Looking for Honey Once Again:
Detecting RDP and SMB Honeypots on the Internet

Fabian Franzen
Technical University of Munich
franzen@sec.in.tum.de

Abstract—Honeypots are a widely used technique to observe
the spread of malware and the emergence of new exploits.
Attackers try to avoid connecting to honeypots as they reveal
the attacker’s methods, tools, and exploits.

While different honeypot implementations have been
fingerprinted in the past, we see a lack of studies covering
Windows-related protocols such as Remote Desktop Pro-
tocol (RDP) and Server Message Block (SMB) honeypots.
However, these protocols have seen at least two major
security vulnerabilities in the past 5 years and are commonly
exploited.

We adapted existing fingerprinting algorithms to allow
an accurate identification of RDP and SMB honeypots
checking how implementations behave in error conditions.
We present a new improvement, namely the inclusion of
system TLS stack features previously not used for honeypot
detection. We are the first to perform an internet-wide scan
searching for RDP and SMB honeypots. We are able to
effectively uncover the presence of two common open-source
honeypots for RDP and SMB each.

We identified 84 instances of Heralding (RDP), 1123
instances of RDPY (RDP), 60 instances of Impacket (SMB),
and 1461 instances of Dionaea (SMB) during our scans.
Furthermore, we found several hosts, which do not use
Microsoft’s SChannel TLS stack, but advertise themselves as
Windows machines. This indicates the presence of a Man-in-
the-Middle (MitM) box and could be a sign of a honeypot.
Eventually, we analyzed how attackers interact with de-
tectable honeypots. We deployed instances of RDP honeypots
ourselves and found that credential guessing attackers seem
to avoid them.

This proves that RDP and SMB honeypots are finger-
printable and that even MitM-box-based high-interaction
honeypots leave detectable traces.

Index Terms—honeypots, Internet scanning, RDP, SMB

1. Introduction

Honeypots have become a settled and well-researched
technique to watch the emergence of exploits on different
services on the Internet. They allow researchers to detect
the rise of new exploits and to keep track of how widely
specific vulnerabilities are being exploited.

Attackers have an interest in detecting and avoiding
honeypots, as they do not want to draw attention to their
specific exploitation techniques and tools [!]. Tools could
be as simple as the list of passwords most often tried by

Lion Steger
Technical University of Munich
lion.steger @tum.de

Johannes Zirngibl, Patrick Sattler
Technical University of Munich
{zirngibl sattler} @net.in.tum.de

an attacker, which a system administrator, in turn, may
then place on a weak-password list.

Despite much research having been conducted on
honeypots, security researchers still suggest new usage
scenarios and designs. For example, in 2020, an improved
ICS honeypot to catch malware directed at industrial
control systems (ICS) [2] and a specialized honeypot for
hardening neural networks against attacks [3] have been
proposed.

Organizations analyzing the Internet have also shown
interest. Portals like Censys.io and Shodan.io allow rea-
soning about the number of services on the Internet. Their
data often includes information about security vulnerabil-
ities and used software. Detecting honeypots is a logical
next step. Shodan.io started the Honeyscore project to
detect honeypots specifically for ICS [4] and announced
they will directly annotate their search results with honey-
pot tags [5]. This indicates the interest of the industry in
further developing honeypot detection techniques. Unfor-
tunately, they do not share their detection methods with
the public.

The Windows world has received less attention by
researchers, but faced at least two wormable security
vulnerabilities in the recent past. First, CVE-2017-0144 in
Microsoft’s Server Message Block (SMB) protocol, which
is exploited by the EternalBlue exploit. Second, BlueKeep
(CVE-2019-0708) is a vulnerability in Microsoft’s Remote
Desktop Protocol (RDP). Multiple security researchers
reported the use of honeypots to monitor the attacks [6].
SMB and RDP protocol traffic is in the top 7 on SurfNet’s
Internet telescope data [7]. However, existing research
primarily targets SSH, HTTP, ICS, and Telnet honeypots,
but no Windows protocols such as RDP and SMB as we
will discuss further in Section 2.

In this paper, we present the results of an internet-wide
scan for RDP and SMB honeypots. We created a small set
of network packets that allow for a fast internet-wide scan
following the methods of Vetterl et al. [8] with extensions
we describe further in Section 4. The set allows for an
accurate classification of the hosts, as we demonstrate by
performing an internet-wide scan to estimate the number
of honeypots of selected open-source implementations.
Moreover, we illustrate how unique features of the Mi-
crosoft SChannel and OpenSSL TLS implementation can
be used to detect abnormal RDP stacks.

Our contributions can be summarized as follows:

(i) We present how existing honeypot fingerprinting
approaches can be adapted to detect SMB and RDP hon-
eypots. We implemented our ideas in our own honeypot

detector. Furthermore, we conducted a 34-day experiment
to collect evidence that attackers avoid RDP honeypots.

(ii) We show that a fingerprintable TLS stack allows
improved distinction between Windows and non-Windows
hosts.

(iii) We performed internet-wide scans for RDP and
SMB hosts and present numbers on the spread of selected
open-source honeypots for these protocols.

(iv) We verified our results by connecting to a random
subset of each of our classification groups and found that
we have only classified 5 out of 1097 hosts incorrectly
(i.e., less than 1%). In the honeypot classification groups,
we have not identified a single misclassified host.

(v) We publish! our scanning and detection tools in
order to support reproducibility such that others can use
and improve upon our work. Additionally, we provide our
dataset on request to interested researchers. In contrast
to existing data from Censys and Shodan, our dateset
includes the raw exchanged data in unparsed form and
covers multiple protocol versions.

2. Related Work

Many honeypot detection approaches [7]-[10] are
based on detecting shortcomings in the honeypot im-
plementation of the respective protocol. However, the
detection can also be based on the combination of ser-
vices offered [11] or how the honeypot interacts with
other services on the Internet [12]. Several open-source
honeypots offer a wide set of services they can emulate.
A host offering myriads of different services is unusual,
especially if running services requires different operating
systems. An example for interaction based detection is
HoneypotHunter [12]. It checks for SMTP honeypots by
connecting to potential open SMTP relays and sending an
e-mail, addressed to a server under the detector’s control.
If the attacker does not receive an inbound connection
on his server, especially if the host announced correct
delivery, a honeypot has been found.

Vetterl et al. [8] detected SSH, Telnet, and HTTP hon-
eypots by fuzzing honeypots and their real-world counter-
parts. Out of these data, they derived a most distinctive
probe being used to perform an internet-wide scan. We
based our research on this idea and will discuss it fur-
ther in Sec. 4. In 2019, Morishita et al. [7] investigated
the prevalence of 14 open-source honeypots in Censys
Internet scanning data. They derived signatures based on
protocol banners, HTTP responses, and error responses.
However, they only analyze FTP, SSH, Telnet, SMTP,
HTTP, and IMAP honeypots. They found about 17k hon-
eypots for different protocols.

Honeypots and honeynets, a whole network of hon-
eypots, have also been detected by abusing timing and
network characteristics. In 2006, network packets travel-
ing through the honeynet implementation honeyd were
known to have a round-trip time of a multiple of ten
due to characteristics of the OS and the simulation [13].
Another network latency-based detection for honeynets,
which takes other fields of TCP/IP packets into consid-
eration, is discussed in [14]. Holz et al. [1] propose the
detection of so-called high-interaction honeypots, which

1. https://github.com/tum-itsec/looking-for-honey-once-again

are instrumented or sandboxed versions of the real ser-
vice through artifacts of the virtualization environment or
emulator.

The detection of honeypots has also found its way
into the products of internet-scanning companies such as
Shodan. Shodan implemented Honeyscore [4], which fo-
cuses on ICS honeypots and is reported to become a stan-
dard feature in their search engine [5]. Honeyscore uses
a mixture of the discussed detection features. First, they
consider if a service has too many open network ports.
Second, they consider if a service is running in an unusual
IPv4 address space (i.e., a PLC in the Amazon EC2 cloud).
Third, they search if a service response matches known
honeypot configurations. Lastly, they employ machine
learning in an undisclosed manner for detection [2].

The interaction between honeypots and attackers has
also received research interest. In 2018, Metongnon et al.
[15] have analyzed data of the SurfNet network telescope
and compared it with the incoming traffic on their telnet
honeypots. In 2019, Ghiette et al. [16] conducted a large-
scale study to fingerprint attackers of SSH servers by using
features such the SSH banner of the client, the MD5 hash
of the offered crypto algorithms and the passwords used
at login attempts.

3. Background

RDP as well as SMB have a rich feature set and
a long history. In the following, we introduce the basic
functionality of both protocols before we outline our ideas
for fingerprinting and honeypot detection in Section 4.

3.1. RDP

The Remote Desktop Protocol (RDP) allows for re-
mote access and maintenance of the Windows operating
system. Microsoft released RDP 5.1 and 5.2 together with
Windows XP and Windows Server 2003 and continuously
developed it ever since; now RDP 10 for Windows 10/11
and Windows Server 2016 onward is available [17]. Be-
sides its primary screen sharing functionality, it offers
additional features like clipboard sharing, redirection of
peripherals such as smart card readers and drives to the
RDP server. The huge amount of features inhibits a free
reimplementation, even though the protocol is described as
part of the Microsoft Open Specifications program [18].

Nonetheless, RDP is also used by third parties to offer
remote control to non Windows operating systems. For
example, a popular open-source implementation is XRDP
for Unix-based operating systems; Oracle also offers a
closed-source extension for VirfualBox to enable access
to virtual machines using RDP.

Figure 1 shows the initial steps of the RDP protocol
which are embedded in the TPKT format. RDP’s security
evolved over time and covers multiple security modes. The
client and server agree upon which mode should be used
during the first steps of the protocol (Step 1 in Figure 1). In
the context of our work, the following modes are relevant:
PROTOCOL_RDP: This mode must be supported by the
client and indicates the use of standard RDP security;
a mode where encryption and integrity protection can
be done in the RDP protocol itself. Step 2 and 3 in

https://github.com/tum-itsec/looking-for-honey-once-again

Client Server

TPKT-Header / X.224 Connection Request

1) TPKT-Header / X.224 Connection Response
(Only PROTOCOL_SSL) TLS Handshake
2) eomm o m e e e e e e o ———— oo >
(Only CredSSP) CredSSP Auth
3) B e i e >

MCS Connect Initial PDU
4) MCS Connect Response PDU

(Further steps needed for

connection establishment)

Figure 1. The first steps of the RDP protocol.

Figure 1 are skipped in this case. Most of the selectable
cryptographic primitives in this mode (such as RC4 and
MD?5) are outdated nowadays.

PROTOCOL_SSL: After the first message exchange, the
negotiation phase, both parties establish a secure channel
via the TLS protocol. Authentication of the server is
realized through an X.509 certificate. Authentication of
the client is done by the user entering their credentials
into the login UI after all other negotiations are finished.
PROTOCOL_HYBRID: The authentication of the user is
done immediately after the TLS handshake has finished.
All further negotiations are done afterwards. Microsoft
refers to this mode also as Network Level Authentication
(NLA). Authentication of the user could be done via a
classic (username, password) tuple, by passing a Kerberos
ticket, or by using a smart card.

Note that only in the PROTOCOL_HYBRID mode the
user has to authenticate itself early in the third step. In all
other modes listed above, the server will willingly provide
a lot of information and commit resources on establishing
the connection before the user is authenticated. Therefore,
recent Windows installations suggest the use of Network
Level Authentication, which is equivalent to enforcing
PROTOCOL_HYBRID during connection establishment
(from Windows Server 2008 R2 onward).

3.2. SMB

The Server Message Block protocol (SMB) is primar-
ily used by Windows operating systems to share locally
stored files with other machines in the same network to
allow browsing, editing, and deletion. Besides sharing
files, it also offers inter-process communication, e.g., in
the form of named pipes. On top of that, Microsoft Remote
Procedure Calls (MSRPC) can be used.

Microsoft released SMB 1.0 together with Windows
2000 and SMB 3.1.1 with Windows 10. Windows supports
end-to-end encryption and integrity protection since SMB
3.0. Beforehand, SMB offered none of these services,
rendering it an easy target to attackers and making the
protocol unsuitable for communication over an untrusted
network such as the Internet. Therefore, many network
operators filter the default SMB port 445. Nevertheless,
around 1M hosts are offering their SMB service on the
Internet according to Censys data.

Besides the implementation in Microsoft Windows,
Samba has become the most prominent open-source im-

plementation of SMB. We chose two versions, 3.5.6,
as it is the last version of Samba without support for
SMBvV2 and 4.10.0, being the latest version available to
Ubuntu 19.10 at the time of our experiments. Furthermore,
commercial competitors such as Visuality Systems have
also implemented SMB.

SMB communication starts by negotiating a dialect
(e.g., “NT LANMAN 1.0” or “SMB 2.002”) with the
server. If backward compatibility is required, the negotia-
tion is started by sending an SMBv1 negotiation packet. A
list of supported dialects is sent alongside this negotiation
packet, similar to TLS. If backward compatibility is not
desired, a connection can also start with an SMBvV2 packet.
The server selects one dialect from the offered list and
responds with its choice.

After dialect negotiation, the sequence continues with
the Session setup phase. During this phase, the user is
authenticated via the Simple and Protected GSSAPI Nego-
tiation (SPNEGO) that uses the General Security Service
API (GSSAPI) and which in turn transports authentication
mechanisms such as Kerberos or the NT Lan Manager
Protocol (NTLM). The server can choose to authenticate
the user without credentials and grant access to the server
anonymously.

3.3. Honeypot Implementations

Honeypot implementations are grouped into low,
medium and high-interaction honeypots. Low- and
medium-interaction honeypots focus on easy deployment
and maintenance while implementing only basic function-
ality. High-interaction honeypots try to mimic a service
indistinguishable from the original and are often based on
virtual machines to minimize operational risks.

We focused on finding open-source implementations
for RDP and SMB mentioned above. We identified two
honeypot implementations respectively, which we will
describe in the following.

Heralding (RDP) Heralding [19] focuses on catching
login credentials of everybody logging into the system.
Therefore, it is not in focus of the developers to provide a
complete protocol implementation. RDP connections are
terminated early if the credentials are not submitted during
connection establishment.

RDPY (RDP) Another honeypot implementation for the
RDP protocol is RDPY [20], written in Python 2 on
top of the Twisted framework. The first commit dates
back to the year 2013. Since then, it has been heavily
developed until 2015, but no RDP protocol related fix hap-
pened afterwards. RDPY supports PROTOCOL_SSL and
PROTOCOL_RDP security. However, if the administrator
does not create an X.509 certificate, PROTOCOL_SSL
will be disabled. In contrast to Heralding, an attacker can
complete the full RDP connection sequence and will be
able to watch an emulated screen. During operation as
honeypot, content and events on the emulated screen are
replayed from a session recorded beforehand. In order to
create a recording, RPDY is used in a preparation phase
as a proxy to a regular server. The implementation proxys
the requests to the regular server and records all screen
update and keypress events. Afterwards, the recording is
replayed to every attacker. This allows the honeypot to

TABLE 1. FEATURES OF ANALYZED HONEYPOT IMPLEMENTATIONS

Honeypot Age RDP SMB

RDPSec SSL Hybrid vl v2 v3
Impacket 2003 v v Vv
Dionaea 2009 v

RDPY 2013 v

4
Heralding 2012 4

mimic a real system as long as the attacker does not try
to interact with the system.

Dionaea (SMB) Dionaea [21] is a honeypot for a wide
range of protocols. Since its initial git commit back in
20009, it advertises support for over 14 protocols, including
FTP, HTTP, Memcached, MSSQL, SMB, SIP and UPNP.
The Dionaea core is implemented in the C programming
language with support for Python modules implementing
most of its protocol logic. Dionaea does not offer RDP
support. SMB support is implemented in Python and
restricted to SMBv1.

Impacket (SMB) Impacket is a collection of Python
classes for working with networking protocols especially
from the Windows domain. This includes high level
implementations of SMBv1l, SMBv2, and SMBv3 [22].
While Impacket is not a honeypot on its own, we found
honeypot implementations using this library during our
Internet scans. The library is provided by SecureAuth,
a security company, and seems to be solely developed
for the needs of penetration testers. SecureAuth provides
numerous examples how to use the library in this field,
e.g., an exploit for the SMB Relay Attack (CVE-2015-
0005).

Besides the honeypots mentioned, further implemen-
tations targeting SMB are for example DTK or Smoke
Detector (see also [23] for a more complete survey of
popular honeypot implementations). However, these im-
plementations have stalled in their development since
2005 and we will therefore not consider them here.

Table | summarizes the different characteristics of se-
lected honeypots. These honeypots can also be combined
to cover multiple protocols or scenarios. An example are
the T-Pot Docker and virtual machine images created
by T-Systems, which also hosts T-Pot actively for their
Sicherheitstacho project’. It contains all presented tools
but Impacket.

3.4. TLS Fingerprinting

As our approach will leverage the fact that many
honeypots implement their services without taking the
TLS stack into consideration, we provide a short overview
of TLS fingerprinting techniques. We found that modern
RDP implementations mainly use TLS 1.2. Therefore, we
will not describe the specifics of the more recent TLS 1.3.

During the establishment of a TLS connection, the
cipher suite for encryption and integrity protection as well
as the algorithms for key exchange need to be negotiated.
In addition, the client can present a set of supported TLS
extensions. The server decides which extension subset is
accepted and signals this together with the selected cipher
in the Server Hello Message.

2. https://www.sicherheitstacho.eu/start/main

This property was used by research [24], [25] and
different groups to fingerprint TLS clients. Notable tools
are JA3 [26], Cisco Mercury [27] and Cisco Joy [28].
They are based on similar approaches, creating a hash
of the mentioned parameters of the TLS Client Hello
to identify implementations. JA3 provides an additional
extension JA3s to fingerprint servers besides clients. The
server behavior is not only influenced by the used im-
plementation but also by each Client Hello because it
can only select offered properties for a successful hand-
shake. Therefore, JA3s relies on the combination of client
and server fingerprints. In order to proactively get server
fingerprints, JARM [29] was developed. It fingerprints a
server based on its behavior for 10 manually crafted Client
Hellos.

The approach presented in this paper is based on
our observation of two further characteristics. First, if
the server agrees on a PFS-enabled cipher, an algorithm
for key exchange needs to be negotiated. We observed
frequent use of ECC here. If chosen, the curve needs to
be agreed upon before the key exchange can happen.

Second, TLS allows multiple handshake messages to
be packed together inside a single TLS record packet.
The SChannel Service Provider (SSP) implementation
of Windows packages does this. In contrast, OpenSSL
creates a TLS record for each handshake message.

4. Our Honeypot Detector

SMB and RDP are both complex protocols that are
very hard to implement identical and feature-complete
with respect to a reference implementation when devel-
oping a low- to medium-interaction honeypot.

Following the methods of Vetterl et al. [8], we fuzzed
all RDP and SMB implementations we are aware of to find
the most distinctive probe. In an optimal case, a single
packet can be used to classify all hosts. In contrast to
Vetterl et al., we use a set of distinctive packets to increase
the resilience of our scanner to unknown implementations.
Our request set is still small enough to enable scan speeds
high enough to perform an internet-wide scan.

Where applicable, we also fingerprint the TLS stack
used by the respective implementation. Furthermore, our
fingerprinting tool does not consider the specifics of the
operating system TCP stack. Some fingerprinted imple-
mentations also support other operating systems such as
Linux.

We created two separate tools to create and compare
fingerprints of known RDP and SMB implementations
respectively. We created the fingerprints on our lab in-
stances of all mentioned honeypots and benign Windows
installations. Afterwards, we tested the fingerprints on
real-world instances of Windows Server 2012, 2016, 2019
in the Amazon EC2 cloud and Microsoft Azure. We found
that the Windows end-user versions share RDP and SMB
server code with the server versions (see Table 2).

4.1. Packet Similarity Scoring

In order to check for the similarity of the collected
packet exchanges, we developed a parser for the SMB
and RDP protocol which tokenizes a single response

https://www.sicherheitstacho.eu/start/main

TABLE 2. INDISTINGUISHABLE VERSIONS OF WINDOWS

End-user | Server
XP 2003
7 2008R2
8 2012R2
10 2016, 2019

into multiple labeled fields. The fields of two responses
are compared by checking if their values are identical,
in a certain range or have certain bits enabled. Fields
containing random values, length indicators (where differ-
ent lengths are allowed), timestamps or fields containing
configurable values are ignored during comparison. The
similarity score is eventually set to be H% where n is
the number of differing fields. Thereby, the similarity
decreases the more fields inside the responses are found
to differ.

One notable exception is the parsing of TLS traffic
occurring inside RDP traffic. For the sake of simplicity,
we only partially parse the TLS traffic and convert it into
a single synthetic tokenized packet. This synthetic packet
contains all relevant characteristics of the TLS handshake
mentioned in Section 3.4.

4.2. Differential Fuzzing for Fingerprinting

Equipped with a metric to calculate the similarity of
two packets, we can build a small fuzzer upon these.
The fuzzer constructs a packet, sends it to each imple-
mentation, and utilizes the similarity scoring to decide
if a notable difference between the answers exists. The
responses are then compared to each other according to
the similarity metric mentioned above. The request packet
generating the set of responses least similar to each other
is selected as the most distinctive probe.

For RDP, we utilize a bit mutation strategy of the first
packet. For SMB, we construct the set of all reasonable
combinations of values inside the request packet fields
to find the most distinctive probe. While this fuzzing
approach is simple, it is sufficient to identify fields in
the protocol causing distinguishable answers for each
implementation.

4.3. Our RDP scanner

Based on out fuzzing, the protocol field with the most
notable impact on the server responses is the proposed
security mode of the client (see Sec. 3.1). Therefore, we
establish four connections with the target host. Three of
them are regular connection attempts, advertising all major
security modes (PROTOCOL_RDP, PROCOTOL_SSL, and
PROTOCOL_HYBRID). This is done because some imple-
mentations choose to downgrade from or directly refuse
connection attempts advertising support for certain secu-
rity modes. The fourth connection contains an invalid set
length field, triggering different error handling behavior
between Heralding and RDPY and all Windows versions.
Regular Windows versions close the connection with a
Connection Reset. RDPY closes the connection by sending
a regular TCP FIN packet to the client and Heralding
sends the client an RDP Negotation Failure Message.

Still, in many cases just collecting the first packet ex-
change for each connection does not provide enough infor-
mation to differentiate between implementations. There-
fore, depending on the negotiated connection type we try
to either establish a TLS connection and send the next
packet over TLS or send it unencrypted. Note that the TLS
fingerprint of Heralding and RDPY is not affected if the
implementations are operated on a non-Linux operating
system. Both packages rely on OpenSSL and do not
switch to the native operating system TLS stack.

If the server accepts our PROTOCOL_HYBRID at-
tempt, the protocol proceeds with Network Level Au-
thentication (NLA) after the TLS handshake. We send a
regular SPNEGO packet, starting the exchange of security
mechanisms of both parties, but abort the connection
directly afterwards in order to avoid supplying credentials
for ethical reasons (see Sec. 5.1).

In case of a PROTOCOL_RDP or PROTOCOL_SSL
connection, we proceed with the second step and send
an encrypted or unencrypted version (dependent on the
security mode setting) of the client capabilities which we
recorded as well from the standard Windows RDP client.

We found that all Windows Servers which can be
rented in the Amazon EC2 and Azure cloud have NLA
enabled by default.

Because of the limited information we are able to
obtain in an NLA enforced environment, it is impossible
to distinguish Windows 10, Windows 8 and the different
versions of the Windows Server 2012, 2016, 2019 solely
on the characteristics of exchanged RDP packets.

The flag field of the RDP Negotiation Response PDU
has two flags which are only available in recent RDP
versions. If NLA login is not enforced, we can find more
distinguishing features in the second round trip of the
protocol. We show an example of which fields can vary
in the responses of the second round trip in Table 7. It
shows the relevant parts of the reference responses to
the PROTOCOL_RDP packet. Packet headers that do not
contribute to the fingerprint are intentionally left blank.
Some implementations, e.g., Windows 10, do not respond
to the second packet because they discontinue the connec-
tion after receiving it, which also counts as distinguishing
behavior.

4.4. Our SMB scanner

We found the following fingerprintable implementa-
tion pitfalls for SMB: If no common dialect can be nego-
tiated between client and server, different implementations
have different ways of discontinuing the connection, some
sending error codes while some close the connection
without sending additional data. Furthermore, our fuzzer
found different behavior by setting reserved fields to non-
zero values or by setting other fields to values that are
not reasonable in the current context. For fields inside the
request which have corresponding fields in the response, it
is up to the implementation whether such atypical values
are ignored by mirroring them or by resetting them to
Zero.

Lastly, another valuable factor contributing to the fin-
gerprint of an implementation is the combination of the
Native OS and Native LAN Manager fields inside the
second packet in an SMBvI protocol sequence. It can

offer hints about the platform and operating system or
environment which the server runs on and while honeypots
can trivially replace this information, it does contribute to
the overall fingerprint.

Therefore, our final SMB scanner establishes four
connections to a scanned host, each having a different
function:

1) An SMBvI packet checking if the targeted host
supports SMBv1 (as we consider this to be a
requirement for a honeypot, see Sec. 5.5)

2) A packet that checks if the targeted host supports
anonymous login

3) A packet checking for the support of the most
recent version SMBv3

4) A specifically crafted packet that we found to
trigger the most distinctive responses from im-
plementations that we consider in our work

5. Internet-wide Scan

In order to test our ideas and developed tools, we
conducted an internet-wide scan. We will describe its
execution and its results in this section.

5.1. Ethical Considerations

We follow the principles of informed consent [30] and
best practices [31]: we avoid the collection of personal or
sensitive data and we try to avoid causing any harm to
online servers during our active scans. None of the scan
probes we send have affected our test machines negatively.

As described in Section 4, both the RDP and SMB
protocol usually provide enough data for fingerprinting
before we have to actually login into the machine. Since
we do not provide any credentials to our targets, we do
not consider it as a hacking attempt.

We took precautions to minimize the impact of our
scans, following established practices as, for instance,
described in [32]. In particular, we maintain a block list
to avoid scanning systems that have in the past indicated
to us that they want to be excluded from scans. Our
abuse email address is published in the WHOIS and all
abuse emails are forwarded to us by our IT department.
We assess the impact of our scans in terms of potential
harm to other systems and human beings, as proposed by
the Menlo report [30]. We use a relatively low scanning
rate to minimize any impact and respond immediately
to complaints. All our scanning hosts run a web server
which provides information on the scan including an email
contact. We received 9 new requests regarding our scan
activities, added IP addresses of eight requests to our block
list and resolved one request, allowing us to continue scans
as research project.

5.2. Setup

For our Internet-wide scan to find honeypots, we com-
bine the implemented detectors with ZMap [32]. ZMap
provides us the possibility to scan the complete IPv4
address space searching for hosts with open RDP (3389)
or SMB (445) ports. If a host with an open port is detected,
it is directly handed to the respective honeypot detector.

This combination of ZMap as a stateless, fast Internet-
wide scanning tool and our implemented stateful detector
allows fast but informative scans.

Due to the properties of ZMap to focus on a single
protocol and port to drastically decrease scan duration,
we scanned SMB and RDP sequentially. Each scan was
conducted with a rate of 20000 packets per second to
reduce the impact on target systems. For each scan, we
use an up-to-date BGP dump from our local upstream
provider with the complete set of reachable prefixes as a
ZMap allow list to reduce the scan duration. This excludes
all address ranges from the scan that are not announced
by any AS and thus not reachable. Furthermore, we use
a self-administered block list to prevent scanning targets
which requested to be excluded from our scans. This block
list was created over time based on abuse mails received
by our research group to follow the ethical considerations
described in Section 5.1. The list is solely built from
requests to be excluded from active scans not including
any external sources. The block list contains different
addresses and prefixes covering 5.7M addresses in total.
With the given setup and rate, each scan probes 2.8 billion
IP addresses (67% of the complete IPv4 address space)
and has a duration of around 37 hours.

5.3. Classification Results

During our internet-wide scan started on March 26th
2021 we discovered in total 7.5M hosts with an open
RDP port. We could successfully assign 2.1M hosts to
known RDP implementations. Regarding SMB, we found
2.7M hosts with an open port 445 during the scan started
on the March 30th 2021. 1.1M hosts were categorized
after a successful connection could be completed. For
both protocols, we only label a connection with a specific
implementation if the fingerprint matches exactly. Results
can be seen in table 3 and we will describe the results for
both protocols separately.

56.7% of the RDP scans and 57.2% of the SMB scans
resulted in an error. For both protocols more than 97% of
the errors were caused by a closed connection. Either a
host is not reachable at all or it closes the connection after
seeing our initial RDP connection attempt. This means
most likely that those hosts do not provide the respective
service behind the scanned port or that the port was
erroneously reported by ZMap. In the remaining cases
(less than 3%), we are not able to parse the answer of the
host. We assume this is due to missing functionality in our
parser or the host offers a different service. 14.2% of RDP
hosts and 1.1% of the SMB hosts are not categorizable.
Hosts are considered as not categorizable, if they do not
match one of our recorded fingerprints.

RDP We were able to find 1207 matches with the Herald-
ing and RDPY honeypots with 100% similarity. Predomi-
nantly, we found instances of RDPY in a configuration
not offering PROTOCOL_SSL and always falling back
to standard RDP security. Furthermore, we observed that
the RDP port is frequently used for non RDP services.
If a response packet of a host does not appear to be a
valid TPKT, we classified it as non-RDP. Investigating
this response class, we found several hosts answering with
HTTP/1.1 400 Bad request indicating an HTTP

TABLE 3. SCAN RESULTS OF OUR INTERNET WIDE SCAN.

Category RDP SMB
Total ZMap results! 7577919 2704250
Categorizable? 2125428 1125838
Regular Implementations 1940159 1124317
Windows 8 & 103 1401465 96 361
SChannel 1401452
non-SChannel 13
Windows 10 (no NLA) 96 003
SChannel 96 003
Windows 8 (no NLA) 35126
SChannel 35126
Windows 7 357179 685701
No Data 296 065
SChannel 61113
non-SChannel 1
Windows XP 36823 3834
No data 36 823
XRDP 13 355
non-SChannel 13355
VirtualBox 208
No data 208
Samba 3.5.6 153071
Samba 4.10.0 181931
YNQ 2741
Misc. implementations* 678
Honeypots 1207 1521
Heralding 84
non-SChannel 84
RDPY 50
OpenSSL 50
RDPY (no TLS) 1073
No data 1073
Dionaea 1461
impacket 60
Non RDP/SMB protocols 245 300
HTTP 185948
SSH 59352
Uncategorizable® 1080773 31152
Errors 4310480 1547260
Unparseable 11649 36 395
Connection closed’ 3127932 1419216
No connectivity® 1170899 91 649

' ZMap only reports hosts with an open port. An open
port is no proof the respective service is also provided.

2 Hosts are only labeled with a classification if the finger-
print shows an exact match.

3 and Windows Server 2012R2, 2016 and 2019

4 Combined set of different rare implementations.

3 Unknown Non-RDP protocol

7 Hosts which did not respond to all of our packets pre-
venting an exact classification

8 Hosts without any response to our scanner despite being
reported by ZMap

9 Hosts which we established a connection with but closed
the connection before sending any data

TABLE 4. ToP 10 AUTONOMOUS SYSTEMS HOSTING HONEYPOTS

CO ASN Organization SMB RDP Total
UsS 16509 AMAZON 232 167 399
US 20473 CHOOPA 126 95 221
UsS 14061 DIGITALOCEAN 102 90 192
DE 197540 netcup 66 72 138
T™W 1659 TANet 131 1 132
US 8075 MICROSOFT 48 25 73
US 63949 Linode 33 37 70
UsS 14618 AMAZON 41 28 69
UsS 15169 GOOGLE 35 32 67
UsS 22773 Cox Communications 50 3 53

100

80

60

40 1

20 1 —— SMB Honeypots
RDP Honeypots
—— RDP + SMB Honeypots

Fraction of honeypots in top X ASes

0 40 80 120 160 200 240 280 320
AS Rank

Figure 2. AS distribution of honeypot addresses

server. Moreover, we found many SSH banners sent in
response to our probe indicating an SSH server.

We found the RDP stacks of Windows 8 and Windows
10, which are also used in Windows Server 2012 and 2019
respectively, predominantly used. In about 1.4M cases the
hosts enforce the use of Network Layer Authentication
(see Section 3.1) which gives our scanner only limited
opportunity for fingerprinting. In almost all cases, the
Windows hosts have a fingerprint which indicates the
use of S-Channel the Microsoft Windows TLS implemen-
tation. However, a few hosts show perfect match with
Windows, but have a fingerprint indicating the use of a
non-Microsoft TLS library.

We also found Windows 7 and XP hosts unwilling
to negotiate a TLS based connection with our scanner,
but downgrading us to Standard RDP security for unclear
reasons. This is marked in Table 3 as No Data.

SMB 1521 hosts have responded to our probe packets in
exactly the same way as our lab instances of Dionaea and
Impacket. With 60%, a majority of hosts that can be clas-
sified use Windows 7 followed by Samba 4.10.0 (16.3%)
and Samba 3.5.6 (14.3%). Further analyzing the set of
values we found inside the NT Lan Manager field, we
discovered numerous rarely appearing and some almost
undocumented implementations of the SMB protocol such
as smbx (Apple), Alfresco CIFS and SXLM for which
we had no fingerprint from lab tests. Since we did not
expect any honeypot to mimic them, we categorized them
as Misc. implementations without further comparison of
their fingerprint.

RDP + SMB The two IP address sets of identified RDP
and SMB honeypots are not distinct. With 606 mutual
addresses, around 40% combine honeypots for the RDP as
well as for the SMB protocol on the same host. This high
overlap supports our finding that the presented method-
ology is able to detect honeypots. Selective searching of
the hosts on portals like Censys.io or Shodan.io reveals
that these hosts usually offer services associated with the
honeypots Dionaea and cowrie, a honeypot for SSH and
Telnet. We found eight hosts that mix an RDP honeypot
with an Impacket installation, supporting our argument
that Impacket is indeed used for building up honeypots.

Furthermore, hosts of 36 RDP honeypots have an open
SMB port which can not be classified as a honeypot.
Out of these, 35 SMB connection attempts ended in a
premature session exit, indicating an unresponsive service.
The one remaining host is classified as uncategorized,
however the handshake sequence has some similarity with

Windows XP, which could indicate an unknown honeypot
implementation. Vice versa, 87 SMB honeypots addition-
ally have an open RDP port reported by ZMap. In 77 cases
our scanner was not able to successfully establish a RDP
connection, in eight cases a non-RDP service answered
our probe and two hosts have not been classified.

5.4. AS Coverage

To highlight the widespread usage of detectable hon-
eypots by a multitude of different organizations and
providers, we analyze the distribution of honeypots across
autonomous systems (AS). Figure 2 shows the distribu-
tion of all identified honeypots across ASes. 50% of all
detected SMB honeypots are located on only 12 ASes
but the remaining 50% are spread across 314 ASes. RDP
honeypots are located in more ASes with a total coverage
of 325 but with 50% located in 10 ASes, a majority can
again be found in a small subset. Table 4 lists the top
10 ASes based on the total amount (SMB and RDP) of
honeypots. It can be seen that multiple listed organizations
are mainly cloud providers, (e.g., Amazon, DigitalOcean,
and Netcup) and research networks (AS1659 is the Taiwan
Academic Network). While some honeypots might be
hosted by the cloud hosting organizations themselves, a
majority is most likely set up by the provider’s customers.
Some of these hosting providers are also known to be
scanning and research friendly. That might be an expla-
nation for smaller hosters appearing in this top list. Based
on these results, we infer that these types of honeypots
are a widely used tool across various ASes.

5.5. Result Validation

In the following, we will describe our attempts to val-
idate our scanning results by using additional indicators,
because of the lack of ground-truth data for the Internet.
We already observed in Section 5.3 that hosts offering
both analyzed services are highly likely to have both
services classified as honeypot. This is a clear indicator
that these hosts are honeypots.

Additionally, we automatically connect to hosts of
each category using established open-source tools and col-
lect their diagnostic data where possible. If an automatic
validation is not possible for a category, we fall back
to manual methods. Table 5 summarizes our validation
results. Unresponsive machines were most likely taken
offline during the time period between scan and verifica-
tion. We miss-classified less than 1% of responsive hosts.
Additionally, none of the hosts in the honeypot group was
miss-classified.

5.5.1. RDP Validation. First, we check if hosts being
classified as normal Windows machines have been labeled
with the correct Windows version. To achieve that, we uti-
lize rdesktop® to obtain a screenshot of 100 target hosts in
each category in an automated way. This is only possible
for hosts not enforcing NLA. The captured screenshots of
the login screens can then be quickly checked by a human
analyst if they match the respective version of Windows.

3. https://github.com/rdesktop/rdesktop

TABLE 5. VERIFICATION RESULTS

Correct Incorrect Unresponsive
/ Error

RDP 448 5 127
Heralding ! 29 0 1
RDPY ! 29 0 1
RDPY (no TLS)' 18 0 12
Windows 10 (no NLA) 89 1 10
Windows 8 (no NLA) 77 0 23
Windows 7 (no NLA) 58 0 32
Windows Server 2003 55 4 41
XRDP 93 0 7
SMB 649 0 863
Dionaea 628 0 (9)? 824
Impacket ! 21 0 39
Total 1097 5 951

! Only manually verified
2 Manual additional test deemed all hosts as honeypots

The results are shown in Table 5, only one Windows 10
host is misclassified.

Second, we check if the honeypots have been labeled
correctly by our scanner tooling. Unfortunately, the screen
scraping approach is not viable to detect the selected
honeypots. As RDPY only replays pre-recorded sessions,
a human analyst will quickly notice that keypresses are
not displayed and that he is viewing how somebody else
is using the machine. However, to a screen scraping tool,
the host will appear as a benign machine. Heralding is
unable to go through the whole connection sequence and
will terminate the connection early and never continue to
a point where a user can see the Windows login screen.
Therefore, we connect to 30 instances of each honeypot
category manually and analyze the exchanged packets and
check if the machine reacts to mouse movements.

During our manual verification process, we observed
that many of the Heralding honeypots use the same
subject and issuer names in the TLS certificates and
that they show the abnormal protocol behavior described
above. This strengthens our assumption that these hosts
are indeed Heralding honeypots. Multiple RDPY instances
share desktop session replays they present to the con-
necting user. Foremost, we observed a login screen of
Windows 8/10 fading in, but a few instances presented us
with a full Windows 7 desktop session where somebody
moves the mouse on the desktop while our test user did
not interact with the system.

We also performed manual validation on the small set
of non-SChannel hosts being classified as regular Win-
dows instances. As our classifier showed good precision
for regular hosts, we believe that a real windows host
is involved in the connection. We conclude that the con-
nection is interrupted by a MitM-box. The non-SChannel
Windows machines appear to be fully functional. Dialogs,
for example, the accessibility menus, react normally.

5.5.2. SMB Validation. We connect to each host using
the tool smbclient*, which is capable of showing the
offered file shares of an SMB server. We observed that
the shares offered to a client by Dionaea are configurable
in the most recent versions, but we assume many users

4. https://www.samba.org/samba/docs/current/man-html/smbclient.1.
html

https://github.com/rdesktop/rdesktop
https://www.samba.org/samba/docs/current/man-html/smbclient.1.html
https://www.samba.org/samba/docs/current/man-html/smbclient.1.html

might not change the default values. We connected to
all Dionaea honeypots and found that 628 hosts have
not switched the offered default shares and displayed
comments. Nine hosts presented a different list of file
shares. We manually connected to these instances and
found that the share names are only slightly altered and
that the connection dies with unusual error codes when we
browse around. For the validation of Impacket instances,
we observed that the amount of free disk space that is
displayed to the user while browsing through offered files
is a hard coded value in the source code. Therefore, we
employ this as a detection feature.

6. Attacker Behavior Analysis

To study how attackers react to detectable honeypots
and how they adopt their behavior, we deployed multiple
instances of RDP honeypots at various cloud providers.
We captured their traffic and analyzed the performed
attacks.

6.1. Setup

Our honeypots were deployed in the Amazon EC2
cloud from June 17 to July 19, 2021 (34 days). To reduce
the influence of the previous owner of the IP address we
received from Amazon, we assigned a new IPv4 address
obtained from the Amazon EC2 pool to each of our hon-
eypots every 7 days. All traffic was captured and recorded
in PCAP files using the EC2 infrastructure during our
experiment. Because RDP is already the default remote
acccess protocol for Windows machines in the EC2 cloud
and our scans identified more open RDP servers than SMB
servers we decided to only set up RDP honeypots. For
the comparison, we use an unmodified Windows Server
2019, an instance of RDPY (the most common RDP
honeypot detected during our scans) and two instances
of PyRDP [33], a pure MitM honeypot for the Windows
RDP protocol (one in the default configuration, and one
in “no downgrade” (ND) mode to decrease the detection
surface).

To analyze the potential impact of the high con-
centration of honeypots in the autonomous systems of
a few cloud providers, we rented a single Linux host
in AS 197540 (netcup), AS 14061 (DIGITALOCEAN)
and AS 6724 (STRATO) each, and set up a host in a
research network, namely AS 209335 (TUM). On the
rented hosts, we use iptables NAT to transparently
forward the RDP traffic to our EC2 installation. In order
to evenly spread the traffic from these proxies over the
EC2 honeypots, each incoming connection is sorted into
a hash bucket (iptables HMARK) based on the source
IP of the client. Therefore, the IP appears to be a different
honeypot depending on the client IP. However, as long as
a client keeps its IP address, it will always connect to the
same honeypot instance.

6.2. Results

We found that our honeypots seem primarily subject
to credential guessing attacks, where an attacker tries out
different well known usernames and weak passwords.

RDPY = RDP Conn
Non RDP Conn

BN Empty Request

[100000 200000 300000 400000 500000 600000 700000 800000
Established TCP Connections

PYRDP
PyRDP ND
Windows Server 2019

Figure 3. Traffic distribution between our honeypot implementations

175000

—— Windows Server 2019
RDPY

—— PyRDP

—— PyRDP ND

£ 150000
S

-
~
a
o
15}
5}

100000

75000

50000

Established RDP Connect!

25000

0

Figure 4. Traffic distribution between our honeypot implementations

Fig. 3 visualizes the distribution of incoming connec-
tions between our machines. We categorized the incoming
traffic for each honeypot into three categories: (1) RDP
traffic, which is indicated by a TPKT header starting with
a 0x3 byte, (2) an empty request, which is a completed
TCP three-way handshake resulting in a connection that is
immediately closed afterwards, and (3) non RDP traffic,
where a client sends a non-empty request not matching
the criteria of (1). However, all honeypots received less
than 1% of (2) empty requests and less than 0.2% of (3)
non-RDP traffic on the RDP port. We removed these con-
nections from the dataset prior to analysis. We observed
connections from Censys.io and Shodan.io of type (2) and
we expect the remaining to be opened by lesser known
Internet scanning services.

Our non-honeypot Windows Server 2019 seems to
be preferred by attackers over our remaining honeypots.
Fig. 4 illustrates the number of RDP connections to our
honeypots over time. The traffic originates primarily from
three attacks on our honeypot infrastructure on June 20,
July 10, and July 16, 2021.

The first attack on 20th of June is mainly caused by
a massive amount of connections originating from a /24
IP subnet from a single autonomous system (ASN 49505,
Selctel, located in Russia). The honeypots on the Amazon
EC2 instance were attacked directly via their respective
IPs and not via one of our forwarding proxies.

About 40% of the connections established on July 10
originate from two IPs that are likewise located in the
same AS and that have not communicated with any other
honeypot. Furthermore, about 6% of the connections were
proxied from AS 197540 (netcup) on this day and spread
almost evenly across all honeypots with the Windows
Server 2019 in a slight lead.

The traffic peak on July 16 consists of about 23% out
of connection attempts from ASN 209335. Despite prox-
ied traffic being balanced across targets, most connections
(63 %) were made to the Windows Server 2019, followed
by PyRDP (13%) and RDPY (1%). Unfortunately, our
proxy setup does not allow us to further trace the connec-
tions back to the original IPs of the attacker.

The data suggests that honeypots are indeed avoided
by attackers even if they are just doing credential stuffing
attacks. We observed that multiple hosts in an IP address
range seem to collaborate, i.e., a host A sends an initial
probe, terminates the connection and processes our answer
internally. Afterward, host B gets notified by A if the
host is of interest and performs further scanning or an
attack. This pattern is provably present for probes we
received from Censys.io as the scanning machines have
meaningful RDNS records and the the targeted attacks on
two honeypots on July 10 suggests that attacking host act
likewise. For a more in depth analysis, this experiment
needs to be repeated at larger scale.

7. Discussion

Our analysis relies on active internet-wide scans and is
therefore affected by inaccuracies due to the heterogeneity
of the Internet and the impact of a single vantage point.
Data from internet-wide scans always shows a certain de-
gree of noise due to the fact that the Internet is built from
individually managed components. This impacts the data
quality and classification rate as shown in Table 3. While
some of the hosts reported by ZMap can not be classified
due to connection timeouts or unspecified behavior, others
even provide different services on the scanned port. Fur-
thermore, internet-wide scans from a single vantage point
might not be able to reach the complete Internet as shown
recently by Wan et al. [34], which can affect our results.

Nevertheless, we avoid inaccuracies with strict con-
straints in our classification methodology. Our fingerprints
ignore all configurable options in the respective implemen-
tations we are aware of. A mismatch between fingerprints
therefore indicates a difference in implementations, rather
than in configurations. On the one hand, this allows us
to provide a meaningful and accurate lower bound of
existing honeypots spread across a multitude of ASes and
organizations. On the other hand, we consider many hosts
to be uncategorizable.

A few of the classifications might be caused by the
heterogeneity of the Internet. Other factors include differ-
ences caused by different patch levels of the SMB and
RDP implementation. In samples we took from the Un-
categorizable group, we find a large amount of Windows
hosts with varying operating system versions for which
we rejected the correct classification label because of our
strong matching criteria. However, we believe this does
not impair our ability to find known honeypot implemen-
tations as their fingerprint is quite unique and not subject
to much change. The RDPY source code has not changed
in its protocol handling for 6 years, and Dionaea saw its
latest change in the module responsible for the handling
of SMB back in 2017.

7.1. What about high interaction honeypots?

We believe that hosts that we classified as Non-
SChannel Windows RDP Hosts are likely high interaction
honeypots, where the TLS connection is interrupted by a
non-SChannel MitM-box in order to observe the traffic.
Unfortunately, 13 exact matches with Windows enforce
NLA, so that we could not further investigate if the

classification is correct without ethical issues caused by
providing login credentials.

During analysis of our Internet scans, we became
aware of the Wallix Redemption MitM-box for RDP> and
the PyRDP [33] MitM honeypot. Both use OpenSSL for
re-encryption of the traffic, with a clearly distinguishable
fingerprint. The one non-NLA-enforced host could be
such a PyRDP honeypot: It reacts to user input in a
meaningful way (e.g dialog boxes and keyboard actions
are processed), and allows “normal” interaction with the
system (e.g. the Disconnect button actually disconnects
the session) despite the abnormal SSL stack.

If we relax the 100% similarity constraint, we were
able to find other hosts that behave like Windows ma-
chines, do not require login on connect, and are attached to
the AS of DigitalOcean. To our knowledge DigitalOcean
does not offer or officially support Windows machines.
Furthermore, we found similar implementations in their
network offering different Windows versions with the
same TLS certificate. In contrast to the 13 hosts mentioned
above, these hosts downgrade the protocol security level
from PROTOCOL_HYBRID to PROTOCOL_SSL, which
we have never observed in a unmodified Windows version
during our tests, being another indicator for an abnormal
RDP stack.

We believe that our data set has more interesting
high-interaction honeypots in the Uncategorized Hosts
section. However, our existing results already show that
this detection method is viable.

7.2. Why should we care?

Our experiments confirm that also commonly used
RDP and SMB honeypots are fingerprintable and that
a fingerprint can easily be created. In Section 6 we
conducted a study to check if fingerprinting techniques
are applied by attackers. While our experiment should
be repeated to increase confidence, our collected data
suggests that this is the case even if we have not observed
their exact fingerprinting technique. It is also worth noting
that both PyRDP instances (with we would classify as
a high interaction honeypot) received less attack traffic,
indicating that more care needs to be taken with regards
to details like the abnormal TLS stack.

We suggest the following improvements to honeypot

implementers and operators:
Employ differential fuzzing yourself. Implementers can
use the presented fingerprinting methods themselves in
order to minimize the observable behavioral gap between
their honeypot and the original protocol implementation.
Be careful about the TLS stack implementation. If you
are operating a MitM box in order to monitor encrypted
TLS traffic in a protocol of interest, select a TLS imple-
mentation that matches the target machine. For example,
SChannel has a standardized API on Windows, which
allows third-party code to use it. This seems to not be
widely known.

8. Conclusion

We demonstrated a viable approach to detect three
popular honeypots and one popular framework to create

5. https://github.com/wallix/redemption

https://github.com/wallix/redemption

SMB honeypots (Impacket) on the Internet. Our validation
has shown that exact fingerprint matches allow identifica-
tion of a host with high accuracy.

We reused existing concepts such as the use of er-
roneous requests and the method of a most distinctive
probe to separate honeypots from regular implementa-
tions. However, our results indicate that TLS fingerprints
are well suited to be combined with a honeypot detector.
The results of our experiment on self-hosted honeypots
suggest that attackers also employ fingerprinting methods
to avoid both low- and high-interaction honeypots.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their valuable feedback. We would like to
thank Visuality Systems for providing us with a free
license of their product YNQ and for the inspiring dis-
cussions about the SMB protocol. This work was partially
funded by the German Federal Ministry of Education and
Research under the project PRIMEnet, grant 16KIS1370.

References

[1] T. Holz and F. Raynal, “Detecting honeypots and other suspicious
environments,” in Proceedings from the Sixth Annual IEEE SMC
Information Assurance Workshop. 1EEE, 2005, pp. 29-36.

[2] E. Lépez-Morales, C. Rubio-Medrano, A. Doupé, Y. Shoshi-
taishvili, R. Wang, T. Bao, and G.-J. Ahn, “Honeyplc: A next-
generation honeypot for industrial control systems,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security, 2020, pp. 279-291.

[3] S. Shan, E. Wenger, B. Wang, B. Li, H. Zheng, and B. Y. Zhao,
“Gotta catch’em all: Using honeypots to catch adversarial attacks
on neural networks,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
67-83.

[4] Shodan.io, “Honeyscore,” https://honeyscore.shodan.io/.

[S] ShodanHQ, “Honeyscore announcement,” https://twitter.com/
shodanhg/status/1311661444765806593, 10 2020, Twitter.

[6] R. Blog, “Nicer protocol deep dive: Internet exposure of
remote desktop (rdp),” https://blog.rapid7.com/2020/10/23/
nicer-protocol-deep-dive-internet-exposure-of-remote-desktop-rdp/,
2020.

[7]1 S. Morishita, T. Hoizumi, W. Ueno, R. Tanabe, C. Ganan, M. J.
van Eeten, K. Yoshioka, and T. Matsumoto, “Detect me if you...
oh wait. an internet-wide view of self-revealing honeypots,” in
2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM). 1EEE, 2019, pp. 134-143.

[8] A. Vetterl and R. Clayton, “Bitter harvest: Systematically finger-
printing low-and medium-interaction honeypots at internet scale,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18),
2018.

[9]1 D. Sysman, G. Evron, and I. Sher, “Breaking honeypots for fun
and profit,” Black hat USA, 2015.

——, “Breaking honeypots for fun and profit,” 32¢3 - Chaos
Communication Congress, 2015.

[10]

[11] J. Uitto, S. Rauti, S. Laurén, and V. Leppinen, “A survey on anti-
honeypot and anti-introspection methods,” in World Conference on
Information Systems and Technologies. Springer, 2017, pp. 125—

134.

N. Krawetz, “Anti-honeypot technology,” IEEE Security & Privacy,
vol. 2, no. 1, pp. 76-79, 2004.

X. Fu, W. Yu, D. Cheng, X. Tan, K. Streff, and S. Graham, “On
recognizing virtual honeypots and countermeasures,” in 2006 2nd
IEEE International Symposium on Dependable, Autonomic and
Secure Computing. 1EEE, 2006, pp. 211-218.

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]
[20]
[21]
(22]

[23]

(24]

(25]

(26]

(27]

[28]
(29]

(30]

(31]

[32]

[33]
(34]

S. Mukkamala, K. Yendrapalli, R. Basnet, M. Shankarapani, and
A. Sung, “Detection of virtual environments and low interaction
honeypots,” in 2007 IEEE SMC Information Assurance and Secu-
rity Workshop. 1EEE, 2007, pp. 92-98.

L. Metongnon and R. Sadre, “Beyond telnet: Prevalence of iot pro-
tocols in telescope and honeypot measurements,” in Proceedings
of the 2018 workshop on traffic measurements for cybersecurity,
2018, pp. 21-26.

V. Ghiétte, H. Griffioen, and C. Doerr, “Fingerprinting tooling used
for {SSH} compromisation attempts,” in 22nd International Sym-
posium on Research in Attacks, Intrusions and Defenses ({RAID}
2019), 2019, pp. 61-71.

J. van Eesteren, “Remote Desktop Protocol (RDP)
10 AVC/H.264 improvements in Windows 10 and
‘Windows Server 2016 Technical Preview,” https:

//techcommunity.microsoft.com/t5/microsoft-security-and/
remote-desktop-protocol-rdp- 10-avc-h-264-improvements-in-windows/
ba-p/249588, 2016.

Remote Desktop Protocol: Basic Connectivity and Graphics Re-
moting, Microsoft, 8 2020, Revision 53.0.

GitHub, “Heralding,” https://github.com/johnnykv/heralding, 2020.
——, “Rdpy,” https://github.com/citronneur/rdpy, 2020.
——, “Dionaea,” https://github.com/DinoTools/dionaea, 2020.

SecureAuth, “Impacket,” https://www.secureauth.com/labs/
open-source-tools/impacket/, 2020.

M. Nawrocki, M. Wihlisch, T. C. Schmidt, C. Keil, and
J. Schonfelder, “A survey on honeypot software and data analysis,”
arXiv preprint arXiv:1608.06249, 2016.

P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson, N. Vallina-
Rodriguez, and J. Caballero, “Coming of Age: A Longitudinal
Study of TLS Deployment,” in Proceedings of the Internet Mea-
surement Conference 2018, ser. IMC *18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 415-428.

Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan,
E. Bursztein, M. Bailey, J. A. Halderman, and V. Paxson,
“The Security Impact of HTTPS Interception,” in 24th
Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February
26 - March 1, 2017. The Internet Society, 2017.
[Online]. Available: https://www.ndss-symposium.org/ndss2017/
ndss-2017-programme/security-impact- https-interception/

J. Althouse. TLS Fingerprinting with JA3
and JA3S. https://engineering.salesforce.com/
tls-fingerprinting- with-ja3-and-ja3s-247362855967.

Cisco. Mercury: network fingerprinting and packet metadata cap-
ture. https://github.com/cisco/mercury.

——. Joy. https://github.com/cisco/joy.

J. Althouse.
Internet with

Malicious Servers on the
https://engineering.salesforce.com/

Easily Identify
JARM.

easily-identify-malicious-servers-on-the-internet- with-jarm-e095edac525a?

gi=3d3703067810.

D. Dittrich, E. Kenneally et al., “The menlo report: Ethical princi-
ples guiding information and communication technology research,”
US Department of Homeland Security, 2012.

C. Partridge and M. Allman, “Addressing Ethical Considerations
in Network Measurement Papers,” Communications of the ACM,
vol. 59, no. 10, Oct. 2016.

Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap:
Fast internet-wide scanning and its security applications,” in
USENIXSEC, Washington, D.C., USA, 2013.

GoSecure, “Pyrdp,” https://github.com/GoSecure/pyrdp, 2018.

G. Wan, L. Izhikevich, D. Adrian, K. Yoshioka, R. Holz,
C. Rossow, and Z. Durumeric, “On the Origin of Scanning: The
Impact of Location on Internet-Wide Scans,” in Proceedings of the
ACM Internet Measurement Conference, ser. IMC *20. New York,
NY, USA: Association for Computing Machinery, 2020.

https://honeyscore.shodan.io/
https://twitter.com/shodanhq/status/1311661444765806593
https://twitter.com/shodanhq/status/1311661444765806593
https://blog.rapid7.com/2020/10/23/nicer-protocol-deep-dive-internet-exposure-of-remote-desktop-rdp/
https://blog.rapid7.com/2020/10/23/nicer-protocol-deep-dive-internet-exposure-of-remote-desktop-rdp/
https://techcommunity.microsoft.com/t5/microsoft-security-and/remote-desktop-protocol-rdp-10-avc-h-264-improvements-in-windows/ba-p/249588
https://techcommunity.microsoft.com/t5/microsoft-security-and/remote-desktop-protocol-rdp-10-avc-h-264-improvements-in-windows/ba-p/249588
https://techcommunity.microsoft.com/t5/microsoft-security-and/remote-desktop-protocol-rdp-10-avc-h-264-improvements-in-windows/ba-p/249588
https://techcommunity.microsoft.com/t5/microsoft-security-and/remote-desktop-protocol-rdp-10-avc-h-264-improvements-in-windows/ba-p/249588
https://github.com/johnnykv/heralding
https://github.com/citronneur/rdpy
https://github.com/DinoTools/dionaea
https://www.secureauth.com/labs/open-source-tools/impacket/
https://www.secureauth.com/labs/open-source-tools/impacket/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception/
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://github.com/cisco/mercury
https://github.com/cisco/joy
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a?gi=3d3703067810
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a?gi=3d3703067810
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a?gi=3d3703067810
https://github.com/GoSecure/pyrdp

Appendix

TABLE 6. TOP 50 AUTONOMOUS SYSTEMS HOSTING HONEYPOTS

CO ASN Organization SMB RDP Total
UsS 16509 AMAZON 232 167 399
US 20473 CHOOPA 126 95 221
UsS 14061 DIGITALOCEAN 102 90 192
DE 197540 netcup 66 72 138
™ 1659 TANet 131 1 132
US 8075 MICROSOFT 48 25 73
US 63949 Linode 33 37 70
usS 14618 AMAZON 41 28 69
usS 15169 GOOGLE 35 32 67
US 22773 Cox Communications 50 3 53
HK 135377 UCLOUD 26 25 51
FR 16276 OVH 17 22 39
CA 32613 IWEB 2 34 36
CN 132203 TENCENT 9 26 35
CA 25820 IT7NET 30 0 30
JP 2500 WIDE-BB WIDE Project 30 0 30
CN 45102 Alibaba 20 9 29
1T 137 GARR 12 16 28
JP 2497 Internet Initiative Japan 25 1 26
GB 9009 M247 12 10 22
DE 3320 DTAG 9 13 22
LT 56630 MELBICOM 8 10 18
JP 9370 SAKURA Internet Inc. 9 7 16
HK 136907 HUAWEI CLOUDS 9 3 12
us 7922 COMCAST 0 11 11
JP 2514 NTT PC Communications 6 5 11
JP 4713 NTT PC Communications 6 4 10
CN 45062 NETEASE 0 10 10
FR 12876 Online SAS 1 8 9
CZ 5588 GTS Central Europe 6 3 9
1T 3269 Telecom Italia 2 7 9
IN 4755 TATA Communications 4 5 9
MY 38182 Extreme Broadband 9 0 9
US 46562 PERFORMIVE 2 6 8
DE 51167 CONTABO 3 5 8
CA 31798 DATACITY 0 8 8
US 63473 HOSTHATCH 4 4 8
CA 136258 OBrainStorm Network Inc 4 4 8
EE 206804 ESTNOC 2 6 8
AU 133159 Mammoth Media Pty Ltd 4 4 8
RS 8400 TELEKOM SRBIJA 7 0 7
AR 263812 IPXON Networks 3 4 7
CN 4134 CHINANET 0 7 7
IR 58224 PJS 7 0 7
ES 39020 COMVIVE 3 3 6
GR 6799 OTENET 3 3 6
NL 6830 Liberty Global 2 4 6
JP 9355 NICT 1 5 6
HK 137280 Kingsoft cloud corporation 3 3 6
US 36352 COLOCROSSING 3 3 6

TABLE 7. RESPONSE COMPARISON FOR PROTOCOL_RDP

¥
9 S
| ~ X
S £ £ E:E 5 B
Field name ®x 2 2 B 2 & =X
T.125 Conn. Resp.
Domain Parameters
Max Channel IDs 22 % 34 34 % 22 %
RDP Server Data
Server Core Data
Length 2 ® 16 12 % 16 %
® X 1 X % 0o %

Early Capability Fl.

	Introduction
	Related Work
	Background
	RDP
	SMB
	Honeypot Implementations
	TLS Fingerprinting

	Our Honeypot Detector
	Packet Similarity Scoring
	Differential Fuzzing for Fingerprinting
	Our RDP scanner
	Our SMB scanner

	Internet-wide Scan
	Ethical Considerations
	Setup
	Classification Results
	AS Coverage
	Result Validation
	RDP Validation
	SMB Validation

	Attacker Behavior Analysis
	Setup
	Results

	Discussion
	What about high interaction honeypots?
	Why should we care?

	Conclusion
	References
	Appendix

