HTML headers or TCP properties. It does not feature a central coordination,
however, i.e., OONI clients do not act on-demand and cannot be coordinated to achieve
a common goal (like Crossbear’s hunting).

220

9.6. Discussion

9.6. Discussion

We conclude this chapter with a discussion of Crossbear’s possibilities.
Crossbear is a tool that can be employed to detect and locate man-in-the-middle

attacks on TLS, and we have analysed against which attacker types it is particularly
effective. The hypothesis that Crossbear was built to verify or falsify was that two
kinds of attackers are the prevalent ones on the Internet: a relatively limited attacker
close to the victim client, and a very powerful attacker that has possibilities normally
associated with a country.

We found that Crossbear’s effectivity in localising the attacker’s position in the
network depends strongly on the behaviour of the attacker it faces. Best results can
be expected against an attacker who stages a non-selective man-in-the-middle attack.
Selective attackers cannot be accurately located. The recent development of Cross-
bear has thus focused on enriching data from hunters with information about traversed
ASes, geographical location of routers, and keeping track of certain certification inform-
ation. Any reported attack will always require manual analysis; and we consequently
developed tools to facilitate this process.

It is not implausible at all that nations today are willing to deploy large-scale sur-
veillance techniques. These can be used for good or for bad. Furthermore, while it was
known that attacks against BGP can be used to stage man-in-the-middle attacks, the
publication of the Internet Census 2012 [136] showed that a devastatingly high number
of devices, even routers, lack any proper access control and can be easily compromised.
The question is how Crossbear can help in such a scenario. The answer remains the
same: much depends on the position of the attacker in the network and his activity. The
less selective an attacker acts, the better are Crossbear’s chances to locate the affected
router or AS. We emphasise that even where accurate localisation fails, Crossbear will
still provide evidence that an attack has occurred. This is a worthwhile objective in
itself.

We also analysed active measures that an attacker can take against Crossbear. Like
all open systems, Crossbear shows a vulnerability here. However, such counter attacks
leave hints, too, and this may again be useful evidence. So far, we have not registered
any malicious activity against our infrastructure.

We advertise Crossbear as a tool to make a step forward in the reporting and also
in the localisation of man-in-the-middle attacks in the wild. We expressively do not
market it as a silver bullet to expose all kinds of attackers.

9.7. Key contributions of this chapter

This chapter addressed Research Objective O3.2. We designed and developed Cross-
bear, a tool that is able to detect ongoing man-in-the-middle attacks and additionally
locate the position of the attacker. In the following, we list the key contributions of
this chapter:

Notary concept We use the notary concept as made popular by Perspectives and later
Convergence (see Section 8.4). The rationale is that only the notary concept
allows to detect and report attacks, using different positions on the Internet. We
rely on the existing infrastructure of Convergence in addition to our own hunters
to obtain a distributed view of a potential attack.

User base We explicitly advertise Crossbear as a tool for those users that wish to make
a contribution towards a safer Internet and have the expertise to assess Cross-

221

9. Crossbear: detecting and locating man-in-the-middle attackers

bear reports. While Crossbear provides a function to warn users of a potentially
ongoing attack, the reported ratings must be interpreted by a human user.

Detection: automated reports Crossbear is the first tool to incorporate automatic de-
tection and reporting of man-in-the-middle attacks. To this end, we implemented
it as a Mozilla Firefox add-on plus a server component. A report is triggered in
a very conservative fashion with the Crossbear server as an authority: if a client
reports an as-yet unknown certificate and the Crossbear server cannot corrob-
orate the report, it will create a hunting task. It also sends a warning for the
(experienced!) user, accompanied with information that aids in distinguishing a
true attack from a false positive.

Hunting and localisation When confronted with conflicting reports about a certificate,
the Crossbear server will initiate hunting tasks. These are downloaded from the
server and executed by hunters. Hunters are implemented as part of the Firefox
add-on and also in stand-alone versions. They report a server certificate from
their point of view and additionally send a traceroute. The traceroutes can be
evaluated to determine the position of the attacker.

Accuracy against different attackers Crossbear works best against the non-selective at-
tacker who tries to stage a man-in-the-middle attack against all clients whose
network paths he can control. The attackers we have in mind are subclasses of
the attackers we described in our threat models in Chapter 8, in particular a weak
and local attacker and a stronger, regional attacker. We evaluated the effectivity
of Crossbear against these attackers and found a relatively low number of hunters
is sufficient to trace the attacker to a specific AS.

Selective attackers We also evaluated the possibility of selective attackers. These can-
not be located reliably with a notary concept as they affect just a single client. The
possibility of these attackers makes it necessary to inspect reports from hunters
manually.

Countermeasures We also described a variety of countermeasures that an attacker could
use against Crossbear. These are generally applicable to any open system. Our
position is that while attackers can carry out such countermeasures, it is likely
that this still leaves traces of the attack that can be valuable for analysis. Fur-
thermore, Crossbear raises the barriers for attackers.

Complementing other approaches We advertise Crossbear as a useful complement for
approaches to reinforce the X.509 PKI. We integrated it with the Open Obser-
vatory for Network Interferences [24].

9.8. Statement on author’s contributions
This chapter is an extended version of the following paper: R. Holz, T. Riedmaier,
N. Kammenhuber, G. Carle. X.509 Forensics: detecting and localising the SSL/TLS
Men-in-the-middle, Proc. 17th European Symposium on Research in Computer Security
(ESORICS), Pisa, Italy, September 2012 (reference [38]).

The above publication is based on, and a continuation of, the work that Thomas
Riedmaier carried out in his Master’s Thesis: T. Riedmaier. Distributed detection
and localization of TLS men-in-the-middle. Master’s thesis. Technische Universität
München, Fakultät für Informatik, March 2012 (reference [64]). Under the guidance of
the author of this thesis, Thomas Riedmaier developed the Crossbear protocols and the

222

9.8. Statement on author’s contributions

scoring mechanism. He implemented the initial versions of both the Firefox add-on and
the Crossbear server. Later, Vedat Levi Alev and Jan Seeger implemented the OONI
module for Crossbear, advised by the author. They also developed the out-of-band
information collection carried out by the Crossbear server. The author made some
contributions to the Firefox add-on and the OONI implementation.

The author contributed to the results in the publication and the chapter in the
following way. The first draft outlining Crossbear’s principle and operation was de-
veloped by the author. The author later contributed to the design decisions made dur-
ing Thomas Riedmaier’s Master’s Thesis. He also added the out-of-band information
the Crossbear server collects and redesigned the scoring algorithm for certificates. The
author provided the analysis of Crossbear’s effectivity in the context of the threat mod-
els (detection and localisation, non-selective and selective attacker) and also provided
the analysis of traceroutes from the CAIDA data set. The author made significant
contributions to the analysis of attacks against Crossbear. The definition of Crossbear
in the notation developed in Chapter 7 was added by the author and did not appear
in the publication.

The author also wrote the paper [38]. The exception is the closed-form model and
its evaluation (the author provided the analysis of the CAIDA data sets later; it is
included only in the thesis, not in the paper).

The following sections are adapted from the respective sections in the paper. Sec-
tion 9.1 corresponds to the introduction in the paper, rewritten to serve as a motiva-
tion. For Section 9.2.1 the author added a significant amount of details on Crossbear’s
principles and embedded it in the threat model. For Section 9.2.2, the author added
clarifications on the expected user base. Section 9.2.3 is a revised and restructured ver-
sion of the corresponding text in the paper. The author made changes to embed it into
the chapter and added details about out-of-band information sources. For Section 9.2.4,
the author added the description by means of the notation developed in Chapter 7. The
computation of the score was changed to reflect later design decisions. In Section 9.3.1,
the author made changes to adapt it to the refined threat model. Section 9.3.2 is a
shortened version from the paper. For Section 9.3.3, the author rewrote the derivation
of the closed-form model entirely. He added new results from an evaluation of a data
set from CAIDA and added some clarifications on selective attackers. Section 9.3.4 is
mostly from the paper, but has been extended with the proposal of a forensic mode.
The section on deployment, Section 9.4, has been extended by the author to contain the
description of OONI. Section 9.5 is based on the related work from the paper, but with
a more detailed discussion of Perspectives and Convergence as well as a new section
on OONI. Finally, for Section 9.6, the author extended the discussion in the light of
recent developments in 2013.

223

Part IV.

Summary and conclusion

225

10 Chapter 10.

Summary and conclusion

In this chapter, we first summarise the key findings of this thesis. We then provide a
number of conclusions concerning future research on PKIs, based on our findings.

10.1. Results from Research Objectives
This dissertation had three larger Research Objectives, which were in turn split into
several smaller ones. Figure 1.1 in Chapter 1 provides a graphical reference.

Research Objective O1

Research Objective O1 addressed problematic issues in the X.509 PKI. The purpose of
Research Objective O1 was:

O1.1 To identify weaknesses in X.509 that had been criticised previously and determine
whether these were satisfactorily addressed. The approach here was documental,
with empirical elements.

O1.2 To investigate known incidents in X.509 and identify their root causes. The
method we chose here was a documental analysis.

O1.3 To derive conclusions what kind of reinforcements to the X.509 PKI are needed
in order to strengthen it.

Research Objective O1.1

For Research Objective O1.1, we found that the documented weaknesses have mostly
not been addressed. A primary criticism was that the existence of too many CAs,
subordinate CAs and RAs multiplies the attack surface, and the weakest such entity
determines the strength of the entire PKI. To gain a better picture how many entities
with signing capacity exist, we analysed the root store of the Mozilla Firefox browser.
We found that the number of root certificates has been increasing since late 2000 and
continues to increase. It is now well over 130. We also verified how many organisations
are owners of such certificates. We found 65 organisations with root certificates in the
root store, and another 40 were applying for inclusion. A second documented weakness
concerned the liability of CAs. Previous research had documented that CAs did not
assume any liability for certificates they issued. We analysed the Baseline Requirements
by the CA/Browser forum and found that this is still the case (they are not required
to offer any liability). CAs offer very limited liability for Extended Validation (EV)
certificates, however. The final criticism we analysed concerned the technical difficulties
for CAs to verify an identity, in particular over insecure communication paths. We
found that CAs are still allowed to rely on email for identity verification. Email is

227

10. Summary and conclusion

also allowed in the case of EV certificates as a communication medium with, e.g., legal
entities that can confirm an identity. However, the checks that CAs need to apply for
EV certificates are much more thorough.

Research Objective O1.2

For Research Objective O1.2, we analysed twelve incident reports and technical reports
about compromises in the last twelve years, with particular respect to root causes and
how the incidents were detected. Our analysis of the documents showed that three
root causes were most commonly responsible. The first was failure to adhere to sound
operational practices, which was a root cause in seven of twelve cases. Some CAs
had been tricked into issuing certificates for the wrong entity, either because they did
not execute checks at all (Comodo 2008) or because their checks were poorly designed
(Thawte 2008, RapidSSL 2010). The incidents were often detected by third parties
(often by the ones that exploited it successfully and then disclosed it). Technical vul-
nerabilities were the cause for some graver incidents. In the case of Comodo of 2011,
an attacker had managed to compromise an RA, thus acquiring login credentials to Co-
modo’s signing system. In the case of DigiNotar in 2011, the attacker had breached the
CA to such a degree that he could issue a large number of rogue certificates. Allegedly,
this attack was connected to a man-in-the-middle attack. The incidents were either
detected by the CA (e.g., Comodo) or by an outside party (e.g., DigiNotar). In four of
twelve cases, the causes were coupled to a third root cause: CAs operating subordinate
CAs and RAs. The attacker did not target the main CA, but the subordinate entities.
This shows that proliferation of entities with signing capacity can be very dangerous
in hierarchical PKIs like X.509.

Research Objective O1.3

Based on our findings, our conclusion was that there is no possibility to fix the problems
of the X.509 PKI in a direct way, i.e., with changes to X.509 itself. Operational practices
can be violated by a CA, and options for technical control are limited. Vulnerabilities
in software are likely to always exist—at least, we do not expect a major change in
this area in the short or medium term. Although efforts are underway to add technical
constraints for subordinate CAs and RAs, the number of entities owning root certificates
will continue to remain high. Consequently, we derived three indirect mechanisms that
can help reinforce X.509:

Out-of-band solutions Security for users can be improved by using out-of-band mech-
anisms, i.e., technology that does not rely on X.509 itself.

Incident detection It seems infeasible to prevent all attacks. Thus, good defences should
also aim at fast incident detection and containment.

Monitoring of the deployed PKI Operational practices may be hard to enforce, but
poor practices show up in the PKI as it is encountered by clients. Monitor-
ing can help exercise economic pressure on CAs and server operators to execute
their duties with due care.

Research Objective O2

Research Objective O1 led to the insight that monitoring the state of the X.509 PKI
can be a sensible way to determine the quality of certification practices as they are
reflected in the state of the deployed X.509 PKI. In Research Objective O2, we took

228

10.1. Results from Research Objectives

one step back and investigated the state of three different PKIs, not just X.509. Each
of the selected PKIs serves a different purpose: X.509 is used primarily for the WWW
(HTTPS); OpenPGP is commonly used to secure email communication between end-
users; SSH—as an example of a PKI without Trusted Third Parties (TTPs)—is meant
primarily for network management. Our Research Objectives here were thus:

O2.1 To investigate the deployment and use of the X.509 PKI for the WWW, with a
focus on the quality of certification and possible weaknesses.

O2.2 To investigate the OpenPGP Web of Trust, with a focus on the usefulness for
users and the security the Web of Trust provides.

O2.3 To investigate the deployment of the SSH infrastructure on the Internet. A
particular focus was to be on problems that may be caused by key distribution
(i.e., network management).

In our investigations in Research Objective O2, we analysed the quality of each
PKI with respect to whether it can achieve its purpose and provide a certain level of
security. Necessarily, the methodology had to be different for each PKI. The X.509 PKI
can be investigated by active scans and passive monitoring. OpenPGP, on the other
hand, is not accessible to active measurement—but one can download snapshots of the
certification graph and apply graph analysis to determine whether the PKI can serve
its purpose. SSH, finally, is accessible to active measurement again, but conclusions
with respect to network management require to enrich the data set with data from
other sources, like DNS, WHOIS, and geolocation data.

Research Objective O2.1

We first analysed the X.509 PKI for HTTPS. We used two different methods. First, we
carried out long-term scans (1.5 years) of the Alexa Top 1 Million list of popular Web
sites. This allowed us to draw conclusions with respect to the configuration of Web
hosts and the quality of their certificates. We enhanced this view with additional scans
from other vantage points around the globe. For comparison, we added a data set from
a third party that was obtained with a different scanning method. Second, we carried
out passive monitoring of TLS connections in the Munich Scientific Network. Passive
monitoring allowed us to draw conclusions with respect to the certificate problems that
users really encounter (as opposed to how they occur as a result of deployment on
servers which might be accessed irregularly by users).

Validity of certificates The finding that gave reason for most concern was the certific-
ation of hostnames: only 60% of certificates had verifiable chains. The majority
was issued for a hostname that was different from the name of the domain on
which the certificate was used. On the whole, only about 18% of certificates
carried the correct hostname. Another problem were expired certificates, which
accounted for almost 20% of the certificates we found. Interestingly, the results
from our monitoring data sets indicate that at least the certificate chains in the
second monitoring run were more often correct (about 80%). This may be a result
of users visiting popular Web sites which had switched to TLS by default.

Self-signed certificates One might wonder if self-signed certificates, which may be used
in Trust-On-First-Use scenarios, are issued with greater care. However, we found
that this was not so. Only 1% were issued for the correct hostname.

229

10. Summary and conclusion

Further problematic issues We found further problematic issues. One was the reuse of
certificates on many domains, potentially across physical machines, which opens
attack vectors. Another were that some certificates were issued directly from a
root certificate, which hints at insecure practices at the CA. Where intermediate
certificates were used, the chain lengths were no real reason for concern.

Correlation to rank We found correlations between a site’s rank on the Alexa list and
whether it offered TLS or not. Interestingly, hosts on the lower ranks seemed to
often TLS more often than those on the very high ranks. This may be a result
of performance optimisations (high-ranking sites) versus use of default configura-
tions (low-ranking sites). Concerning certificates, we found that there is a positive
correlation between high-ranking sites and the validity of certificates.

Global vantage points The view from our global vantage points did not show larger
differences to the data sets obtained from Germany. It seems that operators of
CDNs exercise due care when deploying certificates.

Cryptography Concerning cryptography, our findings were largely unproblematic, at
least for the time when we carried out our observations. Lengths of both asym-
metric and symmetric keys were generally sufficient and the chosen block ciphers
secure. However, several attacks in the past two years point strongly at system-
atic weaknesses in AES-CBC and RC4, especially in the context of HTTPS, and
thus it is wise to repeat our scans and assess these parameters in the light of the
new findings.

Temporal developments We were surprised to find that changes in the certification prop-
erties or TLS connectivity of sites were very small during our observation period.
Both HTTPS configuration as well as deployment of certificates seem to change
very slowly. The most devastating incidents in X.509 happened after our obser-
vation period had ended, however. It would be interesting to repeat the scans to
determine changes.

Research Objective O2.2

We chose the OpenPGP Web of Trust as an example of a user-driven PKI: entities may
certify each other arbitrarily, and a trust model allows to determine the authenticity
of a key. Certification in this PKI means to sign another entity’s name and public key
to create a basic certificate. We analysed this PKI with respect to its usefulness, i.e.,
whether certificate chains allow users to authenticate the public keys of other users. We
used graph analysis for this purpose. We were also interested in whether the OpenPGP
Web of Trust shows effects of social relations between participants as this may indicate
a certain strength of trust relationships between entities.

Limited global usefulness Our first finding was that while the Web of Trust is relatively
large at 2.7 million keys, only about 1.1 million signatures were issued between
keys. Almost half a million keys were either expired or revoked. But even the re-
mainder of the Web of Trust could not make full use of it: mutual authentication
is only possible where certification paths between two users exist in both direc-
tions. We determined these so-called Strongly Connected Components (SCCs)
and found that there is a single Large Strongly Connected Component (LSCC),
to which many other keys connect only in one direction (incoming or outgoing
signature). The second largest SCC is already magnitudes smaller, at just about
some hundred keys. The Web of Trust can thus be useful for only a fraction of
its users.

230

10.1. Results from Research Objectives

LSCC structure We focused the remainder of our analysis on the LSCC, which con-
tained about 42,000 keys at the time. Viewing keys as nodes in a graph, we
computed their indegree and outdegree as well as clustering within the LSCC.
We found clear signs of a Small World effect. However, in contrast to previous
work, we could not corroborate a power-law distribution in the LSCC. Rather,
the structure of the LSCC is similar to a scale-free network, but with a much lar-
ger number of hubs of smaller size, which are well inter-connected. This should
make the LSCC very robust against removal of keys.

Usefulness in the LSCC We determined the degree to which users can benefit from the
LSCC by determining how many certification paths exist on average between any
two keys. The results showed that relatively few hops are needed to reach other
keys: several thousand other keys are at most three hops away, and almost the
entire LSCC is reachable via five hops or less. However, as the default trust model
of the popular implementation GnuPG limits evaluation of signature chains to
at most five hops, this also means that about 5000 keys can, on average, not
be reached from any (randomly selected) key. Unfortunately, while this was
still a good finding for usefulness, we could also determine that a third of the
keys had an outdegree of less than three, which is detrimental in GnuPG’s trust
model: users of such keys cannot make use of the so-called ‘marginally trusted’
certification paths and are essentially limited to authenticating such keys that
they have personally signed.

Robustness We could confirm the robustness of the LSCC when we simulated both the
random removal and targeted removal of keys. The LSCC remained remarkably
stable—more stable than could be expected for a scale-free network.

Community structure Our analysis of further social aspects, namely the community
structure of the Web of Trust, provided less conclusive results. While we could
show that communities exist, there is too little information available to trace
social relations really well. We found signs that the same top-level domains occur
frequently within one community, but could not establish the same finding for
second-level domains. Signature creation times hinted at social meetings where
keys had been signed.

Cryptography Finally, concerning the security of cryptographic algorithms in use, we
found little reason for concern, but must caution that our results must be inter-
preted again in the light of new attacks. For example, key sizes were sufficient at
1024 bits at the time of our investigation, but NIST already recommends longer
key sizes now. It is an interesting question if, and how fast, OpenPGP users will
migrate to new key lengths. Historically, the Web of Trust experienced a major
shift towards RSA and away from ElGamal once, with high change rates in a
short period of time—it would be interesting to see if such changes happen again.

Research Objective O2.3

The third PKI we investigated was the ‘False PKI’ of SSH, which does not use TTPs.
SSH is often used for administrative purposes, with keys distributed to clients in an
out-of-band process.

We carried out three Internet-wide scans, distributed over seven months. We used
previous work by Heninger et al. [35] as a starting point. The authors had investigated
occurrences of cryptographically weak and duplicate keys. We carried out similar scans,
but analysed our data with a view to determining the overall state of the SSH PKI and

231

10. Summary and conclusion

with a focus on a special and as of yet not well-investigated phenomenon: the occurrence
of duplicate keys that are not cryptographically weak, but might be the result of poor
network management practices.

Confirmation of earlier results We could reproduce the results of Heninger et al. as we
also found a number of SSH host keys that were weak due to the so-called co-prime
weakness or due to a bug in Debian’s version of a cryptographic library. However,
the percentages that we could determine were lower than the ones previous work
had found. One may take that as an indication that the authors’ disclosure
process has started to produce results. However, the percentages are so low now
that further changes could also be interpreted as measurement artefacts.

Duplicate keys and network management Concerning duplicate keys, we decided to in-
vestigate where the ten most common such keys occur. We could show that
network management practices are indeed sometimes responsible. For example,
a larger German hosting provider confirmed to us that the key we had found was
used on their SSH gateway, in an attempt to centralise administration and keep
keys stable on the front ends even when the hosting machines were updated. This
seems a secure pattern of use. However, we also found keys that we could trace
to certain devices with default keys. These occurred in different networks around
the world. One key, for example, occurred mostly in a single AS. This is likely
more secure than other cases, where we found the same keys in, e.g., the networks
of China and Taiwan. We also found an entertainment device that is sold globally
and reuses the same key every time. None of these usage patterns is secure, but
strictly localised use may be safer: where SSH is used for administrative purposes,
it is likely that the responsible administrator is also part of the same network.
Finally, we also investigated one case where duplicate keys occurred in the AS
of a German provider, but the number of duplicates was always rather low. The
provider confirmed two explanations to us. First, hosts may have more than one
IP address assigned, but use the same key on every network interface. Second,
the provider also confirmed that rarer cases exist where customers do reuse keys
across physical machines. The former setup is safe, the latter is not.

Cryptography As before for X.509 for HTTPS and OpenPGP, we found that the choices
of cryptographic algorithms and key lengths were not a real reason for concern,
but should be monitored in the light of new developments: the attacks on TLS
may or may not be applicable to SSH, but algorithms like RC4 have come under
considerable pressure and moving away from them is recommended.

Server versions We found that older SSH server versions are predominant. This finding
has to be taken with a grain of salt as our scans can only determine the server
version as advertised by the server. However, it may well be an indication that
updates to servers occur slowly, which is in line with our previous findings for
TLS.

Research Objective O3

Research Objective O3 returned to the X.509 PKI again. Several schemes have been
proposed to reinforce X.509. The first task in Research Objective O3 was thus to provide
an analysis of these schemes. The second part of Research Objective O3 addressed
one issue that is not covered by any scheme: automated reporting of incidents and
localisation of the attacker. Our tasks were thus as follows.

232

10.1. Results from Research Objectives

O3.1 The first task was split into two steps. The schemes are presented in a variety
of ways (RFCs, white papers), which are generally verbose descriptions without
a common notation. The first step was thus to develop a formalised notation
that allows to describe the schemes in a uniform way. Against this background,
the second step was to carry out an analysis of the schemes with respect to the
security they offer, their robustness against attackers, and potential issues in
deployment. As a result, the most promising candidates to reinforce X.509 were
to be identified.

O3.2 The second task was to design, develop, and deploy a scheme that is able to
detect man-in-the-middle attacks and to raise data that allows to determine the
location of the attacker with a certain degree of confidence.

Research Objective O3.1

In order to be able to compare different schemes that have been proposed to improve the
X.509 ecosystem, we first developed a formalised notation as a common way to express
the mechanisms of each scheme. The notation strikes a balance between conciseness
and necessary abstraction.

Expressivity and conciseness The notation makes it easier for a reader to determine
the key elements, participants, and communication paths in a scheme. It aids in
an analysis of what a scheme can achieve. The notation allows several protocols
per scheme as well as to define how they interact and which role participants play
in each protocol.

Design elements Our notation is based on role scripts in order to allow precise definition
of the behaviour of participants and interactions, both within one protocol as well
as between different protocols. Decision processes are modelled with predicate
logic, For-loops, and If-clauses. The necessary balance between abstraction and
precision is achieved by defining abstractions for tokens and processes that are
common in X.509 yet are difficult or impossible to define formally (e.g., legal
descriptions). Concerning tokens, this allows us to keep the notation concise.
Concerning processes, it enables us to treat these abstract processes as black
boxes and only operate on the results that they yield.

We analysed five schemes with respect to the contributions they make in reinforcing
the X.509 PKI. The first step in doing so was to define threat models for attackers.

Threat models We defined three attackers, based on the incident reports we analysed
for Research Objective O1.2. We defined one weaker kind of localised attacker
who is either in the vicinity of a victim client or in the vicinity of a victim server.
This attacker is supposed to model the notion of a single attacker without the
resources of a larger organisation. The two other attackers are much stronger. The
second attacker reflects the notion of an attacker who is in control over the ASes
of an entire country. The rationale here is to model what, e.g., an authoritarian
government might do to conduct surveillance against its own population. The
third attacker, finally, reflects the stronger notion of a globally active attacker
who is additionally able to compromise the DNSSEC entries of zones outside his
legal reach.

With these threat models, we proceeded to analyse the schemes. We used our notation
to describe the decision processes, participants, and their interactions.

233

10. Summary and conclusion

Most promising candidates Our analysis yielded two promising candidates to reinforce
X.509. The first one is Trust Assertions for Certificate Keys (TACK), which is
the strongest scheme to prevent attacks. As a pinning concept, TACK’s major
drawback is that it requires either a secure first contact or secure bootstrapping.
In general, the latter does not scale, but there are use cases where it can be em-
ployed. TACK’s major advantage is that it provides means for key rollover and
changes to a server’s certification in general. Under the assumption that neither
client nor server can be compromised by an attacker, TACK remains secure even
against the strongest of our attackers. However, TACK also has a problem con-
cerning deployment: it requires changes to Web servers. The second promising
candidate is Certificate Transparency (CT). This concept focuses on making at-
tacks and certificate misissuance detectable and on identifying the responsible
CAs. CT provides a system of logs, auditors and monitors. The scheme has the
advantage that it requires opt-in only from CAs without requiring changes to
servers or clients—at least in one of its operational modes. Its robustness is very
good—attackers would have to compromise both a CA as well as many of the
logs the CA cooperates with to avoid early detection. Together, TACK and CT
provide a very strong reinforcement to the X.509 PKI.

Other schemes Other schemes do not achieve the same degree of security, are less
robust against attacks, or are more difficult to deploy. Perspectives, a notary
concept, provides a balanced level of security. Given a high number of notaries,
and employing a cross-validation concept, it makes attacks either very hard or
at least detectable as they must be sustained for a longer time to be successful.
A problem of Perspectives are its deployment requirements: it requires many
notaries with high availability. The scheme DNS-based Authentication of Named
Entities: TLS Anchor (DANE-TLSA), which mandates DNSSEC, provides lower
resistance against the regional and global attackers. A further drawback is that it
achieves very good security only if clients validate DNSSEC records themselves.
However, DANE-TLSA does not require changes to servers and is relatively easy
to roll out, provided that the configuration concerning X.509 certificates and DNS
records is tightly integrated. Certification Authority Authorization (CAA) is a
scheme that also uses DNS to store entries that are relevant for X.509. As it
assumes CAs to be secure against attack, it is the weakest of the schemes we
analysed. CAA has one advantage: it provides a standardised way to report
violations of CA duties.

Need for automated reports One conclusion we had derived as part of Research Object-
ive O1.3 was that mechanisms are needed that allow to detect incidents fast. CT is
a step in the right direction. However, there is one property that all schemes that
we analysed lacked: none of them describes a way of automated attack detection
and reporting.

Research Objective O3.2

We thus designed, implemented and deployed our own tool, Crossbear, for this purpose.
Crossbear uses a notary concept as this is the only concept that allows to provide
information about an affected victim’s position and network path to a certain host on
the Internet. Crossbear’s primary purpose is not to protect users but to detect attacks
and locate the attacker.

Centralised orchestration Crossbear introduces an element of centralisation to the not-
ary concept. While attacks are detected in the same way as in Perspectives

234

10.2. Quo vadis?—research directions for PKI

(mismatch of certificates), the Crossbear server takes a coordinating role in the
response to a possible attack. When a mismatch is detected, it generates a hunt-
ing task that is executed by a (hopefully large) number of hunter entities on the
Internet. They connect to the alleged victim server and report the encountered
certificates to the Crossbear server, together with a traceroute indicating the net-
work path. This allows Crossbear to run analyses to derive information about
the location of the attacker.

Savvy users required Crossbear is a tool for professionals and users wishing to help
secure the Internet, but not a tool for the common user. This is even more
true as use of Crossbear in regions where the attacker is a government might be
dangerous.

Effectivity against different attackers We analysed the scenarios where Crossbear
achieves its greatest benefit. These are subcases of the attackers in our threat
models, in particular the weak attacker and the regional attacker. We derived
a closed-form model to analyse Crossbear’s effectivity against an attacker acting
non-selectively, i.e., targeting all users in the networks he has control over. Cross-
bear cannot locate the attacker very accurately if he targets single clients. This
may initially seem like a drawback, but Crossbear can still provide reports that
an attack against a certain server is ongoing.

Countermeasures by attackers We also discussed measures the attacker can take to
target Crossbear itself. Crossbear shares the same problem as all open systems:
they need to accept information from unreliable sources and are open to denial-
of-service attacks. Crossbear forces an attacker to provide at least a valid IP
address when reporting fake hunting results; however, the attacker is still free
to be really located further ‘downstream’ from the Crossbear server’s point of
view. Ultimately, Crossbear and the attacker are always involved in an arm’s
race. Thus, we do not market Crossbear as a silver bullet. Instead, we view it
as a first step: orchestration of countermeasures and automated reports can help
raise public awareness and, in the best case, exercise pressure on attackers.

10.2. Quo vadis?—research directions for PKI
In this thesis, we provided a historical analysis of X.509 problems, empirical analyses of
the deployment and properties of three different PKIs, an analysis of reinforcements for
X.509, as well as our own tool to detect and locate attacks. Yet an ‘ultimate’ solution
for PKI does not seem to be in sight.

Returning to the definition of authentication, and Boyd’s theorem in Chapter 2, one
observation to make is that PKIs are an attempt to side-step the fundamental problem
of not having authenticated keying material between two entities at the time of their
first contact. This problem has no real solution. PKIs can defer the problem to another
entity, but security risks will always be associated with this. At the same time, we can
observe that the need for better security mechanisms is likely to become more urgent
as more devices are equipped with Internet connectivity. PKIs are a way to achieve
the necessary scalability. So which directions should research into PKIs take? Our
assessment is that further research focusing on the following aspects would be very
valuable:

Better management of security One of our empirical findings was that server config-
urations on the Internet show a slow rate of change—sometimes so slow that
obvious deficits are not addressed. This is quite understandable if we accept as

235

10. Summary and conclusion

a working assumption that administrators are reluctant to make changes to sys-
tems that already work and that have not (yet) been compromised. This makes it
difficult to deploy solutions like TACK, although they provide excellent security
properties. Rather than giving up on them, however, a research direction should
be how to design systems such that such security mechanisms can be employed
without imposing the danger of temporarily unavailable or, worse, inoperable
systems on administrators. Methodologies and best practices to upgrade security
protocols and server versions should be investigated. If systems like TACK could
be introduced more easily, the security benefit for users would be enormous.

Continous monitoring In our empirical analyses, we found that a good part of the
hosts on the WWW seem to have certificates of rather poor quality, with common
problems being wrong hostnames or expired certificates. Regular monitoring can
at least detect these problems and possibly create some pressure on the responsible
entities. Monitoring can also help provide systems like TACK with the necessary
information to distribute bootstrapping information.

Cross-validation Two of the schemes that provided good resistance even against strong
attackers employed a method that we call cross-validation: Perspectives and CT.
In the light of any TTP ultimately being fallible, we view this scheme as extremely
useful: it effectively multiplies the effort an attacker must make to be successful.
Cross-validation could be employed in other security ecosystems as well.

Early attack detection Finally, we take the view that containment of attacks will remain
a topic that any good security concept needs to address. More research should
be invested on how attacks in the network can be detected early, and how reports
from different vantage points can be combined to yield a more precise picture.
Our own tool, Crossbear, is just the starting point here.

236

Part V.

Appendices

237

List of frequently used acronyms

List of frequently used acronyms

AS Autonomous System

BGP Border Gateway Protocol

CA Certification Authority

CAA Certification Authority Authorization

CDN Content Distribution Network

CN Common Name

CPS Certification Practices Statement

CRL Certificate Revocation List

CT Certificate Transparency

DANE-TLSA DNS-based Authentication of Named Entities: TLS Anchor

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

EFF Electronic Frontier Foundation

EV Extended Validation

IPSec Internet Protocol Security

KDC Key Distribution Centre

LSCC Largest Strongly Connected Component

MTH Merkle Tree Hash

OCSP Online Certificate Status Protocol

OID Object Identifier

PFS Perfect Forward Secrecy

PKI Public Key Infrastructure

RA Registration Authority

SAN Subject Alternative Name

SCC Strongly Connected Component

i

List of frequently used acronyms

SCT Signed Certificate Timestamp

SK Sovereign Keys

SKS Synchronizing Keyservers

SNI Server Name Indication

SSH Secure Shell

SSL Secure Sockets Layer

STH Signed Tree Hash

TACK Trust Assertions for Certificate Keys

TLS Transport Layer Security

TLSA TLS Anchor

TSK TACK Signing Key

TTP Trusted Third Party

ii

Academic resources

[1] D. Akhawe, B. Amann, M. Vallentin, and R. Sommer. Here’s my cert, so trust
me, maybe? Understanding TLS errors on the Web. In Proc. Int. World Wide
Web Conference (WWW), Rio de Janeiro, Brazil, May 2013.

[2] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex
networks. Nature, 406:378–382, July 2000.

[3] M. R. Albrecht, K. G. Paterson, and G. J. Watson. Plaintext recovery attacks
against SSH. In Proc. 30th IEEE Symposium on Security and Privacy, Oakland,
CA, USA, August 2009.

[4] N. AlFardan, D. J. Bernstein, K. G. Paterson, and J. C. N. Schuldt. On the security
of RC4 in TLS. In Proc. 22nd USENIX Security Symposium, Washington, D.C.,
USA, August 2013.

[5] M. Allman and V. Paxson. Issues and etiquette concerning use of shared meas-
urement data. In Proc. 7th ACM SIGCOMM Internet Measurement Conference
(IMC), San Diego, CA, USA, October 2007.

[6] B. Amann, R. Sommer, M. Vallentin, and S. Hall. No attack necessary: the
surprising dynamics of SSL trust relationships. In Proc. 2013 Ann. Computer
Security Applications Conference (ACSAC), New Orleans, LA, USA, December
2013.

[7] H. Asghari, M. J. G. van Eeten, A. M. Arnbak, and N. A. N. M. van Eijk. Se-
curity economics in the HTTPS value chain. In Proc. 12th Ann. Workshop on the
Economics of Information Security (WEIS), Washington, D.C., USA, March 2013.

[8] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, October 2008.

[9] M. Boguñá, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas. Models of social
networks based on social distance attachment. Phys. Rev. E, 70:056122, November
2004.

[10] C. Boyd. Security architecture using formal methods. IEEE Journal on Selected
Areas in Communications, 11(5):694–701, June 1993.

[11] L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle. Comparing and im-
proving current packet capturing solutions based on commodity hardware. In Proc.
10th ACM SIGCOMM Internet Measurement Conference (IMC), Melbourne, Aus-
tralia, November 2010.

[12] L. Braun, G. Münz, and G. Carle. Packet sampling for worm and botnet de-
tection in TCP connections. In Proc. 12th IEEE/IFIP Network Operations and
Management Symposium (NOMS), Osaka, Japan, April 2010.

iii

Academic resources

[13] R. Canetti. Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive: Report 2000/067. http://eprint.iacr.
org/2000/067.

[14] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in
very large networks. Phys. Rev. E, 70:066111, December 2004.

[15] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in
empirical data. SIAM Rev., 51(4):661–703, 2009.

[16] C. J. F. Cremers, S. Mauw, and E. de Vink. Defining authentication in a trace
model. In Proc. 1st Int. Workshop on Formal Aspects in Security and Trust
(FAST), Pisa, Italy, September 2003.

[17] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, November 1976.

[18] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, March 1983.

[19] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer. Dynamic
application-layer protocol analysis for network intrusion detection. In Proc.
USENIX Security Symposium, Vancouver, Canada, July 2006.

[20] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of the HTTPS
certificate ecosystem. In Proc. 13th ACM SIGCOMM Internet Measurement Con-
ference (IMC), Barcelona, Spain, October 2013.

[21] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast internet-wide
scanning and its security applications. In Proc. 22nd USENIX Security Symposium,
Washington, D.C., USA, August 2013.

[22] C. Ellison. The nature of a usable PKI. Int. Journal of Computer and Telecom-
munications Networking—Special Issue on Computer Network Security, 31(9):823–
830, April 1999.

[23] C. Ellison and B. Schneier. Ten risks of PKI: what you’re not being told about
Public Key Infrastructure. Computer Security Journal, 16(1):1–7, 2000.

[24] A. Filastò and J. Appelbaum. OONI: Open Observatory of Network Interference.
In Proc. 2nd USENIX Workshop on Free and Open Communications on the Inter-
net (FOCI), Bellevue, WA, USA, August 2012.

[25] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174,
February 2010.

[26] F. Fusco and L. Deri. High speed network traffic analysis with commodity multi-
core systems. In Proc. 10th ACM SIGCOMM Conference on Internet Measurement
(IMC), Melbourne, Australia, November 2010.

[27] O. Gasser. Understanding SSH: large-scale measurements and notary-based au-
thentication. Master’s thesis, Technische Universität München, Fakultät für In-
formatik, Garching b. München, Germany, February 2013.

[28] O. Gasser, R. Holz, and G. Carle. A deeper understanding of SSH: results from
Internet-wide scans. In Proc. 14th IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS), Krakow, Poland, May 2014.

iv

Academic resources

[29] D. Goldschlag, M. Reed, and P. Syverson. Onion routing. Communications of the
ACM, 42(2):39–41, February 1999.

[30] A. C. Grant. Search for trust: an analysis and comparison of CA system al-
ternatives and enhancements. Technical Report TR2012-716, Dartmouth College,
Department of Computer Science, Hanover, NH, USA, June 2012.

[31] S. Gregory. Finding overlapping communities in networks by label propagation.
New Journal of Physics, 12(10):103018, October 2010.

[32] P. Gutmann. PKI: it’s not dead, just resting. IEEE Computer, 35(8):41–49, August
2002.

[33] P. Gutmann. PKI design for the real world. In Proc. 2006 Workshop on New
Security Paradigms (NSPW), September 2006.

[34] J. Heidemann, Y. Pradkin, R. Govindan, C. Papadopoulos, G. Bartlett, and
J. Bannister. Census and survey of the visible Internet. In Proc. 8th ACM SIG-
COMM Internet Measurement Conference (IMC), Vouliagmeni, Greece, October
2008.

[35] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining your Ps
and Qs: detection of widespread weak keys in network devices. In Proc. 21st
USENIX Security Symposium, Bellevue, WA, USA, August 2012.

[36] C. Herley. So long, and no thanks for the externalities: the rational rejection of
security advice by users. In Proc. 2009 Workshop on New Security Paradigms
(NSPW), Oxford, UK, September 2009.

[37] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL landscape—a thor-
ough analysis of the X.509 PKI using active and passive measurements. In Proc.
11th ACM SIGCOMM Internet Measurement Conference (IMC), Berlin, Germany,
November 2011.

[38] R. Holz, T. Riedmaier, N. Kammenhuber, and G. Carle. X.509 forensics: de-
tecting and localising the SSL/TLS Men-in-the-middle. In Proc. 17th European
Symposium on Research in Computer Security (ESORICS), Pisa, Italy, September
2012.

[39] A. Jøsang. An algebra for assessing trust in certification chains. In Proc. 1999
Network and Distributed Systems Security Symposium (NDSS), San Diego, CA,
USA, February 1999.

[40] A. Klein. Attacks on the RC4 stream cipher. Designs, Codes and Cryptography,
48(3):269–286, September 2008.

[41] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry,
A. Kruppa, P. Montgomery, D. Osvik, H. te Riele, A. Timofeev, and P. Zimmer-
mann. Factorization of a 768-bit RSA modulus. In Proc. 30th Int. Cryptology
Conference (CRYPTO). Santa Barbara, CA, USA, August 2010.

[42] L. M. Kohnfelder. Towards a practical public-key cryptosystem. Master’s thesis,
Massachusetts Institute of Technology, CSAIL, Cambridge, MA, USA, May 1978.

[43] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer. Building a time
machine for efficient recording and retrieval of high-volume network traffic. In
Proc. 5th ACM SIGCOMM Internet Measurement Conference (IMC), Berkeley,
CA, USA, October 2005.

v

Academic resources

[44] A. Lancichinetti and S. Fortunato. Community detection algorithms: a compar-
ative analysis. Phys. Rev. E, 80:056117, November 2009.

[45] H. K. Lee, T. Malkin, and E. Nahum. Cryptographic strength of SSL/TLS servers:
current and recent practices. In Proc. 7th ACM SIGCOMM Internet Measurement
Conference (IMC), San Diego, CA, USA, October 2007.

[46] A. Lenstra, J. Hughes, M. Augier, J. Bos, T. Kleinjung, and C. Wachter.
Ron was wrong, Whit is right. Cryptology ePrint Archive, Report 2012/064.
http://eprint.iacr.org/2012/064, February 2012.

[47] A. Lenstra, X. Wang, and B. de Weger. Colliding X.509 certificates. Cryptology
ePrint Archive, Report 2005/067. http://eprint.iacr.org/2005/067, March
2005.

[48] D. Leonard and D. Loguinov. Demystifying service discovery: Implementing an
Internet-wide scanner. In Proc. 10th ACM SIGCOMM Internet Measurement Con-
ference (IMC), Melbourne, Australia, November 2010.

[49] L. Li, D. Alderson, J. C. Doyle, and W. Willinger. Towards a theory of scale-free
graphs: definition, properties, and implications. Internet Mathematics, 2(4):431–
523, March 2005.

[50] W. Lian, E. Rescorla, H. Shacham, and S. Savage. Measuring the practical impact
of DNSSEC deployment. In Proc. 22nd USENIX Security Symposium, Washington
D.C., USA, August 2013.

[51] G. Lowe. A hierarchy of authentication specifications. In Proc. 10th IEEE Com-
puter Security Foundations Workshop (CSFW), Rockport, MA, USA, June 1997.

[52] M. Luckie, Y. Hyun, and B. Huffaker. Traceroute probe method and forward IP
path inference. In Proc. 8th ACM SIGCOMM Internet Measurement Conference
(IMC), Vouliagmeni, Greece, October 2008.

[53] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-diversity:
privacy beyond k-anonymity. ACM Trans. Knowledge Discovery from Data, 1(1),
March 2007.

[54] U. Maurer. Modelling a Public-Key Infrastructure. In Proc. 4th European Sym-
posium on Research in Computer Security (ESORICS), Rome, Italy, September
1996.

[55] M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701,
October 2002.

[56] M. E. J. Newman. The structure and function of complex networks. SIAM Rev.,
45(2):167–256, 2003.

[57] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Phys. Rev. E, 69:026113, February 2004.

[58] M. E. J. Newman and J. Park. Why social networks are different from other types
of networks. Phys. Rev. E, 68:036122, September 2003.

[59] R. Pastor-Satorras, A. Vázquez, and A. Vespignani. Dynamical and correlation
properties of the Internet. Phys. Rev. Lett., 87:258701, November 2001.

vi

Academic resources

[60] V. Paxson. Bro: a system for detecting network intruders in real-time. Computer
networks, 31(23–24):2435–2463, December 1999.

[61] R. Perlman. An overview of PKI trust models. IEEE Network, 13(6):38–43,
November/December 1999.

[62] N. Provos and P. Honeyman. ScanSSH—scanning the Internet for SSH servers. In
Proc. 15th USENIX Systems Administration Conference (LISA), Baltimore, MD,
USA, December 2001.

[63] S. Qiu, P. McDaniel, and F. Monrose. Toward valley-free inter-domain routing. In
Proc. IEEE Int. Conference on Communications (ICC), Glasgow, UK, June 2007.

[64] T. Riedmaier. Distributed detection and localization of TLS men-in-the-middle.
Master’s thesis, Technische Universität München, Fakultät für Informatik, Garch-
ing b. München, Germany, March 2012.

[65] S. B. Roosa and S. Schultze. The “Certificate Authority” trust model for SSL: a
defective foundation for encrypted Web traffic and a legal quagmire. Intellectual
Property & Technology Law Journal, 22(11):3–8, November 2010.

[66] M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks
reveal community structure. Proc. of the National Academy of Sciences of the
United States of America (PNAS), 105(4):1118–1123, January 2008.

[67] C. Soghoian and S. Stamm. Certified lies: detecting and defeating government in-
terception attacks against SSL. In Proc. 15th Int. Conference on Financial Cryp-
tography and Data Security (FC), St. Lucia, March 2011.

[68] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rocket-
fuel. In Proc. 2002 ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), Pittsburgh, PA, USA,
August 2002.

[69] M. Stevens, A. Lenstra, and B. de Weger. Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities. In Proc. 26th Ann. Int. Con-
ference on the Theory and Applications of Cryptographic Techniques (Eurocrypt),
Barcelona, Spain, May 2007.

[70] L. Sweeney. k-anonymity: A model for protecting privacy. Int. Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, October 2002.

[71] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford. Dynamics of hot-potato routing
in IP networks. In Proc. Joint Int. Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS/PERFORMANCE), New York, NY, USA,
June 2004.

[72] A. Ulrich. Analyse des OpenPGP Web of Trust. Studienarbeit, Universität
Tübingen, Fakultät für Informations- und Kognitionswissenschaften. Tübingen,
Germany, June 2010.

[73] A. Ulrich, R. Holz, P. Hauck, and G. Carle. Investigating the OpenPGP Web
of Trust. In Proc. 16th European Symposium on Research in Computer Security
(ESORICS), Leuven, Belgium, September 2011.

vii

Academic resources

[74] S. Čapkun, L. Buttyán, and J.-P. Hubaux. Small Worlds in security systems: an
analysis of the PGP certificate graph. In Proc. 2002 Workshop on New Security
Paradigms (NSPW), pages 28–35, Virginia Beach, VA, USA, September 2002.

[75] N. Vratonjic, J. Freudiger, V. Bindschaedler, and J.-P. Hubaux. The inconvenient
truth about Web certificates. In Proc. 10th Workshop on Economics of Informa-
tion Security (WEIS), Fairfax, VA, USA, June 2011.

[76] X. Wang, X. Lai, D. Feng, and H. Yu. Collisions for hash functions MD4, MD5,
Haval-128, and RIPEMD. Cryptology ePrint Archive: Report 2004/199.
https://eprint.iacr.org/2004/199.pdf, August 2004.

[77] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives: Improving SSH-
style host authentication with multi-path probing. In Proc. USENIX 2008 Ann.
Technical Conference (ATC), Boston, MA, USA, June 2008.

[78] Y. Xie, F. Yu, and K. Achan. How dynamic are IP addresses? In Proc. 2007
ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), Kyoto, Japan, August 2007.

[79] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys
are public—results from the 2008 Debian OpenSSL vulnerability. In Proc. 9th
ACM SIGCOMM Internet Measurement Conference (IMC), Chicago, IL, USA,
November 2009.

[80] S. Zaker Soltani. Improving PKI: solution analysis in case of CA compromisa-
tion. Master’s thesis, Universiteit Utrecht, Faculteit Bètawetenschappen, Utrecht,
Netherlands, January 2013.

viii

Books

[81] M. Bishop. Introduction to computer security. Addison-Wesley, 2005.

[82] C. Boyd and A. Mathuria. Protocols for authentication and key establishment.
Springer, 2003.

[83] M. Brinkmeier and T. Schank. Network statistics. In U. Brandes and T. Er-
lebach, editors, Network analysis: methodological foundations, volume 3418 of
LNCS, pages 293–317. Springer, 2004.

[84] A. Croll and S. Power. Complete Web Monitoring. O’Reilly Media, 2009.

[85] N. Ferguson, B. Schneier, and T. Kohno. Cryptography engineering: design prin-
ciples and practical applications. Wiley Publishing, 2010.

[86] P. Gutmann. Engineering security (tentative title). Work-in-progress, April 2013.

[87] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC Press, 1997.

[88] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
recipes in FORTRAN 77: vol. 1 of Fortran numerical recipes: the art of scientific
computing. Cambridge University Press, 1992.

[89] I. Ristić. Bullet-proof SSL and TLS. Feisty Duck Ltd. (work-in-progress), July
2013.

ix

RFCs

[90] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. RFC 4034: Resource
records for the DNS Security Extensions. Standards Track, Proposed Standard.
http://tools.ietf.org/html/rfc4034, March 2005.

[91] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. RFC 4035: Pro-
tocol modifications for the DNS Security Extensions. Standards Track, Proposed
Standard. http://tools.ietf.org/html/rfc4035, March 2005.

[92] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright.
RFC 3546: Transport Layer Security (TLS) Extensions. Standards Track, Pro-
posed Standard. http://tools.ietf.org/html/rfc3546, June 2003.

[93] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer.
RFC 4880: OpenPGP Message Format. Standards Track, Proposed Standard.
http://tools.ietf.org/html/rfc4880, November 2007.

[94] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, andW. Polk. RFC 5280:
Internet X.509 Public Key Infrastructure certificate and Certificate Revocation
List (CRL) profile. Standards Track, Proposed Standard. http://tools.ietf.
org/html/rfc5280, May 2008.

[95] T. Dierks and C. Allen. RFC 2246: The TLS protocol version 1.0. Standards Track,
Proposed Standard. http://tools.ietf.org/html/rfc2246, January 1999.

[96] T. Dierks and E. Rescorla. RFC 4346: The Transport Layer Security (TLS)
protocol version 1.1. Standards Track, Proposed Standard. http://tools.ietf.
org/html/rfc4346, April 2006.

[97] T. Dierks and E. Rescorla. RFC 5246: The Transport Layer Security (TLS)
protocol version 1.2. Standards Track, Proposed Standard. http://tools.ietf.
org/html/rfc5246, August 2008.

[98] D. Eastlake. RFC 2535: Domain Name System Security Extensions. Standards
Track, Proposed Standard. http://tools.ietf.org/html/rfc2535, March 1999.

[99] D. Eastlake. RFC 6066: Transport Layer Security (TLS) Extensions: Extension
definitions. Standards Track, Proposed Standard. http://tools.ietf.org/html/
rfc6066, January 2011.

[100] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylönen.
RFC 2693: SPKI certificate theory. Experimental. http://tools.ietf.org/
html/rfc2693, September 1999.

[101] C. Evans, C. Palmer, and R. Sleevi. Public key pinning extension for HTTP.
Internet-Draft, intended status: Standards Track. http://tools.ietf.org/
html/draft-ietf-websec-key-pinning-08, July 2013.

[102] J. Galbraith and O. Saarenmaa. SSH File Transfer Protocol. Internet-Draft.
http://tools.ietf.org/html/draft-ietf-secsh-filexfer-13, July 2006.

xi

RFCs

[103] P. Gutmann. Key management through key continuity (KCM). Internet-Draft, in-
tended status: BCP. http://tools.ietf.org/html/draft-gutmann-keycont-
01, September 2008.

[104] P. Hallam-Baker and R. Stradling. RFC 6844: DNS Certification Authority
Authorization (CAA) resource record. Standards Track, Proposed Standard.
http://tools.ietf.org/html/rfc6844, January 2013.

[105] P. Hoffman and J. Schlyter. RFC 6698: The DNS-based authentication of
named entities (DANE) Transport Layer Security (TLS) protocol: TLSA. Stand-
ards Track, Proposed Standard. http://tools.ietf.org/html/rfc6698, August
2012.

[106] K. Igoe and D. Stebila. RFC 6187: X.509v3 certificates for Secure Shell authen-
tication. Standards Track, Proposed Standard. http://tools.ietf.org/html/
rfc6187, March 2011.

[107] S. Josefsson. RFC 4398: Storing certificates in the Domain Name System (DNS).
Standards Track, Proposed Standard. http://tools.ietf.org/html/rfc4398,
March 2006.

[108] S. Kent and K. Seo. RFC 4301: Security architecture for the Internet Protocol.
Standards Track, Proposed Standard. http://tools.ietf.org/html/rfc4301,
December 2005.

[109] B. Laurie, A. Langley, and E. Kasper. RFC 6962: Certificate Transparency.
Experimental. http://tools.ietf.org/html/rfc6962, June 2013.

[110] B. Laurie, G. Sisson, R. Arends, and D. Blacka. RFC 5155: DNS Security
(DNSSEC) hashed authenticated denial of existence. Standards Track, Proposed
Standard. http://tools.ietf.org/html/rfc5155, March 2008.

[111] S. Lehtinen and C. Lonvick. RFC 4250: the Secure Shell (SSH) protocol assigned
numbers. Standards Track, Proposed Standard. http://tools.ietf.org/html/
rfc4250, January 2006.

[112] M. Marlinspike and T. Perrin. Trust Assertions for Certificate Keys. Internet-
Draft, intended status: Standards Track. http://tools.ietf.org/html/draft-
perrin-tls-tack-02, January 2013.

[113] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. RFC 4120: The Kerberos
Network Authentication Service (V5). Standards Track, Proposed Standard.
http://tools.ietf.org/html/rfc4120, July 2005.

[114] Y. Pettersen. RFC 6961: The Transport Layer Security (TLS) Multiple
Certificate Status Request extension. Standards Track, Proposed Standard.
http://tools.ietf.org/html/rfc6961, June 2013.

[115] B. Ramsdell and S. Turner. RFC 5750: Secure/Multipurpose Internet Mail Ex-
tensions (S/MIME) version 3.2 certificate handling. Standards Track, Proposed
Standard. http://tools.ietf.org/html/rfc5750, January 2010.

[116] B. Ramsdell and S. Turner. RFC 5751: Secure/Multipurpose Internet Mail Ex-
tensions (S/MIME) version 3.2 message specification. Standards Track, Proposed
Standard. http://tools.ietf.org/html/rfc5751, January 2010.

xii

RFCs

[117] E. Rescorla. RFC 2818: HTTP over TLS. Informational. http://tools.ietf.
org/html/rfc2818, May 2000.

[118] S. Santesson. RFC 4262: X.509 Certificate Extension for Secure/Multipurpose In-
ternet Mail Extensions (S/MIME) capabilities. Standards Track, Proposed Stand-
ard. http://tools.ietf.org/html/rfc4262, December 2005.

[119] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams.
RFC 6960: X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol—OCSP. Standards Track, Proposed Standard. http://tools.ietf.
org/html/rfc6960, Jun 2013.

[120] J. Schlyter and W. Griffin. RFC 4255: Using DNS to securely publish
Secure Shell (SSH) key fingerprints. Standards Track, Proposed Standard.
http://tools.ietf.org/html/rfc4255, January 2006.

[121] O. Sury. RFC 6594: Use of the SHA-256 algorithm with RSA, Digital Signature
Algorithm (DSA), and Elliptic Curve DSA (ECDSA) in SSHFP resource records.
Standards Track, Proposed Standard. http://tools.ietf.org/html/rfc6594,
April 2012.

[122] D. Thaler and C. Hopps. RFC 2991: Multipath issues in unicast and multi-
cast next-hop selection. Informational. http://tools.ietf.org/html/rfc2991,
November 2000.

[123] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B. Wellington. RFC 2845:
Secret key transaction authentication for DNS (TSIG). Standards Track, Proposed
Standard. http://tools.ietf.org/html/rfc2845, May 2000.

[124] T. Ylonen. The SSH (Secure Shell) remote login protocol. Internet-Draft. http://
tools.ietf.org/html/draft-ylonen-ssh-protocol-00, November 1995.

[125] T. Ylonen and C. Lonvick. RFC 4251: the Secure Shell (SSH) protocol archi-
tecture. Standards Track, Proposed Standard. http://tools.ietf.org/html/
rfc4251, January 2006.

[126] T. Ylonen and C. Lonvick. RFC 4252: the Secure Shell (SSH) authentication
protocol. Standards Track, Proposed Standard. http://tools.ietf.org/html/
rfc4252, January 2006.

[127] T. Ylonen and C. Lonvick. RFC 4253: the Secure Shell (SSH) transport layer
protocol. Standards Track, Proposed Standard. http://tools.ietf.org/html/
rfc4253, January 2006.

[128] T. Ylonen and C. Lonvick. RFC 4254: the Secure Shell (SSH) connection protocol.
Standards Track, Proposed Standard. http://tools.ietf.org/html/rfc4254,
January 2006.

[129] K. Zeilenga (editor). RFC 4510: Lightweight Directory Access Protocol
(LDAP): technical specification road map. Standards Track, Proposed Standard.
http://tools.ietf.org/html/rfc4510, June 2006.

xiii

Further resources

[130] H. Adkins. An update on attempted man-in-the-middle attacks. Blog post
on Google Online Security Blog. http://googleonlinesecurity.blogspot.de/
2011/08/update-on-attempted-man-in-middle.html, 29 August 2011.

[131] Advanced Network Technology Center, University of Oregon. Route Views Pro-
ject. Project homepage. http://www.routeviews.org/, January 2005.

[132] R. Alden. Web browsers and Comodo announce a successful Certificate Au-
thority attack, perhaps from Iran. Reply to thread with this topic in news-
group mozilla.dev.security.policy. https://groups.google.com/d/msg/
mozilla.dev.security.policy/zgKmHOTIxn8/5NNYcgPNqlgJ, 29 March 2011.

[133] Alexa Internet Inc. Top 1,000,000 sites. Link to online list (updated daily).
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip, 2009–2011.

[134] R. Andrews. Re: [cabfpub] upcoming changes to Google Chrome’s certificate
handling. Post on CA/Browser Forum public mailing list. https://cabforum.
org/pipermail/public/2013-November/002336.html, 5 November 2013.

[135] Anonymous. The Spyfiles. Collection of leaked documents on WikiLeaks.
http://wikileaks.org/spyfiles/, December 2011.

[136] Anonymous. Internet census 2012. Port scanning /0 using insecure embedded
devices. Online paper and data sets. http://internetcensus2012.bitbucket.
org/paper.html, 2012.

[137] J. Appelbaum. Detecting Certificate Authority compromises and Web browser
collusion. Blog post on Tor Project blog. https://blog.torproject.org/
blog/detecting-certificate-authority-compromises-and-web-browser-
collusion, 22 March 2011.

[138] H. Asghari. pyasn—Python IP to ASN lookup module. Source code repository.
http://code.google.com/p/pyasn/, 2013.

[139] AVISPA Project. Deliverable D2.1: the high level protocol specification language.
http://www.avispa-project.org/delivs/2.1/d2-1.pdf, August 2003.

[140] AVISPA Project. Automated validation of Internet security protocols and applic-
ations. Project homepage. http://www.avispa-project.org/, 2013.

[141] E. Barker, L. Chen, A. Regenscheid, and M. Smid. Recommendation for pair-wise
key establishment schemes using integer factorization cryptography. NIST Spe-
cial Publication 800-56B. http://csrc.nist.gov/publications/nistpubs/
800-56B/sp800-56B.pdf, August 2009.

[142] E. Barker and A. Roginsky. Transitions: recommendation for transitioning the
use of cryptographic algorithms and key lengths. NIST Special Publication 800-
131A. http://csrc.nist.gov/publications/PubsSPs.html, January 2011.

xv

Further resources

[143] D. J. Bernstein. Breaking DNSSEC. Keynote at 3rd USENIX Workshop On Of-
fensive Technologies (WOOT). http://cr.yp.to/talks/2009.08.10/slides.
pdf, August 2009.

[144] D. J. Bernstein. Failures of secret-key cryptography. Talk at 20th Int. Work-
shop on Fast Software Encryption (FSE). http://cr.yp.to/talks/2013.03.
12/slides.pdf, March 2013.

[145] A. Borhani. Is This MITM Attack to Gmail’s SSL? Post in Gmail Help Forum:
https://productforums.google.com/d/msg/gmail/3J3r2JqFNTw/
oHHZLJeedHMJ, 27 August 2011.

[146] N. Boyard. Bug 470897—investigate incident with CA that allegedly issued
bogus cert for www.mozilla.com. Entry in Bugzilla@Mozilla. https://bugzilla.
mozilla.org/show_bug.cgi?id=470897, 22 December 2012.

[147] CA/Browser Forum. Guidelines for the issuance and management of Exten-
ded Validation certificates (version 1.3). https://cabforum.org/wp-content/
uploads/Guidelines_v1_3.pdf, 2010.

[148] CA/Browser Forum. Baseline requirements for the issuance and management
of publicly-trusted certificates, v.1.0. https://www.cabforum.org/Baseline_
Requirements_V1.pdf, November 2011.

[149] CA/Browser Forum. Guidelines for the issuance and management of Exten-
ded Validation certificates (version 1.4). https://cabforum.org/wp-content/
uploads/Guidelines_v1_4.pdf, May 2012.

[150] CA/Browser Forum. Homepage. https://www.cabforum.org/, 2013.

[151] CAcert. History of risks & threat events to CAs and PKI. Post in CAcert Wiki.
http://wiki.cacert.org/Risk/History, 2013.

[152] CAIDA. The traceroute probe method 2008-08 dataset. http://www.caida.
org/data/active/trmethod-200808.xml, 2008.

[153] J. Cederlöf. Web of Trust statistics and pathfinder. Project homepage.
http://www.lysator.liu.se/~jc/wotsap/, 2013.

[154] Certificate Transparency. Project homepage.
http://www.certificate-transparency.org/, 2013.

[155] Certificate Transparency. Source code repository. https://code.google.com/
p/certificate-transparency/, 2013.

[156] D. Chadwick. PKI, past, present and future. Keynote at 1st European PKI
Workshop: Research and Applications (EuroPKI). http://www.aegean.gr/
europki2004/Keynote.pdf, June 2004.

[157] Chaos Computer Club. 28C3—behind enemy lines. Homepage of 28th Chaos
Computer Congress. http://events.ccc.de/congress/2011/wiki/Welcome,
December 2011.

[158] M. Coates. Revoking trust in two TurkTrust certificates. Blog post on Mozilla
Security Blog. https://blog.mozilla.org/security/2013/01/03/revoking-
trust-in-two-turktrust-certficates/, 3 January 2013.

xvi

Further resources

[159] Comodo. Comodo report of incident—comodo detected and thwarted an intrusion
on 26-MAR-2011. Post on company Web site. http://www.comodo.com/Comodo-
Fraud-Incident-2011-03-23.html, 23 March 2011.

[160] Comodo Hacker (pseudonym). Another proof of hack from Comodo Hacker. Post
on Pastebin. http://pastebin.com/DBDqm6Km, 27 March 2011.

[161] Comodo Hacker (pseudonym). Another status update message. Post on Pastebin.
http://pastebin.com/85WV10EL, 6 September 2011.

[162] Comodo Hacker (pseudonym). Comodo Hacker: Mozilla cert released. Post on
Pastebin. http://pastebin.com/X8znzPWH, 28 March 2011.

[163] Comodo Hacker (pseudonym). Just another proof from Comodo Hacker. Post on
Pastebin. http://pastebin.com/CvGXyfiJ, 28 March 2011.

[164] Comodo Hacker (pseudonym). A message from Comodo Hacker. Post on Paste-
bin. http://pastebin.com/74KXCaEZ, 26 March 2011.

[165] Comodo Hacker (pseudonym). Pastebin account. http://pastebin.com/u/
ComodoHacker, September 2011.

[166] Comodo Hacker (pseudonym). Response to comments from ComodoHacker. Post
on Pastebin. http://pastebin.com/kkPzzGKW, 29 March 2011.

[167] Comodo Hacker (pseudonym). Response to some comments. Post on Pastebin.
http://pastebin.com/GkKUhu35, 7 September 2011.

[168] Comodo Hacker (pseudonym). Striking back. . . . Post on Pastebin.
http://pastebin.com/1AxH30em, 5 September 2011.

[169] Comodo Hacker (pseudonym). Twitter account.
https://twitter.com/ichsunx2, September 2011.

[170] Comodo Hacker (pseudonym). Two more little points. Post on Pastebin.
http://pastebin.com/jhz20PqJ, 6 September 2011.

[171] CPA Canada. WebTrust homepage. http://www.webtrust.org, 2013.

[172] C. Cremers. The Scyther tool. Project homepage. http://www.cs.ox.ac.uk/
people/cas.cremers/scyther/index.html, 2013.

[173] CVE Details. Web site publishing CVEs. http://www.cvedetails.com, 2013.

[174] DANE Working Group. DNS-based Authentication of Named Entities
(dane). Charter for working group. http://datatracker.ietf.org/wg/dane/
charter/, 2013.

[175] Debian Project. Debian security advisory: DSA-1571-1 openssl—predictable ran-
dom number generator. http://www.debian.org/security/2008/dsa-1571, 13
May 2008.

[176] DigiCert Sdn. Bhd. 3rd clarification statement by DigiCert Sdn Berhard. Post on
company Web site. http://www.digicert.com.my/news/news_20111111.htm,
11 November 2011.

[177] DigiCert Sdn. Bhd. DigiCert’s announcement. Post on company Web site.
http://www.digicert.com.my/news/news_20111104.htm, 5 November 2011.

xvii

Further resources

[178] DigiCert Sdn. Bhd. 2nd clarification statement by DigiCert Sdn Berhard. Post on
company Web site. http://www.digicert.com.my/news/news_20111107.htm,
7 November 2011.

[179] H. Dobbertin. The status of MD5 after a recent attack. RSA Laboratries’
CrytoBytes 2(2). ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto2n2.
pdf, 1996.

[180] R. Duncan. Certificate Authorities struggle to comply with Baseline Require-
ments. Blog post on Netcraft Ltd. Web site. http://news.netcraft.com/
archives/2013/09/23/certificate-authorities-struggle-to-comply-
with-baseline-requirements.html, 23 September 2013.

[181] R. Duncan. How certificate revocation (doesn’t) work in practice. Blog post
on Netcraft Ltd. Web site. http://news.netcraft.com/archives/2013/05/
13/how-certificate-revocation-doesnt-work-in-practice.html, 13 May
2013.

[182] R. Duncan. Would you knowingly trust an irrevocable SSL certificate? Blog post
on Netcraft Ltd. Web site. http://news.netcraft.com/archives/2013/05/
23/would-you-knowingly-trust-an-irrevocable-ssl-certificate.html,
23 May 2013.

[183] P. Eckersley. A Syrian man-in-the-middle attack against Facebook. Blog post on
EFF blog. https://www.eff.org/deeplinks/2011/05/syrian-man-middle-
against-facebook, 5 May 2011.

[184] P. Eckersley and J. Burns. An observatory for the SSLiverse. Talk at
DEF CON 18. https://www.eff.org/files/DefconSSLiverse.pdf, July 2010.

[185] Electronic Frontier Foundation. The Sovereign Keys project. Project homepage.
https://www.eff.org/sovereign-keys, 2011.

[186] Electronic Frontier Foundation. Sovereign Keys design document (work-in-
progress) https://git.eff.org/?p=sovereign-keys.git;a=summary, 2012.

[187] Electronic Frontier Foundation. Homepage. https://www.eff.org/, 2013.

[188] K. Engert. Man-in-the-middle experience in Warsaw. Blog post on personal
blog. https://kuix.de/blog/comments.php?y=11&m=06&entry=entry110616-
171707, 16 June 2011.

[189] Entrust, Inc. Entrust bulletin on certificates issued with weak 512-bit RSA
keys by Digicert Malaysia. Statement on Web site. http://www.entrust.net/
advisories/malaysia.htm, November 2011.

[190] G. Foest and M. Pattloch. DFN-PKI: Neues Konzept ermöglicht einfachen Ein-
stieg in die Welt der Zertifikate. DFN Mitteilungen 68. https://www.pki.dfn.
de/fileadmin/PKI/Konzept_DFN-PKI.pdf, June 2005.

[191] D. Forstrom. Microsoft releases security advisory 2607712. Post on Micro-
soft Security Response Center Web site. http://blogs.technet.com/b/
msrc/archive/2011/08/29/microsoft-releases-security-advisory-
2607712.aspx, 29 August 2011.

xviii

Further resources

[192] Fox-IT. Black Tulip. Report of the investigation into the DigiNotar Certificate
Authority breach. http://www.rijksoverheid.nl/bestanden/documenten-
en-publicaties/rapporten/2012/08/13/black-tulip-update/black-
tulip-update.pdf, August 2012.

[193] B. Fung. How Britain’s new cyberarmy could reshape the laws of war. Article
in The Washington Post, online edition. http://www.washingtonpost.com/
blogs/the-switch/wp/2013/09/30/how-britains-new-cyberarmy-could-
reshape-the-laws-of-war/, 30 September 2013.

[194] GlobalSign. Security incident report. GlobalSign’s official response to the recent
security incident. Press release. https://www.globalsign.com/company/press/
121311-security-incident-report.html, 13 December 2011.

[195] D. Goodin. Web authentication authority suffers security breach. Art-
icle in The Register. http://www.theregister.co.uk/2011/06/21/startssl_
security_breach/, 21 June 2011.

[196] I. Grigg. Brief history of attacks on CAs. Post in newsgroup mozilla.dev.
security.policy. https://groups.google.com/d/msg/mozilla.dev.
security.policy/GX18tf9D01U/QWKhAfho3m4J, 4 March 2012.

[197] P. Gutmann. Trouble at StartCom? Post in newsgroup mozilla.dev.security.
policy. https://groups.google.com/d/msg/mozilla.dev.security.policy/
7gW5yzkOwuc/MWTsSbWWn3QJ, 17 June 2011.

[198] N. Heninger and J. A. Halderman. Fast pairwise GCD computation. Web site
with source code. https://factorable.net/resources.html, 2012.

[199] Hepner, Clint and Earl Zmijewski. Defending against BGP man-in-the-middle at-
tacks. Talk at BlackHat DC. https://www.renesys.com/tech/presentations/
pdf/blackhat-09.pdf, February 2009.

[200] R. Holz. root-store-archaeology. Source code repository. https://github.com/
ralphholz/root-store-archaeology, 2013.

[201] R. Hurst. Trust the math. Choose your friends wisely. Blog post on GlobalSign
Inc. Web site. https://www.globalsign.com/blog/trust-the-math-choose-
your-friends-wisely.html, 10 September 2013.

[202] I. Ristić. State of SSL. Talk at InfoSec World. http://blog.ivanristic.
com/Qualys_SSL_Labs-State_of_SSL_InfoSec_World_April_2011.pdf, April
2011.

[203] ICANN. Message from Doug Brent, ICANN Chief Operating Officer. Blog post
on ICANN Web site. https://community.icann.org/display/alac/Trusted+
Community+Representatives, 16 April 2010.

[204] ICANN and VeriSign Inc. Status update, 2010-07-14. Post on Root DNSSEC
Web site. http://www.root-dnssec.org/2010/07/14/status-update-2010-
07-14/, 14 July 2010.

[205] Internet Storm Center. Web site. https://isc.sans.edu, 2013.

[206] A. Langley. Issue 102530: Need to kill “Digicert Sdn. Bhd.” CA (nothing to
do with the better known “DigiCert” CA). Entry in Chromium issue tracker.
http://code.google.com/p/chromium/issues/detail?id=102530, 1 Novem-
ber 2011.

xix

Further resources

[207] A. Langley. Why not Convergence? Blog post on personal blog. https://www.
imperialviolet.org/2011/09/07/convergence.html, 7 September 2011.

[208] A. Langley. Revocation checking and Chrome’s CRL. Blog post on personal
blog. http://www.imperialviolet.org/2012/02/05/crlsets.html, 5 Febru-
ary 2012.

[209] A. Langley. CAA records on google.com. Post on CA/Browser Forum mailing list.
https://cabforum.org/pipermail/public/2013-June/001716.html, 19 June
2013.

[210] A. Langley. Enhancing digital certificate security. Blog post on Google
Online Security Blog. http://googleonlinesecurity.blogspot.de/2013/01/
enhancing-digital-certificate-security.html, 3 January 2013.

[211] A. Langley. extract-nss-root-certs. Source code repository. https://github.
com/agl/extract-nss-root-certs, 2013.

[212] R. Loden. Bug 556468—investigate incident with RapidSSL that issued SSL
certificate for portugalmail.pt. Entry in Bugzilla@Mozilla. https://bugzilla.
mozilla.org/show_bug.cgi?id=556468, 1 April 2010.

[213] G. Markham. Bug 698753—Entrust SubCA: 512-bit key issuance and other CPS
violations; malware in the wild. Entry in Bugzilla@Mozilla. https://bugzilla.
mozilla.org/show_bug.cgi?id=698753, 1 November 2011.

[214] G. Markham. Responses from Comodo. Post in newsgroup mozilla.dev.
security.policy. https://groups.google.com/d/msg/mozilla.dev.
security.policy/t5ItTYGsZYo/OnP3NoZ3MDYJ, 8 April 2011.

[215] M. Marlinspike and T. Perrin. tack. Source code repository. https://github.
com/tack, 2013.

[216] Maxmind Inc. GeoLite free downloadable databases. Web site. http://dev.
maxmind.com/geoip/legacy/geolite/, 2013.

[217] N. McBurnett. PGP Web of Trust statistics. http://bcn.boulder.co.us/
~neal/pgpstat/19960101/, 1996.

[218] N. McBurnett. PGP Web of Trust statistics. http://bcn.boulder.co.us/
~neal/pgpstat/, 1997.

[219] R. C. Merkle. Method of providing digital signatures. Patent US 4309569, January
1982.

[220] Microsoft. Erroneous VeriSign-issued digital certificates pose spoofing hazard.
Microsoft Security Bulletin MS01-017. http://technet.microsoft.com/en-us/
security/bulletin/ms01-017, 22 March 2001.

[221] Microsoft. Microsoft root certificate program. Article on Microsoft TechNet.
http://technet.microsoft.com/en-us/library/cc751157.aspx, 15 January
2009.

[222] Microsoft. Microsoft security advisory (2641690). Fraudulent digital certific-
ates could allow spoofing. http://technet.microsoft.com/en-us/security/
advisory/2641690, 10 November 2011.

xx

Further resources

[223] Microsoft. Introduction to the Microsoft root certificate program. Portal to
Microsoft’s root store program. http://social.technet.microsoft.com/
wiki/contents/articles/3281.introduction-to-the-microsoft-root-
certificate-program.aspx, 2013.

[224] Microsoft. Microsoft security advisory (2798897). Fraudulent digital certific-
ates could allow spoofing. http://technet.microsoft.com/en-us/security/
advisory/2798897, 3 January 2013.

[225] O. Mikle. dns-scraper. Source code repository. https://github.com/hiviah/
dns-scraper.

[226] Y. Minsky, K. Fiskerstrand, and J. Clizbe. sks-keyserver. Homepage of the SKS
implementation. https://bitbucket.org/skskeyserver/sks-keyserver/
wiki/Home, 2013.

[227] H. D. Moore. Debian OpenSSL predictable PRNG toys. Web site. Originally at
http://digitaloffense.net/tools/debian-openssl/, mirrored at: http://
downloads.corelan.be/debian-openssl, 2008–2014.

[228] Mozilla. Dates for phasing out MD5-based signatures and 1024-bit moduli. Post
on MozillaWiki. https://wiki.mozilla.org/CA:MD5and1024.

[229] Mozilla. Mozilla CA Certificate Store. Portal to Mozilla’s root store program.
http://www.mozilla.org/projects/security/certs/, 2013.

[230] Mozilla. mozilla-central. Portal for viewing the source code in the browser.
https://mxr.mozilla.org/mozilla-central/source/, 2013.

[231] Mozilla. Mozilla included CA certificate list.
http://www.mozilla.org/projects/security/certs/included/, 2013.

[232] Mozilla. Mozilla pending CA certificate list.
http://www.mozilla.org/projects/security/certs/pending/index.html,
2013.

[233] Mozilla. Mozilla source code (CVS). Instructions for obtaining the source code.
https://developer.mozilla.org/en-US/docs/Mozilla_Source_Code_(CVS),
2013.

[234] P. Mutton. Compromised GlobalTrust database is published online. Blog
post on Netcraft blog. http://news.netcraft.com/archives/2011/04/04/
compromised-globaltrust-database-is-published-online.html, 4 April
2011.

[235] E. Nigg. Unbelievable! Post in newsgroup mozilla.dev.security.policy.
https://groups.google.com/d/msg/mozilla.dev.tech.crypto/
nAzIKSBEh78/7GEZ4f57F-cJ, 22 December 2008.

[236] E. Nigg. Untrusted certificates. Blog post on StartCom blog. https://blog.
startcom.org/?p=145, 23 December 2008.

[237] E. Nigg. Cyber war. Blog post on StartCom blog. https://blog.startcom.
org/?p=229, 9 September 2011.

[238] J. Nightingale. Removing the RSA Security 1024 V3 root. Blog post
on Mozilla Security Blog. http://blog.mozilla.org/security/2010/04/06/
removing-the-rsa-security-1024-v3-root/, 6 April 2010.

xxi

Further resources

[239] J. Nightingale. DigiNotar removal follow up. Blog post on Mozilla Se-
curity Blog. https://blog.mozilla.com/security/2011/09/02/diginotar-
removal-follow-up/, 2 September 2011.

[240] J. Nightingale. Firefox blocking fraudulent certificates. Blog post
on Mozilla Security Blog. http://blog.mozilla.org/security/2011/03/22/
firefox-blocking-fraudulent-certificates/, 22 March 2011.

[241] J. Nightingale. Fraudulent *.google.com certificate. Blog post on Mozilla Se-
curity Blog. https://blog.mozilla.org/security/2011/08/29/fraudulent-
google-com-certificate/, 29 August 2011.

[242] J. Nightingale. Revoking trust in DigiCert Sdn. Bhd. intermediate Certificate
Authority. Blog post on Mozilla Security Blog. https://blog.mozilla.org/
security/2011/11/03/revoking-trust-in-digicert-sdn-bhd-
intermediate-certificate-authority/, 3 November 2011.

[243] NIST. Secure Hashing. Approved Algorithms. Web site linking to specifications.
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html, 2006.

[244] NIST. Vulnerability Summary CVE-2011-3389. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2011-3389, June 2011.

[245] P. Eckersley and J. Burns. Is the SSLiverse a safe place? Talk at 27th Chaos
Computer Congress. https://www.eff.org/files/ccc2010.pdf, 2010.

[246] H. P. Penning. Analysis of the strong set in the PGP Web of Trust. http://pgp.
cs.uu.nl/plot/, 2013.

[247] Perspectives Project. Project homepage. http://perspectives-project.org/,
2013.

[248] Planet Lab. Web site. https://www.planet-lab.org, 2013.

[249] Ralph Holz. Homepage with data sets of active scans. https://pki.net.in.
tum.de, 2013.

[250] T. Riedmaier and R. Holz. Crossbear. Source code repository. https://github.
com/crossbear/Crossbear, 2013.

[251] I. Ristić. Internet SSL Survey 2010. Talk at BlackHat. https://media.
blackhat.com/bh-us-10/presentations/Ristic/BlackHat-USA-2010-
Ristic-Qualys-SSL-Survey-HTTP-Rating-Guide-slides.pdf, July 2010.

[252] T. Ritter. New standards for browser-based trust—the recent acceleration of im-
provements. White paper. http://ritter.vg/p/2012-TLS-Survey.pdf, March
2012.

[253] F. Rosch. Stripping OCSP from Chrome will not improve browser security. Blog
post on Symantec Connect blog. http://www.symantec.com/connect/blogs/
stripping-ocsp-chrome-will-not-improve-browser-security, 18 Decem-
ber 2012.

[254] R. Sandvik. Security vulnerability found in Cyberoam DPI devices (CVE-2012-
3372). Blog post on Tor Project blog. https://blog.torproject.org/blog/
security-vulnerability-found-cyberoam-dpi-devices-cve-2012-3372, 3
June 2012.

xxii

Further resources

[255] D. Schaefer. Implement ‘shadow server’ data validation. Entry in issue tracker,
https://github.com/danwent/Perspectives-Server/issues/26, 9 October
2013.

[256] K. Seifried. Breach of trust. Article in Linux Magazine. http://www.linux-
magazine.com/Issues/2010/114/Security-Lessons-Spoofed-Browsers,
May 2010.

[257] K. Seifried. Improper SSL certificate issuing by CAs.
Post in newsgroup mozilla.dev.tech.crypto. https://groups.google.com/
d/msg/mozilla.dev.tech.crypto/qxwhY14H2Bg/iMDVmejNnI8J, 1 April 2010.

[258] R. Sleevi. [cabfpub] upcoming changes to Google Chrome’s certificate hand-
ling. Post on CA/Browser Forum public mailing list. https://cabforum.org/
pipermail/public/2013-September/002233.html, 24 September 2013.

[259] B. Smith. Bug 825022—deal with TURKTRUST mis-issued *.google.com certi-
ficate. Entry in Bugzilla@Mozilla. https://bugzilla.mozilla.org/show_bug.
cgi?id=825022, 27 December 2012.

[260] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. Molnar, D. A. Osvik,
and B. de Weger. MD5 considered harmful today. Online version of pa-
per. http://dl.packetstormsecurity.net/papers/attack/md5-considered-
harmful.pdf, 2008.

[261] Start Commercial (StartCom) Ltd. Critical event report. White pa-
per, linked in StartCom blog post ‘Full disclosure’ from 3 Jan 2009
https://blog.startcom.org/wp-content/uploads/2009/01/ciritical-
event-report-12-20-2008.pdf [sic!], January 2009.

[262] M. Stumpf. Bug 477783—Equifax not comforming to Mozilla CA Certificate
Policy (7). Entry in Bugzilla@Mozilla. https://bugzilla.mozilla.org/show_
bug.cgi?id=477783, 10 February 2009.

[263] P. Tate. Subordinate-CAs from trusted roots for ‘managing encrypted traffic’.
Post in newsgroup mozilla.dev.security.policy. https://groups.google.
com/d/msg/mozilla.dev.security.policy/ehwhvERfjLk/XyHxrYkxdnsJ,
2 February 2012.

[264] Team Cymru. Team Cymru community services. Web site. http://www.team-
cymru.org/Services/ip-to-asn.html#whois, 2013.

[265] The Hacker’s Choice. SSL/TLS in a post-PRISM era. Entry in wiki. https://
wiki.thc.org/ssl, 2013.

[266] The International Grid Trust Federation. Web site. http://www.igtf.net/,
2011.

[267] The OpenSSL Project. OpenSSL. Cryptography and SSL/TLS toolkit.
Homepage. http://www.openssl.org/, 2013.

[268] Thoughtcrime Labs/IDS. Convergence. Project homepage.
http://convergence.io, 2011.

[269] Tor Project. Project homepage. https://www.torproject.org/, 2013.

xxiii

Further resources

[270] Trustwave Spider Labs. Blog post on company blog. http://blog.spiderlabs.
com/2012/02/clarifying-the-trustwave-ca-policy-update.html, 4 Febru-
ary 2012.

[271] C. von Loesch, G. Toth, and M. Modell. Certificate patrol. Mozilla Web
page of Firefox add-on. https://addons.mozilla.org/en-us/firefox/addon/
certificate-patrol/, 2012.

[272] D. Wendtland. Q: DNS scheme for privacy-sensitive users. Reply to thread with
this topic in Google group perspectives-dev. https://groups.google.com/d/
msg/perspectives-dev/IQq0uhJq9Mo/L_18Yebb5ckJ, 29 September 2013.

[273] K. Wilson. Recommend removing RSA Security 1024 V3 root certi-
ficate authority. Post in newsgroup mozilla.dev.security.policy.
https://groups.google.com/d/msg/mozilla.dev.security.policy/
tkk6KFunmZg/3PHvml-n_CYJ, 2 April 2010.

[274] K. Wilson. Mozilla communication: Action requested by March 2, 2012. Post
in newsgroup mozilla.dev.security.policy. https://groups.google.com/
d/msg/mozilla.dev.security.policy/6CX23NVaUvY/3S_TjkcebOwJ, 17 Febru-
ary 2012.

[275] S. Xenitellis. Certificate watch. Mozilla Web page of Firefox add-on. https://
addons.mozilla.org/en-US/firefox/addon/certificate-watch/, 2012.

[276] M. Zusman. Announcement of Thawte compromise. Post on Twitter.
https://twitter.com/schmoilito/statuses/1089348859, 31 December 2008.

[277] M. Zusman. Domain validated SSL certificates. Blog post on per-
sonal blog. http://schmoil.blogspot.de/2008/08/domain-validated-ssl-
certificates.html, 25 August 2008.

[278] M. Zusman. Criminal charges are not pursued: hacking PKI. Talk at DEF CON
17. http://www.defcon.org/images/defcon-17/dc-17-presentations/
defcon-17-zusman-hacking_pki.pdf, August 2009.

[279] M. Zusman. Nobody is perfect. Blog post on personal blog. http://schmoil.
blogspot.de/2009/01/nobody-is-perfect.html, 1 January 2009.

xxiv

List of figures

List of figures

1.1. Research Objectives . 7

2.1. Global CA issuing certificates directly . 14
2.2. Global CA with RAs . 15
2.3. Web of Trust . 15
2.4. X.509v3 certificate . 18
2.5. X.509 certificate chains and root stores . 19

3.1. Growth of the NSS/Mozilla root store . 33
3.2. Timeline of incidents in X.509 . 40

4.1. Hosts with and without open port 443, versus Alexa rank 57
4.2. TLS connection errors in relation versus Alexa rank 58
4.3. Top 10 chosen ciphers in passive monitoring data 59
4.4. Certificate occurrences (CCDF) . 61
4.5. Frequent domain names in certificate subjects 62
4.6. Error codes in chain verification . 63
4.7. Popular signature algorithms in certificates 67
4.8. Cumulative distribution of RSA key lengths 68
4.9. Debian-weak keys over 1.5 years . 69
4.10. Certificate validity periods . 70
4.11. Certificate validity periods, distinct case . 71
4.12. Certificate chain lengths . 72
4.13. Certificate chain lengths, with self-signed end-host certificates excluded . 73
4.14. Distinct intermediate certificates and distinct certificate chains 74
4.15. Top 10 issuers in April 2011 (no SNI), distinct case 76
4.16. Top 10 issuers in April 2011 (no SNI) . 77
4.17. Certificate quality versus Alexa rank. 78

5.1. Size distribution of SCCs . 92
5.2. Average distances and indegrees . 93
5.3. CDF of reachable nodes in h-neighbourhoods 93
5.4. CDF of indegree versus outdegree and correlation of node degrees 95
5.5. Robustness of the LSCC . 96
5.6. Distribution of communities by size . 98
5.7. Key population of Web of Trust and LSCC over time 100
5.8. Rate of new PGP keys added to the Web of Trust and the LSCC 101

6.1. Frequent SSH server versions . 110
6.2. CCDF of duplicate keys . 112
6.3. Servers with unique and duplicate keys . 113
6.4. CCDF of duplicate keys for selected AS . 115
6.5. Cumulative distribution of key lengths in July 2013 117

7.1. Structure of a scheme in our notation . 129

xxv

List of figures

8.1. Merkle hash tree as used in CT . 178

9.1. Components of the Crossbear system . 200
9.2. Attackers in Crossbear’s threat model . 212
9.3. Visualisation to derive closed-form model 214
9.4. Estimating the number of hunters required to pinpoint an attacker 217

xxvi

List of tables

List of tables

3.1. Summary of X.509 incidents and attacks since 2001 45

4.1. Data sets used in our investigation of X.509 53
4.2. TLS connections in recorded traces . 56
4.3. EV certificates over time and from different vantage points 66
4.4. Occurrences of suspicious certificates . 75

5.1. Data set for the analysis of the OpenPGP Web of Trust 89
5.2. Dissection of the LSCC into communities 97
5.3. Community structure as membership in TLDs and SLDs 98
5.4. Occurrences of hash algorithms and public key algorithms 100

6.1. Data sets from our SSH scans . 108
6.2. Selection of server versions with known CVEs 110
6.3. Co-prime weak RSA keys across all hosts 111
6.4. Duplicate host keys during scans . 112

8.1. Summary of our threat models . 145
8.2. Schemes’ contributions to reinforcing X.509 and robustness 194

9.1. Parameters used to compute a certificate score 203
9.2. Well-known processes in the Crossbear scheme 209
9.3. Path lengths for the CAIDA data set . 216

xxvii

List of algorithms and listings

1. Algorithm to compute expiration of a certificate 64

2. Scheme of TLS with CA certification, Part 1 140
3. Scheme of TLS with CA certification, Part 2 141

4. Scheme of TACK with TLS, Part 1 . 149
5. Scheme of TACK with TLS, Part 2 . 150
6. Scheme of TACK with TLS, Part 3 . 151
7. Service abstraction for DNSSEC . 155
8. Scheme of CAA, Part 1 . 157
9. Scheme of CAA, Part 2 . 158
10. Scheme of DANE-TLSA, Part 1 . 162
11. Scheme of DANE-TLSA, Part 2 . 163
12. Scheme of DANE-TLSA, Part 3 . 164
13. Scheme of Perspectives, Part 1 . 166
14. Scheme of Perspectives, Part 2 . 167
15. Scheme of Perspectives, Part 3 . 168
16. Scheme of Perspectives, Part 4 . 169
17. Scheme of Perspectives, Part 5 . 170
18. Scheme of Perspectives, Part 6 . 171
19. Algorithm to compute a Merkle Tree Hash 178
20. Algorithm to compute an audit path . 179
21. Algorithm to compute a consistency proof 180
22. Scheme of CT, Part 1 . 186
23. Scheme of CT, Part 2 . 187
24. Scheme of CT, Part 3 . 188
25. Scheme of CT, Part 4 . 189
26. Scheme of CT, Part 5 . 190
27. Scheme of CT, Part 6 . 191

28. Scheme of Crossbear, Part 1 . 204
29. Scheme of Crossbear, Part 2 . 205
30. Scheme of Crossbear, Part 3 . 206
31. Scheme of Crossbear, Part 4 . 207
32. Scheme of Crossbear, Part 5 . 208
33. Scheme of Crossbear, Part 6 . 209

xxix

ISBN

ISSN
ISSN

3-937201-41-6

1868-2634 (print)
1868-2642 (electronic)

	cover.VSD
	Vorne

	cover.VSD
	Hinten

