
Shells Bells: Cyber-Physical Anomaly Detection in
Data Centers

Lars Wüstrich*, Sebastian Gallenmüller*, Stephan Günther*, Georg Carle*, Marc-Oliver Pahl†
Technical University of Munich*, IMT Atlantique†

wuestrich,gallenmu,guenther,carle@net.in.tum.de*, marc-oliver.pahl@imt-atlantique.fr†

Abstract—Monitoring the side-channel sound can improve
anomaly detection (AD) in data centers (DCs). However, a DC’s
dense setup results in a composite soundscape which makes it
difficult to attribute sounds to individual devices.
We propose a novel cyber-physical AD approach that validates
device activity in realistic composite audio signals. By leverag-
ing information from management network traffic, we predict
changes in the DC soundscape. We use a convolutional neural
network to compare our predictions with real observations to
validate correct device activity and identify anomalies. Our
evaluation using data from a real DC environment identifies
spoofed and masqueraded activity with an accuracy of 98.62 %.

I. INTRODUCTION

Data Centers (DCs) provide essential services that enable
our daily lives [4]. The hosted devices must work as intended
for an optimal DC operation. Thus, monitoring is crucial for
DC management. Operators combine various techniques to
monitor and manage DC devices [51]. Tools like the Intelligent
Platform Management Interface (IPMI) [27] allow operators
to remotely interact with devices without being physically
present. This enables the orchestration of critical operations
involving multiple devices such as booting device clusters.
While remote capabilities simplify DC management, they
introduce new problems. Due to faults and attacks [10] devices
may report a wrong state. This includes reporting of non-
existent (spoofing) or masquerading of existing events [5],
falsifying information in the monitoring. The result is a loss
of view in the monitoring and sub-optimal management,
potentially leading to outages.

Monitoring that tracks DC device status needs to identify
when devices report wrong states. In addition to the digital de-
vice state, DC monitoring includes physical properties like the
power usage of the hosted devices [11], [32], [51]. However,
DCs are dense and interconnected setups [51] where multiple
devices simultaneously impact physical measurements. This
results in composite signals and makes attributing physical
changes to individual devices difficult. Thus, DC environments
render the existing approaches that monitor physical properties
of isolated devices infeasible. This raises the question: How
can we validate device activity in composite DC signals for
anomaly detection (AD)?

Remote management also provides an opportunity to enable
AD on composite DC signals such as their soundscape.
Control traffic for device management is an additional source
of information that indicates future device behavior.

Our paper has three main contributions. (1) We present a
novel cyber-physical approach for AD in DC environments.
We correlate IPMI requests and changes in a composite audio
signal to validate individual device activity. Sound is less
popular for monitoring DCs than other side-channels (SCs),
such as power consumption or temperature [51]. It is chal-
lenging since it is affected by environmental reflections and is
easily influenced by multiple sources, leading to a composite
signal. Using information from IPMI helps to predict when and
how device activity affects the DC soundscape. Our approach
addresses the limitations of other SC monitoring methods
which require isolated devices [3], [23]. (2) We evaluate our
system in a real DC environment. We show that acoustic
side channels provide a an easy-to-implement method with
advantages over existing approaches [11], [24]. Our evaluation
also shows that it is possible to train a machine-learning model
with semi-synthetic data for a real world deployment. (3) We
open-source our implementation [50].

Section II compares related work. Section III introduces the
properties of DC environments and challenges of acoustic side
channels. Section IV presents our approach for cyber-physical
AD for DCs, using IPMI and acoustic recordings. Section V
shows our evaluation in a real-world setup. Section VI dis-
cusses generalizability and limitations.

II. RELATED WORK

Side-Channel Based AD and Verification: The majority
of the publications using SC monitoring verify the control
flow integrity of code execution. In contrast to monitoring
code execution, our approach validates correct physical be-
havior. Han et al. [23] and Aubel et al. [48] measure electro-
magnetic (EM) emissions to validate the correct control flow
of programs. Boggs et al. [8] and Nazari et al. [39] use an
EM SC to detect malicious code execution. Han et al. [22]
and Lui et al. [33] analyze power intake to verify the correct
execution of software. Dupuis et al. [16] investigate power
SCs to identify hardware trojan horses. Bolboacă et al. [9]
and Formby et al. [17] measure command execution times
to detect anomalous behavior. They exploit the deterministic
behavior to implement a timing SC for AD.
Our work monitors device behavior when executing a physical
action in a composite signal. Closest to our work is [5], in
which Birnbach et al. combine measurements from multiple
sensors to verify the execution of reported physical events,
such as an opened window, in IoT environments. The authors

combine multiple SCs to detect spoofed events. Our work
validates specific device activity.

Multi-Layer AD: Several works show the benefits of using
information from multiple layers for AD. Sahu et al. [43] fuse
cyber and physical information to identify false command and
measurement injections in power systems. Yang et al. [52]
analyze the power consumption and perceived state of ICS
devices to identify attacks. Carcano et al. [12] model MOD-
BUS traffic and command values to track if command chains
cause critical states. Similar to our work, Choi et al. [15] create
a physical and a cyber model of robotic vehicles. Mismatches
between those models indicate abnormal behavior. Our ap-
proach uses network control traffic to dynamically predict
expected changes and compare them with real measurements
for AD.

Audio-Based AD: Most works using acoustic SCs target
isolated device activity. Audio is used in various SC at-
tacks [2], [21]. Applications monitoring audio are often related
to manufacturing: Al Faruque et al. [1] and Hojjati et al. [25]
reconstruct a product’s manufacturing processes and shape
from audio recordings, Müller et al. [38] present a method
for AD on audio spectrograms via image recognition to
identify anomalous device behavior, Bayens et al. [3] and
Chhetri et al. [14] use an acoustic SC and control signals to
detect attacks on 3D printers. By combining measurements
with network traffic, our approach is less intrusive than ana-
lyzing local code execution and utilizes the activity of multiple
devices at once.

AD in DCs: Most AD approaches for DCs rely on net-
work traffic monitoring or collect information on end hosts.
Garg et al. [18] present an ML-based approach to detect
anomalies from DC network traffic but they do not consider
physical device behavior. Borghesi et al. [11] monitor the
power consumption of DC devices. The authors train an
autoencoder to learn the relationship between physical and
software properties during operation in an IPMI-managed DC
to detect anomalous power consumption states. Wüstrich et
al. [51] analyze the spectrogram of a DC soundscape to
identify single device activity and error codes without access
to technologies such as IPMI.
Only a few ADS in DCs use information from multiple layers.
Hernandez et al. [24] propose to combine information from
SNMP, motherboard sensors, and external power distribution
units to detect malware on single devices. Their approach
requires high temporal and spatial resolution for reliable
malware detection. Our solution exceeds these proposals by
combining information from multiple layers and actively pre-
dicting changes due to control traffic.

III. ENVIRONMENT CHARACTERISTICS

DC Environments: DC environments have unique prop-
erties. The common remote management [10] leads to rare
human interaction. Therefore, all environmental noise and
physical changes are due to known device activity. The sound-
scape of DC environments is mostly constant. This is due
to the constant spinning of server fans and running climate

control while devices have a constant load. Unusual device
activity like power-on operations stand out [51].

A common tool to manage DC devices is IPMI [19], [27].
IPMI is a UDP-based request-response protocol for querying
device information or executing commands. Commands in-
clude power-on or power-off instructions, or request for device
status. An IPMI device returns the requested data or a status
code indicating the success or failure of an executed command.
IPMI commands have a distinct netfunction (netfun), command
code, and command bytes. Depending on the success of the
execution, devices send out specific response codes indicating
the result [27]. Each communication has two phases. The first
phase is a handshake, which uses a pre-shared key (PSK) to
derive a shared secret defined by the standard as K2 [27].
After the handshake, the devices use K2 to encrypt and
integrity protect their communication [27] in the second phase.
Since operators know the PSK, observing a handshake from a
vantage point is sufficient to calculate K2. By using K2, we
can decrypt and parse the IPMI traffic.

Acoustic Side-Channels—Advantages and Challenges:
Sound is a byproduct of many physical activities [3] and
can propagate over several meters. Events create distinct
patterns in spectrograms [41] allowing an identification. Thus,
a single microphone can monitor activity of multiple devices.
Microphones can be added retrospectively without affecting
existing infrastructure and measure the environment non-
intrusively. This allows to collect information without influ-
encing the monitored devices. In addition, microphones are
more affordable than other measuring equipment, such as
heat cameras, electromagnetic emission (EM)-measurement
devices, or power meters. Even cheap microphones provide
high resolution at a high sampling rate [51].
Using acoustic SCs is also challenging. Reflections, obsta-
cles, and the openness of a space influence the spreading
of sound waves. If an audio signal contains sound from
multiple nearby devices, isolating the sound of individual
devices is challenging. Acoustic channels, therefore, require
a thorough pre-processing and often additional information
to isolate individual activity. Since sound waves easily mix,
a major challenge is noise filtering. Noise can be static or
dynamic. Several techniques exist to filter noise from an
audio signal [36]. Active noise-canceling techniques aim to
remove monotonous noises or are performant in a narrow
band of the complete frequency spectrum. The removal of
dynamic sound requires complex methods [42]. These require
additional information about the nature of a sound and its
source, such as information about devices in proximity that
perform actions. Unknown noise sources include all sounds
for which no such information is available. Knowledge about
the scenario helps to address these challenges. Bandpass filters
limit the frequency band to the expected spectrum of sound.
This can help to improve the performance of advanced filtering
methods and focus on a specific activity.

2

Network observations

Traffic
filtering

IPMI
decryption

IPMI
parsing

Command
extraction

Audio processing

Basic
filtering

Signal
extraction

Feature
extraction

(ts, command)

Signal data

Cyber-physical model creation

Cyber-
phys. offset
calculation

Data
aggregation

Model
creation

Model-DB

Network
capture cγ

Audio
capture pγ

2

1

3

Fig. 1. For creating a sub-model, we first extract layer-specific features from cγ and pγ . Then, we fuse the information into a cyber-physical model.

IV. SOUND-BASED AD FOR DCS

This section presents our approach for sound-based AD for
DC environments. We combine IPMI traffic and audio analysis
for AD. When an operator issues a command, IPMI delivers
it to its destination via a network. The receiver then executes
the command as an action. This causes physical changes on
devices, such as the sound of fans spinning up of booting
servers (cf. Fig. 2). Thus, IPMI traffic can indicate future
changes in the DC soundscape.

Due to their unique properties, DC environments are suit-
able for this approach. In particular, it allows to use audio
signals to identify device activity [51]. Sound can indicate
issues such as faulty fans early before they are detected by
other means. All intended changes in the environment are
due to known device activity. Actions such as power-on of
servers, create specific patterns in the spectrogram of the
soundscape [41], setting them apart from constant noise.

Similar to other AD systems [13], our approach consists
of a model generation and AD phase. The model generation
phase builds a global reference model. It correlates changes in
the soundscape and IPMI commands, characterizing expected
behavior. During the AD phase, we use the global reference
model to predict and validate changes in the DC soundscape.
If the prediction and the observations mismatch, DC devices
behave differently than expected. In addition to validating
“normal” activity, this allows to highlight unexpected behavior
in the monitoring. This includes the non-execution of in-
structed and reported activity (spoofing) or the execution of
uninstructed activity (masquerading) [5]. Both result in wrong
information in the monitoring. Abnormal execution times can
also indicate issues [17]. Thus, we consider early or delayed
execution of instructions.

A. Reference Model Generation

The global reference model consists of multiple sub-models.
We refer to the global reference model as model-DB, storing
all sub-models. Modularization has the advantage that changes
to the system do not require retraining the global model. Each
sub-model maps an IPMI command to audio, resulting from
the corresponding action. We identify an IPMI command by
its netfun, command code, command bytes, and the carrying
packet’s L3 information. The inputs for the model generation
are an audio recording and a network capture. In the begin-
ning, the ADS processes the inputs separately. The following
describes the process for creating one sub-model. Figure 1
visualizes the procedure.
Audio Processing. In an optimal case, the recording only
contains the sound of the action without noise. While this

tsγ tsα

Cyber World

Network capture cIPMI

Real world

Audio recording p
pα

τα

pγ

p′γ

oγ

CMD γ

Action α

t

Fig. 2. Schematic relation between IPMI and changes in the soundscape

is, in many cases, not practical, it is possible to remove static
noise from audio. Due to the static DC soundscape, activity of
single devices stands out [51]. Thus recording actions without
external changes to the soundscape is sufficient.
Since physical measurements are noisy, we need to reduce
background noise. This is necessary to extract accurate in-
formation about the change due to device activity. Nearby
device fans and climate control cause the majority of static
background noise [51]. Additionally, device activity does not
affect the whole frequency band at once [3]. To reduce the
effects of background noise, we limit the considered frequency
band of the audio signal to 400-900 Hz, which the DC devices
affect via low- and high-pass filters.
We then use the Root Mean Square Energy (RMS Energy) as
an indicator to automatically identify the time frame of device
activity [51]. We use this method to extract the timestamp tsα
and duration τα of the activity.
We further calculate a noise profile characterizing the static
noise in the recording before tsα. Using the noise profile, we
remove static noise from the recording. These steps result in a
noise-free recording. The final step extracts the audio between
tsα and τα from the noise-free recording. The extracted
portion characterizes the audio of the activity.
Command Extraction. The model generation simultaneously

analyzes the network capture to extract the IPMI command.
After analyzing the IPMI handshake between source and
destination, we derive the shared secret K2. We extract netfun,
command code, and command bytes from the following IPMI
request. We also collect information about the receiver via the
L3 destination address. The timestamp tsγ specifies the time
of the IPMI command.
Event Correlation. We now need to correlate the events from
the two inputs. We use temporal information for this task.
We calculate the offset oγ between the IPMI command and
change in the soundscape to create the corresponding mapping.

3

Network observations
Traffic

filtering
IPMI

decryption IPMI parsing Command
extraction

Audio processing
Basic

filtering

Command list C

Filtered signal
p′∆t

Reference Generation
Reference

lookup
Model

creation
Reference
adjustment

Model-DB

Validation

Compare
r to p′∆t

Reference r
Network

capture c∆t

Audio
capture p∆t

2

1

3

3

Fig. 3. The AD phase creates a dynamic reference from control traffic using the model-DB to construct a reference for comparison with real observations.

Figure 2 also visualizes this offset. We calculate the offset as
oγ = tsα − tsγ . Capturing all data on the same device can
prevent synchronization issues [43]. We address this effect in
the validation step (cf. Section IV-B).
DCs often physically and logically separate management
traffic and have a static setup. The DC infrastructure over-
provisions network resources for management traffic to ensure
a fast and reliable method for operator device access. Thus,
the network typically routes IPMI packets via the same hops.
This keeps delivery times of IPMI commands constant. There-
fore, the network-induced delay in this scenario is negligible,
similar to Industrial Control System (ICS) scenarios [17].
This makes the physical behavior of DC devices predictable.
However, the time between receiving and executing commands
can have minor variations that need consideration during AD.
A sub-model comprises all information from audio processing,
IPMI command, and correlation.

B. Anomaly Detection

In the AD phase, our system validates that recorded audio
is consistent with the observed IPMI traffic. Therefore, we
first dynamically construct a reference signal containing all
expected audio changes by using the information in the model-
DB. We then compare the real recordings with the reference
signal. If the recordings match, we validate the activity as
normal. If the observation is inconsistent, it classifies it into
our four anomaly types: spoofing, masquerading, early, or
delayed execution. In the following, we describe the validation
of a time frame ∆t. Figure 3 shows the procedure. During the
AD phase, the time frame moves as a sliding window for
continuous monitoring.

To validate ∆t, we first construct a reference signal r. Thus,
we analyze the IPMI traffic during ∆t. By using the PSK and
observed handshakes, we decrypt and parse the IPMI control
traffic. We extract all IPMI requests γ and their timestamp tsγ
and aggregate them in a list C.

We use the list to dynamically construct r. This distin-
guishes our approach from others which compare observations
to fixed prerecorded traces. We initialize a silent r and
synchronize the start and end of r with ∆t. Then, we look up
each IPMI request γ in C in the model-DB. The model-DB
contains all γ that affect the soundscape. If the model-DB does
not contain γ, we assume it does not affect the audio signal.
Thus, we ignore all γ that are in C, but have no reference in
the model-DB. If γ exists in the model-DB, we know its effects
on the soundscape. We know tsγ of the command from C. By
using the offset oγ and reference from the model-DB, we can
predict the sounds due to γ in r. Thus, we add the expected
audio of γ from the model-DB to r at tsγ + oγ . By repeating

ts0 ts1 ts2 ts3 ts4 ts5

64

128

256

512

1024

Offset between
command and action

Semi-
Known
Audio

Validatable Audio

∆tp

∆t

t

H
z

Fig. 4. The time frames ∆t, ∆tp, and events in an example recording

0
64

128
256
512

1024
2048
4096
8192

Hz

Observed Signal

0 5 10
Time [s]

0
64

128
256
512

1024
2048
4096
8192

Hz

Constructed Reference Signal

80

70

60

50

40

30

20

10

0

Fig. 5. A real signal and its reference with a server turning on at 11 s

this process for all γ ∈ C, we construct r. If there is no γ
in C, the reference r is silent since we do not expect any
changes. Figure 5 shows an example of a constructed audio
reference with a predicted server power-on compared to an
actual recording.

We can only validate a part of r during ∆t. This is because
the execution of an action, e. g. booting a machine takes time.
Thus, the recording during ∆t can contain partial sounds due
to actions that started before its beginning and have not ended
yet. We refer to the validatable part as ∆tp. The validatable
part ∆tp starts after an offset to the start of ∆t and ends
simultaneously as ∆t. If an α started before the beginning
of p∆tp but has not yet finished, p∆tp includes a part of
α at the beginning. The offset has to be long enough such
that a generated reference includes all known sources that
could influence p∆tp . The time-frame during the offset is semi-
known since it can contain known and unknown activity. Thus,
we keep only the validatable part ∆tp for the AD. Figure 4
visualizes the time frames.

We finally compare r to the recording. The example in

4

TABLE I: SIMILARITY CALCULATION METHODS FOR AUDIO SIGNALS

Method Noise Temporal Comparison Reasoning

Fingerprinting X 7 X % matching hashes
DTW 7 X X distance
RMS Energy 7 X X distance
Image recognition X X 7 events
ML X X X events/classes

Figure 5 shows that r and the recording are similar, but not
identical. The recording contains remaining noise, and the
power-on trace is later than predicted. This emphasizes the
need for a comparison method that is robust to noise and
temporal shifts. Temporal shifts occur due to the lack of time
guarantees in DCs. Thus, it is only possible to estimate when a
device executes an action. The comparison method should vali-
date a time frame even if minor shifts occur. While our method
applies various noise filters throughout the process, some noise
can remain in the recording. Therefore, the chosen comparison
method must recognize similarity despite remaining noise.
There are a variety of methods to compare audio snippets.
Audio fingerprinting [49], dynamic time warping (DTW) [37],
image recognition [7], and machine learning (ML) [29] are
common techniques. We compare and motivate our chosen
comparison and validation method in the following.
Audio fingerprinting offers noise robustness [49]. However,
temporal shifts lead to low similarity of the fingerprint. This
effect is measurable for shifts by ≥ 10 ms to its reference
counterpart. This makes audio fingerprinting only suitable for
deterministic environments in which it is possible to accurately
predict device activity or to compare fixed snippets.
DTW calculates a distance between signals [37]. It is robust
to temporal shifts and speed variations. However, noise can
result in a high distance calculation of DTW, even if most of
the signal is similar [44], affecting its performance.
It is also possible to compare aggregated signal information,
e. g., the RMS Energy [51]. Noise affects RMS-Energy-based
comparisons similar to DTW. Since the RMS-Energy is an
aggregated value, it is useful to identify time frames when
changes occur. Aggregating information into a single value
makes it impossible to identify which frequencies changed.
This makes it challenging to distinguish activities that cause
similar changes to the aggregated value.
Image recognition like [7] identifies events that show up
as geometric patterns [41] in spectrograms. These patterns
must stand out from the background in a spectrogram. Noisy
environments, such as DCs, alleviate the contrast of patterns to
the background and reduce the efficiency of such approaches.
While image recognition can identify events in spectrograms,
it does not aim to compare two complete spectrograms.
ML methods can be robust to noise and temporal shifts and

can even identify melody variations [29]. Depending on the
ML method, it is possible to classify the result. A drawback of
this approach is that the acceptable delay needs to be specified
at training time.
Table I presents our comparison. Due to the robustness, our
validation relies on an ML-based approach. However, the high
resolution and audio sampling rate lead to high dimensional

STFT
Parameters:

- window size
- overlap

Result: A ∈ C|F |×|∆t|

Removal of complex parts
Result: A′ ∈ R|F |×|∆t|

Frequency band limitation
Parameters:

- bounds of band(s)
Result: M ∈ R|F ′|×|∆t|

Binning
Parameters:

number of bins n
Result: M ∈ R|n|×|∆t|

Bin aggregation
Parameters:

aggregation method
e. g. min,max etc.

Result: M′ ∈ R|n|×|∆t|

Outlier amplification
Parameters:

- amp. method e. g. exp
Result: M′ ∈ R|n|×|∆t|

Calc. avg value of freq.
bins in a time window

Parameters:
- window size

Result: avg per freq.

Bitmap indicating if
bin exceeds diff to avg

Parameters:
- Activation threshold th
Result: B ∈ {0, 1}n×|∆t|

Removal of
isolated activations

Result: B′ ∈ {0, 1}n×|∆t|

Recording
parameters:

sampling rate

Bitmap with
significant changes
B′ ∈ {0, 1}n×|∆t|

Fig. 6. Preprocessing chain of audio input for the ML validation

input data for ML. Processing such information with ML
requires data preprocessing and preparation.

Our approach applies a procedure to reduce the dimension-
ality of the audio input while retaining important information
about significant changes. Figure 6 visualizes the procedure. In
general, the procedure reduces the resolution of the frequency
band and identifies deviations from the average energy on
a frequency. The process initially performs a Short Time
Fourier Transform (STFT) on the audio signal. Similar to
other works [20], [41] we choose a window size of 2048 for
the STFT. |∆t| denotes the number of STFT time frames of
the audio during ∆t and |F | the frequency band size. The
result of the STFT is a matrix A ∈ C|F |×|∆t| holding Fourier
coefficients as elements. A 15 s recording at a sampling rate of
44.1 kHz leads to |∆t| = 646, each frame covering 23.21 ms.
An aij ∈ A describes the amplitude of frequency i ∈ F
of a frame j ∈ |∆t|. Since the elements of A are complex,
ordering them is impossible. To compare the aij ∈ A,
the next step takes their absolute values |aij | to create a
matrix A′ ∈ R|F |×|∆t|. Since device activity does not affect
all frequencies f ∈ F [51], the process reduces the frequency
band to F ′. The reduced frequency band F ′ is a subset of F ,
e. g., the lower quarter. This results in |F ′| < |F | and a matrix
M ∈ R|F ′|×|∆t|. The first row of Figure 6 shows these steps.
To further reduce the dimensionality, we aggregate the fre-
quency band F ′ of each time step j ∈ ∆t into n bins. The
number of bins n ∈ {1, ..., |F ′|} influences information loss
due to value aggregation. When n = 1, all frequencies in F ′

are aggregated into a single bin. If n = |F ′|, all frequencies
in F ′ are considered individually. This results in a tradeoff
between the resolution and dimensionality of the input. After
a series of experiments, we choose n = 128.
The method calculates a single value for each bin using
aggregation methods such as max,min, avg, or sum. We
calculate the avg of each bin as representative. This step makes
the method susceptible to noise causing random spikes in a
bin. We address those outliers in a later step. The remaining
steps aim at identifying significant changes in the signal. Each
representative element of a bin is amplified to separate outliers.
The amount of amplification depends on the scenario. While
separation is important, our method limits the amplification
effect via a scenario-specific ceiling for the later steps.
The following steps consider individual frequency bins bfj
of a frequency f during all j ∈ |∆t|. To identify outliers
on a frequency bin b, the procedure calculates the average

5

value of each frequency bin over ∆t as abf =
∑|∆t|
j=0

bfj

|∆t| .
The second row of Figure 6 represents these steps. It then
calculates a distance |bfj−abf | and compares it to a threshold
th. If |bfj − abf | ≤ th, it is marked as 0, otherwise as 1. The
sox utility filters noise in a similar way [28]. The choice of th
depends on a variety of factors. One factor is how many events
stand out from the background noise. A lower difference to
the background demands a smaller th as otherwise expected
bits do not get activated. The second factor is the number of
events in ∆t. More events increase the average, reducing the
difference between peaks and the average. Therefore, th needs
to be set accordingly. The method stores all marks in bitmap
B ∈ {0, 1}n×|∆t| highlighting the changes.
Random noise spikes can impact the calculation of bin
representatives and cause wrongly activated bits in the
bitmap. These occur randomly and in isolation. Similar to
Pham et al. [41], we found that activity causes patterns, i. e.,
larger, connected, and activated fields. To remove random
noise, we deactivate isolated bits. We define an isolated bit
by the maximum number of activated bits in proximity. The
choice of this number requires thorough consideration. A small
maximum activation number can lead to noise remaining in
the bitmap. An activation number that is too high leads to the
false removal of action patterns. In particular, small patterns,
e. g., caused by a short beep, can be wrongfully filtered out if
the activation number is too high. The definition of proximity
requires a similar discussion. A too-small proximity distance
dismisses valid signals, and high values fail to filter noise.
This results in the final bitmap B′ ∈ {0, 1}n×|∆t|.
The procedure highlights changes relative to background
noise. This makes it adaptive and robust to changes in the
base level of background noise. The preprocessing and signal
construction for the ML-based validation creates two bitmaps.
Each bitmap highlights the changes in one audio artifact—
the reference and the recorded signal. Since bitmaps represent
images, we use a convolutional neural network (CNN). Various
image processing applications show that CNNs are particularly
suited for tasks with image-like input. The structure of our
CNN is similar to the LeNet [30] and ConvNet [31]. We
use four convolutional layers with max-pooling layers after
the second and the fourth layer. There are two more fully
connected layers after the second pooling layer for the clas-
sification. The input for the CNN is a concatenation of both
bitmaps into a validation bitmap. In our setup, the size of the
validation bitmap is in {0, 1}256×646. The CNN categorizes
the input into “normal” or one of our four anomaly types.

By using this approach, it is possible to validate individual
device activity in a composite audio signal.

C. Application-Specific Challenges

Acoustic SCs introduce a variety of challenges. (1) Sound
wave dispersion depends on the environment. Therefore, ref-
erences for the model-DB need to be created within the
monitored system. Changes in the environment, e. g., the setup
of new structures that affect sound propagation, can require a
new training of the model-DB. (2) Audio filtering is complex

and requires additional knowledge about an environment. The
choice of filters depends on the environment and monitored
devices. Filtering introduces information loss. Careful tuning
is necessary to avoid filtering out important information. In
particular, filtering dynamic sound sources is computationally
expensive [7]. Dynamic filtering methods require additional
domain knowledge.

V. EVALUATION

Our evaluation measures the capabilities of our approach.
We first evaluate AD in a controlled environment using syn-
thetic data from a real-world DC. In a second evaluation, we
show the functionality in a real setup.

Implementation: We implemented our system [50] in
Python, using librosa [34] and (py)sox [6], [45] for audio
processing. The prototype uses pypacker [46] to process
network traffic. The CNN validation uses pytorch [40].

Test Environment: The DC environment consists of 33
servers and 4 actively cooled switches in a single air-
conditioned room. We can control all devices via IPMI. There
are several types of servers with multiple devices of each type.
In the soundscape, the servers mainly differ in the cooling
fans, emitting noise on frequency bands [51]. The typical noise
level in the DC is around 72.6 dB(A). The ADS runs on a
Linux machine with Debian 11, an Intel Xeon 1265L CPU,
and 16 GB RAM.

Experiment Setup: Our experiments involve three device
types: (i) a management device issuing commands to servers
using ipmitool [26], (ii) servers that receive IPMI commands
and execute corresponding actions, and (iii) a monitor that
runs our ADS, capturing real-time traffic between the man-
agement device and servers. Here, management device and
monitor share the same machine. After building the model-
DB, our system passively observes the environment. We use a
Blue Yeti X [35] microphone in cardioid recording mode. The
microphone records the frequency band of 20 Hz to 20 kHz
at a sampling rate of 44.1 kHz. The microphone is located
approximately 0.3 m in front of the server racks (cf. Figure 7).

Reference Model Generation: To construct the model-DB,
we send shut down and power on IPMI commands. These
commands cause server fans to stop or start, changing the
DC soundscape. We assume devices execute and operate as
intended during the reference model generation. The monitor
builds a sub-model for each command (cf. Section IV). The
creation takes place during normal operation, i. e., without
interrupting the general operation. We limit the frequency band
to 400 Hz to 900 Hz, the fan spectrum, to reduce the back-
ground noise. Additionally, we apply noise filtering via sox
with a strength of 0.05. The model-DB contains 8 references
for 4 devices, covering a subset of all devices. We use the
same model-DB for the entire evaluation.

Metrics: We evaluate the performance by analyzing com-
monly used metrics [3], [12]: true positives (TP), true nega-
tives (TN), false positives (FP) and false negatives (FN). We
derive the accuracy (TP + TN)/(TP + TN + FP + FN),
the precision TP/(TP + FP) and recall TP/(TP + FN).

6

Management Server

Experiment device 1

Experiment device 2

..
.

Experiment device nMonitor Microphone

Fig. 7. Schematic experiment setup

A. Synthetic Model Training and Evaluation

Model Training with Generated Data: The generation
of sufficient samples to train ML is challenging. If there are
multiple actions, the combination of these actions creates an
exponentially growing combination space. Recording audio
in a real environment requires time, e. g., 1000 recordings
with a length of 15 s are equivalent to 4.16 h. Recorded
devices are blocked from being used by other users during
the data generation. Further, the repeated command execution
causes wear and tear. We create a semi-synthetic dataset by
rearranging references from the previously generated model-
DB. This is possible since we consider deterministic actions.
This allows to generate labeled samples from a few recordings
for a dataset. Our dataset contains 72600 recordings and refer-
ences spanning 302.5 h. Samples contain 0 to 2 simultaneous
actions. Traces of 1 action show the possibility to identify a
single device in a composite signal, and 2 actions show the
performance if multiple devices operate concurrently. There
are 160 different references for 1 and 80 for 2 actions. This
ensures a balance of spoofing and masquerading samples with
1 and 2 actions. We train our CNN on this dataset.

To generate labeled samples, we temporally shift or remove
actions. Depending on the change in the recording, we au-
tomatically assign a label. “normal” labeled samples contain
the same actions in the reference and recording at the same
time stamps. The labeling requires a definition of acceptable
delay and early execution. In our setup, we consider the exe-
cution within a time frame of 0.5 s to the expected execution
acceptable and as “normal”. If an event shifts 0.5 s to 1.5 s,
it has an early or delayed execution label. Temporal shifts of
more than 1.5 s are not in the dataset and are considered either
spoofing or masquerading. Multiple repetitions of the model-
building process show that this is a reasonable assumption. In
our experiments, the offset between the IPMI command and
change in the soundscape varied in a range of 0.35 s for power-
on and 0.6 s for power-off. Samples with references containing
more actions than the recording are labeled as “spoofing”.
Samples with fewer actions in the reference than the recording
are labeled “masquerading”. The class distribution in the data
set is 15000 normal, 9200 samples for each delay and early
execution, and 19200 for each masquerading and spoofing.
The train-test split of the dataset is 80/20. We train the model
for 20 epochs with a learning rate of 0.01. A stagnating loss
indicated overfitting after 11 epochs. Our evaluation uses the
model trained for 11 epochs.

Results: Table II lists the classification results. The diagonal
entries of the table reflect TP, horizontal entries FP, and

TABLE II: VALIDATION RESULTS OF THE CNN MODEL

Class/Classified Normal Early Delay Spoof. Masqu. Recall

Normal (3000) 2947 23 14 8 8 0.9823
Early (1920) 40 1876 0 0 4 0.9771
Delay (1920) 35 0 1884 5 1 0.9813
Spoofing (3840) 27 0 1 3811 1 0.9924
Masquerading (3840) 38 1 0 0 3801 0.9898

Precision 0.9546 0.9874 0.9921 0.9966 0.9963

vertical entries FN classifications. The chosen model has an
overall accuracy of 98.62 % on the synthetic test dataset. The
model achieves the highest precision for detecting spoofing
and masquerading anomalies with a precision of 99.66 % and
99.63 %. The model classifies early and delayed execution
with a precision of 98.74 % and 99.21 %. It shows the worst
performance at classifying normal conditions with a precision
of 95.46 %. The recall for all classes is ≥ 97.71 %.
Our evaluation shows a limitation of our approach due to the
preprocessing step. Multiple identical operations within the
same time frame merge into a single pattern in the bitmaps.
Due to this shadowing effect, our CNN fails to distinguish
patterns from individual and simultaneous activities,.

B. Real-World Evaluation

Setup: We reuse the setup shown in Figure 7 and simu-
late the different anomalies. To simulate early and delayed
execution of events, we add or subtract 1 s to the offset in
the model-DB’s sub-models. For the simulation of the event
masquerading, we remove the sub-model for a monitored
device from the model-DB such that the constructed reference
does not contain the expected change. If an IPMI device
receives a command to turn into a state it already is in, e. g.
power on, it responds with a success message. This way we
simulate event spoofing for power-off and power-on.
We create 4 types of time frames: normal with 0 actions,
normal with 1 action, spoofing, and masquerading. Due to the
missing guarantees for maximum execution times in IPMI, we
include “early” and “delayed” action execution in “normal”
cases. We assess the CNN classification by visual inspection.
We collect 20 normal time frames and for each anomaly. We
validate 80 independent 15 s time frames, making up 20 min.

Results: The results in Table III show that the model
can accurately classify real-world measurements. The system
classifies all 20 of the time frames with 0 actions correctly as
“normal”. Thus, the model does not classify random noise as
spoofed activities. The remaining time frames have at least 1
action in either the reference, recording, or both.
A visual inspection of the 20 time frames confirms 15 of the
classifications by the CNN. As expected, the offset between
IPMI commands and actions varied. Therefore, the CNN
correctly identifies minor deviations from the expectation as
either early or delayed execution in 3 out of 3 cases. In 6 other
cases, the deviation from the expectation was larger than the
acceptable difference of 0.5 s. The CNN correctly classified
those time frames as spoofing. In 4 other cases, the CNN
falsely classified a time frame as “spoofing”.
The model successfully detected 19 of 20 spoofed events. In

7

TABLE III: DC EVALUATION RESULTS

Class/Classified Normal Early Delay Spoof. Masqu.

Normal (40) 25 1 2 12 0
Spoofing (20) 1 0 0 19 0
Masqu. (20) 20 (4)† 0 0 0 0 (16)†

† In combination with RMS Energy.

the misclassified time frame, the model classified the activity
once as “normal” due to patterns in the recording of remaining
noise. This highlights the importance of filtering and change
extraction as input for the validation.
The model did not identify action masquerading. A visual
inspection of the bitmaps of the reference and recording
shows that the construction method correctly highlights device
activity. In 4 cases, the remaining patterns in the recording are
indistinguishable from noise patterns, which is why we deem
this classification correct. This indicates an issue with the CNN
classification. We argue that improved training can address this
issue, e. g., if it includes more examples of masquerading. To
address this issue, we combine multiple validation methods.
By including the RMS-Energy-based approach [51] used in
the model building can identify time frames in which activity
takes place. If there is no expected activity but the RMS-
Energy-based method identifies an action, we correctly classify
masquerading in these 16 time-frames.

Table III summarizes the results. In our quantitative eval-
uation, 57 (73 in combination with RMS-Energy) of the 80
time frames were classified correctly. This shows that the
presented approach could successfully validate device activity
and identify anomalies in a composite signal.

Sensitivity: To evade detection, anomalies must simultane-
ously affect the IPMI traffic and soundscape measurements.
Action spoofing requires corresponding physical changes.
This requires physical access to the environment for active
attackers. Action spoofing is possible in combination with
action masquerading. By forcing another device to perform
an action that causes identical changes, both signals match.
There is an analogous approach to evade the detection of action
masquerading. One way to address this is to add localization
capabilities, e. g. multiple microphones. Another way to avoid
detection of action masquerading is to manipulate the exe-
cution of actions by limiting physical changes, e. g. lowering
the speed of fan deceleration. Since our system filters small
changes as noise, an attacker can evade detection. In our setup,
we can only detect activities with a signal to noise ratio (SNR)
higher than −4.8 dB. Such low-level manipulations require
firmware-level access to the compromised device to alter how
a device executes an action. Finally, without localization, it is
possible to masquerade actions by shadowing other legitimate
actions. Fixed offsets require attackers to accurately predict
actions, which is challenging [5].

VI. GENERALIZABILITY AND LIMITATIONS

Generalizability: Our method can be used in other envi-
ronments with other SCs and protocols. The requirements for
an adaption are the observability of commands and predictable

environments. It is possible to parse other control traffic, e. g.
MODBUS [47]. Similarly, using other SCs, e. g., shared power
meters or temperature sensors is possible. While validation
methods like audio fingerprinting are SC-specific, ML ap-
proaches are flexible and adaptable. Systems that guarantee
strict execution times allow stricter validation methods.
As shown in the evaluation, the modular approach allows to
create a synthetic dataset that can be used to train a model for
ML. Our system can address commands with variations due to
additional command arguments, e. g. minor adjustments to fan
speeds. Such variations can be identified in the command and
can be included as additional sub-models in the model-DB.
Limitations: Our approach requires access to the unencrypted
messages to monitor executed commands. The offset between
commands and the corresponding activities must be determin-
istic within a time window. Otherwise, our approach can only
reliably predict expected changes. For a successful detection,
the monitored actions must stand out compared to noise.
Finally, our evaluation shows that the current implementation
could be more robust to shadowing. Our solution cannot detect
multiple simultaneous executions of the same action. It is also
difficult to distinguish actions causing identical spectrogram
patterns. This can be addressed by using multiple sensors that
enable localization.

VII. CONCLUSION

We presented a novel approach to cyber-physical AD for
DCs. Our method leverages IPMI control traffic to validate
device activity in a composite signal—the DC soundscape. By
utilizing control traffic, we predict changes in the soundscape,
making it possible to attribute changes to individual devices.
The proposed method is non-intrusive since it does not interact
directly with components after generating a reference model.
During AD, it rearranges sub-modules of references on de-
mand. Using information of multiple layers for AD makes it
easier to identify anomalies. Our evaluation uses real-world
data and shows that our system is robust to noise and minor
temporal inaccuracies. In experiments with a synthetic dataset
we achieve an accuracy of 98.62 %. Experiments in a real
DC environment confirm the synthetic results. Our contribu-
tion opens up new possibilities for AD in DCs by enabling
reasoning about individual devices in composite signals.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry of
Education and Research; projects SKINET (16KIS1221), 6G-
life (16KISK002), and 6G-ANNA (16KISK107). We received
funding from the EU’s Horizon 2020 program (SLICES-SC
101008468, SLICES-PP 101079774), the Bavarian Ministry of
Economic Affairs, Regional Development and Energy as part
of the project 6G Future Lab Bavaria, and from the German
Research Foundation (HyperNIC, CA595/13-1). Support was
also provided by the industrial chair Cybersecurity for Critical
Networked Infrastructures (https://CyberCNI.fr) with support
of the FEDER development fund of the Brittany region.

8

REFERENCES

[1] M. A. Al Faruque, S. R. Chhetri, A. Canedo, and J. Wan, “Acoustic
Side-Channel Attacks on Additive Manufacturing Systems,” in 2016
ACM/IEEE 7th International Conference on Cyber-Physical Systems
(ICCPS). IEEE, 2016, pp. 1–10.

[2] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder,
“Acoustic side-channel attacks on printers,” in 19th USENIX Security
Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings.
USENIX Association, 2010, pp. 307–322. [Online]. Available:
http://www.usenix.org/events/sec10/tech/full\ papers/Backes.pdf

[3] C. Bayens, T. Le, L. Garcia, R. Beyah, M. Javanmard, and S. Zonouz,
“See No Evil, Hear No Evil, Feel No Evil, Print No Evil? Malicious Fill
Patterns Detection in Additive Manufacturing,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017, pp. 1181–1198.

[4] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics
of Data Centers in the Wild,” in Proceedings of the 10th ACM
SIGCOMM Internet Measurement Conference, IMC 2010, Melbourne,
Australia - November 1-3, 2010, M. Allman, Ed. ACM, 2010, pp.
267–280. [Online]. Available: https://doi.org/10.1145/1879141.1879175

[5] S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical Event
Verification in Smart Homes,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, L. Cavallaro, J. Kinder,
X. Wang, and J. Katz, Eds. ACM, 2019, pp. 1455–1467. [Online].
Available: https://doi.org/10.1145/3319535.3354254

[6] R. Bittner, E. Humphrey, and J. Bello, “Pysox: Leveraging the Audio
Signal Processing Power of sox in Python,” in Proceedings of the
International Society for Music Information Retrieval Conference Late
Breaking and Demo Papers, 2016.

[7] V. Boddapati, A. Petef, J. Rasmusson, and L. Lundberg, “Classifying
Environmental Sounds Using Image Recognition Networks,” in
Knowledge-Based and Intelligent Information & Engineering Systems:
Proceedings of the 21st International Conference KES-2017, Marseille,
France, 6-8 September 2017, ser. Procedia Computer Science, C. Zanni-
Merk, C. S. Frydman, C. Toro, Y. Hicks, R. J. Howlett, and L. C. Jain,
Eds., vol. 112. Elsevier, 2017, pp. 2048–2056. [Online]. Available:
https://doi.org/10.1016/j.procs.2017.08.250

[8] N. Boggs, J. C. Chau, and A. Cui, “Utilizing Electromagnetic Em-
anations for Out-of-Band Detection of Unknown Attack Code in a
Programmable Logic Controller,” in Cyber Sensing 2018, vol. 10630.
International Society for Optics and Photonics, 2018, p. 106300D.

[9] R. Bolboacă, B. Genge, and P. Haller, “Using Side-Channels to Detect
Abnormal Behavior in Industrial Control Systems,” in 2019 IEEE 15th
International Conference on Intelligent Computer Communication and
Processing (ICCP). IEEE, 2019, pp. 435–441.

[10] A. Bonkoski, R. Bielawski, and J. A. Halderman, “Illuminating
the Security Issues Surrounding Lights-Out Server Management,”
in 7th USENIX Workshop on Offensive Technologies, WOOT
’13, Washington, D.C., USA, August 13, 2013, J. Oberheide
and W. K. Robertson, Eds. USENIX Association, 2013. [On-
line]. Available: https://www.usenix.org/conference/woot13/workshop-
program/presentation/bonkoski

[11] A. Borghesi, A. Libri, L. Benini, and A. Bartolini, “Online Anomaly
Detection in HPC Systems,” in IEEE International Conference on
Artificial Intelligence Circuits and Systems, AICAS 2019, Hsinchu,
Taiwan, March 18-20, 2019. IEEE, 2019, pp. 229–233. [Online].
Available: https://doi.org/10.1109/AICAS.2019.8771527

[12] A. Carcano, A. Coletta, M. Guglielmi, M. Masera, I. N. Fovino, and
A. Trombetta, “A Multidimensional Critical State Analysis for Detect-
ing Intrusions in SCADA Systems,” IEEE Transactions on Industrial
Informatics, vol. 7, no. 2, pp. 179–186, 2011.

[13] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Computing Surveys (CSUR), vol. 41, no. 3, pp. 1–58,
2009.

[14] S. R. Chhetri, A. Canedo, and M. A. Al Faruque, “KCAD: Kinetic
Cyber-Attack Detection Method for Cyber-Physical Additive Manu-
facturing Systems,” in 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2016, pp. 1–8.

[15] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Deng, “Detecting Attacks Against Robotic Vehicles: A Control In-
variant Approach,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 801–816.

[16] S. Dupuis, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “On the
Effectiveness of Hardware Trojan Horse Detection via Side-Channel
Analysis,” Information Security Journal: A Global Perspective, vol. 22,
no. 5-6, pp. 226–236, 2013.

[17] D. Formby, P. Srinivasan, A. M. Leonard, J. D. Rogers, and R. A. Beyah,
“Who’s in Control of Your Control System? Device Fingerprinting for
Cyber-Physical Systems.” in NDSS, 2016.

[18] S. Garg, K. Kaur, N. Kumar, G. Kaddoum, A. Y. Zomaya, and
R. Ranjan, “A Hybrid Deep Learning-Based Model for Anomaly
Detection in Cloud Datacenter Networks,” IEEE Trans. Netw. Serv.
Manag., vol. 16, no. 3, pp. 924–935, 2019. [Online]. Available:
https://doi.org/10.1109/TNSM.2019.2927886

[19] O. Gasser, F. Emmert, and G. Carle, “Digging for Dark IPMI Devices:
Advancing BMC Detection and Evaluating Operational Security,” in
TMA, 2016.

[20] D. Genkin, N. Nissan, R. Schuster, and E. Tromer, “Lend Me Your
Ear: Passive Remote Physical Side Channels on PCs,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, p. 4437–4454.

[21] D. Genkin, A. Shamir, and E. Tromer, “Acoustic Cryptanalysis,” J.
Cryptol., vol. 30, no. 2, pp. 392–443, 2017. [Online]. Available:
https://doi.org/10.1007/s00145-015-9224-2

[22] Y. Han, M. Chan, Z. Aref, N. O. Tippenhauer, and S. A.
Zonouz, “Hiding in Plain Sight? On the Efficacy of Power
Side Channel-Based Control Flow Monitoring,” in 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds.
USENIX Association, 2022, pp. 661–678. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/han

[23] Y. Han, S. Etigowni, H. Liu, S. Zonouz, and A. Petropulu, “Watch
Me, But Don’t Touch Me! Contactless Control Flow Monitoring via
Electromagnetic Emanations,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
1095–1108.

[24] J. M. Hernández, L. Pouchard, J. T. McDonald, and S. J. Prowell,
“Developing a Power Measurement Framework for Cyber Defense,” in
Cyber Security and Information Intelligence, CSIIRW ’13, Oak Ridge,
TN, USA, January 8-10, 2013, F. T. Sheldon, A. Giani, A. W. Krings,
and R. K. Abercrombie, Eds. ACM, 2013, p. 28. [Online]. Available:
https://doi.org/10.1145/2459976.2460008

[25] A. Hojjati, A. Adhikari, K. Struckmann, E. Chou, T. N. Tho Nguyen,
K. Madan, M. S. Winslett, C. A. Gunter, and W. P. King, “Leave Your
Phone at the Door: Side Channels That Reveal Factory Floor Secrets,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 883–894.

[26] IBM. ipmitool. https://github.com/ipmitool/ipmitool. Accessed: 2023-
04-10.

[27] - IPMI - Intelligent Platform Management Interface Specification Second
Generation, Intel, Hewlett-Packard, NEC, Dell, 10 2013, rev. 1.1.

[28] U. Klauer. (2013, 06) Message on sox mailing list: noise reduction
algorithm. [Online]. Available: https://sourceforge.net/p/sox/mailman/
sox-users/?viewmonth=201306\&viewday=27

[29] M. Krause, M. Müller, and C. Weiß, “Towards Leitmotif Activity
Detection in Opera Recordings,” Transactions of the International
Society for Music Information Retrieval (TISMIR), vol. 4, no. 1,
pp. 127–140, 2021. [Online]. Available: https://transactions.ismir.net/
articles/10.5334/tismir.116/

[30] Y. LeCun, Y. Bengio et al., “Convolutional networks for Images, Speech,
and Time Series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[31] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[32] M. Levy and J. O. Hallstrom, “A New Approach to Data Center
Infrastructure Monitoring and Management (DCIMM),” in IEEE 7th
Annual Computing and Communication Workshop and Conference,
CCWC 2017, Las Vegas, NV, USA, January 9-11, 2017. IEEE, 2017, pp.
1–6. [Online]. Available: https://doi.org/10.1109/CCWC.2017.7868412

[33] Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu, “On Code
Execution Tracking via Power Side-Channel,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
Eds. ACM, 2016, pp. 1019–1031. [Online]. Available: https:
//doi.org/10.1145/2976749.2978299

9

[34] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and Music Signal Analysis in Python,” in
Proceedings of the 14th Python in Science Conference, vol. 8. Citeseer,
2015, pp. 18–25.

[35] B. Microphones. Blue - Yeti X. https://www.bluemic.com/en-us/
products/yeti-x/. Accessed: 2023-03-03.

[36] A. A. Milani, I. M. S. Panahi, and P. C. Loizou, “A New
Delayless Subband Adaptive Filtering Algorithm for Active Noise
Control Systems,” IEEE Trans. Speech Audio Process., vol. 17, no. 5,
pp. 1038–1045, 2009. [Online]. Available: https://doi.org/10.1109/
TASL.2009.2015691

[37] M. Müller, “Dynamic time warping,” Information retrieval for music
and motion, pp. 69–84, 2007.

[38] R. Müller, F. Ritz, S. Illium, and C. Linnhoff-Popien, “Acoustic
Anomaly Detection for Machine Sounds based on Image Transfer
Learning,” in Proceedings of the 13th International Conference on
Agents and Artificial Intelligence, ICAART 2021, Volume 2, Online
Streaming, February 4-6, 2021, A. P. Rocha, L. Steels, and H. J.
van den Herik, Eds. SCITEPRESS, 2021, pp. 49–56. [Online].
Available: https://doi.org/10.5220/0010185800490056

[39] A. Nazari, N. Sehatbakhsh, M. Alam, A. G. Zajic, and M. Prvulovic,
“EDDIE: em-based detection of deviations in program execution,”
in Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA 2017, Toronto, ON, Canada, June
24-28, 2017. ACM, 2017, pp. 333–346. [Online]. Available:
https://doi.org/10.1145/3079856.3080223

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
Imperative Style, High-Performance Deep Learning Library,” Advances
in neural information processing systems, vol. 32, 2019.

[41] P. Pham, J. Li, J. Szurley, and S. Das, “Eventness: Object detection on
spectrograms for temporal localization of audio events,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 2491–2495.

[42] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, D. FitzGerald, and
B. Pardo, “An Overview of Lead and Accompaniment Separation in
Music,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 26, no. 8, pp. 1307–1335, 2018.

[43] A. Sahu, Z. Mao, P. Wlazlo, H. Huang, K. Davis, A. Goulart, and
S. Zonouz, “Multi-Source Multi-Domain Data Fusion for Cyberattack
Detection in Power Systems,” IEEE Access, vol. 9, pp. 119 118–119 138,
2021.

[44] X. Song, Q. Wen, Y. Li, and L. Sun, “Robust time series dissimilarity
measure for outlier detection and periodicity detection,” in Proceedings
of the 31st ACM International Conference on Information & Knowledge
Management, 2022, pp. 4510–4514.

[45] SoX. SoX - Sound eXchange. http://sox.sourceforge.net/. Accessed:
2022-07-29.

[46] M. Stahn. pypacker - the fastest and simplest packet manipulation lib
for python. https://gitlab.com/mike01/pypacker. Accessed: 2023-03-03.

[47] A. Swales, “Open modbus/tcp specification,” Schneider Electric, vol. 29,
pp. 3–19, 1999.

[48] P. Van Aubel, K. Papagiannopoulos, Ł. Chmielewski, and C. Doerr,
“Side-Channel Based Intrusion Detection for Industrial Control Sys-
tems,” in International Conference on Critical Information Infrastruc-
tures Security. Springer, 2017, pp. 207–224.

[49] A. Wang, “An Industrial Strength Audio Search Algorithm,” in ISMIR
2003, 4th International Conference on Music Information Retrieval,
Baltimore, Maryland, USA, October 27-30, 2003, Proceedings, 2003.

[50] L. Wüstrich. (Accessed 2024-01-22) Shells Bells: Implementation.
[Online]. Available: https://github.com/wuestrich/Shells-Bells

[51] L. Wüstrich, S. Gallenmüller, M.-O. Pahl, and G. Carle, “AC/DCIM:
Acoustic Channels for Data Center Infrastructure Monitoring,” in NOMS
2022–2022 IEEE/IFIP Network Operations and Management Sympo-
sium, 2022, pp. 1–5.

[52] A. Yang, X. Wang, Y. Sun, Y. Hu, Z. Shi, and L. Sun, “Multi-
Dimensional Data Fusion Intrusion Detection for Stealthy Attacks on
Industrial Control Systems,” in 2018 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2018, pp. 1–7.

10

