
Dissertation
Network Architectures
and Services
NET 2015-02-1

A Secure and Resilient Communication
Infrastructure for Decentralized Networking

Applications

Matthias Wachs

Network Architectures and Services

Department of Computer Science

Technische Universität München

TECHNISCHE UNIVERSITÄT MÜNCHEN

Institut für Informatik

Lehrstuhl für Netzarchitekturen und Netzdienste

A Secure and Resilient Communication Infrastructure for

Decentralized Networking Applications

Dipl.-Inform. Matthias Wachs

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Thomas Huckle

Prüfer der Dissertation: 1. Emmy Noether-Nachwuchsgruppenleiter

Christian Grothoff, Ph.D.

2. Univ.-Prof. Dr. Thomas Neumann

3. Univ.-Prof. Dr. Uwe Baumgarten

Die Dissertation wurde am 16. Oktober 2014 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 25. Januar 2015 angenommen.

Cataloging-in-Publication Data

Matthias Wachs

A Secure and Resilient Communication Infrastructure for Decentralized Networking

Applications

Dissertation, February 2015

Network Architectures and Services, Department of Computer Science

Technische Universität München

ISBN 3-937201-45-9

ISSN 1868-2634 (print)

ISSN 1868-2642 (electronic)

Network Architectures and Services NET-2015-02-1

Series Editor: Georg Carle, Technische Universität München, Germany

c© 2015, Technische Universität München, Germany

ACKNOWLEDGMENTS

Change will not come if we wait for some other person, or if we

wait for some other time. We are the ones we’ve been waiting for.

We are the change that we seek.

Barack Obama

The work presented in Chapter 3 was published at CRiSIS 2010 [WGT12]. Chapter 5

is an extended version of [WOG14] presented at P2P 2014 and the adoption of machine

learning approaches are described in Fabian Oelmann’s master thesis [Oeh14]. Chapter 6

is based on the papers [WSG13] presented at FPS 2013 and [WSG14] presented at CANS

2014. The fundamental idea of GNS presented in Chapter 6 was first published in Martin

Schanzenbach’s master thesis [Sch12].

This research was supported in part by the OpenLab project, “OpenLab: extending

FIRE testbeds and tools”, funded by the EC under FP Grant agreement No 287581 and

by the Deutsche Forschungsgemeinschaft (DFG) under ENP GR 3688/1-1.

I would like to thank my advisor, Christian Grothoff, for his guidance and patience

throughout the course of my graduate career and that he made it possible for me to

pursue my PhD in his research group. I want to thank Martin Schanzenbach for his

valuable work on GNS during his master thesis, Fabian Oehlmann for his work on machine

learning techniques for ATS, Omar Tarabai for his contributions for the OpenLab project

and the efforts in his master thesis, and Robert Schirmer for his work on operations

research methods and ATS. Special thanks go to everyone involved with the design of

GNS for their insightful comments and discussions on the design. And finally I would like

to thank all co-authors, students, all GNUnet developers and all other contributors to my

research efforts and everyone I forgot.

ABSTRACT

The contribution of this thesis is the study, design and implementation of a resilient and

secure communication infrastructure for decentralized peer-to-peer networks. On today’s

Internet, free and unrestricted communication between users is often restricted due to

limited connectivity between participants, attempts to degrade service for certain traf-

fic classes and other filtering and manipulation attempts. Peer-to-peer networks are in

particular impacted by these effects since peer-to-peer networks are a target for cen-

sorship attempts due to the lack of a centralized node to control, their dependency on

end-to-end connectivity and on a neutral network treating all traffic classes equally. In

this thesis, we design and implement a communication infrastructure for decentralized

peer-to-peer networks employing existing Internet infrastructure and technologies with

the goal of re-establishing unhindered communication between users. The proposed com-

munication infrastructure tries to provide and improve connectivity between participants

and to improve quality of service for applications by detecting and counteracting traffic

management and degradation attempts. The communication infrastructure has the goal

to make communication resilient against censorship attempts and provides with GNS a

public key infrastructure that provides a secure, resilient, and privacy-preserving way to

map human-memorable names to addresses and other information.

This thesis starts with a motivation for the objective of this work introducing and ex-

plaining limitations with respect to unrestricted communication on today’s Internet. We

describe the different parties interested in controlling and influencing traffic on the Inter-

net and their motivations and give an overview over technical restrictions to unrestricted

communication a communication infrastructure tailored for the requirements of decen-

tralized peer-to-peer networks and trying to provide resilient communication has to cope

with and counteract.

As a second step, we analyze if the current Internet can provide a suitable foundation

for resilient communication between peers in a peer-to-peer overlay network. For this

evaluation, we analyze how resilient the Internet and its routing infrastructure is against

Byzantine failures of providers or links between networks and what impact these failures

have on routing in a peer-to-peer network. We use a graph representation of the Internet

topology generated from BGP routing data and path measurement data and apply a new

graph separation heuristic to find the smallest set of providers and networks to partition

the Internet. The size of the resulting separators gives evidence how hard it is to partition

the Internet in a way that prevents communication between partitions and therefore could

have an impact on routing between peers in the peer-to-peer overlay.

We then present the design and implementation of a resilient and secure commu-

nication infrastructure for the GNUnet peer-to-peer framework. This communication

infrastructure has the goal to increase connectivity between participants, improve con-

nectivity for peers in restricted environments, counteract service degradation and traffic

manipulation attempts and provide secure communication between participants of the

peer-to-peer network. One of the key approaches used to detect and counteract service

degradation is to support multiple transport mechanisms and to provide the possibility to

viii Abstract

switch from a degraded communication channel to an alternative channel providing better

communication properties.

In a peer-to-peer network, a peer has to communicate with multiple communication

partners at the same time. With a peer-to-peer communication infrastructure supporting

multiple transport mechanisms and multiple client applications, the challenge arises which

mechanism provides the best properties and satisfies application requirements best and how

to distribute available resources among communication partners. With ATS, we present

an approach for automatic transport selection and resources allocation tailored for the

needs of decentralized peer-to-peer networks supporting multiple transport mechanisms

and multiple applications with possibly contradictory requirements. We present three

approaches to solve the problem of address selection and resource allocation based on

a heuristic, solving the problem as an optimization problem and using machine learning

techniques. We evaluate the performance of the solution approaches and compare the

quality of solutions provided by the approaches.

Finally to allow users to communicate securely over the Internet and to address entities

and services in the network, we present the design and implementation of the GNU Name

System (GNS), a fully decentralized, privacy-preserving, and censorship-resistant name

system designed as an alternative to the existing DNS. GNS is based on the idea of a

petname system relying on local namespaces and linking namespaces using delegation to

make names transitive. Due to its design it can also double as an alternative to existing

security infrastructures like the X.509 public key infrastructure. GNS provides a privacy-

preserving publication and lookup mechanism storing data encrypted in a DHT so only

a benign user can perform publication and lookup operations successfully and attackers

cannot monitor name publication and resolution in the network.

ZUSAMMENFASSUNG

Der Fokus dieser Arbeit liegt auf dem Entwurf und der Implementierung einer ausfall-

sicheren und zensurresistenten Kommunikationsinfrastruktur für dezentralisierte Peer-to-

Peer Netzwerke. Im heutigen Internet ist die Kommunikation zwischen Teilnehmern auf

Grund fehlender Konnektivität und dem Versuch, bestimmte Dienste einzuschränken oder

vollständig zu filtern, oftmals eingeschränkt. Peer-to-Peer Netzwerke sind von diesen

Ansätzen besonders stark betroffen, da sie zum einen keine zentralisierten Komponen-

ten besitzen, die man dediziert kontrollieren könnte, und zum anderen auf Grund ihrer

starken Abhängigkeit vom Ende-zu-Ende Prinzip, das fordert, dass alle Verkehrsklassen

gleich behandelt werden sollten. In dieser Arbeit entwerfen und implementieren wir eine

Kommunikationsinfrastruktur für dezentralisierte Peer-to-Peer Netzwerke, die auf der exi-

stierenden Infrastruktur des Internets und dessen Technologien aufbaut und das Ziel hat,

die uneingeschränkte Kommunikation zwischen den Nutzern wiederherzustellen. Zusätz-

lich stellt diese Arbeit mit dem GNU Name System (GNS) eine sichere und resiliente

Public-Key-Infrastruktur bereit, die die Privatsphäre der Anwender schützt.

Die Grundlagen dieser Arbeit sind eine Übersicht über die Einschränkungen der Ende-

zu-Ende Konnektivität und Versuchen, Dienste im heutigen Internet einzuschränken. Wei-

terhin analysiert die Arbeit, ob das Internet eine geeignete Grundlage für resiliente Kom-

munikation in einem Peer-to-Peer Overlay bieten kann. Hierbei untersuchen wir, wie

widerstandsfähig basierend auf dem byzantinischen Fehlermodell das Internet und seine

Routing-Infrastruktur gegen Ausfälle von Netzwerken oder Verbindungen zwischen Netz-

werken sind und welche Auswirkungen ein solcher Ausfall auf das Routing in einem Peer-

to-Peer Overlay hat. Auf diesen Arbeiten aufbauend, präsentieren wir den Entwurf und

die Implementierung einer resilienten und sicheren Kommunikationsinfrastruktur für das

GNUnet Peer-to-Peer Framework. Einer der hierbei verwendeten Schlüsselansätze, um

die Beeinflussung von Diensten zu erkennen und dieser entgegenzuwirken, ist die Verwen-

dung mehrerer Kommunikationsprotokolle und die Möglichkeit zwischen diesen wechseln

zu können. Die Arbeit stellt ein Verfahren für die automatische Auswahl des zu ver-

wendenden Kommunikationsprotokolls und für die Ressourcenzuweisung an die einzelnen

Teilnehmer vor, das mit Hinblick auf die Anforderungen eines Frameworks für Peer-to-

Peer Anwendungen entworfen wurde. Wir stellen drei Ansätze zur Lösung dieses Pro-

blems aufbauend auf einer Heuristik, linearer Optimierung und maschinellem Lernen vor

und bewerten die Leistung der einzelnen Ansätze und die Qualität erzeugten Lösungen.

Abschließend stellen wir das GNU Name System (GNS) vor. Das GNS ist eine vollständig

dezentralisierte, zensurresistente und die Privatsphäre der Anwender schützende Alter-

native zu DNS. GNS baut auf der Idee eines petname systems auf und verwendet lokale

Namensräume und verknüpft diese mittels des Prinzips der Delegation um Namen transitiv

zu verwenden. GNS legt Daten verschlüsselt in einer Distributed Hash Table ab und ver-

hindert so, dass Angreifer aus mitgeschnittenem Verkehr des Systems Schlüsse auf Daten

und Anwender ziehen können. Durch seinen Entwurf kann GNS zusätzlich als Alternative

zu existierenden Public-Key-Infrastrukturen wie der X.509 Infrastruktur verwendet werden.

Contents

1. Introduction 1

1.1 Thesis Objectives and Research Questions 2

1.2 Positioning and Goals . 3

1.3 Contributions and Document Structure 4

2. Background 7

2.1 The Internet Protocol Architecture . 7

2.2 Internet Layer Protocols . 8

2.2.1 Internet Protocol . 8

2.2.2 IPv4 . 8

2.2.3 IPv6 . 9

2.3 Transport Layer Protocols . 9

2.3.1 TCP . 9

2.3.2 UDP . 10

2.4 Domain Name System . 10

2.5 The X.509 Public Key Infrastructure . 12

2.6 Middleboxes . 13

2.6.1 DiffServ . 14

2.6.2 Deep Packet Inspection . 14

2.6.3 Packet Filter . 15

2.6.4 Network Address Translation . 16

2.6.5 DS-Lite . 19

2.6.6 Proxy Servers . 20

2.7 Centralized Client/Server Architectures 21

2.8 Decentralized Peer-to-Peer Networking Architectures 22

2.8.1 Structured and Unstructured Peer-to-Peer Architectures 22

2.8.2 Distributed Hash Tables . 23

2.8.3 The GNUnet Peer-to-Peer Framework 24

2.9 Conclusion and Findings . 25

3. Resilience of Communication on the Internet 27

3.1 Introduction . 27

3.2 Background and Related Work . 28

3.3 Calculating Separators . 29

3.3.1 Finding Edge Separators . 29

3.3.2 Edge Separators for Weighted Graphs 30

3.3.3 Finding Node Separators . 31

3.4 Graph Generation . 32

3.4.1 Construction of AS Graphs from BGP Routing Information . . . 33

3.4.2 Construction of AS Graphs from Traceroutes 34

xi

xii CONTENTS

3.4.3 Merge of BGP and Traceroute Graphs 34

3.4.4 Weight Generation . 34

3.5 Experimental Results . 36

3.5.1 Unweighted AS Graphs . 36

3.5.2 Weighted AS Graphs . 37

3.6 Discussion . 39

3.7 Conclusion and Findings . 39

4. Resilient and Secure Communication for Decentralized Networks 41

4.1 Objectives . 41

4.2 Scope and Limitations . 42

4.3 Design and Implementation . 43

4.3.1 Peers and Peer Identities . 44

4.3.2 Plugin Specific Address Formats 45

4.3.3 Generic Address Format . 46

4.3.4 Transport Sessions . 47

4.3.5 HELLO messages . 47

4.3.6 Bootstrapping and Neighbor Discovery 48

4.3.7 Persistent Storage of Peer Information 50

4.3.8 Address Management and NAT Support 50

4.3.9 Overlay Topology Management 52

4.3.10 Managing Active Addresses and Session 52

4.3.11 The Transport Service . 53

4.3.12 The UNIX Domain Socket Transport 70

4.3.13 The TCP Transport . 70

4.3.14 The UDP Transport . 71

4.3.15 The HTTP(S) Transport . 72

4.3.16 The WLAN Transport . 76

4.3.17 The Bluetooth Transport . 77

4.3.18 The Distance Vector Routing Transport 78

4.3.19 Secure Communication Between Peers with CORE 79

4.4 Evaluation . 80

4.4.1 Methodology and Setup . 80

4.4.2 Experimental Setup . 80

4.4.3 Methodology . 82

4.4.4 Results on Local Performance 83

4.4.5 Results on Network Performance 89

4.5 Related Work and Comparison . 92

4.5.1 Tor’s Pluggable Transport Architecture 92

4.5.2 SPOVnet’s ARIBA Resilient Transport Underlay 93

4.5.3 I2P’s Transport Architecture . 93

4.5.4 BitTorrent Protocol and Obfuscation 94

4.6 Conclusion and Findings . 94

5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer

Networks 97

5.1 Background and Analysis of the Problem Setting 98

5.1.1 Peers . 98

5.1.2 Transport Mechanisms . 98

5.1.3 Transport Mechanisms with Multiple Addresses 99

CONTENTS xiii

5.1.4 Network Scopes . 99

5.1.5 Bandwidth Restrictions for Network Scopes 100

5.1.6 Resource Allocation and Address Selection 101

5.1.7 Transport Properties . 101

5.1.8 Application Requirements . 104

5.1.9 Summary . 105

5.2 Design and Architecture . 106

5.2.1 Input for the Transport Selection 107

5.2.2 Output from Transport Selection 107

5.2.3 Objectives for Transport Selection and Resource Allocation . . . 107

5.2.4 Scope and Limitations . 108

5.3 Input Normalization and Correlation . 109

5.3.1 Preference Normalization and Correlation 109

5.3.2 Performance Property Normalization 110

5.4 The Greedy Heuristic Solver . 111

5.4.1 Design of the Solver . 111

5.4.2 Discussion . 114

5.5 The Mixed Integer Linear Programming Solver 114

5.5.1 Linear Programming . 114

5.5.2 Design of the Solver . 116

5.5.3 Discussion . 119

5.6 The Reinforcement Learning Solver . 119

5.6.1 Machine Learning . 120

5.6.2 Design of the Solver . 121

5.6.3 Discussion . 123

5.7 Related Work and Comparison . 123

5.7.1 Quality of Service in IP Networks 123

5.7.2 The SpoVNet Project . 124

5.7.3 The Tor Project . 125

5.7.4 The Invisible Internet Project 125

5.8 Implementation . 126

5.8.1 The ATS Service . 126

5.8.2 ATS Information . 127

5.8.3 Interacting with ATS . 128

5.8.4 Peer and Address Management 129

5.8.5 Management of Transport Performance Properties 130

5.8.6 Management of Application Preferences 130

5.8.7 The Solver API . 131

5.8.8 ATS Solvers . 133

5.8.9 The Greedy Heuristic Solver . 133

5.8.10 The Mixed Integer Linear Programming Solver 135

5.8.11 The Reinforcement Learning Solver 141

5.9 Evaluation . 145

5.10 Discussion . 146

5.11 Conclusion and Findings . 148

6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant

Name System 151

6.1 Introduction and Motivation . 151

xiv CONTENTS

6.2 Background . 156

6.2.1 The Domain Name System . 156

6.2.2 The Domain Name System Security Extensions 156

6.2.3 SDSI/SPKI . 157

6.2.4 Distributed Storage in Peer-to-Peer Overlay Networks 158

6.3 Functional Requirements . 158

6.3.1 Adversary Model . 158

6.3.2 Functional Requirements for an Alternative Name System 159

6.4 Design Space for Name Systems . 159

6.4.1 Hierarchical Registration . 160

6.4.2 Adding Security to Hierarchical Registration 161

6.4.3 Cryptographic Identifiers . 162

6.4.4 Making Cryptographic Identifiers Memorable 162

6.4.5 Petname Systems . 163

6.4.6 Linking Local Namespaces . 163

6.5 Practical Considerations . 164

6.5.1 Interoperability with DNS . 164

6.5.2 End-to-End Security and Error Handling 165

6.5.3 Legacy Applications . 166

6.5.4 Censorship-Resistant Lookup . 166

6.5.5 Privacy-Preserving Name Resolution 166

6.6 Design of the GNU Name System . 167

6.6.1 Names, Zones and Delegations 168

6.6.2 Zone Management with Nicknames and Petnames 170

6.6.3 Relative Names for Transitivity of Delegations 170

6.6.4 Censorship-Resistant and Privacy-Preserving Publication and

Name Resolution . 170

6.6.5 Automatic Shortening . 172

6.6.6 Absolute Names in GNS . 173

6.6.7 Delegation to Legacy Name Systems 173

6.6.8 Handling TLSA and SRV Records in GNU Name System (GNS) . 174

6.6.9 Records in GNS . 174

6.6.10 Shadow Records . 178

6.6.11 Revocation in GNS . 178

6.6.12 Dealing with Legacy Assumptions: Virtual Hosting and TLS . . . 179

6.7 Security Analysis . 180

6.8 Implementation of GNS . 181

6.8.1 Architecture . 181

6.8.2 Cryptography Used in GNS . 182

6.8.3 Identity Management for GNS 182

6.8.4 Records in GNS . 183

6.8.5 Managing GNS Zones and Persistent Storage 184

6.8.6 Caching GNS Information . 187

6.8.7 Zone Revocation with GNS . 188

6.8.8 Censorship-Resistant and Privacy-Preserving Publication and

Name Resolution . 188

6.8.9 GNS Shortening . 193

6.8.10 GNS on Multi-User Systems . 194

6.8.11 Integration with the Name Resolution Process 194

CONTENTS xv

6.8.12 Accessing GNS from DNS . 198

6.9 Related Work and Comparison . 198

6.9.1 OpenDNS . 198

6.9.2 Namecoin . 199

6.9.3 TrickleDNS . 200

6.9.4 CoDNS . 200

6.9.5 Unmanaged Internet Architecture 201

6.10 Use Cases for GNS . 201

6.10.1 Telephony . 201

6.10.2 Decentralized Online Social Networking 202

6.10.3 Messaging . 203

6.10.4 DNSSEC Done Right: Securing the Web 203

6.10.5 Other Applications . 204

6.10.6 Synergy . 204

6.10.7 Out-of-Band Exchange of Zone Information 204

6.11 Conclusion and Findings . 205

7. Conclusion and Findings 207

7.1 Future Work . 209

Bibliography 211

List of Figures 226

List of Tables 228

Appendix 229

A. Headers 231

A.1 The NAMESTORE Plugin API . 231

A.2 The NAMECACHE Plugin API . 232

xvi CONTENTS

1. INTRODUCTION

Decentralized peer-to-peer overlay networks can enable censorship-resistant communica-

tion and help to re-establish free and unrestricted communication between users. The

Internet and its predecessors were envisioned to provide the fabric interconnecting users

and systems. With the increasing success of the Internet in the 1990s, many technic en-

thusiasts hoped that the Internet can provide the foundation for free exchange and com-

munication between users worldwide [Fin01]. On today’s Internet free and unrestricted

communication is restricted and censored for various reasons. With the help of peer-

to-peer overlays, we can overcome these limitations and re-establish free communication

between users.

The architects of what has become the Internet today envisioned the Internet to be

a dumb network interconnecting systems and users and forwarding data on a best-effort

basis. But on today’s Internet, the possibility to establish connections between users is

limited for various reasons, preventing users to communicate directly with each other and

degrading them to consumers of services provided by large service providers. The Internet

was intended to treat all traffic equal on a best-effort basis, independent from source,

destination or application. But on today’s Internet, various parties try to abolish the idea

of a neutral network and introduce traffic classes to prioritize or discriminate certain net-

work traffic introducing a class society on the Internet. With the growing importance of

the Internet in our lives, more and more parties are interested in monitoring communica-

tion between users and controlling and restricting access to services and information on

the Internet, restricting freedom of expression and unrestricted communication between

users. Common examples for censorship include blocking IP addresses, resetting TCP

connections, and the censorship of names in the Domain Name System (DNS).

Decentralized peer-to-peer systems are in particular affected by these limitations. Due

to their communication paradigm, every participant is required to directly communicate

with other participants. Therefore, peer-to-peer systems are in particular affected by

limitations to end-to-end connectivity. Peer-to-peer traffic is often discriminated against,

since decentralized applications do not comply with the business models of providers and

Internet companies. Furthermore do these applications not provide a centralized point to

control communication and therefore are decentralized applications and their users often

linked with illegal and criminal activities. Centralized architectures provide such a single

point of control which can be used to control and restrict communication. Therefore,

decentralized applications cannot rely on such architectures.

This thesis presents the study, design, and implementation of a secure, resilient,

and censorship-resistant communication infrastructure tailored for the needs of fully-

decentralized peer-to-peer networks. The proposed communication infrastructure aims

to re-establish free and unrestricted communication between users in a peer-to-peer over-

lay and to provide the foundation for the realization of future, decentralized Internet

applications. It has the objective to overcome limitations on today’s Internet with respect

to limited end-to-end connectivity between users and best-effort communication and to

be resistant against censorship attempts.

2 1. Introduction

1.1 Thesis Objectives and Research Questions

The main objective of this thesis is to analyze the requirements and present the design and

implementation of a secure, resilient, and censorship-resistant communication infrastruc-

ture, tailored for the requirements of fully-decentralized peer-to-peer systems as a foun-

dation for future decentralized networking applications. With this communication infras-

tructure, we focus on providing secure, resilient, and censorship-resistant communication

between participants and provide connectivity in case of missing, degraded, or failing com-

munication infrastructure. We improve connectivity for participants located in restricted

network environments affected by limitations to end-to-end connectivity, counteract ser-

vice degradation attempts, and provide a privacy-preserving and censorship-resistant way

to refer to services and other information in the network.

With the presented communication infrastructure, we have to answer the question how

a communication infrastructure designed with respect to the requirements of an applica-

tion framework like GNUnet, supporting multiple client applications at the same time and

supporting multiple means of communication, can determine the “best” communication

mechanism for each communication partner and allocate resources to optimally fulfill the

applications’ requirements. To answer this question, we have to analyze the problem and

the problem domain and develop the design and implementation of an automatic transport

selection and resource allocation mechanism for decentralized peer-to-peer networks.

To provide users with the possibility to refer to services and entities in the network

in a resilient and privacy-preserving way, we present the design and implementation of an

alternative, censorship-resistant and privacy-preserving name system which allows users to

address services and information in a resilient and secure way respecting the users’ privacy.

With the GNU Name System (GNS), we have the objective to provide a generic approach

to map names to values and provide an alternative for centralized, hierarchical public key

security infrastructures like X.509.

Communication between participants and providing a secure way for users to address

services and entities in the network are fundamental functionalities required for a fully

decentralized peer-to-peer system. But realizing such a system on top of today’s Internet

is challenging due to restrictions to end-to-end and best-effort communication on today’s

Internet. Thus, this thesis answers the following questions:

• What are restrictions to end-to-end connectivity and best-effort communication on

today’s Internet? How do adversaries try to prevent access to information and

services on the Internet?

• Does the Internet provide a suitable foundation to re-establish end-to-end commu-

nication between users with a resilient peer-to-peer overlay?

• What are the requirements and a possible design for a secure and censorship-resistant

communication infrastructure?

• How can a communication infrastructure support multiple communication protocols

and optimally satisfy applications with a priori unknown requirements in a dynamic

peer-to-peer environment?

• How can services and information be accessed in a resilient, decentralized and

privacy-preserving way without relying on centralized authorities?

1.2. Positioning and Goals 3

1.2 Positioning and Goals

For the design of new networking architectures and services, it is commonly distinguished

between clean slate approaches, dismissing existing solutions to a given problem and

proposing a new solution to the problem, and approaches building on top of existing

solutions, using or trying to improve these approaches. For the proposed communica-

tion infrastructure, we rely on today’s Internet as a communication underlay and try to

re-establish unrestricted end-to-end connectivity and best-effort communication between

participants using a peer-to-peer overlay to allow participants to communicate with each

other. To realize this infrastructure, we relay on existing Internet infrastructure and estab-

lished protocols. The communication infrastructure has the goal to provide connectivity

for peers when existing communication infrastructure is failing, to attenuate limitations to

end-to-end connectivity effecting communication between participants and to detect and

counteract service degradation attempts. With the proposed infrastructure, we do not

propose a clean slate approach replacing the Internet, but build on top of existing, estab-

lished infrastructures and protocols using them as a foundation to re-establish end-to-end

connectivity between users.

One approach to make communication resilient against censorship or service degra-

dation is to make the traffic less susceptible for filtering and traffic shaping appliances

using traffic hiding or traffic morphing techniques. With traffic hiding, network traffic is

obfuscated or hidden within other network traffic to prevent an attacker from detecting

and classifying traffic as illegitimate. With traffic morphing, applications try to make

their network traffic look like traffic from a legitimate networking application to prevent

an attacker to classify it as illegitimate. With our communication infrastructure, we do

not rely on these approaches as fundamental design concepts to make communication

resistant against censorship. We consider the use of such techniques as an arms race

between developers and censors with the advantage on the side of the censor. With our

communication infrastructure, we rely on an extensible design which can be extended with

new communication protocols and detecting degradation attempts and switching to a

different, not affected communication channel.

To make communication resistant against censorship and degradation, several state-

of-the-art peer-to-peer applications support multiple transport mechanisms with the idea

to switch between these mechanisms. With our approach for automatic transport selec-

tion and resource allocation, we focus on how to optimally satisfy application require-

ments with in advance unknown, possibly contradictory requirements in an unknown and

dynamic environment, an approach particularly useful for a peer-to-peer framework. With

our approach, we have the objective to find a solution making communication resilient

against degradation and optimally fulfilling application requirements at the same time by

finding the optimal communication mechanism for each communication partner in the

peer-to-peer overlay and providing a resource allocation reflecting the importance of each

communication partner. With security being a focus of our approach and our assumptions

about the environment containing malicious participants, peers do not collaborate and do

not try find a globally optimal solution. With our approach, every peer tries to find a

solution optimal for the respective peer based on its local view.

With GNS, we propose an alternative name system as a replacement for the existing

Domain Name System (DNS) and security infrastructures. Several other approaches

try to improve DNS to provide authenticated or confidential name resolution or propose

alternative systems to replace DNS. But none of these approaches can achieve the design

goals we require for a fully decentralized, censorship-resistant and privacy-preserving name

4 1. Introduction

system with the adversary model used in this work assuming a powerful adversary. We

therefore propose with GNS an alternative to DNS but focus in the design on integration

of both systems and integration with existing applications. With GNS, we have the goal

to unify the functionality of name systems and security infrastructures in an integrated

approach.

1.3 Contributions and Document Structure

The main contribution of this thesis is the study, design, and implementation of a secure,

resilient and censorship-resistant communication infrastructure for decentralized peer-to-

peer applications with a focus on improving connectivity between peers and re-establishing

best-effort, end-to-end connectivity in the peer-to-peer overlay. With GNS, the design and

implementation of a fully decentralized, censorship-resistant and privacy-preserving name

system and security infrastructure is presented.

The thesis starts with an overview over the architecture of the Internet and important

protocols used on today’s Internet in Chapter 2. With this overview, the thesis presents

restrictions and limitations to unrestricted end-to-end connectivity and best-effort commu-

nication, particularly important for the design of a communication infrastructure focusing

on the requirements of peer-to-peer systems. This chapter also introduces DNS ma-

nipulation as an approach often employed by adversaries to censor services and remove

information on the Internet.

To elaborate if the Internet can provide a reasonable foundation for a peer-to-peer

system trying to re-establish end-to-end connectivity between participants using a peer-

to-peer overlay, this thesis analyzes in Chapter 3 how resilient the Internet’s routing in-

frastructure is against a Byzantine failure of networks or communication links. With this

analysis, we show that the backbone of the Internet is surprisingly well connected and

hard to partition and therefore provides a reasonable foundation for a peer-to-peer over-

lay. Special focus has therefore to be put on improving connectivity for participants in

restricted perimeter networks.

In Chapter 4, we present, based on the findings of the previous chapters, the design

and implementation of a resilient and secure communication infrastructure tailored for

the needs of decentralized peer-to-peer systems. A key contribution of this infrastructure

is the support of multiple communication protocols and the functionality to monitor and

detect degradation attempts against communication mechanisms and switch mechanisms

in case of a degradation attempt.

In Chapter 5, we answer the question how a communication infrastructure should

select addresses and allocate resources to communication partners to optimally satisfy

application requirements with respect to communication properties. A main contribution

of this chapter is an in-depth analysis of the given problem domain and the design of an

automatic transport selection and resource allocation mechanism and its implementation

in the GNUnet peer-to-peer framework. We present three different solution approaches

to find a solution to the given problem, show the suitability of the proposed approaches

and compare the quality of the solutions provided in different scenarios.

With GNS presented in Chapter 6, we present the design and implementation of a fully-

decentralized, censorship-resistant and privacy-preserving name system as an alternative

to DNS. We start with giving an overview over current name resolution on the Internet

and define the adversary model used with GNS. Based on this work, we explore the

possible design space for name systems and present the design and implementation of

GNS. This chapter also elaborates how GNS can replace existing security infrastructures

1.3. Contributions and Document Structure 5

like X.509 and how GNS can be integrated with common usage patterns on the Internet

and applications and we highlight additional use cases for GNS.

In Chapter 7, we summarize and discuss the work done in this thesis and highlight the

important findings elaborated in this work. Finally, we give an outlook on future work to

be done with the respective topics of this work.

6 1. Introduction

2. BACKGROUND

2.1 The Internet Protocol Architecture

Communication on the Internet is based on a whole set of different protocols, each fo-

cusing on a different aspect of communication. These protocols rely on each other and

therefore create a protocol stack. To describe the interaction of protocols in this protocol

stack and the functionality provided by protocols, the protocols are often fitted into net-

work models to represent this stack. These models intend to represent and standardize

the required aspects and functionalities to communicate over the network as a layered

architecture and fit the existing protocols and network architectures into the model.

Network models are often seen controversial since they represent a theoretic design

and do not represent the reality on the network. Some network models create layers in the

architecture not existing in reality or force protocols to fit into this layered architecture.

Nonetheless if not seen too strict, these models are useful to describe the architecture

and interaction of network protocols.

Internet protocol architecture is often represented using two models: the Open Sys-

tems Interconnection Model (OSI) and the Internet model. The OSI model, maintained

by International Organization for Standardization (ISO) and defined in [ISO94], defines

seven layers, numbered from 1 to 7, to describe the network model: physical layer (layer 1,

physical connections), data link layer (2, links between nodes connected directly), network

layer (3, (unreliable) communication between nodes on the same network), transport layer

(4, reliable communication between nodes on the same or different networks), session layer

(5, sessions between applications), presentation layer (6, data conversion) and application

layer (7, connections between applications). On different hosts, entities located on the

same layer communicate with each other.

The TCP/IP model of the Internet introduces four layers communication with between

network entities: communication between hosts directly connected link layer, communica-

tion between networks (Internet layer), end-to-end communication (transport layer) and

communication between software applications (application layer).

In both models, at the lowest layer of the stack mechanisms are required to access

the network physically and to communicate with other hosts connected directly and on

the same network (layer 1-2 in OSI model and link layer in TCP/IP model). In addition,

we need to communicate with hosts not located on the same network (layer 3 in OSI

model and Internet layer in TCP/IP model) and establish connections to exchange data

with these hosts (Layer 4 in OSI model and transport layer in TCP/IP model) to give

these to the respective network application (Layer 7 in OSI model and application layer in

TCP/IP model). Both models are based on the idea that from the bottom of the stack to

the top, protocols rely on the underlying protocols to realize their functionality and that

protocols on the same layering level communicate with each other. The models rely on

encapsulation, so upper layers encapsulating their traffic in the lower layer protocols.

This work does not focus on the aspects of accessing the network itself except for

minor aspects when describing the Wireless Local Area Network (WLAN) and Bluetooth

8 2. Background

TRANSPORT plugins in Section 4.3.16 and Section 4.3.17. In the remainder of this section

we will therefore focus on giving a short introduction to protocols related to communication

between hosts on network and Internet level and do not focus on the physical and (data)link

layers.

2.2 Internet Layer Protocols

2.2.1 Internet Protocol

The Internet Protocol (IP), defined in [Pos81a], is the standard protocol used for packet

forwarding and routing on the Internet. IP is a protocol located on the network layer

of the (conceptual) ISO/OSI model [ISO94], providing connection-less packet forwarding

without reliability on a best-effort basis. It defines the IP address space and with its routing

functionality allows the linking of networks, the fundamental concept of the Internet.

Following the idea of the end-to-end principle to realize functionality in the end systems

of the network, packets are forwarded statelessly in the network and without error recovery

in the intermediate systems. Error correction is supposed to be realized in the end systems.

When an intermediate system forwarding a packet detects an corrupted packet, it dismisses

the packet. Due to this design, various error conditions can occur: data corruption, packet

loss, packet duplication and out-of-order delivery of packets.

The IP protocol was proposed by Cerf and Kahn in 1974 and specified 1980 in [Pos81a].

At the moment to different version of the IP protocol are used: version 4 called Internet

Protocol version 4 (IPv4) and version 6 called Internet Protocol version 6 (IPv6), both

described in the next sections.

2.2.2 IPv4

IP Version 4 or IPv4, defined in [Pos81a], uses a 32-bit address space and provides about

232 possible addresses. IPv4 addresses are commonly represented using a dotted decimal

representation: each byte as a decimal value separated by a dot. Originally an IP address

was split in two parts: the network part and the address itself. Five different network

classes, named from class A to E, were defined by a start address and the length of

the network address for each network. This classfull approach was in 1981 replaced by

Classless Inter-Domain Routing (CIDR) to allow more flexible address allocation in smaller

blocks. With CIDR, variable length network addresses are possible by representing the IPv4

address together with its routing prefix mask defining the size of the IP network. Address

blocks are assigned to users by the Internet Assigned Numbers Authority (IANA) and the

regional sub-organizations called Regional Internet Registries (RIRs). IPv4 reserves several

special use address blocks and addresses ([CV10]) used for testing and documentation

purposes and for addresses with a limited scope requiring special treatment like loopback,

link-local and multicast addresses ([CAG05, AAMS01, Mog84]) and private IP networks

([RMK+96]). IPv4 provides connectionless, unreliable, best-effort communication. Due

to varying possible message sizes on underlying network layers, IPv4 supports packet

fragmentation and reassembly. For this functionality, it employs a Maximum Transmission

Unit (MTU) value indicating the maximum size of a datagram. To realize its functionality,

IPv4 uses several helper protocols like Address Resolution Protocol (ARP) to resolve IPv4

to link layer addresses or Dynamic Host Configuration Protocol (DHCP) to automate

address assignment.

2.3. Transport Layer Protocols 9

2.2.3 IPv6

With the increasing success of the Internet, its commercialization and the increasing num-

ber of users, it became evident in the beginning 1990s that a successor for IPv4 is required

to counteract exhaustion of IP addresses and networks and the increasing size of routing

tables [GA92]. As a successor for IPv4, IPv6 is defined [DH98] published in December

1998. IPv6 was designed to replace IPv4 but to be inter-operable providing the possibility

of a transition process [BM95]. IPv6 provides a 128-bit address space. Each address space

is commonly represented as eight groups of four hexadecimal digits separated by colons.

IPv6 provides several improvements over its predecessor. To provide one-to-many com-

munication, IPv6 provides multicasting with designated multicast addresses for different

multicast scopes [HD06]. It provides Stateless Address Autoconfiguration (SLAAC) to

allow hosts to autoconfigure network interfaces with IPv6 without manual configuration

and only minimal configuration of routers and without additional servers [TNJ07]. Like

IPv4, IPv6 depends on several other protocols like Neighbor Discovery Protocol (NDP)

and Internet Control Message Protocol Version 6 (ICMPv6) to realize its service. To allow

a seamless transition from IPv4 to IPv6, several transition mechanisms were developed to

allow the coexistence of both protocols. With dual-stack defined in [NG05], hosts and

routers provide full support for both IPv4 and IPv6 and both protocols can coexist on

the same network. To support networks only capable of one of both protocols, transition

mechanisms like 6to4 [CM01], Teredo [Hui06], 6in4 [NG05] and ISATAP [TGT08], en-

capsulating one protocol in another were developed. The general transition process from

IPv4 to IPv6 can be described as slow: according to Google’s IPv6 statistics1, in Septem-

ber 2014 only 3.5-4% of all users used native IPv6 to access Google’s services. One reason

for the slow transition is the complexity to ensure functioning of IPv6 in already deployed

infrastructure but also a missing psychological strain for companies to deploy IPv6.

2.3 Transport Layer Protocols

Transport layer protocols provide end-to-end connectivity with additional features required

by higher layer network applications using an underlying network layer protocol like IP,

providing packet delivery between network systems. Since IP is connectionless, does not

protect against message loss nor prevent packet duplication or out-of order delivery, trans-

port protocols provide additional features depending on their focus and design. On to-

day’s Internet multiple transport layer protocols are defined, but Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP) are the most prominent examples.

Other examples (not in the focus of this work) are Stream Control Transmission Proto-

col (SCTP), Datagram Congestion Control Protocol (DCCP) and Resource Reservation

Protocol (RSVP).

2.3.1 TCP

TCP, defined in [Pos81b], provides connection-oriented and reliable transfer between end

systems. It provides reliable communication with error checking, ensures in-order message

delivery and protects against packet loss using acknowledgments and retransmissions. In

addition, it provides congestion control to not overload the network and flow control to

not overload the receiver. TCP uses port numbers with a value between 0 and 65535 to

distinguish between applications. So a TCP connection is identified by the five-tuple IP

1 https://www.google.com/intl/en/ipv6/statistics.html

https://www.google.com/intl/en/ipv6/statistics.html

10 2. Background

protocol version, source address, source port, destination address and destination port.

Ports numbers are divided in three classes: system or well-known ports (0..1023), user or

registered ports (1024..49151) and dynamic or private ports (49152..65535) [CET+11].

Port numbers are assigned by IANA: to reserve a port for an application, a port number

in the user range can be registered with IANA. To register a port in the well-known range

requirements are stricter and a requester must document why a port from the user range

is not suitable for an application. Dynamic ports can be freely used by any application and

are never registered with IANA. Private ports are used by applications when establishing

an outbound connection: applications use a private port number as the source port for

the outgoing connection. It is not possible to use this private port number to establish

a connection with the application. TCP is used with many modern applications on the

Internet and is particularly well-suited for connection-oriented applications not tolerating

loss.

2.3.2 UDP

UDP, defined in [Pos80], provides lightweight a datagram service on top of IP. Like IP,

it provides connection-less and unreliable communication without ensuring packet deliv-

ery, packet order and without preventing duplicates; however, UDP does ensure packet

integrity with checksums. So UDP exposes major design principles of underlying layers to

applications. Like TCP, UDP uses port numbers, with the same regulations as for TCP

ports, to distinguish between different applications on a host. UDP is widely used with

applications requiring only simple data transfer and able to tolerate loss and out-of-order

delivery in exchange for avoiding the overhead of acknowledgments and connections setup.

UDP is often used with time sensitive applications like DNS, media streaming services,

video or speech telephony (for example in combination with Real-Time Transport Proto-

col (RTP) [GSC+96]) or stateless applications not requiring explicit acknowledgments for

transmitted datagrams.

2.4 Domain Name System

IP addresses, as used with the protocols described in the previous sections, are hard

to memorize for humans. Therefore, mechanisms to translate between addresses used by

machines to communicate with each other and names memorable to humans are required.

To provide easy to remember names for humans to address services on the Internet, the

Domain Name System (DNS) provides a hierarchical names space to address services on

the Internet. DNS is most commonly used to translate domain names to numerical IP

addresses or obtain additional service information for a domain like mail server or the

responsible name server.

DNS, defined in [Moc87a] and [Moc87b], is organized as a distributed database. The

root of the hierarchical DNS namespace is called the root zone. The hierarchical names-

pace is managed by delegating control over portions of the namespace to subordinate

organizations. These delegated portions are called zones in DNS and organizations are

called authoritative for such a portion of the namespace. These organizations themselves

can again delegate control over subdomains in their zone to other organizations, thus

forming a hierarchy in the namespace. At the time of writing, the root zone was managed

by the Internet Corporation for Assigned Names and Numbers (ICANN) in person of the

IANA but ultimately controlled by the National Telecommunications and Information Ad-

ministration (NTIA), an agency of the United State Department of Commerce [TA12].

2.4. Domain Name System 11

NTIA announced to cede this authority to a yet to announce organization, but details

of this transition are still unclear [Far14b]. DNS provides two namespaces: the domain

name namespace, used to map names to addresses, and the IP namespace, used to map

addresses reversely to addresses. DNS names represent the hierarchical structure of the

DNS name space: a domain name is a sequence of labels separated by dots, with the right-

most label being the empty label representing the root zone and each label representing

an subordinate zone. The root zone is the highest level of the hierarchical DNS name

space. Domains located a level below the root zone are the Top Level Domains (TLDs).

For TLDs, DNS distinguishes between country-code Top Level Domains (ccTLDs) like

“de”, “uk”, “us” and generic Top Level Domains (gTLDs) like “biz”, “info” or “org‘’.

Domains one level below of TLDs are called second-level domains. To resolve a DNS

name, clients use a DNS resolver. A DNS resolver recursively resolves the labels in a DNS

name by querying the responsible DNS servers starting with right-most label and querying

the root servers responsible for the servers authoritative for the TLD. A resolver can be

configured to query only a single DNS server which performs the name resolution for such

a stub resolver. Today many operating systems (including Microsoft Windows [Mic09]

or GNU/Linux distributions like Ubuntu using dnsmasq [Kel14]) only implement stub re-

solvers and rely on DNS servers to perform the name resolution. These DNS servers

are often provided by companies or Internet Service Providers (ISPs) and provide addi-

tional functionalities like DNS caching to reduce load for root servers caused by recursive

lookups. Within the network models presented before, DNS is an application layer proto-

col. To resolve names, DNS relies on UDP. Using DNS names to address services provides

many benefits: with DNS load balancing and failover can be easily implemented providing

more than one address for a name. Therefore, most applications in higher layers use DNS

names to addresses services on the Internet instead of using IP addresses.

DNS, as a key service for the functioning of Internet, is a target for attackers and

censors to make information on the Internet inaccessible. DNS is a popular target for

attackers, especially for censors with a political motivation and legal or executive powers

as described in Section 1. DNS is based on a hierarchical design with control delegated

from the root to subordinated organizations. Since these organizations, in particular

organizations managing ccTLDs, are often located within the legislative and executive

sphere of control of the censor, it is easy for a powerful attacker like a nation state

using its legal or executive powers to force these organizations to remove or modify DNS

information under their control. The attacker tries to remove these information from

DNS or DNS resolvers to make services inaccessible or modify DNS resolution to redirect

access to attacker controlled impostor sites. Here the use of stub resolvers forwarding

DNS requests to DNS servers often provided by ISPs has negative consequences, since for

an attacker it is easy to force an organization like an ISP falling in under the jurisdiction

of the attacker to manipulate DNS name resolution.

Well known examples for this approach to limit connectivity and remove information

from the Internet are Turkey’s blocking of Twitter and YouTube in April 2014 to prevent

access to an audio recording of a phone call made by the Prime Minister [Raw14, HA14],

Germany’s attempt to prevent access to child pornography using a stop sign impostor site

or the banning of the PirateBay website using DNS hijacking. Here attackers manipulate

DNS servers or responses to make name resolution fail or to redirect users to an attacker

controlled impostor site. These manipulations of the DNS often have side effects like the

mandatory “pornography filter” in the UK blocking in addition to pornography also educa-

tional and charity sites [Kan14, Cow14], the incident with a Danish policemen accidentally

blocking 8,000 legitimate sites including Google and Facebook [Hol12].

12 2. Background

DNS is a key service for the functioning of the Internet but was designed without any

focus on security. Domain Name System Security Extensions (DNSSEC) is an extension

to DNS providing authenticity and integrity for DNS information. With DNSSEC, DNS

responses are cryptographically signed by the operator of the respective zone. DNSSEC

establishes a chain of trust a resolver can follow to verify the authenticity and integrity

of DNS responses protected with DNSSEC. But DNSSEC does not protect against an

attacker like a nation-state as defined in Chapter 1 using his legal or executive powers

to force zone operators to modify name resolution or make name resolution fail. Since

DNSSEC does not provide any confidentiality for the name resolution process, it does not

protect the users and their privacy against attackers monitoring DNS name resolution to

track down users.

A resilient and secure communication infrastructure should be designed to not depend

on DNS information to establish connections between participants. Instead it protects

itself against DNS manipulation attacks and should use IP addresses to establish con-

nections between participants. To provide a censorship-resistant and privacy-preserving

alternative to DNS for users to access and link information on the Internet and to provide

secure communication on the Internet, we focus in Chapter 6 on the development of the

GNU Name System (GNS), a fully decentralized, censorship-resistant, privacy-preserving

name system, which can also double as a replacement for the X.509 public key infrastruc-

ture and the Certification Authorities (CAs) this infrastructure relies on.

2.5 The X.509 Public Key Infrastructure

Initially, the Internet was designed without a focus on security. With the emerging success

of the Internet, secure communication became an important aspect to provide authenti-

cated, confidential and integrity protected communication between entities and services

on the Internet. Not all transport layer and link layer protocols deployed on the Internet

do provide mechanisms to protect authenticity, confidentiality and integrity of communi-

cation. Since modifying existing and deployed protocols is hard to achieve, these security

properties had to be added on higher layers. To provide secure authenticated and confi-

dential communication between participants, the exchange of cryptographic key material

is required. To provide secure communication often asymmetric cryptographic methods

are used, where public keys are used for authentication and to exchange a shared secret.

This shared secret is used to protect communication using symmetric cryptography. Since

on the Internet entities wanting to communicate in a secure way with each other do not

know each other a priori, a security infrastructure to map identifiers to public keys is

required.

X.509 is a public key security infrastructure used to bind identifiers to cryptographic

public keys. X.5092 is an ITU Telecommunication Standardization Sector (ITU-T) stan-

dard defining formats for public key certificates and methods for key revocation and cer-

tificate validation. An essential aspect of X.509 are certificates. Certificates provide a

cryptographic binding of a distinguished name in X.500 format to a cryptographic pub-

lic key. These certificates are issued by a trusted third party, a so called Certification

Authority (CA). A certification authority can issue certificates or certification authority

certificates to enable other entities to issue certificates. With this approach a trust path

between a certificate and a trust anchor, the root in the trust chain, can be established.

To allow entities to successfully validate certificates, the user must possess the certificate

of the CA issuing the certificate and trust this CA. The user is often provided with this

2 https://www.itu.int/rec/T-REC-X.509/en

https://www.itu.int/rec/T-REC-X.509/en

2.6. Middleboxes 13

trust anchor information out of band. In practice, this trust anchor information is often

shipped to the user with the operating system or the software used (e.g the web browser).

X.509 also provides mechanisms for key revocation. When a certificate is revoked, it is

added to a Certificate Revocation List (CRL) and this CRL has to be obtained and evalu-

ated by the client to check if a certificate is revoked. An alternative to CRLs is the Online

Certificate Status Protocol (OCSP) [SMA+13] and OCSP stapling [3rd11]: OCSP is a

protocol clients can use to obtain the revocation status of X.509 certificates from the

OCSP responder. With OCSP, a responder is typically a server run by the certificate

issuer. With OCSP stapling, the certificate owner queries the responder on its own and

includes (staples) the OCSP response signed by the issuer with the certificate given to

client (e.g. in the Transport Layer Security (TLS) handshake). This approach improves

performance of connection setup and revocation checking since the client does not have

to perform the request, improves privacy for the client since the certificate issuer does not

see the requests and reduces load for the responder of the certificate issuer.

X.509 provides a security infrastructure and defines formats and methods, but does not

provide a specific infrastructure and is not located on a specific layer of a network model.

Therefore, it can be used in various different environments and in network protocols on

different layers of the network model. X.509 is today widely used in various protocols to

provide secure communication between participants and systems.

Prominent examples for protocols relying on the X.509 infrastructure are TLS and

SSL [DA99, DR08] and Datagram Transport Layer Security (DTLS) [RM12], provid-

ing secure communication for networking applications on application layer. TLS/SSL

and DTLS are located on the session layer of the OSI model and use an underlying

transport layer protocol to transparently encapsulate application traffic from higher lay-

ers over a secure session. TLS/SSL is designed for reliable transport protocols and uses

TCP whereas DTLS is designed to be used with datagram transport protocols like UDP.

TLS/SSL is used with HTTP Secure (HTTPS), where it is used to authenticate web

servers and establish secure communication between client and server. Another exam-

ple is S/MIME [Ram99] used for secure e-mail based on X.509 certificates to provide

authenticated and confidential mail communication.

2.6 Middleboxes

One of the original visions of the Internet was to provide unlimited connectivity between

systems, so every system could communicate with every other system connected to the

network: the paradigm of end-to-end connectivity as described in [SRC81]. The purpose

of the network was to forward data between end systems: the network should be dumb

and all functionality should be realized in end systems and not in the network itself. All

data on the Internet should be treated equally and forwarded with a best effort approach:

the network was supposed to be neutral.

On today’s Internet a large variety of systems with various different purposes contra-

dicting this idea of a dumb network exist in the network. These so called middleboxes

inspect, prioritize, transform or filter traffic routed on the Internet and often have an

impact on connectivity and influence communication between end systems [CB02]. In the

following sections, we give an overview over approaches deployed on today’s Internet and

their impact on connectivity and communication.

14 2. Background

2.6.1 DiffServ

Differentiated Services or DiffServ, defined in [NBBB98], [BBC+98] et al., is a technique

for traffic management in IP networks. With DiffServ Quality of Service (QoS) can be

improved by distinguishing between different traffic classes. So time critical services like

telephony or video services can be prioritized over traffic without time constraints. DiffServ

works on the network link layer of the ISO/OSI network model and therefore provides layer

3 QoS.

DiffServ uses a 6-bit Differentiated Services (DiffServ) field in the 8-bit Type of Service

(TOS) field of the IPv4 header and the 8-bit Traffic Class (TC) field of the IPv6 packet

header. This DiffServ field contains a Differentiated Services Code Point (DSCP) value

encoding the respective traffic class for this packet.

In a DiffServ domain (a group of routers implementing the same policies) this traffic

classification is used to handle and manage the packets according to their traffic class,

called the per-hop behavior (PHB). Common traffic classes are the default traffic class

Default Forwarding PHB (DF PHB) for traffic not matching any other class, the Expedited

Forwarding PHB (EF PHB) suitable for low latency, low jitter and low loss traffic, handled

strictly prioritized in routing queues, Voice Admit PHB (VA PHB) used for telephony

handled similar to EF PHB but with a call setup phase and the Assured Forwarding PHB

(AF PHB) class assuring priority as long as a specified rate is not exceeded.

DiffServ provides a lightweight, easy to implement traffic management mechanism

allowing to define certain traffic classes for prioritized forwarding. By design, DiffServ tries

to prioritize traffic and does not try to degrade specific traffic classes. Traffic management

attempts can conflict with the best-effort principle demanding to handle all traffic equally

and to provide the best-effort service for all traffic classes.

2.6.2 Deep Packet Inspection

Deep Packet Inspection (DPI) is a technique used to classify network traffic based on its

content and higher layer information by examining the content of data packets passing a

network. Contrary to routing or switching, where normally only the header of the protocol

of the respective networking layer is inspected to allow decision making, with DPI, the

header and the content of the packet is inspected. So classification decisions can be made

upon a whole set of information including traffic source and destination, transport layer

protocol used, the application generating the traffic (based on transport layer ports) and

additional application layer information like application layer protocol, application content

transmitted over the network and the use of encryption in the application data. DPI

can be used to create statistics about network traffic, for traffic management to handle

traffic according to its classification and traffic policy enforcement. Besides network

management tasks, DPI can be used to manage traffic to provide quality of services

and for lawful interception and copyright enforcement by analyzing traffic for illegitimate

content.

DPI is a well adapted and widely used technology and large number of ISPs in various

countries are reported to use DPI [DMG+10]. The use of DPI is strongly related to traffic

management and often to surveillance and censorship attempts as analyzed in [AvEM12].

Since DPI can be used to classify traffic according to certain properties, the use of DPI

has impacts on privacy and best-effort handling of service as demanded by the principle of

network neutrality and on end-to-end connectivity when applied to traffic management.

2.6. Middleboxes 15

2.6.3 Packet Filter

A popular approach to secure computer systems or entire network segments is the use of

packet filters, commonly also known as firewalls. Packet filters are used to restrict the

incoming or outgoing traffic to or from a network segment or connected systems. A packet

filter can be a dedicated physical network security device or the packet filtering functionality

can be realized in software and performed by devices realizing other network functionality

like routers or gateways. By using a dedicated device, a whole network segment can be

protected by locating this device on a prominent location where all network traffic has

to bypass as shown in Figure 2.1. Packet filtering software can also be installed directly

on end systems, protecting only these devices. By installing packet filters directly on end

devices, mobile devices frequently switching their location can be protected from attacks

and traffic flows between systems inside a protected network segment can be controlled.

Most modern operating systems ship with some packet filtering solution included to protect

the system from potentially dangerous network traffic.

Every connection between systems on a network can be described by several properties

like source and destination, transport protocol used, etc. A packet filtering software

inspects the incoming and outgoing network traffic based on predefined rules and, if the

traffic matches one of these rules, the respective action is executed, or a default rule if

none of the explicit rules match. This matching can be performed based on destination

or destination address, network protocol, TTL, etc.

Literature commonly distinguishes between stateless network layer filters, stateful net-

work layer filters and application layer filters [IF02].

Network work layer filters work on the lower layers of the Transmission Control Pro-

tocol/Internet Protocol (TCP/IP) stack and can be distinguished between stateless and

stateful filters. Stateless packet filters are the first generation of packet filters. They

are cheaper to implement since they only apply their filter rules on the networking traf-

fic and do not pay respect to the state a network stream is in. A stateful packet filter

maintains more information about a connection and traffic history and can prevent more

sophisticated attacks. It still uses static rules but these rules are now extended with a

state.

Application layer filters work on the application layer of the network protocol stack

and can understand certain application protocols (like for example FTP, DNS or HTTP).

These filters inspect network traffic on application layer and apply rules based on actions

and the state of the application protocol. Application layer filters can be used to prevent

the spread of malware by inspecting the payload of websites or to detect applications

trying to bypass a firewall system (e.g. by using port numbers different from the default

port number assigned to a protocol blocked by the filter).

Packet filters are mostly used to improve security of network segments or end-systems.

Their main purpose is to prevent potentially dangerous network traffic, restricting unde-

sired network traffic or restrict communication to a subset of allowed machines: access

to specific application ports can be completely restricted or limited to a trusted set of

sources. Specific network protocols can be blocked (e.g. to prevent spam) or specific

ports can be blocked (e.g. to prevent the spreading of viruses using security vulnerabilities

in networking applications).

The impact packet filters have on connectivity on the Internet is hard to estimate.

The limitations caused by packet filters strongly depend on the purpose they are deployed

for and how restrictive the filter rule set is defined. Organizations can follow a blacklist-

ing approach and only filter very specific protocols and ports whereas organizations very

concerned about security can apply a whitelisting approach, blocking all network traffic

16 2. Background

except the traffic explicitly permitted by filter rules.

Packet filters are often used to secure perimeter networks and a filtering in transit

networks is less often observed. With a client/server architecture and the client protected

by a packet filter and the server not protected by a packet filter, the client can (if the rules

set is not explicitly denying this outbound traffic) still initiate a connection to the server.

If the server is protected by packet filter, it depends on the configuration of the filter if it

is possible to initiate a connection. With decentralized applications where users are often

located in perimeter networks, the impact of packet filters can increase depending on the

restrictions imposed by the filtering appliance.

WAN

Firewall

LAN

Fig. 2.1: Packet Filter Firewall Used as Gateway to Protect a Network Segment

Source: wikicommons / Harald Mühlböck

2.6.4 Network Address Translation

Network Address Translation (NAT) is a technique to modify network information of

data transmitted in a network. It is commonly used to masquerade and replace (IP)

addresses from an internal network with address information from an external network. A

Network Address Translation (NAT) router replaces IP information in the network traffic

and masquerades the internal network with an external address. For the masqueraded

network, addresses from a private IP address space as defined with [RMK+96], can be

used. When data are transmitted to an external network, the NAT device removes the

internal IP address information and replaces it with the external IP address. When data

are transmitted back, the NAT devices replaces the external IP address with the internal

IP address this data are destinated for. To be able to replace IP addresses correctly, the

NAT device has to maintain a connection table containing a mapping from the internal

host communicating with an external host. A basic property of NAT is that data from an

external host can only be forwarded to an internal host when a mapping for this connection

exists in the NAT translation table or the NAT configuration. Hence computers in the

external network cannot initiate a connection to a computer in the internal network without

having the NAT device configured to forward connections properly or using NAT traversal

or hole punching techniques.

NAT was initially defined in [SH99]. [SH99] only defines address translation on IP-

level: only IP protocol information like IP address and IP header checksum are replaced

but no higher layer protocol information. This is called one-to-one NAT and can be used

to connect different IP networks.

2.6. Middleboxes 17

2.6.4.1 Network Address Port Translation

To allow multiple computers, using higher level protocols like TCP or UDP, to share one

external address provided by a NAT device, additional technologies are required. To avoid

conflicts with these protocols in addition to IP information information from higher layer

protocols (in particular port numbers) has to be replaced and the respective information

has to be stored in the NAT translation table. This approach is called Network Address

Port Translation (NAPT) and is defined in [SH99].

The use of NAT increased with the beginning exhaustion of IPv4 addresses in the

mid-1990s: with increasing number of customers, ISPs had to provide more and more

IPv4 addresses to their costumers. So ISPs started to assign dynamic IP addresses to

their customers only valid for a certain period of time and provided only a single public

IP address per customer. Due to this development, NAT is a widely deployed technique

in end-user settings since it allows customers to have multiple devices share one Internet

connection. [MSF11] states that in their dataset more than 90% of residential broadband

networks use NAT gateways to connect to the Internet.

The behavior of NAT implementations depends on the respective implementation

and varies between different devices and implementations. [MCK08] and [M1̈3] give an

overview how behavior of NAT devices can be categorized with respect to NAT traver-

sal techniques. This work distinguishes between port binding, NAT binding and endpoint

filtering classification of NAT behavior. [RWHM03], defining the Session Traversal Util-

ities for NAT (STUN) protocol used for NAT traversal, tries to classify different NAT

approaches based on the possibility to establish connections to the devices located behind

NAT devices. [RWHM03] specifies four main variants of NAT implementations, shown in

Figure 2.2:

Full Cone NAT: Once a port mapping from an internal IP address and port to an external

address and port is established with the NAT devices, all traffic from the internal

address is sent through the external address.

Any external host can send data to the internal address by sending data to the

external address. This behavior is depicted in Figure 2.2(a)

Restricted Cone NAT Once a port mapping from an internal IP address and port to an

external address and port is established with the NAT devices, all traffic from the

internal address is sent through the external address.

An external host can send data to the internal address by sending data to the external

address from any source port if the internal host has sent data to the address of

the external host before. This behavior is depicted in Figure 2.2(c)

Port Restricted NAT Once a port mapping from an internal IP address and port to an

external address and port is established with the NAT devices, all traffic from the

internal address is sent through the external address.

An external host can send data to the internal address by sending data to the

external address from a specific source port if the internal host has sent data to the

address of the external host and the source port before. This behavior is depicted

in Figure 2.2(b)

Symmetric NAT Every connection from an internal address to an external host is

mapped to a unique external address and port. If the same host sends data to

a different destination, a different mapping is used.

18 2. Background

An external host can only send data back when it received a packet from an internal

host. This behavior is depicted in Figure 2.2(d)

NAT

Client

Server 1

Server 2

(a) Full Cone NAT

NAT

Client

Server 1

Server 2

(b) Port Restricted Cone NAT

NAT

Client

Server 1

Server 2

(c) Restricted Cone NAT

NAT

Client

Server 1

Server 2

(d) Symmetric NAT

Fig. 2.2: Classification of Different NAT Types According to [RWHM03]

Establishing connections with systems located behind NAT devices is challenging as

we can already see with the four classes of NAT approaches defined in [RWHM03]. The

use of NAT devices has major impact on end-to-end connectivity on the Internet and

is one of main aspects limiting the possibility to establish connections with devices lo-

cated in perimeter networks like ISP client access networks. Current networking appli-

cations have to put effort in trying to traverse NAT devices and several approaches like

STUN [RMMW08], Traversal Using Relays around NAT (TURN) [MMR10, CNP11] and

Interactive Connectivity Establishment (ICE) [Ros10] try to provide a systematic frame-

work for NAT traversal.

2.6.4.2 Carrier-Grade NAT

In addition to NAT being used in end-user settings to allow users to use their Internet

connection with multiple devices, NAT is also used by ISPs affected by IPv4 address

exhaustion. Many ISPs are only provided with a small pool of public IPv4 addresses and

therefore cannot provide every customer with a public IPv4 address. An approach used

by ISPs is the use of large-scale NAT (LSN) or Carrier-grade NAT (CGN) as defined in

[RMK+96]: with Carrier-grade NAT (CGN), customers are not provided with a public IP

address but instead a private IP address which is then translated by a NAT middlebox in

the provider’s network. This approach is illustrated in Figure 2.3(a).

With this approach, ISPs can re-utilize their address pools since they can provide

customers with private IP addresses and can reserve their limited pool of public IPv4

addresses to be used by the CGN NAT box.

2.6. Middleboxes 19

The use of CGN has several drawback as it breaks end-to-end connectivity and makes

it impossible for hosts affected by CGN to host services. Since CGN devices have to

maintain a state about mappings, CGN can introduce scalability and reliability issues.

2.6.4.3 NAT and IPv6

For IPv6, the successor of IPv4, the use of NAT was not intended nor specified [TZL10].

Due to the larger address pool provided with IPv6, address translation from private ad-

dress ranges to public address as provided by NAT is not required anymore. Nonetheless,

advocates of IPv6 and NAT emphasize the benefits an NAT implementation for IPv6 can

provide: simplified and homogeneous network configuration and renumbering, conceal-

ment of network internals and a simple security mechanism. Therefore, an experimental

standard for IPv6-to-IPv6 Network Prefix Translation (NPTv6) (or NAT66) [WB11] and

implementations for stateful and stateless NAT66 exist3.

2.6.4.4 NAT and Connectivity on the Internet

As we can see with the analysis of NAT in this section, NAT can have major impact on

connectivity for systems especially since it is well adopted and widely used. For servers

used with client/server architectures running important and popular services it is in par-

ticular important that clients can connect. Therefore, these servers are often operated in

networks were NAT is rarely used. NAT it is widely used in perimeter networks like ISPs’

client access networks or access networks of mobile phone providers. Here NAT is used

by end users with NAT home devices to use their Internet access with multiple devices or

on a large scale by ISPs using CGN to provide customers with IP addresses.

With a centralized architecture using a classic client/server approach, the impact of

NAT is less severe since clients located behind NAT can initiate a connection to servers

located on the core Internet. If the server is required to initiate a connection to a client

located behind NAT, NAT devices often prevent connections to be established requiring

the use of complex NAT traversal techniques not always working dependably.

The impact on decentralized networking applications, where every participant is re-

quired to initiate a connection to other participants, is even severe as described for the

BitTorent peer-to-peer system in [LP09]. In the context of this work, we can safely as-

sume that a large number of users will be located in perimeter networks and therefore will

be affected by NAT and NAT-imposed limitations to end-to-end connectivity. When NAT

is used in end-user settings, advanced users having access to the NAT device may be able

to circumvent NAT restrictions using Universal Plug and Play (UPnP) or port forwarding.

Users affected by a large-scale NAT (LSN), as described with CGN have to use expensive

traversal techniques like TURN, relaying traffic over a third party system.

2.6.5 DS-Lite

Another technology employed to counteract exhaustion of IPv4 addresses is Dual-Stack

Lite (DS-Lite) as defined in [DDWL11]. Dual-Stack Lite (DS-Lite) is described as an IPv4-

IPv6 transition technique but is more commonly used with ISPs which cannot provide an

IPv4 address pool large enough to assign global IPv4 addresses to all of their customers.

With DS-Lite, a customer’s device is provided with a global IPv6 and a private IPv4

address from a private IPv4 network as defined in [WKD+12]. When the user attempts

3 http://sourceforge.net/projects/nfnat66/

http://sourceforge.net/projects/nfnat66/

20 2. Background

to access a host on the Internet using IPv4, the IPv4 packet is encapsulated in an IPv6

packet and sent to a CGN device operated by the ISP. This CGN devices extracts the

encapsulated IPv4 packet, replaces the private IPv4 address with a public IPv4 address

and forwards the IPv4 packet to its destination. Since the CGN device maintains a port

mapping, it is able to map the response back to the private IPv4 address and returns

the response, encapsulated in an IPv6 message, to the client. IPv6 enabled services are

accessed directly without using encapsulation in IPv4 and CGN. The use of DS-Lite is

illustrated in Figure 2.3(b).

With DS-Lite, a connection to a users affected by DS-Lite can only be established

when using IPv6. As described with IPv6 in Section 2.2.3 is IPv6 not yet widely deployed

and only few ISPs provide IPv6 to their customers and only few companies, organizations

use IPv6. Inbound connectivity for users affected by DS-Lite is therefore restricted to users

also provided with IPv6. For their outbound connectivity using IPv4, the same limitations

apply as with CGN. So for end-to-end connectivity with DS-Lite, we can assume similar

impacts as with NAT: if we assume a classical client/server architecture where the clients

initiate the connection to the server, the impact may be low since the client can establish

connections with both IPv4 and IPv6 hosts on the Internet. If it is required to initiate a

connection to a client, this can be achieved if the initiator has IPv6 capabilities. If the

initiator is not able to use IPv6 but only IPv4, DS-Lite prevents a connection from being

established.

For decentralized networking applications the impact is more severe, especially for end

users: only a few ISPs provide IPv6 to their customers, most of them only provide IPv4

in combination with NAT or CGN. So most end users affected by DS-Lite cannot initiate

a connection to these IPv4-only hosts. On the contrary, IPv4-only hosts cannot initiate a

connection to users affected by DS-Lite, since users affected by DS-Lite are only provided

with a private IPv4 address masqueraded by the CGN appliance.

2.6.6 Proxy Servers

Proxy servers are computers acting as intermediaries and gateways in networks. Proxy

servers can be implemented on different layers of the network model but are based on the

idea to act as an intermediary between the client and the destination of the traffic. Proxy

servers can be used for various different purposes like increasing performance by caching

data, to filter or monitor traffic, to hide the internal structure of a network for security

purposes or to provide anonymous communication by hiding communication participants.

With proxy servers, clients initiating a connection do no connect to the destination directly,

but instead issue the request to the proxy, which initiates a connection to the target,

obtains the desired resources and passes the data to the client. A system retrieving

resources for clients from the Internet is commonly called a forward proxy, whereas a

reverse proxy is used to access a resource on an internal network.

Proxy servers can be used to separate networks and provide only controlled commu-

nication between networks. This approach is often used in combination with filtering

techniques like firewalls described in Section 2.6.3. Communication with a network is

limited by using restrictive filtering and is restricted to communication using an enforced

proxy server. With this approach communication is often enforced to be unidirectional,

so only clients from an internal network can access the Internet using the proxy server

whereas it is impossible to establish communication from outside networks with hosts

protected by a proxy server. This leads to violations of the end-to-end principle since

connections to clients located in networks using proxy servers cannot established.

2.7. Centralized Client/Server Architectures 21

Internet Public IPv4
ISP Public IPv4

ISP RFC 6598

NAT44 CGN

RFC 1918

RFC 1918

NAT44 CPE

NAT44 CPE

(a) Carrier-grade NAT (CGN)

ISP Network IPv4 Internet

IPv6 Internet

IPv4

IPv6

CGN/DSLite

IPv6(IPv4)

IPv6

(b) Dual-Stack Lite (DS-Lite)

Fig. 2.3: IPv6 Transition Mechanisms: Carrier-grade NAT (CGN) and Dual-Stack Lite (DS-Lite)

2.7 Centralized Client/Server Architectures

The classical design approach for a networking application is the client/server approach.

With this approach two different roles exist within a networking application: the server,

providing services, storing data and performing computations and the client, consuming

services from the server as shown in Figure 2.4(a). This architectural approach originates

from the early times of the Internet when computations where performed by big, expen-

sive mainframe computers. Many users facilitated these mainframe servers to perform

computations and accessed the from remote using simple, cheap and not very powerful

terminals or clients.

This architectural design concept survived the evolution of the Internet and is still the

most commonly used design for networking applications. With a centralized client/server

architecture, a networking application is running on a centralized server. This approach

has advantages for developers and administrators since with a centralized architecture

a networking server application (conceptually) runs as a single application on a single

server. This simplifies the development, debugging, control and maintenance of such an

application. Economically, the application can be accessed as a black box on the server,

so control over the application can be assured.

Much effort was put in reducing the impact of a centralized architecture providing a

centralized single point of failure: redundant architectures, load balancing, virtualization

or fail-over mechanisms to just name a few. To improve performance and reduce latency

for the user, redundant servers placed all over the network geographically close the user

and so called Content Distribution Networks (CDNs) are used. CDNs are distributed

networks with a large number of servers located in different data centers around the

world interconnected with multiple backbone connections. CDNs are used to provide high

22 2. Background

performance and high availability services like streaming or application services to end

users. Therefore, CDNs are often directly connected to ISP networks to minimize latency

and network distance to users.

From a user’s perspective, centralized architectures have drawbacks, since the user

has no control over the services and applications he uses. Centralized architectures are

operated by a provider and users depend on these providers to continue their services and

do not change the terms of usage. Since for users a service is a black box, they have

to trust the providers to operate their services reliably and trustworthy. This aspect is in

particular relevant when users give their private data to such a centralized services. With

respect to concerns about privacy, it is a questionable approach to store user-related,

private data on a central server.

2.8 Decentralized Peer-to-Peer Networking Architectures

Today computers are not the simple terminals anymore and owning a computer is not the

privilege of companies or research institutions. With modern computing devices, most

computers, mobile phones and other personal devices have enough resources to perform

calculations directly on the users’ devices and do not require centralized servers to perform

expensive computations. Being almost continuously connected to the Internet, these

devices can communicate with each other directly not requiring an intermediary server.

This allows to realize networking applications in a decentralized manner no longer requiring

centralized services.

The peer-to-peer paradigm states that in a peer-to-peer network participants both

provide services and consume services from other participants. No dedicated servers

(only providing services) and no dedicated clients (only consuming services) exist. These

roles are existing and combined in every participant of the network, called a peer. Peers

communicate directly with each other on transport layer and do not require a centralized

instance coordinating communication in the network. Since peer-to-peer networks define

an abstraction over the existing Internet structure with peers connected to each other

using an application-specific addressing scheme, these networks are often referred to as

overlay networks or just overlays. An illustration for the structure of a peer-to-peer network

is given in Figure 2.4(b).

Contrary to a client/server architecture, where the server is supposed to be continu-

ously running over a long time, participants in a peer-to-peer network can join and leave

frequently. This effect is called churn and requires special attention when developing such

a network application.

2.8.1 Structured and Unstructured Peer-to-Peer Architectures

Within the class of peer-to-peer networks, different architectures exist:

In unstructured peer-to-peer networks, no further structure or hierarchy exists. All

participants connect randomly and establish a direct connection with each other. These

types of networks are easier to establish, but issues arise from this form of architecture

when operations in the network are performed. Due to missing structure of the network,

locating information in the peer-to-peer network can be expensive. To locate information

in the network, this information may have to be flooded through the network what can

cause high CPU load, memory consumption or network load and can be inefficient.

In structured networks, the overlay is organized in a topology, where network opera-

tions can be performed more efficiently. The most common way to structure a peer-to-peer

2.8. Decentralized Peer-to-Peer Networking Architectures 23

(a) Client/Server Architecture (b) Peer-to-Peer Network

Fig. 2.4: Comparison of Client/Server and Peer-to-Peer Architectures

Source: wikicommons

overlay network is to use an overlay addressing scheme as provided by a Distributed Hash

Table (DHT).

2.8.2 Distributed Hash Tables

Exchanging information between peers in a decentralized system with peer joining and

leaving the network without prior coordination, requires a new way to store and retrieve

data in a peer-to-peer network. For this reason peer-to-peer applications can use a Dis-

tributed Hash Table (DHT). A DHT is a key/value store distributed in the network. DHTs

provide a cyclic key address space and each participating peer is assigned a portion of this

address space, based on an identifier assigned to peers. A DHT basically offers two op-

erations: a put operation to store a value under a key, and a get operation to obtain a

value stored under a key. When a peer is storing a value in the DHT, the peer determines

the peer responsible to store this value based on the key the data to store under. The

peer sends the data to the responsible peer which stores the data locally. To retrieve a

value, a peer again finds the peer responsible for the key and retrieves the value from this

peer.

Attacks to disturb the functioning of DHTs exist as described in [SM02]: Sybil at-

tacks [MDD02], where an attacker creates a large number of pseudonymous identities to

gain disproportionately high influence in the DHT overlay and eclipse attacks [SNDW06],

where an attacker tries force a peer to peer only with a set of malicious peers by creating

selective peer identifiers to surround the victim in the DHT namespace and mediate most

or all communication to and from the victim.

Some existing DHT implementations like R5N [Eva11] or X-Vine [MCB11] put special

focus on restricted communication and churn to improve censorship-resistance by adding

redundancy for stored values and randomized routing.

24 2. Background

2.8.3 The GNUnet Peer-to-Peer Framework

GNUnet4 envisions to be the foundation for future decentralized Internet protocols. It

is intended to be a versatile platform supporting many different forms of peer-to-peer

applications. GNUnet is designed with a focus on security, resilience and in particular re-

spects privacy. It is designed to be fully decentralized and does not rely on any centralized

services. GNUnet tries to provide secure communication between peers by authenticating

communication partners. Confidentiality is achieved by ensuring only senders and recipi-

ents of messages know about the content of messages strongly relying on link encryption

and plausible deniability of traffic exchanged between peers.

The goal of the GNUnet project is to create a framework for peer-to-peer applications.

GNUnet is a free software project and wants to enable developers to easily realize their

idea of a new decentralized peer-to-peer application without having to reinvent the wheel.

GNUnet provides developers with important building blocks required to implement peer-

to-peer applications. GNUnet provides functionality to establish low-level connectivity

between peers, bootstrapping mechanisms, encrypted communication between peers and

a DHT implementation for the developers. Based on these building blocks, developers

can concentrate on developing the functionality required for their applications. GNUnet

also provides applications like a file sharing and a telephony application.

In GNUnet each node participating in the network is called a peer. Each peer is

equipped with a cryptographic public/private EdDSA key pair and is identified by the

public key, the so-called peer identity. EdDSA is a digital signature scheme using Ecliptic

Curve Cryptography (ECC) [Res00] and Curve25519 described in [BDL+12]. The EdDSA

key pair is used to mutually authenticate peers. The peer identity can be represented as

a human-readable string using the Crockford base32 [Cro, Jos06] encoded hash of the

public key. Mutual authenticated and encrypted communication between peers is realized

using Elliptic Curve Diffie Hellman Ephemeral (ECDHE) and the derived ephemeral keys

are signed using EdDSA. With ECDHE a shared secret is exchanged between peers and

is used to create a pair of sessions keys using the HMAC-based Extract-and-Expand Key

Derivation Function (HKDF) key derivation function described in [KE10]. This derived

key pair is then used to encrypt communication between peers.

GNUnet is written mostly in C and has a strong focus on portability to support a

large number of platforms and operating systems. It is realized as a multiprocess archi-

tecture encapsulating different functionalities in different (system) processes interacting

using Inter-Process Communication (IPC) communication. Using multiple processes im-

proves performance on modern multi-core processors compared to realizing all GNUnet

components in a single process and increases maintainability and reliability by providing

fault isolation between components. By splitting functionality in separate components

depending on each other, it creates a layered service architecture. In GNUnet, functional

components running in separate processes are called services. Each service provides an

Application Programming Interface (API) for other components to use this component.

These APIs are implemented as a shared library. Components can link against this library

to use this API and the functionality provided by the service. The service API runs in the

process context of the client and interacts with the service using IPC. GNUnet’s layered

service architecture based on services is depicted in Figure 2.5. GNUnet’s services are con-

trolled by a master service, the Automatic Restart Manager (ARM) starting and stopping

services on demand and after a potential crash. GNUnet supports multi user environments

by distinguishing between system services, shared between all users on a system and user

4 https://gnunet.org

https://gnunet.org

2.9. Conclusion and Findings 25

services, providing services for a designated user. In addition to extending functionality

by adding services, a second functionality of GNUnet is the use of a plugin architecture

to extend components with additional plugins. This functionality is for example used with

the TRANSPORT service described in Section 4 to extend the transport infrastructure with

new transport protocols implemented as loadable plugins.

Application

DHTCADET

CORE

TRANSPORT PEERINFOHOSTLIST

Fig. 2.5: GNUnet’s Layered Service Architecture

2.9 Conclusion and Findings

In this section we provided an overview over the design and architecture of the Internet

and introduced important protocols and technologies used on the Internet. We highlighted

that on today’s Internet free and unrestricted communication between users and systems is

limited and restricted for various reasons and pointed out the limitations and restrictions

current technical approaches impose on free and unrestricted communication between

users on the Internet.

The Internet was originally envisioned as a network to interconnect systems, providing

connectivity between systems and give users the possibility to communicate with each

other. The paradigm of end-to-end connectivity originally envisioned a dumb network only

forwarding data between hosts on the Internet with functionality realized in end systems

and not the network itself. But on today’s Internet a diverse set of middlebox appliances

exist inspecting, managing, transforming, shaping and filtering traffic for various purposes.

End-to-end connectivity between systems on the Internet is limited for various technical or

security reasons by firewalls, packet filters, enforced proxies, NAT appliances, all of them

diminishing the possibility for users affected by such approaches to establish connections

and communicate with other systems on the Internet.

Decentralized peer-to-peer systems are in particular affected by limitations to end-

to-end connectivity as we can assume that a larger number of users of a peer-to-peer

system will be located in restricted networking environments like ISP access networks.

Providers, network operators and other parties are often suspicious of peer-to-peer traffic

and peer-to-peer traffic is often discriminated, affected by network traffic management or

prohibited.

A communication infrastructure for decentralized peer-to-peer systems trying to re-

establish free and unrestricted communication between users and employing existing com-

munication infrastructure to do so has to be aware of these limitations and be able to

cope with restrictions for end-to-end connectivity and antagonize degradation attempts.

To establish an overlay network re-establishing the possibility of end-to-end communica-

26 2. Background

tion between participants therefore has to focus on increasing connectivity for users in

restricted environments, antagonizing degradation attempts and improve overlay connec-

tivity between participants by providing the possibility to route traffic between participants

in the peer-to-peer overlay.

3. RESILIENCE OF COMMUNICATION ON THE INTERNET

Direct communication between systems on the Internet can be limited for various reasons

as we saw with the limitations imposed by middleboxes described in Section 2.6. A peer-

to-peer system can circumvent these restrictions to direct end-to-end connectivity by

routing traffic to other participants via the peer-to-peer overlay. But before we can design

and present a secure and resilient communication infrastructure using the Internet as a

foundation, we have to analyze if the Internet can always provide a communication path to

other systems and how resilient the Internet itself is against the failure of communication

providers and communication links.

In this chapter we analyze how resilient the Internet’s communication infrastructure

is against failing network infrastructure and how hard it is for an attacker to partition

the Internet and separate users from important services and impact the possibility to

communicate with these users by routing traffic via the peer-to-peer overlay. For this

evaluation we present a new graph partitioning algorithm and use this algorithm to help

answer the question of how resilient the Internet is against Byzantine failure of a small

set of providers (nodes) or peering links between providers (edges).

To answer this question we analyze the topology of the Internet’s backbone by gener-

ating graphs from Internet measurement data and use a new heuristic to find the smallest

possible set of networks or connections to be removed to split the Internet. We present

empirical evidence that the Internet’s backbone infrastructure is surprisingly well con-

nected.

Work presented in this chapter is researched together with Christian Grothoff and

Ramakrishna Thurimella and was previously published in [WGT12].

3.1 Introduction

Internet connectivity can be surprisingly brittle with respect to failures at physical locations.

There are several examples where failures at a single physical location have had a significant

impact on connectivity for a whole region or country [Hac09, Par12, Sau08].

The modern Internet consists of Autonomous System (ASes) which are linked together

using the Border Gateway Protocol (BGP). A high-level approximation for the Internet

topology is thus the AS graph, which models the peering relationships between ASes.

We use a graph-theoretic approach by finding sets of nodes (networks) and edges

(connections), the so called separators, to be removed from the network graph. A separa-

tor is a set of edges or nodes that partitions a graph into sizable connected components.

We use the term separator to mean both edge separator and node separator; it will be

clear from the context which type of separator is used.

The primary goal of the analysis in this chapter is to characterize the size of the

separator that would have to be removed to fragment the AS graph and thereby the

Internet. Determining separators for network topologies is useful in various respects, in

particular:

• Elements of the separator represent critical infrastructure since the removal of them

28 3. Resilience of Communication on the Internet

would fragment the network and significantly reduce its value. Networks with large

separators have higher resilience.

• Elements of the separator are particularly useful for the placement of traffic mon-

itoring (or even manipulation) equipment since a large fraction of long-distance

communications must cross those links.

• Elements of the separator are particularly critical for routing in a peer-to-peer net-

work. Peers being elements of a network separator can limit the possibility to route

traffic to other participants in the peer-to-peer overlay.

Any separator has to balance two goals: both the size of the separator as well as

the size of the largest resulting component should be small. We refer to the size of the

largest remaining connected component in relation to the overall size of the graph as χ.

For this work, we assume that a value for χ is given and that the goal is to find a small

χ-separator.

Using the AS graph creates the problem of obtaining a sufficiently accurate approx-

imation of the actual graph. We address this problem by using two methods to obtain

approximations of the AS graph. We then demonstrate that the differences between these

two approximations are small (in terms of the size of the separator in relation to the size

of the AS graph). We also consider the problem that not all ASes are of equal relevance.

By mapping page access statistics from the Alexa Web Information Service1 to ASes, we

obtain a weighted AS graph which we then try to separate as well.

3.2 Background and Related Work

Given a graph with n nodes of total weight W , a χ-separator is a subset of nodes or

edges whose deletion partitions a connected graph into connected components where the

largest component has no more than χ ·W nodes, for some fixed 1/2 ≤ χ < 1. In other

words, χ determines how balanced a separator is. In a connected graph of n nodes and

m edges, one can exhaustively delete every separator of size k , examine the connected

components for balance (e.g. size of the largest connected component as a fraction of

the original graph). This gives us an O((m + n)
(
n
k

)
) time algorithm.

For fixed k , this is a polynomial-time algorithm; otherwise, this algorithm has Ω(nk)

complexity. It should be noted that even for constant values of k > 3, this brute-force

algorithm is impractical. Furthermore, if there is a polynomial time algorithm for finding

a χ separator of size k , then that algorithm can be used to find a k-clique in a given

graph [Mar06]. In light of this, one can consider approximation algorithms that relax the

problem constraints: increase the size of the separator for a given χ, or tolerate a slightly

less balanced separator in favor of a smaller separator.

Historically, Kernighan and Lin recognized the importance of the graph partitioning

problem and its various applications as far back as in 1970 [KL70]. In their landmark

paper, they also proposed a heuristic which has served as a benchmark for other graph

partitioning heuristics ever since.

Another common class of partitioning heuristics are derived from the technique of

graph coarsening: the graph to be partitioned is made smaller by collapsing nodes and

edges, the resulting smaller graph is partitioned, and the separator in this smaller graph

is extended to the original graph during the uncoarsening step [BJ93, HL95]. Though it

1 http://aws.amazon.com/alexa/

http://aws.amazon.com/alexa/

3.3. Calculating Separators 29

was apparent that these early works were promising, it remained unclear whether these

heuristics would consistently produce good quality separators for graphs arising in a wide

range of application domains until Karypis and Kumar [KK98] explored the partitioning

problem systematically for various versions of the problem. They proposed refinements

to the coarsening heuristic and implemented them. Their implementation, which they

distribute under the name Metis, is available for free2. A remarkable feature of Metis is

its fast execution time and its applicability to graphs arising out of varied domains. We

compare our results against those produced by Metis.

Kleinberg [KSS08] defined (ε, k)-failures and proposed an algorithm to monitor the

connectivity of a network against such failures. These failures are events in which an

adversary deletes up to k nodes or edges, after which there are two sets of nodes A and

B, each at least an ε fraction of the network, that are disconnected from one another.

A set of nodes is an (ε, k)-detection set D if, for any (ε, k)-failure of the network, some

two nodes in D are no longer able to communicate. Finding detection sets, though the

problem appears superficially related to the problem we consider in this paper, is simpler

than finding good separators.

Other related works include finding approximate separators by Feige and Mahdian

[FM06], polynomial time approximation schemes for finding most balanced minimum sep-

arators that separate two designated vertices s and t [Bon10], and finding weak points

in networks [BLS10] using semi-definite programming. The last paper is a study on the

impact on node and edge failures on connectivity that is quite similar to the one presented

in this work. The main difference is that they start with a network where nodes are

categorized into clients and servers and where any server is able to provide the required

service. They present algorithms to calculate lower and upper bounds on the minimum

connectivity (after failures). The results presented in [BLS10] work for graphs that are

typically orders of magnitude smaller than those presented in this paper.

3.3 Calculating Separators

This section describes the heuristics we use to find node and edge separators in the network

graphs. We initially attempted to find separators using Metis [KK98]; however, Metis

did not produce good cuts for larger values of χ and for weighted graphs the resulting

separators were quite large. We believe this is mainly because Metis is not optimized

to create χ-separators with χ > 3
4 . The separators calculated using our heuristics are

sometimes significantly smaller than those computed by Metis, justifying the development

of our own heuristics.

3.3.1 Finding Edge Separators

We found that minor variations of the well-known Kernighan-Lin (KL) heuristic for finding

edge separators [KL70] give us the best results for the network graphs considered in this

paper. Define S(A,B), the separator for a given vertex partition (A,B), to be the set of

edges which have one end point in A and the other in B. We then intend to minimize the

size of the separator, |S(A,B)|. The KL heuristic tries to achieve this by starting with an

arbitrary partition and applying successive vertex swaps until no amount of swapping helps,

i.e. when the heuristic reaches a local minimum. A feasible starting solution is created

using a breadth-first traversal from a random starting node. To describe the algorithm,

we need the following definition. When a pair of vertices a ∈ A, b ∈ B is swapped, we say

2 http://glaros.dtc.umn.edu/gkhome/views/metis

http://glaros.dtc.umn.edu/gkhome/views/metis

30 3. Resilience of Communication on the Internet

it results in gain(a, b) = |S(A,B)| − |S(A ∪ {b} − {a}, B ∪ {a} − {b})|. Note that the

gain is negative if swapping a with b increases the size of the separator.

When we are seeking to partition the input graph into unequal parts (i.e. χ > 1
2),

we employ the trick suggested by Kernighan-Lin [KL70] of adding an appropriate number

isolated “dummy” nodes to the graph.

3.3.2 Edge Separators for Weighted Graphs

Let us now consider graphs with node weights where weights model the relative importance

of different nodes. Clearly for this version of the problem, dummy nodes cannot be used

effectively. Let WA represent Σv∈Awv where wv is the weight of vertex v . For brevity

1 Alg.: Weighted Edge Separator

Input: G(V, E) with node weights, a χ partition A and B.

Output: Updated χ partition A,B with potentially fewer edges between A and B

2 Coarsen G by merging u with its neighbor v if degree(u) is 1 and wu + wv < t;

3 Unmark all nodes;

4 max gain ← 0 ;

5 cumulative gain ← 0;

6 while unmarked nodes exist in A and B do

7 gA ← gain from best feasible move from A ;

8 gB ← gain from best feasible move from B ;

9 gAB ← gain from best feasible swap ;

// only unmarked nodes are feasible

10 g ← max(gA, gB, gAB) ;

11 cumulative gain ← cumulative gain + g;

12 switch g do

13 case gA
14 perform best feasible move from A ;

15 mark node;

16 end case

17 case gB
18 perform best feasible move from B ;

19 mark node;

20 end case

21 case gAB
22 perform best feasible swap ;

23 mark nodes;

24 end case

25 endsw

26 if cumulative gain > max gain then

27 max gain ← cumulative gain ;

28 checkpoint steps taken so far ;

29 end if

30 end while

31 undo the steps taken after the last checkpoint ;

32 return A,B;

3.3. Calculating Separators 31

the total weight of the graph WV is denoted simply as W . We will refer to χ ·W as the

threshold. A χ partition, χ > 1
2 , of the node set V is a partition into two sets A and B

where both WA and WB are below the threshold. Note that a χ partition always exists as

long as the weight of every individual node is under the threshold.

For weighted graphs, we make three significant changes to the KL heuristic. First, we

use a simplistic variant of graph partitioning [KK98] where we iteratively merge all nodes

of degree one with their neighbor as long as the weight of the resulting node is under the

threshold. Especially for some of our larger and sparser graphs, this results in a significant

reduction in the problem size without impacting the quality of the solution.

Second, in order to deal with weighted nodes, we introduce the notion of a feasible

swap; a swap is feasible if after the swap both sides are below the threshold. Only feasible

swaps are considered in our innermost loop of Kernighan-Lin.

Our third change is that in addition to swaps, we consider (feasible) moves, where

a single node is moved from one side to the other side (and both sides are below the

threshold after the swap).

The algorithm is summarized in Algorithm “Weighted Edge Separator” (Alg. 1). The

initial χ partition to our algorithm is found as in the unweighted case. One key imple-

mentation technique that we employed is ordering the nodes in the decreasing order of

gain and searching on this ordered lists. This gives us the ability to abort the search the

moment we discover that the gain at the current indices is less than what we already know

is possible from the previous considerations. From this point on, none of the remaining

possibilities will offer a better gain. Since searching takes place repeatedly in the innermost

loop of the heuristic, this simple observation results in significant savings in the run time

of the algorithm.

3.3.3 Finding Node Separators

Next we consider node separators. The discussion given in this section applies to both

weighted and unweighted graphs. As in the previous section, for weighted graphs we only

consider feasible moves or swaps.

A χ-node separator C is a subset of the node set V such that the weight of every

connected component in the subgraph induced by V −C is under the threshold. The size

of the separator is |C| and it is this size we seek to minimize. It is important to note that

we only consider the cardinality of C and not the sum of the weights of the nodes in C.

Note that if we have an edge separator of size k , then we can easily construct a node

separator of size at most k by picking, arbitrarily, either u or v for each edge (u, v) from

the edge separator.

Once we have an initial node separator, we employ simulated annealing to improve the

quality of the node separator as shown in Algorithm “Weighted Node Separator” (Alg. 2).

For a node u in the cut C, let NA(u) and NB(u) represent the neighbors of u in A and

B respectively. In each iteration, we consider two operations for a vertex u from the cut:

push u and pull u. Push u removes u out C and places it in A. In addition, this operation

moves NB(u) from B to C in order to maintain the invariant that C is a node cut. Pull

u, on the other hand, removes u out C and places it in B. Also NA(u) is moved from A

to C in order to maintain the invariant that C is a node cut. Clearly, push (resp. pull)

u reduces the size C by one if NB(u) = ∅ (resp. NA(u) = ∅). If NB(u) 6= ∅, a push

u operation increases the node cut size by NB(u) − 1. The cost of a move, either a

pull or a push, is the net change in the number of nodes of C. As before, these moves

are performed only if they are feasible, i.e. after the move both A and B are below

32 3. Resilience of Communication on the Internet

1 Alg.: Weighted Node Separator

Input: G(V, E) with node weights, a χ node partition C derived from a good

quality edge separator.

Output: Updated χ partition A,B with potentially fewer edges between A and B

2 cur rent best ← cost of C;

3 for h max ← 2 to 30 do

4 for heat ← h max down to 1 do

5 ca ← Best node separator cost from

6 20 iterations of Push(C, heat);

7 cb ← Best node separator cost from

8 20 iterations of Pull(C, heat);

// Pull is the same as Push, only with A and B exchanged.

9 if cur rent best ≥ min(ca, cb) then

10 cur rent best ← min(ca, cb);

11 C ← node separator corresponding

12 to min(ca, cb);

13 end if

14 end for

15 if no change in C in the last 5 iterations then

16 return C;

17 end if

18 end for

19 return C;

the threshold. With simulated annealing, lower-cost moves are performed with higher

probability, with the general chance of success being determined by the current amount

of heat. The problem with this approach is that if we were to use simulated annealing

in the usual fashion — slowly cooling down from ‘infinite’ heat, the initial moves would

destroy the good properties possessed by our initial node cut which was derived from a

good edge cut.

3.4 Graph Generation

For our analysis, we generate graphs representing the Internet from actual measurement

data. All measurement data we use represent the state of the Internet in late 2010 or

early 2011. Section 3.4.1 describes how we use Border Gateway Protocol (BGP) [RLH06]

routing information gathered by the Route Views project3 to generate a graph representing

peering relationships between ASes. Naturally, the resulting graph is only a rough approx-

imation of the actual relationships since the data provide only a local view of the routing

topology and do not model policy restrictions that may be present. In Section 3.4.2 we

try to compensate for this by combining the BGP generated AS graph with an AS graph

based on IP-level forward-path measurement topology information provided by CAIDA4.

Finally, we want to differentiate between networks that provide “important” services

and networks that are not widely used. For example, AS 56357 is currently an AS for

research consisting only of a single router — clearly this network is hardly significant to

3 http://www.routeviews.org/
4 http://www.caida.org/

http://www.routeviews.org/
http://www.caida.org/

3.4. Graph Generation 33

1 Alg.: Push(C, heat)

Input: Weighted graph G = (V, E), node separator C, two partitions A and B of

V − C, and a positive integer heat

Output: Updated A,B, C after possibly moving some nodes u from C to A and

some neighbors u from B to C.

2 cur rent cost ← cost of C;

3 foreach u ∈ C do

4 Let NB denote {v | v is a neighbor of u in B};
5 if weight of (A ∪ {u}) ≤ χ ·W then

6 new cost ← cost of (C ∪ NB − {u}) ;

7 δ ← new cost − cur rent cost ;

8 r ← random number between 0 and δ;

// r can be negative if δ < 0

9 if r ≤ heat then

10 move u from C to A ;

11 move NB from B to C ;

12 cur rent cost ← new cost ;

13 end if

14 end if

15 end foreach

Tab. 3.1: Characterization of the AS Graphs Generated Using Route View’s BGP Snapshot

Monitor Name LINX SYDNEY WIDE

Prefixes 8,414,813 1,543,223 680,980

Nodes 35,872 36,543 36,315

Edges 75,170 67,485 52,885

the Internet as a whole. Section 3.4.4 describes how we use HTTP access statistics as

one possible method for evaluating network relevance and assigning weights to the nodes

in the graphs.

3.4.1 Construction of AS Graphs from BGP Routing Information

We build a first set of AS graphs using the AS routing information collected by the Route

Views project. The Route Views project collects BGP information by operating 10 BGP

routers in different locations. The routers’ routing tables and the received BGP updates

are written to disk and made publicly available on a daily basis.

We use the path information from BGP for our graph generation by adding occurring

ASes to our graph as nodes. For consecutive ASes in the AS path we add an edge to the

graph.

For this work we initially selected three different BGP datasets from three different

BGP routers to investigate which impact the number of announced IP prefixes in the

routing tables on the resulting graph has: The LINX dataset (London, UK) contained

over 8 million announced prefixes, the average size SYDNEY dataset (Sydney, Australia)

34 3. Resilience of Communication on the Internet

Tab. 3.2: Characterization of the AS Graphs Generated Using CAIDA’s Routed AS Links Dataset

Dataset Cycle 1249 Cycle 1248 Cycle 1250

AS Sets 63 54 63

MOAS 1,456 1,455 1,263

Nodes 19,376 19,416 19,343

Edges 43,654 44,371 42,273

contains 1.5 million prefixes and the very small WIDE dataset only about 680,000 prefixes

all from December 30th 2010. The resulting graphs have almost the same number of nodes

with around 36,000 nodes. The number of edges differs, depending if the router is located

in a well-connected area of the core Internet or if it is located in a peripheral area. When

we merge the resulting graphs, we obtain a graph with 36,697 nodes and 79,464 edges.

Based on this modest increase in the graph size from merging multiple points of view,

we expect that using a few more vantage points would not add a significant number of

additional nodes or edges. Still the resulting AS graph is incomplete; alternative methods,

such as the one discussed in the next section, can be used to discover some of the missing

edges, such as those that typically are not widely advertised via BGP. Table 3.1 provides

some further statistics on the resulting AS graphs.

3.4.2 Construction of AS Graphs from Traceroutes

In addition to the graphs from section 3.4.1, we generate AS graphs based on IP-level

forward path measurements conducted by CAIDA. CAIDA performs regular path measure-

ments to every routed /24 IP network. Based on this measurements CAIDA provides the

“IPv4 Routed /24 AS Links Dataset” [HHA+] where they mapped the contained IPs to

ASes using Route Views BGP data and extracted the connections between the ASes. This

dataset contains pairs of connected ASes and additional information about the processing

process. In particular, the data distinguishes between direct and indirect links. Links are

marked as indirect if one or more hops on the IP-path cannot be mapped to an AS.

Table 3.2 characterizes the AS graphs generated using the “IPv4 Routed /24 AS Links

Dataset”. Combining the AS graphs from the three datasets results in an AS graph with

22,271 nodes and 57,867 edges.

3.4.3 Merge of BGP and Traceroute Graphs

To obtain a best possible graph representation of the Internet, we merged all the graphs

mentioned before into one big graph. So we can prevent the drawbacks from both graphs

and get a graph with a non-local, non-directed view on the Internet.

We merged the BGP-based graphs and the CAIDA AS links based graphs in an resulting

graph containing 36,715 nodes and 99,852 edges.

3.4.4 Weight Generation

We also want to be able to assign a weight to each AS reflecting its importance, where

importance is based on the popularity of the service the AS provides to end-users. Ideally,

3.4. Graph Generation 35

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
a
g

e
 V

ie
w

s
p
e
r

M
ill

io
n
,
3

 M
o
n
th

 A
v
e
ra

g
e

Website Rank

Fig. 3.1: Weight Distribution for Websites in Alexa’s Top 100,000 Websites

the importance rating would reflect the impact of separating the AS from the rest of the

network. As a simple approximation of actual importance, we use the popularity of hosted

websites as an indicator for the importance of networks. As a basis for the popularity of

websites we used a ranked list of websites provided by the Alexa Web Information Service.

We obtained a list of the current top 100,000 websites (hostnames) ranked by popularity,

including the relative number of page views per million page views for each of those sites.

This page view rank in relation to the rank of the website in the Alexa ranking is depicted

in Figure 3.1. The plot is this wide because Alexa ranks the top 100,000 websites not only

by the number of page views but also the number of distinct users accessing the pages

(“reach”). As a result, higher ranked websites do not always have more page views.

To use this list to assign weights based on the total number of page views to ASes,

we had to link DNS names to AS numbers.

First, we map DNS names to IP addresses, which can then be mapped to the respective

AS. A simple DNS lookup up for each hostname is not sufficient as this would not consider

DNS caching, DNS-based load balancing and ultimately only provides a local view of

name resolution from the view of our system. Instead, we obtained a global view of DNS

resolution using 89 nodes on PlanetLab from all over the world. Each of the nodes was

used to perform DNS lookups for the complete list of the top 100,000 websites. To bypass

web server load balancing and DNS caching, three sequential lookups of the whole list

were performed.

The resulting dataset consists of 27,801,818 IP addresses; 18,066 IP addresses from

invalid private IP blocks were filtered and 1,269,239 lookups failed. After filtering invalid

and duplicate addresses, 159,247 unique IP addresses were found.

These IP addresses were then mapped to AS numbers using CAIDA’s “Routeviews

Prefix to AS mappings Dataset”, a dataset available from CAIDA providing an IP prefix

to AS number mapping based on BGP dumps.

Using this mapping, the weight of a node in the AS graph is then sum of the page

views of all websites with an IP in this AS. A small default value is used if no website in

the Alexa list has an address in the AS. The resulting weight distribution is depicted in

36 3. Resilience of Communication on the Internet

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 0 5000 10000 15000 20000 25000 30000 35000

N
o
d
e
 W

e
ig

h
t

Autonomous Systems

Fig. 3.2: Weight Distribution in Terms of Page Views for ASes

Figure 3.2. ASes that did not correspond to any sites within the top 100,000 websites

were given a uniform small weight. We believe that the sharp drop in AS weight (around

[7000, 0.5] in the plot) is likely due to the artificial limitation of only counting page views

of the top 100,000 websites.

3.5 Experimental Results

We used the heuristics presented in Section 3.3 to calculate separators for χ ∈ [12 , 1).

Since the heuristics are randomized, running the heuristic several times typically yields

significantly different results. The plots in this section all show the results for five runs

(not averaged, each run is represented by a single dot) where the result for each run is

the best result obtained during 10 iterations of the original heuristic. On an Intel i7 920,

our Java implementation used about 1 GB of memory and took typically around a minute

to execute a single iteration of either heuristic.

We provide all experimental results for the AS graph generated by combining the data

from BGP routing tables (Section 3.4.1) with the traceroute graph. The combined graph

has 36,715 nodes and 99,852 edges.

3.5.1 Unweighted AS Graphs

First, we determine the size of the separators for the AS graph without weights. A χ-

separator in this case simply ensures that the largest remaining connected component

would contain at most a fraction of χ of the number of ASes. Figure 3.3(a) shows

the size of the edge separators found by our heuristic (Section 3.3.1) in relation to χ.

The relationship between the size of the edge separator and χ is linear, suggesting that

separating the graph by edge removal requires incrementally cutting of ASes at the corners

of the network. When compared to Metis, the main difference is that our heuristic is able

to produce good separators for larger values of χ.

Figure 3.3(b) shows the size of the node separators in relation to χ. As expected, the

3.5. Experimental Results 37

0

2000

4000

6000

8000

10000

12000

14000

0.5 0.625 0.75 0.875 1

E
d
g
e
S
e
p
a
ra
to
r
S
iz
e

χ

Presented Heuristic

Metis

××××
××××××

××

×

(a) Size of the Edge Separator

0

200

400

600

800

1000

1200

1400

1600

0.5 0.625 0.75 0.875 1

N
o
d
e
S
e
p
a
ra
to
r
S
iz
e

χ

Presented Heuristic

Metis

×
×
××
××××× ×

×
× ×

××
×
× ×
× ×
× ×× ×

×

(b) Size of the Node Separator

Fig. 3.3: Size of the Computed Separators for the Unweighted AS Graph.

size of the node separators is significantly smaller. What is surprising is that the heuristic

does not seem to always work consistently well for values of χ close to 1; after all, the

size of any separator should be monotonically decreasing as χ increases.

For unweighted node separators, Metis produces significantly better results compared

to the heuristic presented earlier. However, the results are somewhat less predictable as

well.

3.5.2 Weighted AS Graphs

Figure 3.4(a) shows the size of the edge separator in relation to χ for weighted graphs.

As expected, it is monotonically decreasing. However, the sharp drop from over 15,000

edges to around 500 edges at only 54% is quite surprising. The reasons for this are likely

two-fold. First, achieving near-perfect balance for the weighted graph is harder because it

essentially requires solving two knapsack problems, leaving little room for minimizing the

size of the separator. Second, the extreme weight distribution of the ASes permits rather

38 3. Resilience of Communication on the Internet

small separators (compared to the unweighted graph) because isolating a few ASes can

have a huge impact on the size of the largest connected component.

For node separators, this second effect is even stronger. Figure 3.4(b) shows that

removing a handful of ASes could be in theory quite devastating for reachability. These

ASes are typically a combination of high-traffic ASes (such as Google) and ASes that

are key for connectivity (such as Level 3). The first effect is less strong here, because

the ASes that are part of the node separator are not part of any connected component,

making it much easier to achieve a separation where the remaining connected components

have less than χ weight. As a result, for node separators, χ close to 12 is not as restrictive.

Compared to Metis, the edge separators for the weighted graphs are significantly

smaller using our heuristic. Metis seems to be unable to take advantage of the significant

weight differences between the nodes. Again, Metis also does not produce separators for

values of χ > 3
4 .

0

5000

10000

15000

20000

25000

30000

0.5 0.625 0.75 0.875 1

E
d
g
e
S
e
p
a
ra
to
r
S
iz
e

χ

Presented Heuristic

Metis

×
×
××
××××××××××××××

××
××××××××××××××
××××××××××××××××

×

(a) Size of the Edge Separator

0

100

200

300

400

500

600

700

0.5 0.625 0.75 0.875 1

N
o
d
e
S
e
p
a
ra
to
r
S
iz
e

χ

Presented Heuristic

Metis

×

×

×
×
×

×

××

×

×
×
×

× ×

× ×

×
×

×

×
×

×
×

×
×× ×

×

(b) Size of the Node Separator

Fig. 3.4: Size of the Computed Separators for the Weighted AS Graph.

For node separators, this effect is less pronounced (Figure 3.4(b)). This is likely

3.6. Discussion 39

because targeting ASes with high weights or high degree is equally effective in both cases.

As a result, the increase in the size of the node separator for the combined AS graph is

typically modest, with the exception of χ values close to 0.5.

For node separators on the weighted graph, Metis performs again significantly worse

than the presented heuristic; furthermore, Metis’ results are widely dispersed and lack a

clear trend towards smaller separators for increasing values of χ.

3.6 Discussion

This research followed the common approach of combining traceroute and BGP data

to obtain a reasonable approximation of the AS graph. Similar to existing studies that

attempt to characterize AS graphs [RMRW10], the resulting AS graphs are not com-

plete [CCG+02, CR06, RTM08]. The AS graphs could theoretically be augmented to be

more accurate, for example using additional or simply more accurate measurements such

as those described in [AKW09, VAC+08].

In an AS graph critical infrastructure is often not represented according to her sig-

nificance for connectivity. Internet Exchange Points (IXPs) might be treated as sets of

highly-connected nodes whereas a single undersea-cable might be represented as multiple

logical edges which are much harder to separate. So applying our heuristic to a physical

map of the Internet could bring interesting insights how to disconnect a certain region

and partition the Internet.

We believe that the calculated separators are applicable to the various applications

stated in the introduction:

• The elements of the separators do represent critical infrastructure; while additional

edges in the AS graph may make them less critical and a smaller separator would

point to even more critical systems, the separators do point to organizations and

relationships that are key to global connectivity. The weighted AS graphs are useful

in this application domain.

• The locations calculated would be useful for the placement of traffic monitoring

equipment; additional edges might allow some traffic to escapes surveillance (but

many applications, such as early warning systems, do not require completeness).

Even smaller separators may reduce the cost; nevertheless, the heuristic represents

an advance over existing algorithms.

3.7 Conclusion and Findings

This chapters characterized small edge and node separators in AS graphs and provided

extensive data on the size of χ-separators for various values of χ. Analyzing the AS

graphs, we found that allowing only a slight imbalance between the resulting connected

components can significantly reduce the size of the separator. However, it would take the

failure of 20–30 ASes to make make about 40% of Hypertext Transfer Protocol (HTTP)

accesses fail for the AS graphs used in this study (Figure 3.4(b)). Furthermore, this

number represents only a lower bound, as the observable AS graph is naturally a subset

of the actual AS graph. As Byzantine failure of more than 20–30 ASes seems unlikely,

separating the Internet on the AS-level is thus unlikely to work; future work in this area

will thus have to include additional information about BGP routing policies or geographical

knowledge about physical connections.

40 3. Resilience of Communication on the Internet

The goal of this chapter was to analyze if the Internet and its communication in-

frastructure can provide the foundation for a resilient communication infrastructure for

decentralized peer-to-peer networks. The focus was to answer the question if the Internet

can provide resilient communication paths between systems for peer-to-peer networks and

if an attacker can partition the Internet in distinct partitions by making a set of commu-

nication links or providers fail and therefore impact the peer-to-peer network’s ability to

provide connectivity between systems both directly or via the peer-to-peer overlay.

As a result of this analysis we can say, that the Internet’s communication infrastructure

is surprisingly resilient against failing links and networks. An attacker trying to partition

the Internet in fractions of roughly equal size would have to remove hundreds of networks

and thousands of communication link to have an impact on the peer-to-peer networks

possibility to connect peers and allow peers to communicate via the peer-to-peer overlay

with each other (Figure 3.3(b)). So the Internet’s backbone can provide a sufficient foun-

dation to establish a peer-to-peer overlay with a decentralized peer-to-peer application.

So when designing a resilient communication infrastructure, a special focus still has to be

put on perimeter networks (like ISPs’ access networks) only connected with few network

links to the Internet which an attacker can make fail more easily.

4. RESILIENT AND SECURE COMMUNICATION FOR

DECENTRALIZED NETWORKS

In this chapter we present the design and implementation of a resilient and secure commu-

nication infrastructure for the GNUnet peer-to-peer framework. GNUnet’s philosophy is

to be a reliable, open, non-discriminating, egalitarian, unfettered, and censorship-resistant

system of free information exchange. GNUnet is designed to protect the privacy of its

users and to guard itself against attack or abuse.1

The foundation of such a system is the communication and the ability to exchange

information between participants in the network. The communication infrastructure pre-

sented in this chapter is the foundation for GNUnet to provide such a free and reliable

system. The goal of GNUnet’s communication infrastructure is to connect participants in

the peer-to-peer network and provide resilient and secure communication between these

participants.

Direct communication between systems can be limited for various reasons as we saw

with middleboxes in Section 2.6 and various parties try to influence and control free and

unrestricted communication between users on the Internet as described in Chapter 1. With

the communication infrastructure presented in this section, we try to increase connectivity

between systems and antagonize degradation and censorship attempts.

4.1 Objectives

Increase Connectivity:

In case no communication infrastructure is available or existing communication in-

frastructure is failing, GNUnet should still be able to connect users and allow them

to communicate.

Here GNUnet should provide support to create ad hoc networks using wireless tech-

nologies like Bluetooth or WLAN to connect peers directly without relying on de-

ployed infrastructure. To increase connectivity between peers in the peer-to-peer

overlay, GNUnet’s transport infrastructure provides a Distance Vector (DV) routing

component to route traffic between peers not connected directly via intermediate

peers in the peer-to-peer overlay.

The communication infrastructure should improve connectivity for participants lo-

cated in restricted environments or affected by limitations to end-to-end connectivity

as described in Section 2.6.

To improve connectivity between peers, GNUnet’s transport infrastructure employs

techniques like collaborative and non-collaborative NAT traversal, connection rever-

sal, forward and reverse proxies.

Resilience against Degradation:

Since peer-to-peer applications are particularly often affected by traffic management

1 https://gnunet.org/philosophy

https://gnunet.org/philosophy

42 4. Resilient and Secure Communication for Decentralized Networks

and filtering attempts as described in Section 1, GNUnet’s communication infras-

tructure should be resilient against and antagonize service degradation attempts.

GNUnet’s approach to counteract such attempts is to support multiple transport

protocols and continuously monitor communication channels for degradation at-

tempts. If a communication channel is effected by degradation, GNUnet can switch

to a different communication channel providing better performance properties.

Authenticated and Secure Communication:

GNUnet’s communication infrastructure has to authenticate a communication part-

ner before establishing an underlay connection with a peer. The communication

infrastructure has to validate the identity of the peer and verify that the set of ad-

dresses provided to establish a connection with the remote peer can really be used

to communicate with this particular peer. This validation is required to prevent

man-in-the-middle attacks and attackers trying to measure, analyze or manipulate

traffic exchanged between peers.

Communication between peers in the peer-to-peer overlay must be confidential,

integrity protected and authenticated. Peers establishing a connection in the peer-

to-peer overlay must authenticate the communication partner and establish a secure

connection with the communication between the peers being confidential and pro-

tected against modification.

GNUnet’s communication infrastructure distinguishes between validated and unval-

idated peer information. All information received from external sources (e.g. via

bootstrapping mechanisms) is treated as unvalidated and has to be validated before

it is used to establish a connection with a remote peer. With this validation process,

a peer cryptographically proves its identity and that it can be reached using the

provided set of addresses. This validation process ensures that a communication

partner is really the peer it purports to be and prevents man-in-the-middle attacks.

Link encrypted communication in the peer-to-peer overlay between directly con-

nected peers is provided by GNUnet’s CORE service including perfect forward secrecy

and integrity protection. Communication is encrypted using two symmetric block

ciphers.

4.2 Scope and Limitations

A Fully Decentralized Network:

GNUnet is designed to be a fully decentralized peer-to-peer application not requiring

or relying on any centralized entities. This requirement is also true for the com-

munication infrastructure designed in this chapter. For GNUnet’s communication

infrastructure, we do not rely on any centralized entities to coordinate communica-

tion between peers in the peer-to-peer network and the setup of the peer-to-peer

overlay.

An Unknown and Dynamic Environment:

For GNUnet, we assume that both participants in the network and the number of

participants are not a priori known and can change over time. This implies that

a peer does not know the peers it can communicate with and has to learn this

information when joining the network. All peers can join and leave the network and

establish connections to other peers without prior coordination.

4.3. Design and Implementation 43

No Trusted Entities and No Trust Between Entities:

Besides having no centralized entities in the network, we assume as an extension to

this assumption that there are no trusted entities and no trust between participants

in the network. A peer cannot trust any other peer or information provided by

other peers. All information obtained from other entities in the network has to be

validated before it can be used by a peer. This extends to the assumption that any

set of peers in the network may be malicious and peers even collaborate to attack a

peer and we do not assume an upper limit on the number of malicious peers in the

network.

No Trust in Underlying Infrastructure:

GNUnet’s communication infrastructure uses existing communication infrastructure

as a foundation to allow peers to communicate. GNUnet should rely as little as

possible on these technologies and assume the existing infrastructure to be unsta-

ble or compromised. GNUnet’s infrastructure has to ensure authenticity, integrity

and confidentiality of communication when exchanging data between participants

and combine this with the idea that information cannot be trusted without prior

validation.

Integrity within a Peer:

Contrary to the assumption that there is no trust between peers, we assume that the

integrity of a peer, integrity of information stored with a peer and integrity between

collaborating components of a peer is not compromised.

An objective this work does not focus on is traffic hiding or traffic obfuscation of

peer-to-peer traffic. These techniques are often used to make traffic less suspicious for

network filters. Traffic obfuscation tries to modify an application’s traffic in a way that

it is not recognizable as traffic from an particular application or by trying to make the

traffic look like traffic originating from a “benign” application. While this sounds like a

reasonable approach to achieve resilience against service degradation, we think it is an

arms race with the advantage on the side of the censor, therefore hard to win. Works like

[HJ10] show that many protocols, even when obfuscated, have statistically measurable

properties allowing it to detect an obfuscated protocol easily by analyzing just a some

hundreds of bytes of application traffic. In this work, we therefore focus on providing

alternatives when service degradation is detected and do not rely on traffic obfuscation

for censorship resistance.

4.3 Design and Implementation

GNUnet’s transport infrastructure consists of several components. These components are

implemented in independent services or daemons collaborating with each other via IPC

according to GNUnet’s design principles described in Section 2.8.3. Each component pro-

vides a distinct functionality important for the functioning of the transport infrastructure.

GNUnet’s transport infrastructure consists of the following components also depicted in

Figure 4.1:

HOSTLIST daemon:

Download peer information from bootstrapping servers and provide bootstrapping

server functionality

44 4. Resilient and Secure Communication for Decentralized Networks

PEERINFO service:

Persistent storage of validated peer information

TOPOLOGY daemon:

Management of the peer-to-peer overlay topology and friend-to-friend connections

NAT library:

NAT traversal and hole punching, UPnP support, management of IP addresses

available with the local peer

ATS service:

Management of addresses and active sessions, providing address suggestions to

TRANSPORT, resource allocation to peers

TRANSPORT service:

Validating address information, establishing underlay connections to remote peers,

managing incoming connections from remote peers, manage peer’s address infor-

mation, manage transport mechanisms, enforce resource restrictions

CORE service:

Encrypted communication between peers, cryptographic key exchange and link en-

cryption between peers, Ethernet-like semantics for communication including possi-

ble out-of-order delivery and unreliable communication

P2P Applications

CORE

Transport
Clients

NeighborsHELLO Validation

Blacklisting

Plugins

PluginPlugin Plugin

Peerinfo

Hostlist

Topology

ATS

HELLO

NAT

Fig. 4.1: Components of GNUnet’s Transport Infrastructure

In this Section, we present the design and implementation of GNUnet’s PEERINFO,

TOPOLOGY, HOSTLIST, HELLO and NAT components and discuss in detail the TRANSPORT

service responsible to maintain underlay connectivity with remote peers. We briefly de-

scribe the CORE service and the ATS service which is presented in detail in Chapter 5

discussing address selection and resource allocation for decentralized peer-to-peer net-

works.

4.3.1 Peers and Peer Identities

In GNUnet, every peer is equipped with a public/private key pair and a peer’s identity is

the public key of this public/private key pair. Within the peer-to-peer overlay this identity

4.3. Design and Implementation 45

is used to refer to a particular peer and route traffic between peers.

With respect to cryptography, GNUnet relies on Ecliptic Curve Cryptography (ECC)

using Ed25519, specifically the EdDSA digital signature scheme and Curve25519 [BDL+12].

Every peer provides an EdDSA public/private key pair used for authentication. An Ed25519

public key has a size of 256 bit (32 byte), stored in GNUnet using the Ed25519 compact

format and an Ed25519 signature has a size of 64 bytes. Within the GNUnet framework,

peer identities are represented using a GNUNET˙PeerIdentity struct used as a wrapper

around the EdDSA public key. Using such a wrapper makes other components using peer

identities independent from the specific cryptographic implementation used. By using the

public key as a peer identity, we can assume with a very high probability that the identity

of this peer is unique in the network, since otherwise another peer would have generated

the same Ed25519 key pair.

To provide confidential communication, GNUnet’s CORE service uses Elliptic Curve

Diffie Hellman Ephemeral (ECDHE) [Res99] to provide a secure key exchange over the

insecure communication underlay. This shared secret is used to derive a shared session

key for symmetric encryption using the HKDF derivation function defined in [KE10]. This

derived key is used to encrypt communication with other peers using both the Advanced

Encryption Standard (AES)-256 [DR02] and Twofish[SKW+98] encryption ciphers.

For representation purposes, the binary representation of the public key can be con-

verted to a human readable representation using Crockford Base32 ASCII encoding [Cro,

Jos06]. Peer identities in GNUnet are usually represented using this ASCII encoding,

representing peer identities as string with 52 characters or in a short form with only 4

characters:

• Printable version of a peer identity:

R8TTJ9GAL5VIFOFNM8KNT3D83BVQPBNRHJSSD0IME63V821906EG

• Shortened version of a peer identity:

R8TT

GNUnet supports developers with an extensive cryptographic utility library providing func-

tionality to create and verify signatures, derive keys from existing cryptographic key ma-

terial, encrypt and decrypt data using symmetric block ciphers, hash data blocks etc.

4.3.2 Plugin Specific Address Formats

GNUnet’s transport infrastructure tries to antagonize service degradation and to improve

connectivity between peers by supporting multiple transport mechanisms in parallel and

switching between transport mechanisms in case a degradation attempt or failing commu-

nication infrastructure is detected. By supporting a set of different transport mechanisms,

we have to cope with a large number of alternative address formats varying from mech-

anism to mechanism. In GNUnet’s transport infrastructure every transport mechanism is

implemented in a so called transport plugin as described in Section 4.3.11.3 and can define

its own address format used internally suitable for the communication mechanism it relies

on: an IP based transport mechanism may store address information in form of a socket

address struct, while a plugin using MAC addresses may choose a byte array to store this

MAC address. Only the plugin itself knows about the structure of the address format

and the semantics. This format cannot be interpreted by other components. When a

transport plugin passes such an address to other components, it uses an untyped pointer

and a variable specifying the length of an address.

46 4. Resilient and Secure Communication for Decentralized Networks

The address format is plugin specific, but common properties shared between the

plugins are defined: each address contains the address information required to establish

the connection and in addition an option bit field. This option bit field is used to indicate

special options associated with an address which cannot be encoded in the address itself.

The encoding of options in the bit field is plugin specific and is defined with the address

format.

An example for such an option is the HTTP˙OPTIONS˙VERIFY˙CERTIFICATE flag used

with the HTTPS plugin. The HTTPS SERVER plugin sets this flag in the address if it

can provide a valid HTTPS certificate and wants to instruct the HTTPS CLIENT plugin

to validate this certificate when establishing a connection. This information cannot be

included in the Uniform Resource Locator (URL) used to establish the connection and is

specific to the HTTPS plugin and is not useful to any other plugin.

Using a plugin specific address format simplifies address handling and management

since plugin specific addresses do not have to be converted to a generic format when used

outside the transport plugin and do not have to be converted back to the plugin specific

format for internal operations. Since address handling is only implemented in the plugin

itself, other components of the transport infrastructure do not have to be adapted when

new transport plugins are added.

Since the transport infrastructure is agnostic of the address format, the transport

plugins provide functions for address handling used by the rest of the infrastructure to

process addresses. This covers conversion from plugin specific format to a human readable

representation and parsing human readable addresses and convert them to the plugin

specific address format. The plugins provide special conversion functions with the plugin

API as described in Section 4.3.11.2.

To achieve a common format for conversion of plugin specific addresses to a human

readable representation, a common format for human readable addresses is defined. This

format is defined as a triplet containing information about the plugin, the address specific

options and the address itself, separated by dots:

¡plugin¿.¡address specific options as unsigned integer¿.¡address¿

So a TCP address with the connection endpoint 203.0.113.1, port 2086 and without

address specific options (option value is 0) is represented as:

tcp.0.203.0.113.1:2086

4.3.3 Generic Address Format

Within the transport infrastructure, additional information are required to manage con-

nections with other peers. In GNUnet, we therefore introduce a GNUNET˙HELLO˙ADDRESS

struct used as a generic address format to handle plugin specific addresses outside of

the plugins. This address format is called a HELLO address. A HELLO address contains

information about the peer an address belongs to, the transport plugin this address has

to be used with, the address itself in plugin specific format, the length of the address

and an option field containing additional information associated with the address on the

local peer. One example for such a flag is the GNUNET˙HELLO˙ADDRESS˙INFO˙INBOUND

flag, indicating that an address cannot be used to establish an outbound connection, for

example for an incoming TCP connection containing a TCP private port (as described in

Section 2.3.1) as source address which cannot be used to connect to the remote peer.

This address format supports state independent handling of addresses and encapsulates

all information related to an address.

4.3. Design and Implementation 47

HELLO address are handled by the GNUnet HELLO library. This library provides func-

tionality to manage HELLO address and provides functionality to allocate, copy, compare

and free HELLO addresses.

A HELLO address contains the identity of the peer this address belongs to and the

name of the transport plugin this address can be used with as a string. To store plugin

specific addresses in a HELLO address, the format provides an untyped (void) pointer to

store the plugin specific address and a length field to store the size of the plugin specific

address. The local information bit field can contain additional information but is only valid

in the context of the local peer. This information is not exchanged with other peers.

4.3.4 Transport Sessions

Both generic HELLO addresses and plugin specific addresses only designate an address and

how to communicate with a remote peer. To refer to a specific connection established

with a peer using a particular address, we introduce the notion of a session: a session

refers to a specific connection established with a remote peer using an address. A session

can be seen as an “instantiation” of an address.

When a peer wants to connect to a remote peer, it selects an address to use and

requests the respective plugin to use this address and connect to this peer. If not already

connected to this address, the plugin creates a connection and returns a session reference

to the transport infrastructure, which can be used to refer to this specific connection. In

GNUnet’s transport infrastructure sessions are realized with pointer references: a plugin

internally allocates a plugin-specific session object and passes an opaque pointer to this

session to other components. Other components use this pointer as a handle to the

session, but cannot access information stored in this session.

4.3.5 HELLO messages

To establish connections with remote peers and bootstrap the peer-to-peer overlay, peers

have to exchange information allowing other peers to connect them and authenticate the

connection. For this purpose the GNUnet peer-to-peer framework uses so called HELLO

messages containing all information required to establish a secure connection with a peer.

HELLO messages are similar to business cards containing information about a peers identity

and the different addresses to contact this peer.

A peer’s HELLOmessage contains all addresses belonging to this peer as reported by the

different transport plugins in the generic HELLO address format described in Section 4.3.3.

A validity lifetime is added for each address to ensure stale address information is eventually

removed from the network. In addition, the HELLO message contains the peer’s public key

to allow remote peers to verify the identity of the peer by authenticating the connection to

prevent man-in-the-middle attacks and peer’s pretending false identities. A remote peer

receiving such a HELLO message can extract the addresses contained in this message and

the peer’s public key and use this information to connect to the peer and cryptographically

authenticate the peer’s identity.

The functionality to convert addresses to the HELLO format which can be transmitted

over the network is provided by the HELLO library described with HELLO addresses in

Section 4.3.3. This library can create and parse HELLO messages and extract addresses

contained in HELLO messages.

The HELLO library can convert HELLO messages to a human readable format repre-

sented as an Uniform Resource Identifier (URI). This HELLO URI can be used to exchange

peer information out-of-band between users of the network. The HELLO library uses the

48 4. Resilient and Secure Communication for Decentralized Networks

transport plugins to convert plugin specific addresses to a human readable format as de-

scribed in Section 4.3.2. A HELLO URI contains the peer’s public key and all addresses

available with this peer. For every address, the URI contains the expiration time of the

address, the transport plugins this address has to be used with and the address itself in the

human-readable format as described with plugin-specific addresses. The generic format

for a human-readable HELLO URI is:

gnunet://hello/¡peer identity¿+¡expiration address 1¿+¡plugin address

1¿+¡address 1¿+...+¡expiration address n¿+¡plugin address n¿+¡address←↩
n¿

So a HELLO URI for peer R8TT. . . being reachable using TCP address 203.0.113.1 port

2086 would look like:

gnunet://hello/R8TTJ9GAL5VIFOFNM8KNT3D83BVQPBNRHJSSD0IME63V821906EG←↩
+0+tcp+tcp.0.203.0.113.1:2086

4.3.6 Bootstrapping and Neighbor Discovery

To bootstrap the peer-to-peer overlay network and allow peers to connect to each other,

information about peers available in the network has to be exchanged between peers in

the network. This information is contained in the HELLO messages described in Sec-

tion 4.3.5 and GNUnet provides different techniques to spread information about peers in

the network.

4.3.6.1 Peer Information Included in the Software

The first technique used is to include peer information in the peer-to-peer software itself

and to ship this information with the software. With GNUnet, HELLO messages of peers

known to be running reliably and to be reachable from the Internet are shipped directly

with the distribution of the GNUnet software. The expiration time for HELLO messages

shipped with GNUnet is overwritten to prevent these HELLO messages from expiring. With

this approach a new peer can connect directly to the network without having to use any

other bootstrapping mechanism.

4.3.6.2 Out-Of-Band Exchange of Peer Information

HELLO messages can also be exchanged directly between users using an out-of-band mech-

anism like e-mail, instant messaging or Quick Response (QR) codes. The HELLO library

provides the functionality to generate a human readable URI version of a peer’s HELLO

message as described in Section 4.3.5. Users can export and import peer information

using the PEERINFO Command Line Interface (CLI). The PEERINFO CLI exports peer in-

formation as an URI and these URIs can be exchanged between users or converted to QR

codes. A QR code can be imported to GNUnet using the gnunet-qr tool able to scan a

QR code using a webcam.

4.3.6.3 Bootstrapping Mechanisms

The third approach provided are so called hostlist servers. Peers joining the network can

connect to these servers to learn about peers existing in the network. In GNUnet, these

bootstrapping servers are called hostlist servers. A GNUnet hostlist server is a HTTP

or HTTPS server, peers can connect to and download a list of HELLO messages. These

4.3. Design and Implementation 49

hostlist servers are “normal” GNUnet peers and every peer can enable the functionality

to provide a hostlist to other peers. In the GNUnet framework, several hostlist servers

are pre-configured to allow new peers to join the network. This functionality does not

contradict to the assumption of a fully decentralized network without trusted authorities

since every peer in the peer-to-peer network can provide a hostlist to other peers, users are

free to add and remove hostlist servers and information obtained from hostlist servers is

treated as untrusted and checked using an validation process before used to communicate

with remote peers.

In GNUnet, the hostlist functionality is provided by the HOSTLIST daemon. This is a

GNUnet daemon, providing the functionality to serve a hostlist to other peers and down-

load hostlist information from hostlist servers. The HOSTLIST daemon is collaborating with

the PEERINFO service, responsible for persistent storage of peer information, described in

Section 4.3.7. The HOSTLIST daemon functionality is split in a client and a server part:

The HOSTLIST server is responsible to provide the hostlist information to other peers.

It obtains the HELLO information from the PEERINFO persistent storage and makes it

publicly available acting as a HTTP web server other peers can contact to download the

list of HELLO messages known by this peer.

The HOSTLIST client component is responsible to obtain hostlist information from

hostlist servers. The HOSTLIST periodically contacts HOSTLIST servers to download infor-

mation about other peers. Based on the set of hostlist servers known to the HOSTLIST

daemon on a peer, it connects to one of the hostlist servers and downloads the HELLO

messages from the server. The HELLOmessages downloaded from the server are treated as

untrusted and have to be checked using TRANSPORT’s address validation process described

in Section 4.3.11.5 before storing this information with the PEERINFO service.

To make bootstrapping more resilient, the HOSTLIST daemon also provides the func-

tionality to distribute and learn information about hostlist servers using the peer-to-peer

overlay. Peers can enable hostlist learning to learn about hostlist servers from other peers

and enable hostlist advertising to advertise their hostlist to other peers. Both hostlist

learning and advertising are realized by exchanging information via the peer-to-peer over-

lay using the CORE service described in Section 4.3.19. When a peer with learning enabled

connects to peer with hostlist advertising enabled on CORE-level, the HOSTLIST daemon

notifies the connecting peer about the URL of the hostlist server available. A peer with

hostlist learning enabled receiving such an URL can add the URL to the set of hostlist

servers available and later on download HELLO messages from this bootstrapping server.

The functionality of the HOSTLIST daemon is illustrated in Figure 4.2.

HOSTLIST Daemon

HOSTLIST Server

HOSTLIST Client

CORE

PeerinfoTransport

HOSTLIST Daemon

HOSTLIST Client

CORE

PeerinfoTransport

Hostlist URLs

HELLOs

Hostlist URLs

HELLOs HELLOs

Hostlist URLs

HELLOs HELLOs

Fig. 4.2: The HOSTLIST Daemon

50 4. Resilient and Secure Communication for Decentralized Networks

4.3.6.4 Neighbor Discovery Mechanisms

Besides the mechanisms enabling new peers to join the network, GNUnet provides ad-

ditional techniques to autonomously discover peers. Peers can use neighbor discovery

provided by the UDP transport plugin described in 4.3.14, the Bluetooth plugin described

in 4.3.17, and the WLAN plugin described in 4.3.16 to learn about additional peers. These

plugins periodically broadcast the peer’s HELLO message as beacons in the network and

other peers on the same network can receive these beacons. HELLO messages received

are forwarded to the transport infrastructure which validates the address information con-

tained in the HELLO messages and uses this information to establish a connection to this

peer.

Peers can also use so called gossiping. With gossiping, peers connected to each other

in the peer-to-peer overlay exchange HELLO messages about other peers. This is realized

by the TOPOLOGY daemon described in Section 4.3.9 responsible to maintain the topology

of the peer-to-peer overlay.

4.3.7 Persistent Storage of Peer Information

To store validated peer information in a persistent way, to ensure these information are

available after a restart of a peer and to provide transport components with peer informa-

tion, GNUnet provides a central storage component for peer information in a dedicated

service. GNUnet components can interact with this service to store and obtain peer

information.

The PEERINFO service is a persistent storage to store information about peers and

addresses using HELLO messages as described in Section 4.3.5. This storage component

provides the functionality to store validated information obtained from bootstrapping and

neighbor discovery mechanisms in a persistent way and provides other services with this

information. Addresses stored with the PEERINFO service are treated as validated since

they were verified using the validation mechanism described in Section 4.3.11.5. With

the PEERINFO service, components collaborating with the service can be supplied with

validated addresses directly after the peer starts without having to obtain peer information

from other peers using the bootstrapping and neighbor discovery mechanisms first. The

PEERINFO service stores HELLO message in a directory on the system’s hard disk and parses

this directory during start up.

Users can interact with PEERINFO using a CLI tool to list peer information available

on the system and to export and import peer information using HELLO message URIs.

The PEERINFO service interacts with different other components: it is provided with

peer information to store by the bootstrapping and neighbor discovery mechanisms when

information was successfully validated by address validation. PEERINFO provides validated

address information to the transport infrastructure to establish connections with remote

peers and to bootstrapping and neighborhood discovery mechanisms to exchange peer

information with remote peers.

4.3.8 Address Management and NAT Support

GNUnet tries to increase connectivity for peers located in restricted environments using

both collaborative NAT traversal techniques like UPnP and the Internet Gateway Device

Protocol (IGDP) [For03] and non-collaborative NAT traversal techniques like ICMP and

UDP hole punching as described in [MEGK10]. Increasing connectivity for peers affected

by NAT middleboxes consists of both determining the external IP address (and port)

4.3. Design and Implementation 51

remote peers can use to contact a peer and to interact with the NAT device to make

the device forward data from the external address to the internal address of the peer.

A functionality closely related to interacting with NAT middleboxes and determining the

public IP of a peer affected by NAT is therefore the management of IP addresses available

on a local system and provide transport components and plugins with these addresses.

Due to this close relation, GNUnet realizes both functionalities in a single component, the

NAT library.

GNUnet’s NAT library supports to collaborate with NAT devices to establish port for-

warding using UPnP and the IGDP [For03]. With IGDP, a peer located behind a NAT

device can ask the NAT device to create a forwarding from the external address of the

NAT device and a port to an internal address and a port. As a result, IGDP will return

the external IP address and the port to use to contact to client requesting this mapping.

This approach is particularly useful in home environments, where routers support UPnP

and UPnP can be used to automatically configure a dynamic port forwarding.

In addition to establishing port forwarding dynamically, NAT devices commonly sup-

port static port forwarding, where the mapping from port on the NAT device to internal

address and port is manually configured by the user on the NAT device. GNUnet’s NAT

library supports this approach by allowing the user to configure information about the port

forwarding (i.e. the external IP address and port number) in the configuration and give

this information to other GNUnet components and peers.

Besides collaborative methods to establish port mappings, the NAT library also supports

NAT traversal methods like Internet Control Message Protocol (ICMP) and UDP based

hole punching described in [MEGK10]. With this approach, certain NAT devices can be

tricked to establish a port mapping without actively supporting to establish port forwarding.

A task closely related to the task of traversing NAT devices is the management of IP

addresses available on a system including information about external IP addresses provided

by NAT devices and dynamic IP addresses. With GNUnet supporting multiple IP based

transport mechanisms, information about available IP addresses has to be provided to all

IP based transports. The NAT library provides functionality to determine both IPv4 and

IPv6 addresses available on a system by periodically scanning the local network interfaces.

Besides scanning available network interfaces, the NAT library also includes information

about external public IP addresses obtained from NAT traversal techniques and can inter-

act with an external server to obtain the public IP address of a peer. To support dynamic

IP addresses often used by ISPs, the NAT library can be configured to resolve an exter-

nal DNS hostname configured by the user to obtain the public IP address to use. This

approach is useful with dynamic IP addresses and Dynamic DNS (DDNS), as defined in

[VTRB97], often used to dynamically update DNS names and allow systems provided with

dynamic IP addresses to host services.

The NAT library realizes NAT traversal and management of IP address in a single

component and other GNUnet components requiring this information can register with

the NAT library to be notified about changes to the IP addresses available for a peer. This

is in particular important for IP based transport plugins. These transport plugins use this

information to update their internal list of available addresses and notify the transport

service to update the peer’s HELLO message based on this information as described in

Section 4.3.5.

52 4. Resilient and Secure Communication for Decentralized Networks

4.3.9 Overlay Topology Management

To establish and maintain an unstructured mesh peer-to-peer overlay topology, GNUnet’s

transport infrastructure provides special component responsible for maintaining overlay

connectivity with other peers. The TOPOLOGY daemon interacts with the PEERINFO service

to obtain information about peers available to establish overlay connections. Based on the

information provided by PEERINFO, TOPOLOGY maintains a list of known peers and tries

establish overlay connections with a pre-configured number of peers to achieve a resilient

overlay topology. TOPOLOGY tracks pending, successful and failed connection attempts. It

also interacts with the CORE service to get notified about successful overlay connections

established with other peers. The TOPOLOGY daemon instructs the TRANSPORT service to

establish an underlay connection and triggers reconnect attempts with the TRANSPORT

service when a peer was disconnected in the peer-to-peer overlay. Here TOPOLOGY applies

an adaptive reconnect frequency to throttle reconnect attempts when a peer is currently

not available and connection attempts fail.

4.3.9.1 Friend-To-Friend Topologies

TOPOLOGY can also restrict connections. GNUnet can operate in a so called friend-to-friend

(f2f) mode, where a peer is only allowed to connect to a set of designated, explicitly white-

listed peers. This list of white-listed peers is configured by the user and can be used by

the user to create a topology only including explicitly white-listed peers. Friend-to-friend

connections are controlled by the TOPOLOGY daemon which manages and issues requests

to TRANSPORT service to establish underlay connections to remote peers. If the peer is

running in friend-to-friend mode, the TOPOLOGY daemon only issues connection requests

to peers in the list of white-listed peers and instructs TRANSPORT to block all other peers.

With respect to HELLO addresses, addresses of f2f peers must not be leaked to (public)

bootstrapping mechanisms due to privacy issues. The HELLO library therefore supports the

notion of a friend-to-friend HELLO message. If a peer operates in friend-to-friend mode,

a specific friend-only HELLO message is created. This friend-only HELLO is not given to

components like bootstrapping or neighbor discovery mechanisms which may leak a HELLO

to peers.

4.3.10 Managing Active Addresses and Session

Besides having to manage validated addresses, GNUnet’s transport infrastructure also has

to manage information about active and established connections available to communi-

cate with remote peers. To manage this information, a dedicated component is used to

manage information about addresses and established sessions. The automatic transport

selection service (ATS) is responsible to manage information about available addresses and

sessions which can be used by TRANSPORT to communicate with remote peers. ATS can

suggest these addresses to the TRANSPORT service and distributes bandwidth resources

among peers according to bandwidth restrictions defined by quotas as described in Sec-

tion 4.3.11.13.

When an address is successfully validated or an incoming connection is established by

a remote peer, the respective address and session information is given to the ATS service.

This service maintains a list of addresses and sessions which can be used to exchange data

with a remote peer. When the TRANSPORT service is instructed to establish an underlay

connection to a peer, it requests an address from ATS. When TRANSPORT requests an

address from ATS for a peer, the ATS service evaluates which address and session is the

4.3. Design and Implementation 53

“best” address currently available to communicate with this peer and suggests this address

to TRANSPORT. As long as the transport infrastructure does not cancel this request, ATS

can reconsider this decision and suggest a different address or change the amount of

resources assigned. It is important to note that ATS does not decide with which peers

to establish connections (since this is the focus of the TOPOLOGY daemon), but ATS can

decide to disconnect a peer if no suitable address or insufficient resources can be provided.

The ATS service and its functionalities to determine the best address to communicate

with a peer and to distribute resources among peers is the focus of Chapter 5 and is

discussed in detail in this chapter with a special focus on address selection and resource

allocation approaches suitable for the use in fully decentralized peer-to-peer networks. In

this chapter we focus on the design and implementation of GNUnet’s transport infras-

tructure and on the ATS functionality to manage and suggest addresses for the transport

infrastructure and assign bandwidth resources to addresses.

4.3.11 The Transport Service

A central and important component, realizing several main functionalities required for

GNUnet’s transport infrastructure is the TRANSPORT service. The TRANSPORT service

is the central component of GNUnet’s transport infrastructure responsible to establish

underlay connections with remote peers and manage incoming connections from remote

peers. GNUnet’s TRANSPORT service provides functionality for:

Address Validation

Module: transport validation

Described in Section 4.3.11.5

Peer’s Cryptographic Information

Module: transport

Described in Section 4.3.11

Peer’s HELLO message

Module: transport hello

Described in Section 4.3.11.4

Interaction with Higher Layer Applications and Clients

Module: transport clients

Described in Section 4.3.11.14

Connections with Remote Peers

Module: transport neighbours

Described in Section 4.3.11.7

Blacklisting Connections with Remote Peers

Module: transport blacklist

Described in Section 4.3.11.6

Transport Plugins

Module: transport plugins

Described in Section 4.3.11.1, Section 4.3.11.2, Section 4.3.11.3,

Enforcing Resource Restrictions

Described in Section 4.3.11.13

The TRANSPORT service is a GNUnet service and orchestrates the functionalities de-

scribed above and the collaboration between these components. During startup, the

54 4. Resilient and Secure Communication for Decentralized Networks

TRANSPORT service parses the peer’s configuration settings, loads the peer’s public/pri-

vate key pair, initializes the service and starts the different TRANSPORT components. It

controls the different components and provides them with additional functionalities like

access to the peers configuration settings, peer statistics and the public/private key pair.

In the following, we will introduce the different components and describe the detailed func-

tionalities, their interaction with internal and external components. The internal structure

of the TRANSPORT service with its components is depicted in Figure 4.3.

Clients

Transport Service
Clients

NeighborsHELLO Validation

Blacklisting

Plugins

PluginPlugin Plugin

Fig. 4.3: The TRANSPORT Service

4.3.11.1 The Transport Service Plugin Architecture

GNUnet’s transport infrastructure supports the use of multiple different transport mech-

anisms to be resilient against service degradation and to provide connectivity in case of

missing or failing infrastructure. To provide an extensible design allowing new transport

plugins to be added in the future, the TRANSPORT provides an extensible plugin architecture

for transport mechanisms and supports to implement transport mechanisms as loadable

plugins. These transport plugins are self-contained and hide their implementation from

the TRANSPORT services. The TRANSPORT service and plugins interact using an API. This

design allows to add new plugins without modifying the transport service and to modify the

plugin implementation without having to update to the TRANSPORT implementation. The

API is designed to allow both the plugin to access functionality provided by the TRANSPORT

service as well as the TRANSPORT service to access functionality provided by the plugins.

Each peer can load multiple transport plugins, but does not have to support all plugins.

Which plugins a peer loads is configured by the user. Two peers trying to communicate

with each other only need to have one transport plugin in common. There is no dedicated

negotiation mechanism to find the common set of plugins between two peers. Addresses

using plugins not available on a peer are filtered by the address validation process described

in Section 4.3.11.5.

To manage transport plugins, the TRANSPORT service contains the PLUGINS module.

This module is initialized during TRANSPORT startup and parses the configuration of the

TRANSPORT service for the plugins configured and initializes each plugin. Each transport

plugin is implemented as a self-contained module, which can be loaded by the TRANSPORT

service if the plugin is configured to be active. To load the plugin, the TRANSPORT service

relies on the plugin functionality provided by GNUnet’s utility library. This functionality

4.3. Design and Implementation 55

requires the plugin to provide two functions using a fixed nomenclature to load and unload

the plugin. During start up, the PLUGINS component initializes the plugin using the

initialization function. As an argument for this function, it passes an environment object,

containing data structures provided by the TRANSPORT service, including a configuration

and a logging handle and references to the callback functions provided by the TRANSPORT

service. These callback functions are used by the plugins to interact with the TRANSPORT

service. After initialization, the plugin returns an api structure to the PLUGIN component

containing information about the API functions provided by plugin. This api object is

stored by the PLUGINS module and other components of the TRANSPORT service can obtain

these objects to interact with the plugins. During TRANSPORT shutdown, the PLUGINS

module instructs all plugins to shutdown and free all data structures using the shutdown

function required for every plugin.

4.3.11.2 Transport Service Plugin API

The TRANSPORT plugin API provides the interface for the TRANSPORT service to access

functions provided by the transport plugins and for the plugins to access TRANSPORT

service functionality. The plugins provide functions to the TRANSPORT service to initiate

and terminate connections, send data to other peers and convert addresses from and to

the plugin specific address format used by the plugin as as described in Section 4.3.2. The

functions required to be provided by all plugins are:

struct Session * get˙session (void *cls,

const struct GNUNET˙HELLO˙Address *address);

Initiate a new connection to a peer using a specific address. The plugin checks if

a session is established for the address and if so returns the existing session. If no

session is established with this session, the plugin establishes a new session to this

address and returns the new session.

ssize˙t send (void *cls,

struct Session *session,

const char *msgbuf,

size˙t msgbuf˙size,

unsigned int priority,

struct GNUNET˙TIME˙Relative to,

GNUNET˙TRANSPORT˙TransmitContinuation cont,

void *cont˙cls);

Send data to a peer using a specific session. TRANSPORT passes a message buffer

where the data to send are stored and passes the size of this buffer. Priority is not

supported at the moment. TRANSPORT can specify a send timeout and a continuation

which is called when the send operation was completed. The continuation is called

with the result of the operation indicating if the operation was successful or failed

(e.g. due to a timeout). The send operation returns the amount of bytes accepted

by the plugin or GNUNET˙SYSERR to indicate immediate failure of the operation.

void disconnect˙peer (void *cls,

const struct GNUNET˙PeerIdentity *target);

56 4. Resilient and Secure Communication for Decentralized Networks

Disconnect all sessions for the given peer. The plugin will lookup all sessions re-

lated with this peer, disconnect underlay connections if supported by the plugin and

cleanup all session information.

int disconnect˙session (void *cls,

struct Session *session);

Disconnect a specific session for a peer. The plugin will lookup the session, terminate

an underlay connection if supported and frees all information stored with the session.

The function returns GNUNET˙OK on success.

void update˙session˙timeout (void *cls,

const struct GNUNET˙PeerIdentity *peer,

struct Session *session);

Reschedule disconnect timeout for a session. If TRANSPORT received data with a

session it notifies the respective plugin about this event so the plugin can update

the inactivity timeout to prevent the session to be removed due to inactivity.

unsigned int query˙keepalive˙factor (void *cls);

Get information how often keep alive messages are required for this plugin. The

default idle timeout configured for TRANSPORT is divided by the value returned. If a

plugin requires to send keep alive messages more frequently it increases the value.

This is true for example for the UDP plugin since UDP does not provide explicit

disconnect events.

void update˙inbound˙delay (void *cls,

const struct GNUNET˙PeerIdentity *peer,

struct Session *session,

struct GNUNET˙TIME˙Relative delay);

Updates the delay for the next read operation for a given session. The delay can

change if e.g. the inbound bandwidth assigned by ATS changes. This function is

used to notify a plugin about a read delay that changed.

enum GNUNET˙ATS˙Network˙Type get˙network (void *cls,

struct Session *session);

Returns the network scope a HELLO address is located in for the session passed.

The network scopes available are defined with ATS including scopes for Local Area

Network (LAN), Wide Area Network (WAN), loopback, Bluetooth and WLAN.

int check˙address (void *cls,

const void *addr,

size˙t addrlen);

Check if an address belongs to this peer and this plugin. A plugin-specific address

is passed to the plugin and the plugin checks if this address is included in the list of

addresses belonging to this peer and provided by this plugin and if the format of the

address is valid. The plugin returns GNUNET˙OK if the address belongs to this peer

or GNUNET˙SYSERR if the address does not belong to this peer.

4.3. Design and Implementation 57

const char * address˙to˙string (void *cls,

const void *addr,

size˙t addrlen);

Convert a plugin-specific binary address to a human-readable string representation.

TRANSPORT passes the address in binary format in combination with the address

length. The plugin returns a string containing the human-readable string.

int string˙to˙address (void *cls,

const void *addr,

size˙t addrlen);

Convert a human-readable string representation to a plugin-specific address. This

function is used to convert addresses obtain from URIs to the plugin-specific binary

representation. The plugin returns GNUNET˙OK if the address could be converted or

GNUNET˙SYSERR if conversion failed.

void address˙pretty˙printer (void *cls,

const char *type,

const void *addr,

size˙t addrlen,

int numeric,

struct GNUNET˙TIME˙Relative timeout,

GNUNET˙TRANSPORT˙AddressStringCallback asc,

void *asc˙cls);

Converts a plugin-specific to a human readable string. TRANSPORT passes the address

and its length and specifies if a numerical conversion or a lookup for the hostname

with DNS should be performed. A continuation is passed to be called with the result

of the conversion.

The TRANSPORT service provides functions to the plugins to allow the plugins to notify

the service about connect or disconnect events, and data received from remote peers.

Plugins can retrieve the peer’s identity and HELLO message from the TRANSPORT service

and handles to the peer’s configuration, the statistic service and the logging functionality.

Functions provided by the TRANSPORT service with the plugin API are:

void session˙start (void *cls,

struct GNUNET˙HELLO˙Address *address,

struct Session *session,

const struct GNUNET˙ATS˙Information *ats,

uint32˙t ats˙count);

Notify TRANSPORT about a new incoming session. This information is given to ATS

and can be selected by ATS to communicate with this peer. The plugin passes

additional performance information about the address.

struct GNUNET˙TIME˙Relative receive (void *cls,

const struct GNUNET˙HELLO˙Address *address,

struct Session *session,

const struct GNUNET˙MessageHeader *message);

58 4. Resilient and Secure Communication for Decentralized Networks

Pass data received from remote peers to TRANSPORT. The plugin received a mes-

sage from a remote peer using the given address and session. As a return value,

TRANSPORT notifies the plugin about the delay for the next read operation for the

session.

void session˙end (void *cls,

const struct GNUNET˙HELLO˙Address *address,

struct Session *session);

Notify TRANSPORT about a terminated session. The session for the given address

terminated and cannot be used anymore. TRANSPORT notifies ATS about this event

and if this session is the active session currently used has to obtain a new session

from ATS.

const struct GNUNET˙MessageHeader * get˙our˙hello (void);

Returns the peer’s current HELLO message to the plugin.

void notify˙address (void *cls,

int add˙remove,

const struct GNUNET˙HELLO˙Address *address);

Notify TRANSPORT about a new address available or an address removed with this

plugin. The addresses are added to the peer’s HELLO message by the HELLO com-

ponent.

struct GNUNET˙ATS˙Information get˙address˙type (void *cls,

const struct sockaddr *addr,

size˙t addrlen);

Return the ATS network scope of an address to the plugin. TRANSPORT uses NAT to

figure out if a given IP address is a loopback address or located in the local LAN or

in the WAN.

void update˙address˙metrics (void *cls,

const struct GNUNET˙HELLO˙Address *address,

struct Session *session,

const struct GNUNET˙ATS˙Information *ats,

uint32˙t ats˙count);

Notify TRANSPORT about updates for address properties. The plugin gets notified

about performance changes for a session or an address using ATS specific data

structures.

void register˙quota˙notification (void *cls,

const struct GNUNET˙PeerIdentity *peer,

const char *plugin,

struct Session *session);

Function to be called by the plugin to be notified about changes to the quota for a

specific peer, plugin and session. This information is required to allow the plugin to

reschedule delayed read events for sessions when quotas change.

4.3. Design and Implementation 59

void unregister˙quota˙notification (void *cls,

const struct GNUNET˙PeerIdentity *peer,

const char *plugin,

struct Session *session);

Function to be called by the plugin to stop notifications about changes to the quota

for a specific peer, plugin and session.

4.3.11.3 Transport Plugins

The specific implementation of a TRANSPORT plugin a depends on the transport mechanism

it implements, but plugins share a common design approach to be able to inter-operate

with the TRANSPORT service. Transport plugins are loaded by TRANSPORT service during

TRANSPORT’s startup and initialization phase. To load a plugins, TRANSPORT calls the

initialization function provided by the plugin and passes an environment data structure

containing references to the API functions provided by the TRANSPORT service and ad-

ditional information like configuration and service handles. During this initialization, the

plugin loads required configuration parameters from the configuration using the config-

uration handle passed by TRANSPORT, initializes required data structures and sets up the

network communication. The plugin returns a data structure to TRANSPORT containing

references to the API functions provided by the plugin. Plugins based on IP can register

with the NAT library described in Section 4.3.8 to obtain information about IP addresses

available on the system. The plugins notify TRANSPORT about addresses remote peers can

use to connect to this peer and TRANSPORT uses these addresses to update the peer’s

HELLO message exchanged with other peers. Whenever the plugin is notified about a

change in the set of addresses by NAT, TRANSPORT is notified about addresses added or

removed.

When TRANSPORT requests a new session to a remote peer, it passes the HELLO ad-

dress to use with the get˙session function. First the plugin checks if a session for this

address is already established and returns the existing session. If no session is established,

the plugin creates a new session and returns a reference to this session to TRANSPORT ser-

vice. The TRANSPORT service then uses this reference to pass data to the plugin to send

to the specific peer. If an incoming connection is established by a remote peer, the plugin

creates a new session for this connection and notifies TRANSPORT about the new session.

TRANSPORT passes this information to ATS service which can decide to use this session

instead of establishing an outbound session. To send data to remote peers, TRANSPORT

services uses the plugin’s send function and passes the data together with the session to

use and a callback function to call with the result of the send operation to the plugin. The

plugin attempts to send the data to the peer and notifies the TRANSPORT service about

success or failure of this operation by calling the callback function with the result of the

send operation. When the plugin receives data from a peer, it notifies TRANSPORT service

about the data using TRANSPORTS’s receive function. When a session is terminated by a

remote peer, the plugin notifies TRANSPORT about the terminated session so TRANSPORT

service can switch to a different address or stop communicating with this peer. If the peer

decides to disconnect a particular session, the TRANSPORT service instructs the plugin to

disconnect this specific session and the plugin will terminate the connection corresponding

to this session (for connection-oriented transport protocols) and clean up all session spe-

cific information. If the peer decides to stop communicating with a particular peer and to

disconnect from this peer, the TRANSPORT service instructs the plugin to disconnect from

the peer and to terminate all sessions established with this peer. Disconnecting from a

60 4. Resilient and Secure Communication for Decentralized Networks

peer may occur during shutdown and when TRANSPORT is instructed to disconnect from a

peer by a higher layer component. Depending on the transport mechanism implemented

by the plugin, the plugin may have to implement a timeout mechanism to keep track of

unused and outdated sessions. This is required to notify the TRANSPORT service to dismiss

these sessions. This is in particular important for datagram-based transport plugins like

the UDP plugin since these protocols do not notify the plugins with explicit disconnect

events.

When the plugin has to be unloaded, TRANSPORT service calls the respective shutdown

function provided by the plugin. The plugin disconnects from all remote peers and termi-

nates all active sessions. It shuts down network communication, notifies TRANSPORT about

all addresses in the set of active addresses to be removed, and frees all data structures

used to store information.

4.3.11.4 HELLO Management

Every peer maintains a HELLO message as described in Section 4.3.5. This HELLO mes-

sage contains peer specific information including the peer’s public key and information

about the peer’s addresses. This HELLO message is distributed to other peers using boot-

strapping and neighbor discovery mechanisms. Due to the support of multiple transport

mechanisms and the possibility of addresses changing over time, a central instance col-

lecting this address information and keeping the HELLO information up-to-date is required.

In GNUnet’s transport infrastructure, this centralized maintenance of the HELLO message

is provided by TRANSPORT’s HELLO component. This component collects all information

required to maintain the peer’s HELLO message in a central place; other components can

obtain this HELLO message from the HELLO component.

When initialized during TRANSPORT startup, the HELLO component creates a new HELLO

message containing the peer’s the public key provided by the TRANSPORT service. The

addresses to add to the HELLOmessage are provided by the TRANSPORT plugins as described

in Section 4.3.11.3. The plugins notify the TRANSPORT service about the address they

provide and regularly update their addresses (e.g. when notified by the NAT library about

a changing IP address). TRANSPORT notifies the HELLO component about any change and

the HELLO component updates the HELLO message accordingly. The HELLO message is

given to the PEERINFO service responsible to store validated peer information as described

in Section 4.3.7.

The HELLO message contains an expiration date how long the current HELLO message

and the addresses included are valid. This value is defined by a constant2 and currently

defined as 12 hours. The HELLO message is refreshed by the HELLO component in a regular

interval to prevent the HELLO from expiring when no addresses are added or removed by

the transport plugins. This interval is defined in the constant HELLO˙REFRESH˙PERIOD,

currently defined with 6 hours. To refresh the HELLO, the component iterates over the list

of addresses provided by the plugins and creates a new HELLO message containing these

addresses with an extended expiration time.

4.3.11.5 Address Validation

Before a peer can use addresses obtained in a HELLO message from other peers, the peer

has to ensure that the addresses contained in this message are valid (i.e. can be used

to establish a connection) and the communication partner it can connect to with these

2 GNUNET CONSTANTS HELLO ADDRESS EXPIRATION

4.3. Design and Implementation 61

addresses is the peer (with the identity) it purports to have. This process is called address

validation. When an address is validated, the peer checks that the address can be used

to connect to a peer and authenticates the communication partner using a challenge/re-

sponse mechanism using the public key included in the HELLO message. All addresses

obtained from other peers are initially treated as unvalidated, no matter if they are ob-

tained from a hostlist server operated by a (trustworthy) organization or a from a peer

directly discovered using neighbor discovery or other methods mentioned in Section 4.3.6.

An exception is peer information included in the GNUnet software, which is by default

treated as validated. Addresses are revalidated in regular intervals to ensure that they are

still valid.

This address validation process is implemented in the TRANSPORT service’s VALIDATION

module. Other components like the HOSTLIST daemon or transport plugins supporting

neighbor discovery mechanisms like the UDP or Bluetooth plugin notify the VALIDATION

module about new HELLO messages received and pass the VALIDATION module the HELLO

messages. When VALIDATION obtains a new HELLO message, it starts with parsing the

HELLO message and extracts the public key and addresses contained in the message. For

each address, VALIDATION checks the expiration time of the address and the address is

discarded if the expiration time is exceeded. If the address is not expired, a validation

attempt for this address is started. When an address is to be validated, VALIDATION first

checks if the transport plugin required for this address for is available. When the required

plugin is not available, the peers skips the address since it cannot be used with the peer’s

current local configuration. Before establishing a connection with this address a blacklist

check, as described in Section 4.3.11.6, is performed to ensure that connecting to this

peer is allowed. If blacklisting permits a connection, the peer initiates a connection to the

respective address and sends a so called PING message. A PING message contains the

public key of the remote peer to be validated, the address in validation and the transport

plugin this address belongs to, the HELLO message of the peer sending the validation

request and a 4 byte nonce value to use with the response to prevent replay attacks.

When a peer receives such a PING message it extracts the address to validate from

the message and checks if the required transport plugin is available on the peer. If the

plugin is available, it checks with the plugin if the address to validate is a valid address

belonging to this peer. This check is done by giving the address to the plugin using the

check˙address function of the plugin API as described with the transport plugin API in

Section 4.3.11.2. Each plugin internally maintains a list of addresses valid with this plugin

and checks the address against this list. If the plugin confirms the validity of the address,

the peer creates a validation PONG message to send to the requesting peer. This PONG

message contains as a response the address and the plugin of the address to validate and

the nonce included in the PING message. The PONG message contains a timestamp how

long this signature is valid and is cryptographically signed with the private key of the peer

creating the PONG message to ensure the authenticity of the message. This signature

contains the address, the transport plugin, and the expiration time of the signature. The

nonce is not included in the signature. The validation component can cache signatures

and reuse them if the peer sending the validation request only attempts to re-validate an

address. This reduces the number of required signing operations and can prevent Denial

of Service (DoS) attacks. If any of the checks or any operation fails, the validation

process is aborted and the connection with the remote peer is terminated without sending

a response.

When a peer receives a PONG message, it first of all ensures the correctness of the

message received and checks if a validation request for this address is pending. If no

62 4. Resilient and Secure Communication for Decentralized Networks

PONG message is expected, the peer discards the message without any response. If a PONG

message is expected, the peer checks the expiration time of the message and verifies

the signature included in the PONG message using the public key of the peer creating the

message. If the validation check of the signature was successful, the address is treated

as validated. Since signature verification is expensive, the peer can cache the signature

received during a successful validation process and can on subsequent validation attempts

compare the cached signature with the signature received in the PONG message. This is

possible since the nonce used is not included in the signature created by the peer sending

the PONG. Address validation cannot protect against replay attacks from an adversary able

to intercept network traffic between peers and by doing so having the possibility to obtain

the required nonce for an replay attack. VALIDATION passes validated address information

to the PEERINFO service responsible to store peer information in a persistent way and in

addition to other components of the TRANSPORT service and the ATS service to use this

information to communicate with this peer.

4.3.11.6 Blacklisting Peers

In addition to explicitly white-list peers in friend-to-friend mode as described with the

TOPOLOGY daemon in Section 4.3.9.1, it is also possible to explicitly prevent connections

with peers using blacklisting. Before a connection to a peer is established or an incoming

connection request is accepted, TRANSPORT service performs a blacklist check to ensure a

connection with this respective peer is not explicitly denied. Blacklisting entries are main-

tained by TRANSPORT service’s BLACKLIST component and can be configured statically by

adding an explicit blacklisting entry in the peer’s configuration, or dynamically at runtime,

allowing clients to dynamically add new blacklisting entries. A connection to a peer can be

blacklisted based on the peer identity denying all connections to this peer or by specifying

a transport plugin not allowed to be used with this peer.

Every time TRANSPORT is instructed to initiate a connection, a check against the

blacklist is performed. If the peer is blacklisted, a connection to this peer is denied and

the connection attempt aborted. The same applies to incoming connections from other

peers: if a new inbound connection is established from a remote peer, a blacklist check is

performed before the connection is accepted and established with the remote peer. If the

connection is denied by BLACKLIST, the connection is terminated and the peer does not

respond to the other peer.

4.3.11.7 Neighbor Connections

The most important functionality for the transport infrastructure and the TRANSPORT

service is to establish and maintain connections with remote peers. In the TRANSPORT

service, the NEIGHBOR component is responsible to establish, maintain and disconnect

connections in close collaboration with the TRANSPORT plugins. The NEIGHBORS com-

ponent is responsible for establishing outbound connections with remote peers as well

as for accepting incoming connections. The NEIGHBOUR component interacts with the

BLACKLISTING component (described in Section 4.3.11.6), to check for every connection

being established or accepted if a connection with this peer or using this transport plugin is

allowed or has to be denied. To maintain a connection, the NEIGHBOUR component sends

periodic keep-alive messages to ensure a connection stays established. The basic notion in

this component is the idea of a neighbor a higher layer application wants to communicate

with and NEIGHBOR’s task is to establish a connection to exchange data with this commu-

nication partner. Here the higher layer application does not have to know how (i.e. using

4.3. Design and Implementation 63

which transport plugin or address) the connection is established, the application is only

interested that it is possible to exchange data with this peer. The NEIGHBORS component

therefore provides the abstraction between communication with a peer and the specific

mechanism used. A second aspect of this notion is that the NEIGHBORS component only

establishes connections with peers higher layer applications explicitly want to communi-

cate with but it does not decide which peers to communicate with. This decision is met

by the higher layer applications and in particular the TOPOLOGY daemon, described in Sec-

tion 4.3.9. In addition, the NEIGHBORS component does not decide how to communicate

with a remote peer. This decision is found by the ATS service responsible to manage

available addresses and to find a decision which communication mechanism to use. ATS

is responsible for automatic transport selection and is described in detail in Chapter 5.

The focus of TRANSPORT’s NEIGHBOR component is to establish connections to a

remote peer on request of external components or higher layer applications using the

transport mechanism suggested by the ATS service. For every neighbor peer a connection

is requested with, NEIGHBOR creates a neighbor instance used to store information related

to this peer, for example the address provided by the ATS service to communicate with

this peer, an additional alternative address to allow a fast switching between addresses

and the current state of the connection.

According to the peer-to-peer paradigm, peers in a peer-to-peer network can estab-

lish and terminate connections with each other without coordination. Peers can act au-

tonomously, so two peers can begin to connect to each other at the same time. GNUnet’s

transport infrastructure only uses local decisions in combination with a sender decides ap-

proach. Every peer decides locally how to communicate with a remote peer and chooses

the best transport mechanism and address available. This has the implication, that peer

a can send data to peer b using transport mechanism x while peer b can decide to send

data to peer a using transport y . In addition, both peers can even switch mechanisms and

addresses while communicating with each other. The TRANSPORT NEIGHBOR component

therefore employs a three-way connection establishment mechanism to ensure that con-

nections are established correctly in combination with a state machine representing the

current state for every neighbor the component is interacting with.

Such a three way handshake is required since every peer can decide on its own which

address to use and since it is not assured that the address is working at the moment and

the peer is willing to accept a connection using this address or mechanism. The three way

handshake is depicted in Figure 4.4. With this three way handshake, the initiating peer

sends a SYN message to the remote peer to indicate that it wants to establish a connection

using this address. A peer receiving a SYN message checks with the blacklist if it accepts

a connection from this peer and decides on its own which mechanism and address to use

to respond to the SYN message. When it accepts the connection attempt, it replies with a

SYN ACK message using the address suggested by ATS as the best address available. When

the initiating peer receives a SYN ACK from a peer, it knows that the remote peer received

the connection attempt and accepts the attempt using this address. The initiating peer

now has to acknowledge the SYN ACK message using an ACK message to indicate that it

received the SYN ACK from the remote peer and that it accepts the address selected by

the remote peer.

4.3.11.8 The Neighbor State Machine

Establishing and maintaining connections to remote peers, switching addresses when a

connection fails, reconnecting peers and performing a controlled disconnect with a peer

64 4. Resilient and Secure Communication for Decentralized Networks

Peer 1 Peer 2
SYN

SYN ACK

ACK
connected!

connected!

Transport Mechanism selected by Peer 1

Transport Mechanism selected by Peer 2

Fig. 4.4: The TRANSPORT Service Three Way Handshake

while at the same time accepting incoming connection attempts from a remote peer is a

complicated task to manage for the NEIGHBOR component.

The TRANSPORT NEIGHBOR component implements a state machine to track the state

of every neighbor it communicates with. This state machine allows the NEIGHBOR compo-

nent to react to every network and application event according to the peer’s current state.

This state machine is realized as a Deterministic Finite Automaton (DFA): the state ma-

chine provides of a finite set states and a dedicated starting state (NOT˙CONNECTED) when

the peer is created and a finite state (DISCONNECT˙FINISHED), reached when the peer is

fully disconnected. Every transition between states is caused by an event (like a network

or application event or a timeout) and triggers an action (like a sending a message or

terminating the connection).

Each neighbor in the NEIGHBOR component provides its own state machine and every

neighbor is during its lifetime in a specific state of the state machine. When a neighbor

transitions to a new state in the state machine, specific methods exist to perform a state

transition and modify the state of the neighbor. This allows extensive monitoring of

the transition events in the NEIGHBOR component for every single neighbor. The API to

monitor such neighbor activity is described in Section 4.3.11.15

To check for timeouts, NEIGHBOR uses a master task, checking every neighbor in

regular intervals. If a timeout occurred for a peer, the master tasks triggers the required

action to respond to timeout situations depending on the current state. The NEIGHBOR

state machine is depicted in Figure 4.5 and provides the following states:

NOT˙CONNECTED: is the start state of the DFA. When a NEIGHBOR entry is created due

to a connection request or a connection attempt from a remote peer, the neighbor

is initialized with this state.

INIT˙ATS: when a peer attempts to initiate a connection to a remote peer, it requests an

address to use from ATS service and waits in this state for the address suggestion.

Since ATS only suggests an address if a suitable address is available, this state can

time out when no address is available.

SYN˙SENT: when the peer tries to establish an outbound connection and an address was

suggested by ATS, the peer sends a SYN message to the remote peer using the

suggested address. After sending this message the neighbor changes to this state

and waits for a reply from the remote peer.

SYN˙RECV˙ATS: after receiving a SYN message from a remote peer, the receiving peer

requests an address from ATS to communicate with the remote peer according to

the sender decides principle. This state indicates that for this neighbor an address

suggestion to continue is expected.

4.3. Design and Implementation 65

SYN˙RECV˙ACK: when a peer after receiving a SYN message acknowledges this message

using a SYN ACK message to indicate that it received the SYN message, it changes

to SYN˙RECV˙ACK and expects the ACK to complete the three way connection es-

tablishment.

CONNECTED: When a peer initiating an outbound connection has sent a SYN and received

a SYN ACK message, the peer connection is established and the peer is connected.

For a peer receiving an inbound connection and receiving the ACK, the connection

attempt is successful and the peer is connected.

RECONNECT˙ATS: When the active session used to communicate with a peer is terminated,

the peer tries to reestablish the connection as described with fast reconnect in

Section 4.3.11.11: after the active session was terminated the peer now expects an

address suggestion from ATS in this state.

RECONNECT˙SENT: When reconnecting and ATS provided an alternative address to use,

the peer sends a SYN message to indicate a connection attempt and waits in this

state for a response.

SWITCHING˙CONNECT˙SENT: When a peer is connected and ATS suggests to switch to

a new addresses, the peers sends a SYN message and waits in this state for the

response from the remote peer.

DISCONNECT: This state indicates a disconnect operation in progress, as described in Sec-

tion 4.3.11.12, and the peer tries to notify the remote peer by sending a DISCONNECT

message.

DISCONNECT˙FINISHED: The disconnect process for this peer is finished and in the next

step the neighbor entry will be freed. This is the terminal state of the life cycle for

a neighbor.

4.3.11.9 Establishing Outbound Connections

When an external component like the TOPOLOGY daemon instructs the TRANSPORT service

to establish a connection with a peer, TRANSPORT first checks if an overlay connection

is already established and if not in the next step performs a blacklist check to ensure

that establishing a connection to this peer is permitted. If a connection to the peer is

permitted, the NEIGHBOR component is notified about the request and a new neighbor

object for the respective peer is created and initialized. To establish the connection, an

address is requested from the ATS service. When ATS provides an address, NEIGHBOR

tries to establish a connection with the peer using the address provided from ATS. Since

connections can be blacklisted based on the transport plugin used, a second blacklist check

is performed for the suggested address. If the blacklist check for the suggested address

permits a connection, the NEIGHBOR can initiate the connection with peer. If the use

of this address is denied by the BLACKLIST component, the address is removed, ATS is

instructed to delete this address and TRANSPORT waits for an alternative address to be

suggested by ATS.

If ATS provides an address including a session, an underlay connection was already

established before (due to a validation event or an incoming connection attempt). If no

session is provided, the NEIGHBORS component asks the respective transport plugin to

create a new session for the provided address.

66 4. Resilient and Secure Communication for Decentralized Networks

S˙NOT˙CONNECTED

S˙INIT˙ATS

S˙SYN˙SENT

S˙SYN˙RECV˙ATS

S˙SYN˙RECV˙ACK

S˙CONNECTED

S˙RECONNECT˙ATS

S˙RECONNECT˙SENT

S˙SWITCHING˙SYN˙SENT

S˙DISCONNECT

S˙DISCONNECT˙FINISHED

Start

T
im
eo
u
t

T
im
eo
u
t

T
im
eo
u
t

T
im
eo
u
t

—/

Request Address

Address Suggestion/

SYN
Timeout/
—

SYN ACK /

ACK

SYN /

Request Address

Address Suggestion /

SYN ACK

ACK/
—

Session terminated/
—

Address Suggestion /

SYN
SYN ACK/
—

Address Suggestion /

SYN

SYN ACK, Timeout/
—

Disconnect Request /
—

— /

DISCONNECT

Fig. 4.5: The TRANSPORT Service State Machine

To establish an outbound connection the NEIGHBORS component follows the three-

way handshake protocol described in 4.3.11.7: it first sends a SYN message using the

plugins send API function and passing the session to use with this call. When the remote

peer receives this session, it acts as described in Section 4.3.11.10 to handle incoming

connection requests. The peer sending the connect request waits for the SYN ACK message

as an acknowledgment from the remote peer. When it receives the SYN ACK message, it

marks the peer as connected and responds to the remote peer with a final ACK to indicate

that it received the SYN ACK message. When the neighbor is marked as connected, the

NEIGHBOR component notifies the TRANSPORT service about the successful connection

4.3. Design and Implementation 67

event which notifies the clients using the TRANSPORT CLIENT component described in

Section 4.3.11.14 about the peer being connected.

4.3.11.10 Accepting Inbound Connections

When a peer receives an incoming connection attempt from a remote peer and is not yet

connected to this peer, in the first step a new neighbor entry is created and a blacklist

check is initiated to check if an incoming connection from this peer is allowed. If the

connection attempt is denied by BLACKLISTING, the NEIGHBOR component terminates the

connection without responding to the remote peer. If BLACKLIST permits the connection,

an address to communicate with this peer is requested from ATS service. When ATS

suggests an address to use, a second blacklist check for the address is performed. This

is required since the first check was only for the peer and this additional check ensures

that a connection with this specific transport plugin is allowed. If the check for the

peer and the plugins permits the connection, a SYN ACK messages is sent to the remote

peer to acknowledge the connection attempt. Otherwise the address and the session are

destroyed with the ATS service, the plugin is instructed to disconnect the session and

NEIGHBORS expects ATS to suggest an alternative address. The remote peer receiving

the SYN ACK message responds with an ACK to acknowledge that it received the SYN ACK

message. When the peer receives this ACK message, the peer is marked as connected and

the TRANSPORT services notifies higher layer clients about this event using the CLIENT

component.

4.3.11.11 Switching Connections and Fast-Reconnect

GNUnet’s TRANSPORT service relies on the sender decides principle to have every peer

locally select the best transport mechanism to communicate with a remote peer. Based

on this principle the sender decides which plugin, address and session to use and can

reconsider this decision and switch to a new transport address if it has evaluated that an

alternative mechanism provides better properties.

When a connection to a remote peer is established and the peer (and ATS in particular)

decides to switch to an alternative address, TRANSPORT first checks with the blacklist if

a connection with this address is allowed. If BLACKLIST permits this connection, a SYN

message is sent to the remote peer using the new address. The remote peer performs a

blacklist check for the new connection based on the address. If the blacklist check permits

the use of this address, the remote peer sends a SYN ACK message to acknowledge the

SYN message and waits for a ACK as an acknowledgment from the peer initiating the

address switch that the switch operation was successful. Now the active address used by

the peer initiating the address switch is switched to the new address and both peers are

still connected. To prevent a disconnect in case the address switch fails, the NEIGHBOR

component stores the previous address used: when the switch operation fails, it discards

the alternative address and reactivates the address used before.

If the session used to communicate with a peer is disconnected (e.g. due to a network

error), the peer is not immediately marked as disconnected and clients are not immediately

notified about the disconnect event. Instead a process called fast reconnect takes place

with the goal to re-establish the connection between the peers: the peers removes the

disconnected address, notifies ATS to delete this address and waits for ATS to suggest an

alternative address. If ATS provides can provide an alternative address it reconnects to

the peer without notifying clients about this event using the three-way handshake process

to initiate an outbound connection. This fast-reconnect approach provides the illusion

68 4. Resilient and Secure Communication for Decentralized Networks

of stable connections for higher layer components even under conditions with unstable

network connections.

4.3.11.12 Disconnecting Connections

Besides peers getting disconnected due to errors and network failures or ATS decisions,

peers can also decide to actively disconnect from a remote peer. When a peer is to be

disconnected, NEIGHBORS instructs the plugins to disconnect all sessions established with

this peer. For the address used to communicate with the remote peer, an active disconnect

message with a notification for the remote peer is transmitted to prevent the remote

peer from re-stablishing the connection (e.g. using fast reconnect): the disconnecting

peer sends a DISCONNECT message to the remote peer containing a cryptographically

signed timestamp. This signed timestamp provides authenticity for the remote peer and

prevents DoS attacks and adversaries disconnecting peers by sending arbitrary DISCONNECT

messages to other peers. A peer receiving a DISCONNECT message checks the signature

and the timestamp and disconnects the peer if the check was successful. If for this peer

an active address is available, TRANSPORT instructs ATS to delete this address and the

respective plugin to disconnect from this peer and to terminate all sessions. This active

disconnect process immediately notifies a remote peer about a disconnect and prevents

the remote peer from performing expensive reconnect operations.

4.3.11.13 Enforcing Resource Constraints

GNUnet may not be the only application running on a system and may have to share

network resources with other applications. To prevent other applications from being

cannibalized by GNUnet trying to maximize its performance with other peers, the user

may want to limit the resources consumed by GNUnet. GNUnet’s transport infrastructure

therefore allows the user to configure restrictions on the amount of bandwidth used to

communicate with other peers. The user can configure quotas for available network scopes

(WAN, LAN, WLAN, ...), specifying how much bandwidth GNUnet is allowed to consume

both for inbound and outbound communication.

Resource restrictions are enforced in the TRANSPORT service on a per-peer basis. Every

peer gets a certain amount of resources assigned by ATS and when this share is depleted,

TRANSPORT delays future send and receive operations with this peer.

Outbound quotas are enforced within the TRANSPORT API used by clients to send data

to peers: a client requests to send a certain amount of data to a peer and the API calls a

callback function to notify the client when it is ready to send. This callback mechanism

is coupled with a bandwidth tracker, delaying the callback when too much traffic is sent

to enforce the bandwidth constraint.

For incoming traffic the inbound quota is enforced by the TRANSPORT service delaying

the next receive operation for the plugins. When plugins pass data received to TRANSPORT,

TRANSPORT notifies the plugins how long to delay the next receive operation. For transport

mechanisms using protocols providing flow control (e.g. TCP) the next receive call can

be easily delayed to throttle the amount of data received. For plugins using protocols not

providing flow control (e.g. UDP) this is not possible without peers collaborating since

reads cannot be delayed.

For mechanisms not providing flow control, we provide a collaborative approach: the

receiving peer notifies the sender about the current receive rate it is willing to accept.

The sender has to obey this rate or otherwise the receiver can drop messages exceeding

the receive rate. Please note, that this approach does not violate the objectives to not

4.3. Design and Implementation 69

share internal information with other peers and not require other peers to collaborate:

the receiving peer can drop messages if the sender does not collaborate and the decision

about the receive rate is found locally without collaborating with a remote peer to find this

decision. Therefore, this is a voluntary collaboration of the sender who will be otherwise

punished if it does not obey the receiver’s transmission rate constraint. This approach

leaks only little information to other peers: the send rate provided to the remote peer only

refers to the resources assigned to this peer and not the amount of resources the peer

can overall provide.

4.3.11.14 Client Management

The management of higher layer clients is done by the TRANSPORT’s client component.

Clients wanting to interact with the TRANSPORT service use the TRANSPORT API described

in Section 4.3.11.15 to interact with the TRANSPORT service. The CLIENT component

manages incoming connections from higher layer clients and maintains a client context for

each client. It forwards client requests to the respective TRANSPORT component responsible

to process the request and returns the result of the operation to the client.

4.3.11.15 Interacting with the Transport Service

To allow other GNUnet components to access the functionality of the TRANSPORT service,

the service provides an extensive API. This TRANSPORT API provides functionality to use the

TRANSPORT service to send and receive data from remote peers and in addition provides

functionality to retrieve information from the service, its internal state and to access

extended functionality of the service. Other GNUnet services and daemons as well as CLI

tools can use this API and the library to interact with the service. The library establishes

an IPC connection to the service, sends the requests to the service and receives the

responses.

Applications using the TRANSPORT service to communicate with remote peers use the

TRANSPORT API to get notified about peers connecting and disconnecting and to send

data to a remote peer. Such a client uses the API to connect to the TRANSPORT service

and TRANSPORT notifies the client about all peers currently connected and whenever a

peer connects or disconnects. The client can use this connection to instruct TRANSPORT

to connect to a peer, to transmit data to a peer and the client receive data received from

remote peers. Clients interacting with TRANSPORT to communicate with remote peers

only use the peer’s peer identity to refer to a remote peer. Here the abstraction between

the transport underlay and the overlay is achieved since clients are not aware which kind

of underlay communication is used. GNUnet peer-to-peer applications are not intended

to use the TRANSPORT service directly, but use instead the CORE service providing link

encryption between peers. The API provides functionality to pass HELLO messages to the

service for validation, a functionality commonly used by bootstrapping mechanisms like

the HOSTLIST component, and functions to add new blacklist entries for peers and to

manipulate traffic properties for certain peers for testing purposes.

The TRANSPORT API provides extensive monitoring functionality to obtain information

about the state of TRANSPORT. It can be used to obtain information about peers currently

connected and the state and address of the current connection as well as information about

validation processes pending for addresses for remote peers. Additional functions provide

address-to-string conversion to provide human-readable address strings to applications.

70 4. Resilient and Secure Communication for Decentralized Networks

4.3.12 The UNIX Domain Socket Transport

On UNIX systems, UNIX domain sockets are an IPC mechanism for inter-process com-

munication within the same host operating system. UNIX domain sockets provide both

connection-oriented (stream) and connection-less (datagram) communication between

processes. UNIX domain sockets exist on all POSIX compliant operating systems. Ad-

dresses and endpoints for UNIX domain sockets are represented as files within the files

system but communication takes places directly in the kernel of the operating system.

Linux systems in addition support abstract unix domain sockets. These abstract sockets

use an abstract namespace independent from the file system, not restricted by permissions

in the file system and accessible also from chroot environments. For testing purposes, we

provide a UNIX domain socket TRANSPORT plugin to connect peers on the same system.

The UNIX domain socket plugin creates a new UNIX domain socket in datagram mode

and uses this socket to communicate with other peers on the same system. To use UNIX

domain sockets, the Berkeley socket interface is used and therefore communicating with

UNIX domain sockets is similar to TCP or UDP. The address of an UNIX domain socket

is represented as a file in the namespace of the file system. The maximum length of an

address for a UNIX domain socket is defined by UNIX˙PATH˙MAX, 108 chars on a Linux

system. An abstract socket is represented by an ’@’ as the first char of the name. The

name of the socket to be used with the plugin is configured in the plugin configuration and

the socket is created in datagram mode during startup. The plugin supports the use of

abstract UNIX domains sockets if enabled in the configuration. The address of this socket

is reported to the TRANSPORT to be exchanged with other peers. To send and receive data,

the plugin runs in a select loop, notifying the plugin when it is possible to send data or

when data are received from remote peer. Messages transmitted with the UNIX domain

socket plugin are encapsulated in a plugin specific message format containing the peer

identity of the originating peer to allow the receiving peer to demultiplex the messages

according to the origin of the data. When a peer receives data from a peer and a UNIX

domain socket for the first time, the plugin creates a new address session, identified by

the peer identity and the address of the UNIX domain socket and notifies the transport

infrastructure about the new session. To send data to a peer, the TRANSPORT can also

explicitly request a session based on a HELLO address of a remote peer. Since the plugin

uses connection-less datagrams, the plugin needs to implement a timeout logic to notify

the transport infrastructure about inactive sessions to be removed due to inactivity. The

benefit of UNIX domain sockets is very high throughput. This plugin is intended for testing

purposes only since it allows to communicate only with other peers running in the context

of the same operating system.

4.3.13 The TCP Transport

To establish connections between peers not located on the same system, GNUnet pro-

vides the TCP plugin. TCP, introduced in Section 2.3.1, is with UDP one of the standard

transport protocols used on the Internet. It provides connection-oriented and reliable com-

munication between systems. TCP protects against packet loss using acknowledgments

for transmitted data fragments and in addition supports flow and congestion control. For

GNUnet, the TCP plugin provides TCP based communication between participants in the

peer-to-peer network supporting both IPv4 and IPv6.

To allow remote peers to establish a connection, TCP plugin interacts with the

NAT library to obtain the set of IP addresses available on the system and notifies the

TRANSPORT service to include these addresses with the peer’s HELLO message. When

4.3. Design and Implementation 71

a new connection is initiated, the plugin first sends a WELCOME message containing the

peer’s identity to allow the remote peer to demultiplex the data received based on the

peer’s identity and the source address the data originate from. Since with TCP a con-

nection is originating from a randomly selected high port, which cannot be used to es-

tablish a connection to the respective peer, incoming connections are marked with the

GNUNET˙HELLO˙ADDRESS˙INFO˙INBOUND flag in the option field of the HELLO address

passed to the TRANSPORT service to prevent the TRANSPORT to use this incoming address

to initiate a connection to the peer. In the TCP plugin, an address is the socket address

provided by the plugin and a session is identified by peer identity and the socket address.

Since TCP is connection-oriented, the plugin is explicitly notified about network-level

disconnects and therefore only timeouts for unused sessions have to implemented.

To cope with the restrictions imposed by NAT and techniques limiting connectivity,

the TCP plugin supports several techniques to improve connectivity between peers. The

plugin attempts to circumvent NAT restrictions using the NAT library and its ICMP and

UDP hole punching mechanisms as described in Section 4.3.8. If a remote peer indicates

in his address that it is located behind a NAT device, the peer tries to apply the hole

punching mechanisms to connect to this peer. The plugin also supports connection re-

versal, where the peer behind NAT is instructed by a peer reachable on the Internet to

establish a connection to this unrestricted peer. With these approaches, the TCP plugin

can increase connectivity even for peers with restricted connectivity due to NAT devices

or other techniques making it normally impossible to connect to these peers. The plugin

also supports a listen-only mode for clients not able to accept any connections. When

using this mode the plugin does not provide any addresses to TRANSPORT and is restricted

to only initiate connections and as it does not listen for inbound connections.

With the TCP plugin, we can provide a reliable data exchange between peers using

a high performance communication protocol. By relying on the functionality of the NAT

library providing NAT traversal support and connection reversal, we can provide increased

connectivity for clients in restricted environments. Since TCP requires a separate network

socket for each connection, it is not suited for system with limited network resources.

4.3.14 The UDP Transport

Besides TCP, providing connection-oriented communication, the second widely used trans-

port protocol on the Internet is UDP introduced in Section 2.3.1. With respect to its

properties, UDP is the counterpart to TCP, providing connectionless and unreliable com-

munication without retransmissions, flow or congestion control. So when peers exchange

data with UDP, no connection is established, UDP packets are sent with a fire and for-

get attitude without acknowledgments for successful transmissions, re-transmission when

packets are lost or congestion and flow control. With UDP, a datagram can only have a

specific maximum size, so the size of the payload transmitted with a UDP datagram has

to obey this limit. Since UDP is not connection-oriented, a plugin using UDP requires

only a single socket on a system, making UDP suitable for the use on systems with scarce

resources and in cases where a peer has to communicate with a large number of peers,

for example in network experiments and to test scalability of the peer-to-peer system.

The UDP plugin provides UDP-based communication for GNUnet. Like the TCP plu-

gin, the UDP plugin interacts with the NAT library to obtain the set of available addresses

on the system. The plugin supports both IPv4 and IPv6. The restriction for the max-

imum UDP datagram size, the MTU, is about 1500 bytes, whereas GNUnet supports

by default a maximum message size of 64 KiB. To circumvent this limitation of UDP,

72 4. Resilient and Secure Communication for Decentralized Networks

the plugin implements a transparent fragmentation and defragmentation mechanism for

messages with a size larger than the UDP MTU. Datagrams smaller than the MTU are

transmitted without fragmentation. Together with (de-)fragmentation, the plugin im-

plements an adaptive acknowledgment mechanism for message and provides automatic

retransmissions when messages are lost. Since UDP provides neither congestion nor flow

control, a sender can overload a receiver by sending faster than the receiver can read and

process the data. Therefore, the UDP plugin implements a congestion control mecha-

nism to communicate to sender to send faster or slower by including a delay value for the

next transmission process in the acknowledgments for the sender. To prevent the com-

munication link and partner from overloading and prevent congestion, the UDP plugin

implements a congestion control mechanism. The retransmission mechanism responsible

to retransmit lost message in case of missing acknowledgment messages uses adaptive

retransmission interval, decreasing the retransmission frequency when messages are not

acknowledged.

In addition, the UDP plugin provides neighbor discovery to discover new neighbors in

the network. The UDP plugin regularly broadcasts the peer’s HELLO message to other

peers. UDP obtains the peer’s current HELLO from the HELLO component using the API

function get˙our˙hello provided by TRANSPORT. Neighbor discovery with UDP uses IPv4

broadcast and IPv6 multicast. With IPv4 broadcasts, the plugin sends the peers HELLO

beacon on all active network interfaces (except the loopback interface) to the network’s

broadcast address using the port configured for the UDP plugin. Other peers configure

their listen socket to receive broadcast messages on the respective port. To receive

beacon messages, it is required for all peers to use the same UDP port. Peers listening for

broadcast messages receive these beacon messages and forward them to the TRANSPORT

service, which validates the information in the HELLO message and may then use the HELLO

to establish a connection to remote peer.

With IPv6, the IPv6 protocol defines special multicast addresses with a special scope

as defined in [HD06]. The scope of the address restricts the range of multicast messages.

Four scopes are defined with [HD06]: interface-local, link-local, admin-local and site-local.

For GNUnet’s neighbor discovery, we registered with IANA the variable scope multicast

address “FF0X::13B”3. Peers with IPv6 and neighbor discovery enabled configure their

UDP socket to join the respective multicast group to send and receive messages with this

multicast group. The UDP plugins sends in regular intervals the peer’s HELLO beacon to

the multicast group using the site-local address FF04::13B. Other peers join this multicast

group to receive these beacons. As with IPv4, beacons are forwarded to the TRANSPORT

services for validation and can then be used to establish connections to the remote peers.

4.3.15 The HTTP(S) Transport

To make GNUnet traffic resilient against filtering and traffic inspection and to improve

connectivity for clients in environments requiring the use of proxy servers to access the

Internet, we provide the HTTP- and HTTPS-based transport plugins. HTTP and its

secure variant HTTPS are the protocols used with the World Wide Web (WWW) to

transfer data between clients and web servers. HTTP is an application layer protocol and

relies on an underlying transport protocol. The most common transport protocol is TCP,

but it is possible to implement HTTP over other transport protocols like UDP [Gol99]

or SCTP [NALB10] as described in [FGM+99]. HTTP over UDP is sometimes referred

3 https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.

xhtml

https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml

4.3. Design and Implementation 73

to as HTTPU and HTTPU is used as part of the UPnP implementation. HTTP is a

client/server based request-response protocol: a client requests a resource from a server

and the server responds with the result of the operation. A server provides resources

and a client can access these resources by addressing resources using an URL. HTTP is

intended to be a stateless protocol: a server does not maintain a state for a client over

multiple requests. HTTP defines different methods to indicate the required action to the

server. The most common methods are the GET method, used to request a resource to

be transferred to the client, POST and PUT, used to transfer data from the client to the

server. To indicate the status of an operation HTTP defines status codes4: the first,

most significant digit of the three-digit code represents the class of code, followed by

two digits identifying the specific code. Two versions of the HTTP protocol are currently

used on the Internet: HTTP 1.0, defined in [BLFF96] and HTTP 1.1, defined in [FR14],

[Res99] et al.. HTTP 1.1 added five new methods and additional important features such

as chunked transfer encoding to transfer data in chunks without specifying the length of

the content to transfer in advance and pipelining to re-use an existing connection over

multiple requests.

With HTTP, traffic is transferred in plain text and is not encrypted nor authenticated,

so everyone able to intercept the traffic can read the content transferred and perform

man-in-the-middle attacks to alter the data. To counteract this issue, HTTPS encrypts

communication using HTTP on top of Secure Sockets Layer (SSL)/TLS. SSL/TLS en-

crypts communication channels based on the X.509 security infrastructure. SSL/TLS

uses X.509 certificates and asymmetric cryptography to provide authenticity and to per-

form a key exchange of a symmetric session key used to encrypt communication between

partners. SSL, defined in [FKK11] and TLS, defined in [DR08], are located on layer 5 and

6 of the ISO/OSI layer: they use a transport layer protocol for transmission, most com-

monly TCP, and are used by application layer protocols for secure communication. Due

to the layered approach used with HTTPS, all HTTP traffic including headers, cookies

and status code is encrypted when using HTTPS: no HTTP information is leaked from

the HTTPS session.

To make a peer-to-peer communication infrastructure resilient against degradation and

censorship attempts, using HTTPS as a transport protocol has interesting benefits: one

the hand, communication is encrypted, so it does not make sense for an eavesdropper to

intercept traffic transmitted between peer-to-peer communication partners. On the other

hand is HTTPS unsuspicious since it is one of most commonly used protocols used on

the Internet. Depending on the country, HTTPS traffic will be with a high probability not

suppressed, filtered or degraded by an ISP, since few ISPs want to get on their customers

bad side by censoring their online banking traffic. In environments enforcing the use of

a proxy server to access the Internet, as described in Section 2.6.6, the use of HTTPS

can also improve connectivity since HTTPS traffic is commonly not handled and cached

by proxy servers. Both the HTTP and HTTPS plugins support the use of reverse proxies

making filtering of peer-to-peer traffic is even harder, when peer-to-peer traffic relayed

over a well-known web site to a peer in the peer-to-peer network.

But HTTPS is not an universal remedy against filtering and traffic management at-

tempts. HTTPS relies on an underlying transport protocol and a censor can make assump-

tions about the traffic looking at the connection information of the transport protocol.

For example if the connection uses a transport protocol or protocol port commonly used

by a disagreeable application, a censor can prevent this traffic and track down a user based

on these connection information. And even without having the possibility to know the

4 https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

74 4. Resilient and Secure Communication for Decentralized Networks

data encrypted in the traffic, a possible censor can conclude on the kind of traffic included

in the encrypted data based on traffic analysis and statistical analysis. Various differ-

ent properties of the encrypted traffic like packet inter-arrival times, connection duration,

traffic direction can be analyzed and compared with known traffic patterns of agreeable

or disagreeable applications. Using this traffic analysis an eavesdropper can even obtain

information about the information encrypted in the traffic, as for example described for

Secure Shell (SSH) and Skype. [AZH09, HJ10]

GNUnet provides a HTTP(S) transport plugins to enable transmission of peer-to-peer

traffic encapsulated in HTTP and HTTPS traffic and benefit from the features described

before. Since HTTP(S) is a client/server based request-response protocol, the func-

tionality of the plugin is split into a client part, the http(s)-client transport plugin

and a server part, the http(s)-server plugin. The http(s)-client plugin is respon-

sible to initiate connections to a server and to request resources from the server. The

http(s)-server plugin is listening for incoming client connections and serves resources

to the client. A peer can run both plugins at the same time. Both parts of the plugin are

realized using well-tested HTTP libraries: the http(s)-client plugin uses a libgnurl5,

a fork of the well-known libcurl6 library and the http(s)-server plugin uses GNU lib-

microhttpd7, a minimal web server library written in C optimized for performance. Both

the HTTP and HTTPS plugin use HTTP 1.1 since this version of the protocol provides

functionality like chunked encoding and connection pipelining and provide full IPv4 and

IPv6 support.

To initiate a connection with the HTTP(S) plugin, a peer running the http(s)-client

plugin asks the plugin to initiate a connection to a peer running the http(s)-server plu-

gin. Since HTTP is a request/response based protocol with unidirectional communication

on HTTP layer, the plugin needs to provide a bidirectional way to exchange data between

client and server. Therefore, the client sends two requests to the server: a HTTP GET

request to allow the client to receive data from the server and a HTTP PUT request to

send data from the client to the server. The client initiates both the GET and the PUT

request and includes the peer’s identity in the request URL and a unique tag, to enable the

server to match GET and PUT to a single connection. When establishing multiple HTTP

requests to a single server, the plugin benefits from HTTP pipelining provided by HTTP

1.1, allowing the client to send multiple HTTP requests over a single TCP connection.

For both the GET and PUT request, the client uses chunked encoding to send the data in

chunks since the amount of data to be transferred is not known a priori.

The http(s)-server initially accepts all connections if the current number of con-

nections is below a configured threshold. HTTP requests have to contain a well-formed

request URL containing the client’s peer identity and the tag to match GET and PUT

request. If the URL is not well-formed, the connection is terminated with HTTP sta-

tus 404 (“Not Found”). If the URL is well-formed, the server waits for both the PUT

and GET connection to be established. If the both requests are not established within

a reasonable time (HTTP SERVER NOT VALIDATED TIMEOUT ∼= 15 seconds), the requests

are terminated with HTTP status 404 (“Not Found”). If both requests are successfully

connected, the timeout is increased to (HTTP SERVER SESSION TIMEOUT ∼= 5 minutes).

If no data are transferred within this time out with either the GET or the PUT request,

both requests are closed and the transport session is terminated due to inactivity. This

timeout is restarted for both requests when data are send or received using one of the

5 https://gnunet.org/gnurl
6 http://curl.haxx.se/libcurl/
7 https://www.gnu.org/software/libmicrohttpd/

https://gnunet.org/gnurl
http://curl.haxx.se/libcurl/
https://www.gnu.org/software/libmicrohttpd/

4.3. Design and Implementation 75

requests. When both connections are established, the peers can exchange data from

the client to the server using the PUT request and from the server to the client us-

ing the GET request. The client plugin, initiating the connection, has similar timeouts:

(HTTP˙CLIENT˙NOT˙VALIDATED˙TIMEOUT ∼= 15 seconds) for both requests to connect

to the server and (HTTP˙CLIENT˙SESSION˙TIMEOUT ∼= 5 minutes) for idle connections.

If one of the peers disconnects or the transport service requires a session to be termi-

nated, the client will terminate the connection using a disconnect, the server will end the

chunked-transfer sending a “Thank you!” message with HTTP status 200 (”OK”) to the

client indicating a successful transmission.

The http(s)-server module can be configured to run with IPv4, IPv6 or both in

dual-stack mode. When started, the server plugin obtains from the NAT library the ad-

dresses it is reachable under and reports these addresses to the TRANSPORT service. Here

http(s)-server addresses are manipulated to not contain the http(s)-server plugin

as origin, but to contain the http(s)-client plugin to allow clients to use this address

to connect to other peers. An address contains the URL the http(s)-server plugin

is reachable under. In URLs only IP addresses are used to prevent censorship based on

making DNS names unavailable. An exception is when the user explicitly configures a

hostname to use, for example when a reverse proxy is used to access a peer or a valid

HTTPS certificate is available.

A peer running the http(s)-server HTTPS plugin automatically creates a self-signed

X.509 certificate during startup. A peer in possession of a valid X.509 issued by a valid

CA can provide this certificate to clients to prevent man-in-the-middle attacks. To enable

certificate validation, only the name used as common name in the certificate is used as

an address. This external hostname can be configured in the http(s)-server plugin

configuration. In the plugin specific address, the HTTP OPTIONS VERIFY CERTIFICATE

flag is set to signal other peers that the certificate has to be validated when connecting.

When initiating a connection to a peer providing a valid certificate, the http(s)-client

validates the certificate when connecting and terminates requests if validation fails.

To prevent censorship based on transport protocol information, the http(s)-server

provides HTTP(S) reverse proxy support. Contrary to forward proxies, described in Sec-

tion 2.6.6, HTTP(S) reverse proxies are used to forward requests from a HTTP(S) server

to a secondary server to handle the request. Reverse proxies are commonly used to

distribute load between HTTP(S) web servers or to have a front end server directing

expensive requests to back end (downstream) servers. Many web servers like Apache8 or

Nginx9 can be configured to act as a reverse proxy forwarding requests to downstream

server. If a client requests a resource not forwarded on the server, this request is handled

by the server itself. If a forwarded resource is requested, the web server itself initiates a

connection to the downstream server and forwards the data it receives to the client. For

GNUnet, reverse proxies can help to improve censorship resistance as shown in Figure 4.7:

a web server can be configured for a particular URL to act as a reverse proxy and for-

ward the traffic to a downstream GNUnet peer running the http(s)-server plugin. This

approach is even more effective if a well-known web server is used hosting a prominent

service and only forwarding a specific resource to the peer. A reverse proxy can also in-

crease network performance and prevent service degradation. Some ISPs detect network

benchmarks to measure network throughput (“speed tests”) based on the URL requested

and as a consequence increase bandwidth available for this test. This fact can be utilized

8 https://www.apache.org
9 http://nginx.org

https://www.apache.org
http://nginx.org

76 4. Resilient and Secure Communication for Decentralized Networks

by using a resource identifier like “/speedtest” to forward the traffic10.

HTTP(S) Client

Plugin

HTTP(S) Server

Plugin

GET https://192.0.2.1/FRASG. . . ;2

PUT https://192.0.2.1/FRASG. . . ;2

Fig. 4.6: GNUnet’s HTTP(S) Transport

HTTP(S) Client

Plugin
gnunet.org

HTTP(S) Server

Plugin

GET https://gnunet.org/speedtest/...

PUT https://gnunet.org/speedtest/...

GET https://192.0.2.1/...

PUT https://192.0.2.1/...

Fig. 4.7: GNUnet’s HTTP(S) Transport Using a Reverse Proxy

4.3.16 The WLAN Transport

To enable peers to communicate in the situation of missing or failing communication

infrastructure, one of the possibilities the GNUnet transport infrastructure provides is

to establish ad hoc communication networks based on WLAN communication. Ad hoc

networks do not depend on a deployed, centralized communication infrastructure and

participants communicate directly with each other.

WLAN networks are based on the IEEE 802.11 [IEE12] standard. This standard

contains the media access control and physical layer specifications to establish wireless

local area networks using the 2.4, 3.6, 5 and 60 GHz frequency bands. This technology is

often referred to as Wi-Fi networks, but we refrain from using this term since Wi-Fi is a

registered trademark of the Wi-Fi Alliance11 and not related to the specifications. WLAN

networks based on the IEEE 803.11 standards can operate in different frequency bands and

the frequency band used is divided into smaller frequency blocks, so called channels. The

2.4 GHz band is divided 14 channels spaced 5 MHz apart. Each WLAN network operates

on a single channel and is identified by a human readable identifier, the so called Service

Set Identification (SSID). The IEEE 802.11 standard supports two operation modes for

WLAN networks: infrastructure and ad hoc mode. In infrastructure mode, coordination

between the participants of a WLAN network is managed by a centralized device, often

referred to as access point. The set of nodes and the access point are called a Basic Service

Set (BSS) in IEEE 802.11 terminology. This access point coordinates admission to the

network, security parameters and manages medium access between participants. In ad

hoc mode, no centralized infrastructure exists and the participants coordinate themselves.

Nodes in the same WLAN ad hoc network have to use the same WLAN channel and

SSID. This set of nodes create an Independent Basic Service Set (IBSS) in IEEE 802.11

terminology.

With the WLAN transport plugin, GNUnet allows peers to communicate using WLAN

ad hoc networking. The WLAN transport communicates directly on IEEE 802.11 physical

layer with other peers on a pre-configured WLAN channel in 802.11 ad hoc mode. The

WLAN plugin consists of a TRANSPORT service plugin and a small, privileged helper process

10 http://blog.fefe.de/?ts=b1032e75
11 http://www.wi-fi.org

http://blog.fefe.de/?ts=b1032e75
http://www.wi-fi.org

4.3. Design and Implementation 77

used to configure and interact with the network interface. The WLAN transport plugin

implements the TRANSPORT plugin API and is loaded by the TRANSPORT service. When

the plugin is loaded, it starts the privileged helper process. Communication between the

plugin and the helper is realized using the standard output and standard input of the

helper process. When the helper process is started, it initiates communication with the

WLAN interface using the radiotap12 interface. The helper initializes the network card,

checks that the networking interface is in 802.11 ad hoc mode and configures the network

interface to forward all WLAN frames received to the helper process using the so called

promiscuous or monitoring mode.

When TRANSPORT service wants to transmit data to a peer, it gives the data to the

plugin. The plugin applies fragmentation to the messages if messages are too big to

be transmitted in one WLAN frame and forwards the fragments to the helper process.

The helper process directly injects IEEE 802.11 frames into the network card which are

transmitted to other peers on the configured WLAN channel using a GNUnet-specific

SSID (“132233445566”). To receive data, the WLAN helper process accesses the WLAN

hardware using monitoring mode to receive WLAN frames without involving central access

points. When the helper receives WLAN frames, it forwards these frames to the plugin,

which reassembles the fragmented messages to forward them to the TRANSPORT service.

4.3.17 The Bluetooth Transport

In addition to the WLAN plugin, we provide a Bluetooth based plugin for ad hoc network-

ing. Bluetooth is a wireless technology intended to create personal area networks. Similar

to IEEE 802.11, it operates in the 2.4 GHz short range radio ISM band. Bluetooth was

designed to connect devices over a short distance. Bluetooth devices are commonly differ-

entiated by their transmission power: a class 1 device has a maximum power consumption

of 100mW and a maximum range of about 100m, a class 2 device has a maximum power

consumption of 2.5mW and a maximum range of about 10m and a class 3 device has a

maximum power consumption of 1mW and a maximum range of about 1m. Bluetooth

was originally standardized as IEEE 802.15.1 but this standard is no longer maintained

and Bluetooth specifications are instead provided by the Bluetooth Special Interest Group

(SIG)13. Bluetooth was designed as a layered protocol stack with functionality imple-

mented in so called profiles. The profiles available depend on the implementation of the

respective protocol stack, but each protocol stack has to provide the mandatory profiles

Link Management Protocol (LMP) to set-up and control radio links, Logical Link Control

and Adaptation Protocol (L2CAP) to provide logical links between devices, and Service

Discovery Protocol (SDP) to detect services provided by Bluetooth devices.

GNUnet provides a Bluetooth TRANSPORT plugin to allow peers to communicate with

each other using the Radio Frequency Communications (RFCOMM) Bluetooth profile.

RFCOMM provides communication between Bluetooth devices using a virtual serial data

stream. With RFCOMM, applications can communicate over Bluetooth using a TCP-style

reliable communication channel. Similar to the WLAN plugin, the Bluetooth plugin is split

in a TRANSPORT plugin and a small helper process. The TRANSPORT plugin interacts with

the TRANSPORT service and on the other hand employs the helper service to implement

the Bluetooth-dependent functionality. The Bluetooth helper process implements the

RFCOMM communication with other devices. During startup, the helper initializes the

Bluetooth device configured in the configuration by retrieving the list of devices available

12 https://www.radiotap.org/
13 http://www.bluetooth.org

https://www.radiotap.org/
http://www.bluetooth.org

78 4. Resilient and Secure Communication for Decentralized Networks

from the Bluetooth stack, configures the device to be discoverable, opens a new RFCOMM

socket and a registers new GNUnet Bluetooth service with the Bluetooth SDP service.

The helper now scans for other Bluetooth devices with the GNUnet service enabled and

when finding such a device connects to this device using RFCOMM. Initially the Bluetooth

helper transmits the peers HELLO message to the remote peer. The peer receiving such

a HELLO message forwards this message to the TRANSPORT service which will validate

information contained and use this information to establish a connection to the peer.

The Bluetooth plugin in addition supports to discover new neighbors by scanning for new

Bluetooth devices supporting the GNUnet Bluetooth service.

4.3.18 The Distance Vector Routing Transport

To improve connectivity between peers in the peer-to-peer overlay, GNUnet provides a

DV component enabling peers to exchange data even if they are not directly connected in

the transport underlay [Eva11]. With DV, traffic between peers not directly connected in

the transport underlay is forwarded by intermediate peers via the peer-to-peer overlay. DV

enabled peers connected in the peer-to-peer overlay exchange information about the peers

they are connected to. A DV enabled peer can therefore create a routing table containing

information which peer it can communicate with by sending data over a next-hop peer.

GNUnet’s DV component consists of two parts: the DV service and a DV transport

plugin. The DV service is responsible to communicate with other peers in the peer-to-peer

overlay, exchange routing information with these peers, maintain the routing table, forward

data send with DV to the next hop peer and receive data forwarded from other peers with

DV via the overlay. The DV plugin is a transport plugin and is responsible to notify the

TRANSPORT service about peers reachable via DV and the overlay. The plugin accepts data

from TRANSPORT to be send with DV and passes this data to the DV service to have the

data forwarded to the destination via the overlay. When the DV service receives data via

the overlay, it passes the data to the plugin, which gives the data to TRANSPORT as if the

data were received directly from the source peer. This approach is depicted in Figure 4.8.

The DV service communicates with other peers using the peer-to-peer overlay and the

CORE service described in Section 4.3.19. When DV-enabled peers connect on CORE-level,

the DV services on both peers exchange information about the peers they are connected

with. Here they use GNUnet’s SET service to exchange the set of peers efficiently. This

information is used to create a routing table containing which peer can be reached over

which next-hop peer. Information about peers reachable via DV is given to the DV plu-

gin which notifies TRANSPORT about available sessions to communicate with this peer.

TRANSPORT is agnostic about the DV functionality and only knows that it can send data

to a certain peer using the DV plugin and a certain session.

When TRANSPORT has to send data to a DV peer, it passes the data to the DV plugin

using the given session. The DV plugin forwards this information to the DV service. The

DV service performs a lookup for the next-hop peer in the routing table and sends the data

to the next hop router via the peer-to-peer overlay and using the CORE service.

When the DV service receives data from a DV peer with the local peer as destination,

it passes the data to the DV transport plugin which passes the data to TRANSPORT which

forwards the data to the TRANSPORT clients to process the data. If the local peer is not

the destination, DV performs a lookup in the routing table and forwards the data to the

next-hop peer via the peer-to-peer overlay and CORE.

The DV component is an effective way to improve connectivity between peers in the

overlay. This allows to bridge between separated parts of the network if only a single peer

4.3. Design and Implementation 79

can talk to both partitions and DV helps to alleviate the effects of restricted end-to-end

communication.

TRANSPORT Service

DV Plugin

CORE

DV Service

P
ee

r
In

fo
,

D
a

ta
re

ce
iv

ed
w

it
h

D
V

D
a

ta
to

se
n

d
w

it
h

D
V

Data

Data

Peer Info DV Data

Fig. 4.8: GNUnet’s Distance Vector Routing Transport Plugin

4.3.19 Secure Communication Between Peers with CORE

The TRANSPORT service’s main focus is to provide communication with remote peers,

to increase connectivity between peers and to be resilience against service degradation

attempts. But TRANSPORT does not provide confidential or integrity protected commu-

nication for applications. In GNUnet’s transport infrastructure, the CORE service is re-

sponsible to provide link-encrypted communication between peers directly connected via

the transport underlay. GNUnet’s CORE service builds on the TRANSPORT service and uses

TRANSPORT to provide confidential, authenticated, integrity protected communication bet-

ween connected peers. The CORE services employs a key exchange to exchange a shared

secret between peers used to encrypt traffic exchanged between peers. Peer-to-peer appli-

cations should therefore use CORE service to communicate with remote peers and should

not use TRANSPORT service directly.

By using ECDHE and Curve25519 [Ber06] to exchange a shared secret to encrypt

traffic with both the AES-256 [DR02] and Twofish [SKW+98] symmetric block ciphers,

CORE achieves confidentiality with perfect forward secrecy. The ephemeral key used

with ECDHE is generated during startup and never stored, written to disk and is re-

freshed in periodic intervals. Communication is authenticated using the Ed25519 signa-

ture scheme [BDL+11], the EdDSA digital signature scheme using ECC and the twisted

Edwards curve Curve25519. Integrity of communication is protected using authenticated

encryption with Secure Hash Algorithm (SHA)-512. CORE communication is protected

against replay attacks using ephemeral keys, nonces, timestamps, challenge-response and

message counters.

CORE can only communicate with directly connected peers and does not perform any

routing. In addition does CORE not provide flow control and expects applications to pro-

cess data at line speed. Communication with CORE is unreliable and does not ensure

in-order delivery of messages. Applications requiring these features should use the CADET

system [PG14].

CORE is implemented as a separate GNUnet service and is a TRANSPORT client. When

CORE is started, it connects to TRANSPORT and gets notified by TRANSPORT about con-

necting and disconnecting peers and it can use TRANSPORT to exchange data with con-

80 4. Resilient and Secure Communication for Decentralized Networks

nected peers. During startup, CORE creates a new cryptographic ephemeral key pair. This

ephemeral key pair is used with the ECDHE key exchange and is renewed in regular inter-

vals (∼12 hours). CORE’s key exchange provides perfect forward secrecy since ephemeral

keys are never written to disk or stored anywhere else. The ephemeral key is signed with

the peer’s long-term EdDSA private key described with peer identities in described in Sec-

tion 4.3.1. These signed ephemeral keys are exchanged between peers using ephemeral

key messages, containing the ephemeral public key, the signature, a creation and expira-

tion time and additional information. When CORE is notified about a peer connecting, the

peers exchange their ephemeral key messages. If a peer receiving an ephemeral key did not

confirm the authenticity of the sender before, it sends an encrypted PING message to the

sender containing a challenge the receiver has to decrypt and return to the sender in an

encrypted PONG message. If the sender can verify the correctness of the PONG message,

it treats the remote peer as authenticated. The Hash-based Message Authentication

Code (HMAC) used to protect data integrity, is calculated over the encrypted payload

of the message to send. Now both peers are provided with the required cryptographic

information to exchange encrypted messages. When encrypted messages are exchanged

with CORE, CORE messages include the HMAC of the encrypted payload in the header and

an initialization seed, a sequence number, a timestamp and the encrypted payload. To

determine which application can process which type of message, CORE uses typemaps:

applications using CORE register the message types they are interested in when connecting

to CORE. This allows CORE to pass only messages to applications, that these applications

are interested in and can process.

4.4 Evaluation

4.4.1 Methodology and Setup

To evaluate the performance of the TRANSPORT service and the different TRANSPORT plu-

gins, we use a profiler tool benchmarking the performance of the different TRANSPORT

plugins. For a first evaluation, we measure the performance with peers communicating on

a local system to analyze the performance limitations imposed by local systems without

the limitations caused by networking equipment and network links. We use two computer

systems to compare TRANSPORT performance on different platforms: a 4 year old high-end

desktop workstation and a recent notebook equipped with up-to-date computing hard-

ware and optimized for low power consumption. In a second evaluation, we connect peers

over a real network and measure the performance of the different plugins over a network

connection to analyze the limitations imposed by networking equipment and network links.

4.4.2 Experimental Setup

To benchmark performance on a local system, we use for the experimental setup a Dell

Precision T3500 workstation14 manufactured in 2009 system running Ubuntu 14.04 64-

bit equipped with an Intel Xeon W352015 Central Processing Unit (CPU) with 4 cores

running at 2.67 GHz supporting hyperthreading. The system is equipped with a Broadcom

NetXtreme BCM5761 gigabit Ethernet controller and 24 GB DDR3-1333 MHz memory.

Due to GNUnet’s design using a separate process for every GNUnet service, we can

14 http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-

Precision-T3500-Spec-Sheet.pdf
15 http://ark.intel.com/de/products/39718/Intel-Xeon-Processor-W3520-8M-Cache-2˙66-

GHz-4˙80-GTs-Intel-QPI

http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-Precision-T3500-Spec-Sheet.pdf
http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-Precision-T3500-Spec-Sheet.pdf
http://ark.intel.com/de/products/39718/Intel-Xeon-Processor-W3520-8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI
http://ark.intel.com/de/products/39718/Intel-Xeon-Processor-W3520-8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI

4.4. Evaluation 81

ensure that the TRANSPORT services of both peers can run on a dedicated core and the

services of both peers can run at full speed without interfering with each other. As a

drawback, the Xeon W3520 does not yet support Intel’s AES-NI technology16 adding

new CPU instructions for AES hardware acceleration. These instructions can impact

the performance for TRANSPORT plugins using an additional layer of encryption as for

example the HTTPS plugin. We therefore conducted additional experiments to analyze

the impact of AES hardware acceleration and to analyze the impact of the CPU clock

rate on TRANSPORT performance.

For the additional experiments, we use a recent Lenovo T440s notebook17 manufac-

tured end 2013 running Ubuntu 14.04 64-bit. This notebook is equipped with an Intel

Haswell Core i5-4210U 1.6 GHz dual core CPU18 supporting a maximal turbo frequency of

2.7 GHz with Intels Turbo Boost Technology, hyperthreading and the AES-NI technology.

The T440s is equipped with an Intel I218-V gigabit Ethernet controller and 12 GB of

DDR3L-1600 memory.

According to the specifications, the CPUs in both systems can provide a maximum

memory bandwidth of 25,6 GB/s. But the CPU in the Dell Xeon system supports DDR3-

800/1066 memory and provides 3 memory channels whereas the T440s is equipped with

faster DDR3L-1333/1600 memory and only provides 2 memory channels.

To analyze the impact of AES hardware acceleration, we use the gnutls19 command

line tool to benchmark crypto performance on both the Dell and the Lenovo system.

As we can see from Table 4.1 provides a CPU with hardware acceleration a much higher

performance for cryptographic operations. To benchmark the performance of the HTTPS

plugin on such a machine, we conducted additional HTTPS experiments with the Lenovo

T440s notebook. To counteract impacts caused by the lower number of CPU cores, we

increased the number of iterations in the experiment from 5 to 10 to reduce the impact

of measurement outliers caused by scheduling conflicts.

To compare the impact of CPU speed on TRANSPORT performance, we in addition

benchmarked the performance of the HTTP plugin on the Lenovo T440s to be able to

compare it with the performance of the workstation.

To benchmark performance in a real networking environment, we use two notebooks

connected over gigabit Ethernet. The first notebook (sending data to the other peer)

is the Lenovo T440s described before. The second notebook responsible to receive data

is a Lenovo T61 with an Intel T830020 dual core CPU running with 2.4 GHz without

hyperthreading support and AES hardware acceleration. The system is equipped with an

Intel 82556M gigabit Ethernet controller and 4 GB of RAM and running Ubuntu 14.04

64-bit.

All systems used for the experiments run GNUnet in the development version from

September 1st 2014 (Revision 34252) compiled with gcc 4.8.2 and optimization level

-O2.

16 https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-

instructions-set
17 http://www.lenovo.com/shop/emea/content/pdf/ThinkPad/TSeries/T440sDSEN.pdf
18 http://ark.intel.com/products/81016/Intel-Core-i5-4210U-Processor-3M-Cache-up-to-

2˙70-GHz?q=4210U
19 http://www.gnutls.org
20 http://ark.intel.com/products/33099/Intel-Core2-Duo-Processor-T8300-3M-Cache-2˙40-

GHz-800-MHz-FSB?q=t8300

https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
http://www.lenovo.com/shop/emea/content/pdf/ThinkPad/TSeries/T440sDSEN.pdf
http://ark.intel.com/products/81016/Intel-Core-i5-4210U-Processor-3M-Cache-up-to-2_70-GHz?q=4210U
http://ark.intel.com/products/81016/Intel-Core-i5-4210U-Processor-3M-Cache-up-to-2_70-GHz?q=4210U
http://www.gnutls.org
http://ark.intel.com/products/33099/Intel-Core2-Duo-Processor-T8300-3M-Cache-2_40-GHz-800-MHz-FSB?q=t8300
http://ark.intel.com/products/33099/Intel-Core2-Duo-Processor-T8300-3M-Cache-2_40-GHz-800-MHz-FSB?q=t8300

82 4. Resilient and Secure Communication for Decentralized Networks

Tab. 4.1: Performance of Cryptographic Cipher Suites on an Intel Xeon W3520 and i5-4200U

Cipher Intel Xeon W3520 Intel i5-4200U

2.67 GHz /wo AES-NI 1.6 GHz /w AES-NI

AES-128-CBC with SHA1 101.74 MB/s 296.96 MB/s

AES-128-CBC with SHA256 76.21 MB/s 184.27 MB/s

AES-128-GCM 46.42 MB/s 2191.36 MB/s

SHA1 368.64 MB/s 604.16 MB/s

SHA256 158.54 MB/s 276.48 MB/s

SHA512 256 MB/s 235.52 MB/s

3DES-CBC 13.96 MB/s 18.53 MB/s

AES-128-CBC 141.90 MB/s 563.2 MB/s

ARCFOUR-128 149.89 MB/s 286.72 MB/s

4.4.3 Methodology

In our setup, we have two peers connected with each other using a particular TRANSPORT

plugin. The profiler tool ensures that the peers are connected with each other and then

starts to benchmark TRANSPORT and plugin performance sending data from one peer to

the other peer. The profiler measures the time required to send a fix amount of messages

with a particular message size from one peer to the other peer. The profiler tool can

be configured with the message size, the amount of messages to send, and the number

of iterations to perform. The profiler keeps statistics about the iterations and uses this

data to calculate the data rate for each iteration, the average data rate over all iterations

and the standard deviation for both duration and data rate. Based on these values we in

addition calculate the average message rate of the sending peer.

In our experiment, we start two GNUnet peers with TRANSPORT configured to only load

and use the TRANSPORT plugin to benchmark, connect the peers with each other and use

the profiler tool to send messages from one peer to the other peer. The profiler tool acts

as a TRANSPORT service client and uses the TRANSPORT service to exchange with the other

peer. With this approach we cannot only evaluate the performance of the plugins but the

overall transport infrastructure. The profiler measures TRANSPORT performance sending

messages with different message sizes from one peer to another peer: it starts with a

minimum message size of 1,000 bytes per message and increases the message size in

steps of 1,000 bytes up to 65,000 byte per message which reflects the maximum message

size of a GNUnet message of 64 KiB. For every message size it sends 10,240 messages

from one peer to the other peer and repeats this in four iterations. The message size

represents the amount of application data sent by the profiler. The amount of data sent

on the wire can be higher due to messages sent by TRANSPORT service and plugin specific

overhead like message wrappers, control messages or protocol specific overhead.

The UDP plugin uses a maximum send rate to limit the maximum data rate to pre-

vent overloading the network and the other peer. By default this value is configured with

1 MiB/s. We modified this value for the performance benchmarks to 1 GiB/s to be able

to evaluate the maximum performance with this plugin. To analyze the impact of frag-

mentation on UDP, we conducted a separate experiment where we transmitted 20,240

messages using UDP starting with a message size of 10 bytes and increased the message

size by 10 bytes in each run up to a message size of 2,000 bytes. By default the MTU

4.4. Evaluation 83

for the UDP plugin before messages get fragmented is configured with 1,400 bytes for

the overall UDP message (including the size of the wrapper used by the UDP plugin).

Therefore, packets with a payload slightly smaller than 1,400 byte will get fragmented.

For the performance benchmark of the WLAN plugin, we had to reduce the number

and the size of messages exchanged between peers. The results obtained with the WLAN

plugin are created by sending 10 messages with the given message size in 4 iterations

to the other peer. In this experiment we used WLAN channel 6 (2.473 GHz) in the

2.4 GHz Industrial, Scientific and Medical (ISM) band. The results for the WLAN plugin

are depicted in Figure 4.23.

The Bluetooth transport plugin was developed by a student in a Google Summer of

Code project. While the TRANSPORT plugin itself and basic functionality of the privileged

Bluetooth helper process work it was not possible to perform benchmarks within the

evaluation done for this thesis. While peers successfully connect using the Bluetooth

service discover as described in Section 4.3.17, the helper stops exchanging messages

when a large number of messages is sent. This issue requires further investigations not

possible within this evaluation.

4.4.4 Results on Local Performance

To evaluate the performance on a local system, we benchmarked TRANSPORT service per-

formance in combination with the UNIX domain socket, TCP, UDP, HTTP and HTTPS

plugin. A performance comparison for the different plugins is depicted in Figure 4.9. The

data and message rates for the different TRANSPORT plugins are depicted in:

• Figure 4.10 for the UNIX domain socket plugin

• Figure 4.11 for the TCP plugin

• Figure 4.12 for the UDP plugin

• Figure 4.13 showing the impact of fragmentation with UDP

• Figure 4.14 for the HTTP plugin on the DELL system

• Figure 4.14 for the HTTP plugin on the Lenovo system

• Figure 4.16 for HTTPS on the DELL system without AES hardware acceleration

• Figure 4.17 for HTTPS on the Lenovo system with AES hardware acceleration

With the performance analysis on the local system we can see that the data rate

achieved largely depends on the message size of the messages transferred between the

systems. Here the possible data rate achieved between peers is limited by the CPU of

the system. In our experiments we observed that 2 out of the 4 CPU cores were running

at 100% CPU load with the GNUnet TRANSPORT service. This is caused by the fact the

messages are not aggregated before being sent over by instead every message is handled

independent causing computational overhead. For the different transport plugins we can

see that we can achieve very high data rates for both the TCP and the UNIX domain

socket plugin with only slight overall performance difference. Performance for the HTTP

plugin is lower than the performance of the TCP and UNIX plugin. For the HTTPS

plugin performance is limited by the Xeon CPU having to encrypt and decrypt network

traffic. Here both CPU cores running TRANSPORT where constantly under 100% load. On

84 4. Resilient and Secure Communication for Decentralized Networks

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60

M
iB

/s

Message Size in KiB

Comparison of Plugins Performance on a Local System

Data Rate UNIX on Dell Precision T3500 (mean)
Data Rate TCP on Dell Precision T3500 (mean)

Data Rate HTTP on Lenovo T440s (mean)
Data Rate HTTP on Dell Precision T3500 (mean)

Data Rate HTTPS on Lenovo T440s with AES-NI (mean)
Data Rate HTTPS on Dell Precision T3500 without AES-NI (mean)

Data Rate UDP on Dell Precision T3500 (mean)

Fig. 4.9: Comparison of TRANSPORT Performance with Different Plugins on a Local System

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60
 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

M
iB

/s

M
e
ss

a
g
e
s/

s

Message Size in KiB

Local Performance UNIX Plugin on a DELL Precision T3500

Data Rate (mean)
Message Rate (average)

Fig. 4.10: Local Performance UNIX Plugin on a DELL Precision T3500

the Lenovo T440s system with AES hardware acceleration, we can achieve significantly

higher performance with the HTTPS plugin. With AES hardware acceleration HTTPS

4.4. Evaluation 85

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60
 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

M
iB

/s

M
e
ss

a
g

e
s/

s

Message Size in KiB

Local Performance TCP Plugin on a DELL Precision T3500

Data Rate (mean)
Message Rate (average)

Fig. 4.11: Local Performance TCP Plugin on a DELL Precision T3500

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 10 20 30 40 50 60
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

M
iB

/s

M
e
ss

a
g
e
s/

s

Message Size in KiB

Local Performance UDP Plugin on a DELL Precision T3500

Data Rate (mean)
Message Rate (average)

Fig. 4.12: Local Performance UDP Plugin on a DELL Precision T3500

86 4. Resilient and Secure Communication for Decentralized Networks

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 2000

 4000

 6000

 8000

 10000

 12000

 14000

M
iB

/s

M
e
ss

a
g

e
s/

s

Message Size in Bytes

Performance UDP Plugin on a Local System

Data Rate (mean)
Message Rate (average)

Fig. 4.13: Local Performance UDP Plugin on a DELL Precision T3500: Impact of Fragmentation

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60
 3000

 4000

 5000

 6000

 7000

 8000

 9000

M
iB

/s

M
e
ss

a
g
e
s/

s

Message Size in KiB

Local Performance HTTP Plugin on a DELL Precision T3500

Data Rate (mean)
Message Rate (average)

Fig. 4.14: Local Performance HTTP Plugin on a DELL Precision T3500

4.4. Evaluation 87

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60
 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

M
iB

/s

M
e
ss

a
g

e
s/

s

Message Size in KiB

Local Performance HTTP Plugin on a Lenovo T440s

Data Rate (mean)
Message Rate (average)

Fig. 4.15: Local Performance HTTP Plugin on a Lenovo T440s

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

M
iB

/s

M
e
ss

a
g
e
s/

s

Message Size in KiB

Local Performance HTTPS Plugin on a DELL Precision T3500

Data Rate (mean)
Message Rate (average)

Fig. 4.16: Local Performance HTTPS Plugin on a DELL Precision T3500 not supporting AES-NI

88 4. Resilient and Secure Communication for Decentralized Networks

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60
 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

M
iB

/s

M
e
ss

a
g

e
s/

s

Message Size in KiB

Local Performance HTTPS Plugin on a Lenovo T440s

Data Rate (mean)
Message Rate (average)

Fig. 4.17: Local Performance HTTPS Plugin on Lenovo T440s supporting AES-NI

performance is similar to the performance achieved with the HTTP plugin. On this system

CPU cores did not immediately go to 100% load. We did not tune the cryptographic cipher

suites and used the default cipher (AES-128-GCM) as this is the default used and selected

by the client and server libraries. Here it is important to note that neither the Xeon CPU

nor the T8300 CPU used support Intel’s AES-NI technology adding new CPU instructions

for full AES hardware acceleration. Therefore, newer CPUs supporting this technology

can achieve higher crypto performance even when running at a lower clock rate. As we can

see with from Table 4.1 is cryptographic performance on the Xeon for the AES-128-GCM

cipher with 46.42 MB/s close to the data rate achieved with the HTTPS transport plugin

whereas on the Lenovo system with AES hardware acceleration the crypto performance

does not limit the performance of the HTTPS plugin.

When comparing the performance of the HTTP plugin achieved on the DELL and the

Lenovo system, we can see that even modern CPUs optimized for power consumption can

achieve higher performance than older systems running with a higher clock rate due to

progress in CPU design. For HTTP performance, the Lenovo system could even outplay

the DELL workstation. While running the experiments on the Lenovo T440s system, we

monitored the clock rate on the system and observed that the system never used the

turbo boost frequency but operated with a maximum clock rate of 1.6 GHz.

The performance of the UDP plugin is significantly lower than for the other plugins.

This is caused by the expensive fragmentation and fragment acknowledgment mechanisms

and the current limitation that we allow only one UDP message in flight at the same time.

As soon as messages have to be fragmented, performance of the UDP plugin significantly

decreases.

4.4. Evaluation 89

4.4.5 Results on Network Performance

A comparison for the performance of different plugins achieved over the network is depicted

in Figure 4.18. The data and message rates for the different TRANSPORT plugins achieved

over gigabit Ethernet are depicted in:

• Figure 4.19 for the TCP plugin

• Figure 4.20 for the UDP plugin

• Figure 4.21 for the HTTP plugin

• Figure 4.22 for the HTTPS plugin

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

M
iB

/s

Message Size in KiB

Comparison of Data Rate of Plugins in the Network

Data Rate TCP (mean)
Data Rate HTTP (mean)

Data Rate HTTPS (mean)
Data Rate UDP (mean)

Fig. 4.18: Performance Comparison Between Plugins over Gigabit Ethernet

With our experiment using a real network link between peers we see that both the TCP

and the HTTP can saturate a gigabit Ethernet link. Here both plugins perform similarly

good achieving a data rate of about 112 MiB/s or 913 MBit/s only for application data not

including TRANSPORT and plugin specific overhead. For the HTTPS and the UDP plugin

we achieve the same performance as on the local system. For HTTPS performance it

is important to note that the T61 notebook did not support AES hardware acceleration.

Here the same limitations to performance as on the local system apply. Networking links

and hardware do not impose limitations for the HTTPS plugin as the performance is

CPU bound. For the WLAN ad hoc plugin we can only present limited experimental

data. We could transmit data with a data rate of about 1.5 KiB/s between peers. Here

it is important to note the experiments were conducted in an environment were many

WLAN networks are operated and many user communicate over WLAN. Here a more

sophisticated evaluation is required in an environment with less WLAN equipment and

users. In addition, the use of the 5 GHz ISM band has to be considered in future work.

90 4. Resilient and Secure Communication for Decentralized Networks

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 10 20 30 40 50 60
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

M
iB

/s

M
e
ss

a
g

e
s/

s

Message Size in KiB

Performance TCP Plugin in the Network

Data Rate (mean)
Message Rate (average)

Fig. 4.19: Performance TCP Plugin over Gigabit Ethernet

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

M
iB

/s

M
e
ss

a
g
e
s/

s

Message Size in KiB

Performance UDP Plugin in the Network

Data Rate (mean)
Message Rate (average)

Fig. 4.20: Performance UDP Plugin over Gigabit Ethernet

4.4. Evaluation 91

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60
 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

M
iB

/s

M
e
ss

a
g

e
s/

s

Message Size in KiB

Performance HTTP Plugin in the Network

Data Rate (mean)
Message Rate (average)

Fig. 4.21: Performance HTTP Plugin over Gigabit Ethernet

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

M
iB

/s

M
e
ss

a
g
e
s/

s

Message Size in KiB

Performance HTTPS Plugin in the Network

Data Rate (mean)
Message Rate (average)

Fig. 4.22: Performance HTTPS Plugin over Gigabit Ethernet

92 4. Resilient and Secure Communication for Decentralized Networks

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0 1 2 3 4 5 6 7
 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

B
y
te

s/
s

M
e
ss

a
g

e
s/

s

Message Size in KiB

Performance WLAN Plugin in the Network

Data Rate (mean)
Message Rate (average)

Fig. 4.23: Performance WLAN Plugin

4.5 Related Work and Comparison

In this section we analyze the transport infrastructures of other distributed applications

and compare their approaches with the design and implementation of GNUnet’s transport

infrastructure. In this context we put a special focus on peer-to-peer applications with a

focus on security and resilient communication.

4.5.1 Tor’s Pluggable Transport Architecture

The Tor project21 is a project with the focus on providing anonymous communication

based on the idea of onion routing. By providing anonymous communication, the Tor

software and its communication are in the focus of various parties interested in preventing

free and anonymous communication on the Internet and therefore trying to suppress and

filter communication with Tor. Various attempts are made to limit and degrade Tor com-

munication. The Tor project therefore provides various counter measures to antagonize

these attempts [LMP+12, The, SJP+11]. To circumvent censorship on IP level, Tor uses

so called bridge relay nodes. Bridge relays are Tor nodes not listed in the Tor directory

servers. One proposed approach to circumvent censorship on DPI level is the use of a

pluggable transport architecture, comparable to GNUnet’s transport plugin architecture,

described in [The]. Using this pluggable transport architecture, traffic between a Tor

client and a bridge can be transformed in a way that it is less recognizable as Tor traffic.

Various different transports are listed, all working very differently. Prominent examples for

pluggable transports are Scramblesuit, Stegotaurus and FTE [DCRS13] for obfuscation,

SkypeMorph [MMLDG12] for traffic morphing, and Flashproxy [FHE+12] and Dust for

resilient communication. An extensive list of pluggable transports available can be found

21 https://www.torproject.org/

https://www.torproject.org/

4.5. Related Work and Comparison 93

on the Tor website22.

Tor only supports one pluggable transport to be used at a time and does not support

to switch between pluggable transport or combine multiple pluggable transports. Users

must be aware that their ISP blocks or censors their Internet connection and configure

the pluggable transport they want to use. Here users have to understand how the ISP

censor degrades Tor traffic and know which pluggable transport is the best to antagonize

this kind of degradation attempt. In addition require some pluggable transports additional

configuration effort or the use of special Tor bridges compliant with these pluggable trans-

ports [The14]. If multiple pluggable transports are available, the Tor software also simply

uses the first pluggable transport configured.

4.5.2 SPOVnet’s ARIBA Resilient Transport Underlay

The Spontaneous Virtual Network (SpoVNet) project23[BHMW08b] is a research project

with the goal to allow decentralized applications to communicate over a heterogeneous

communication infrastructure using self-organizing virtual overlay networks of decentral-

ized systems. SpoVNet is a framework with the aim to enable developers to implement a

diverse set of applications on top of a common foundation. SpovNet tries to overcome

heterogeneity in networks and network protocols as well as limitations (like NAT and fire-

walls) with a self-organizing, decentralized transport infrastructure, virtual addressing of

nodes and a DHT-based control overlay.

SpovNet uses the Ariba underlay abstraction24, described in [BHMW08a], as a trans-

port infrastructure. Ariba provides communication over heterogeneous communication

links using an homogeneous interface for the different supported communication mech-

anisms and copes with mobility, heterogeneity, and middleboxes restricting end-to-end

connectivity. To provide this homogeneous interface, Ariba provides an abstraction layer

with virtual links for the various communication mechanisms. As underlay communica-

tion protocols Ariba supports multiple transport protocols including TCP, UDP, SCTP,

and IPv4, IPv6 and Bluetooth RFCOMM as communication mechanisms. Ariba supports

NAT relaying to connect hosts in restricted environments and protocol relays to overcome

heterogeneity in networks.

Ariba has a similar objective as the GNUnet’s TRANSPORT infrastructure but focuses on

overcoming heterogeneity between networks and does not focus on making communication

resilient or secure. Ariba’s main focus is to provide different communication mechanisms

with the focus to provide connectivity between participants. So Ariba uses the same

approaches and both designs share the objective to increase connectivity, but Ariba only

focuses on overcoming heterogeneity of networks not on using these approaches to improve

communication with respect to resilience and censorship-resistance.

4.5.3 I2P’s Transport Architecture

The Invisible Internet Project (I2P)25, described in [ZH11], is a network to provide anony-

mous communication over the Internet. In contrast to Tor, I2P does not primarily try to

provide anonymous access to services on the Web, but instead creates an overlay net-

work where participants can anonymously exchange messages using a variety of different

services (like email, blogs or file sharing) that are operated within the I2P overlay.

22 https://www.torproject.org/docs/pluggable-transports.html.en
23 https://www.spovnet.net
24 http://www.ariba-underlay.org
25 https://geti2p.net

https://www.torproject.org/docs/pluggable-transports.html.en
https://www.spovnet.net
http://www.ariba-underlay.org
https://geti2p.net

94 4. Resilient and Secure Communication for Decentralized Networks

I2P’s transport service provides message-based communication between I2P routers

using multiple transports. At the moment two transports are supported: a TCP-oriented

transport called NTCP, and secure semi-reliable UDP (SSU). I2P also supports NAT and

firewall traversal techniques to improve connectivity for devices in restricted networks.

I2P provides the possibility to to select the transport per message using a bid based

system, finding the decision which mechanism to use based on a set of inputs. I2P

participants are similar to the participant assumed in this design located in restricted

networks and I2P tries to increase connectivity using similar NAT traversal approaches.

But the I2P design lacks extensibility to support additional mechanisms and does not use

the full potential of supporting multiple transport mechanisms.

4.5.4 BitTorrent Protocol and Obfuscation

BitTorrent26 is a peer-to-peer protocol with the main focus on sharing data over the In-

ternet and is best known for its use with file sharing but it is also used for other purposes

like video streaming, and major companies rely on this technology to provide and enhance

their services. BitTorrent itself is only the protocol specification described in a public

domain document [Coh08]. This protocol is implemented by a large number of BitTorrent

clients, adding additional and client-specific functionalities which can only be used with

compliant client software also implementing these features. For the communication bet-

ween clients, BitTorrent relies on TCP and the UDP-based uTorrent Transport Protocol

(uTP) protocol specified in [Nor09].

BitTorrent is said to cause a high percentage of traffic on the Internet [Tor13] and

therefore many ISPs apply filtering or traffic shaping techniques on BitTorrent traffic

to reduce the network load caused by BitTorrent [XYK+08]. Several BitTorrent clients

try to make communication resilient against this service degradation attempts applying

traffic obfuscation techniques and make filtering of BitTorrent traffic harder and provide

confidentiality and integrity for client communication.

Techniques used are protocol encryption (Protocol Encryption (PE)) using Message

Stream Encryption (MSE) or Protocol Header Encryption (PHE). PHE was only used in

early implementation approaches and but was abandoned and replaced by MSE. With these

approaches, the protocol header (with PHE) or the whole data stream (MSE) exchanged

between the clients is encrypted using a symmetric stream cipher like RC4. This approach

is described in [LuTP06].

Using this approach, BitTorrent clients try to hide and obfuscate their traffic. Due

to the large number of different clients, deploying such an approach is hard to achieve.

In addition, different investigations have proven that protocol obfuscation and Bittorent

MSE is still detectable and therefore easy to classify and filter [HJ10].

4.6 Conclusion and Findings

The communication infrastructure presented in this chapter was tailored to the require-

ments of the GNUnet peer-to-peer framework and its design principles and objectives.

GNUnet aims to provide secure and free communication for a decentralized architecture

and a communication infrastructure has to support these objectives. As the main objec-

tives to achieve we defined to provide connectivity in case of failing or missing communi-

cation infrastructure, improve connectivity between systems and counteracting limitations

26 http://www.bittorent.org

http://www.bittorent.org

4.6. Conclusion and Findings 95

to end-to-end connectivity and provide secure communication resilient against attempts

to degrade or block GNUnet.

To establish the peer-to-peer overlay, GNUnet typically uses existing communication

infrastructure to connect peers. But in case no communication infrastructure is available

or existing communication infrastructure is failing or degraded, GNUnet can connect peers

using ad hoc networking techniques based on Bluetooth or WLAN. These mechanisms

allow peers to discover each other directly and to exchange data without requiring a

deployed communication infrastructure. The DV component enables GNUnet peers to

communicate with peers when not directly connected with each other: with DV traffic

between peers can be forwarded by intermediate peers via the peer-to-peer overlay. This

approach is transparent for the peers and increases the connectivity between peers in the

peer-to-peer overlay and the resilience of the network.

To counteract limitations to end-to-end connectivity and to increase connectivity

for peers in restricted environments or affected by limitations imposed by middleboxes,

GNUnet supports NAT traversal techniques like UPnP and static port forwarding but also

supports NAT hole punching techniques based on ICMP and UDP. In addition with the

HTTP and HTTPS plugins GNUnet supports to use proxy servers for peers limited by

the enforced use of a proxy server. Peers not able to accept incoming connections can

benefit from DV, enabling these peers to communicate with a larger set of peers in the

peer-to-peer overlay.

To make GNUnet resilient against censorship and service degradation, GNUnet sup-

ports multiple transport mechanism to counteract such attempts. GNUnet supports to

communicate with other peers using TCP, UDP and HTTP and HTTPS. With the

HTTP(S) plugin is it possible to tunnel GNUnet traffic in a HTTP(S) tunnel and benefit

from the use of a reverse proxy hiding a GNUnet peer in a popular website. GNUnet con-

tinuously monitors performance properties of communication mechanisms and improves

performance and resilience by using the mechanism providing the best performance prop-

erties. GNUnet’s approach for transport selection will be discussed in detail in the next

chapter.

Secure communication is ensured by treating every information received as untrusted

and using information (for example about remote peers) only after validating those infor-

mation and authenticating the communication partner. GNUnet employs a sender decides

approach where peers decide about allocated resources, accepted data rates and commu-

nication mechanisms locally without exchanging information or collaborating with remote

peers to find these decisions. Communication between is secured with CORE service pro-

viding secure link encrypted communication between peers.

With GNUnet’s transport infrastructure providing communication based on these pil-

lars, we can provide a profound foundation to establish communication between partic-

ipants in a decentralized peer-to-peer system. It can provide high-performance commu-

nication as we saw in the evaluation where we showed that TRANSPORT can saturate a

gigabit Ethernet link using off-the-shelve hardware. But it can also make communica-

tion more resilient using transport protocols providing lower data rates but other desirable

properties. Future work can focus on providing additional transport mechanisms to make

communication more robust against degradation and improve communication in restricted

environments. An additional focus for future work should be the traversal of middleboxes

and improve detection of degradation attempts to improve the resilience against service

degradation.

96 4. Resilient and Secure Communication for Decentralized Networks

5. ADDRESS SELECTION AND RESOURCE ALLOCATION IN

DECENTRALIZED PEER-TO-PEER NETWORKS

A censorship-resistant and resilient communication infrastructure, as the one described in

the previous chapter, provides huge benefits for decentralized peer-to-peer applications.

With the communication infrastructure proposed in Section 4, overall connectivity between

participants is improved by providing the possibility to create ad hoc networks, enabling

users to communicate and exchange information even in environments without deployed

communication infrastructure, connectivity for users in restricted environments is improved

employing port mapping and NAT traversal techniques and degradation attempts are

counteracted by supporting multiple transport mechanisms and providing the possibility to

switch in case of service degradation or filtering.

So the proposed communication infrastructure for the GNUnet peer-to-peer framework

provides powerful features to overcome the limitations with respect to end-to-end con-

nectivity analyzed in Section 2 and overlay connectivity analyzed in Section 3. But having

such a resilient infrastructure does not automatically solve all problems, but instead cre-

ates new challenges: when a transport infrastructure provides the ability to switch between

transport mechanisms and to build ad hoc networks, new questions arise: the transport

infrastructure provides a set of various functionalities, but how can the performance of

these mechanisms be evaluated? Which mechanisms are available at the moment? Which

mechanism should be used in a specific situation? Which mechanism is the best to use

in the current situation? How do we define good and how do we define better? And

for which objective do we try to be good? When should we switch between the different

mechanisms? How many resources should be allocated to a mechanism?

As we can see from these short overview over some possible questions arising in this

context, it is not sufficient to just provide the functionality, but this functionality also

has to be managed. In this chapter we will present the design and implementation of an

automatic transport selection and resource allocation mechanism, designed to match the

requirements and objectives of decentralized peer-to-peer systems. As a preparatory work

for the design, we present a detailed analysis of the entities existing in the problem setting

this mechanism is located in and based on these entities, we define the problem of address

selection and resource allocation in decentralized networks. We define the objectives the

mechanism has to achieve when solving this problem as well as the scope and limitations of

the presented approach. Based on this problem definition, we present the design and the

implementations of such a mechanism. The proposed mechanism is designed to match

the requirements of peer-to-peer networks and pays respect to the specific properties of

underlying transport mechanisms, possibly conflictive requirements of different applications

working on top of a peer-to-peer framework, and resource restrictions present on a peer.

We present three different approaches how to find a solution for the defined problem using

a greedy heuristic, mathematical programming and machine learning techniques. Each of

these approaches is considered due to the specific advantages it provides and we compare

the benefits, drawbacks as well as performance and quality provided by each approach.

Parts of this chapter were previously published in [WOG14] and researched in col-

98 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

laborative work with other researchers and students. The design of the Reinforcement

Learning (RIL) solver is based on Fabian Oehlmann’s work on the suitability of machine

learning for bandwidth management in decentralized networks [Oeh14] and the analysis

covering suitability of heuristics is based on Robert Schirmer’s work on operations research

approaches for allocation problems in decentralized networks [Sch13].

5.1 Background and Analysis of the Problem Setting

To motivate the problem of automatic transport selection and its relation to resource

allocation, we start with an in detail analysis of the participating elements in a peer-to-peer

system and how these elements interact. We do this with respect to the communication

infrastructure and properties defined in the previous section and with a special focus

on the requirements of peer-to-peer frameworks like the GNUnet peer-to-peer framework

described in Section 2.8.3. Based on the findings of this section, we elaborate the problem

to solve, the objectives and challenges and define the requirements for a transport selection

and resource allocation mechanism.

5.1.1 Peers

As described in Section 2.8, a peer-to-peer network consists of a variable number of

participants, the so called peers. The number of peers is not fix nor a priori known in

most peer-to-peer networks. Peer-to-peer networks are designed to allow peers to join and

leave at will and without prior coordination. Peers in a peer-to-peer net work are expected

to join and leave frequently, a behavior called churn. Fully decentralized peer-to-peer

networks do not rely on any trusted, centralized coordination instances and therefore the

process of joining and leaving the network is also not managed by a centralized instance

and peers have to coordinate this process in a decentralized manner.

Each peer in a peer-to-peer network maintains a list of possible connection partners

and tries to maintain connections to these peers. The set of peers it is connected with is

dynamic. Due to churn, peers can join and leave the network without prior coordination.

So each peer has to decide with which peers it can communicate with it wants to maintain

a connection. This decision is not static and can be reconsidered over time since the set

of available peers changes due to churn. Maintaining connections to a larger number of

peers helps to increase connectivity and resilience in the peer-to-peer overlay and therefore

stability in the peer-to-peer overlay. On the other hand is maintaining connections expen-

sive for a peer since connections require resources like sockets and memory for buffers.

Connections have to be maintained requiring computation time and network bandwidth to

do so. Therefore, every peer has to find a trade-off between increasing the resilience in the

overlay by maintaining a larger number of connections and saving resources by restricting

the number of connections to a certain threshold. Each peer has to decide to which peer

in his set of known peers it wants to maintain a connection to. This decisions can be

based on peer-based properties: a peer can use information like prior uptime, amount of

data exchanged and transmission quality provided with this peer to make this decision.

5.1.2 Transport Mechanisms

One of the features of the communication infrastructure described in the previous chapter

is to increase overall connectivity between peers and to counteract service degradation

by providing support for multiple transport mechanisms. In the case of lacking or failing

5.1. Background and Analysis of the Problem Setting 99

infrastructure, the communication architecture can create ad hoc networks to communi-

cate with other peers without managed communication infrastructure. To communicate

with a peer is not directly connected to, the peer can use the DV plugin and communi-

cate by relaying the traffic over other peers in the peer-to-peer overlay. In case of service

degradation or censorship, the transport infrastructure can switch to a different transport

mechanism to counteract the censorship. The transport mechanisms work on different

layers of the ISO/OSI protocol stack. So one the hand, GNUnet supports multiple trans-

port layer protocols like TCP and UDP and application layer protocols like HTTPS and

on other hand mechanisms like WLAN working directly on physical layer. Therefore, we

do not use the term transport protocols, but instead the term transport mechanisms in

the remainder of this discussion. Due to the intention these mechanisms originally came

from, they have different properties and each single one of them is especially suitable for a

different communication environment. Some of them are reliable, like TCP, others provide

only unreliable communication like WLAN and UDP, plugins may be connection-oriented

or connectionless or provide point-to-point or point-to-multipoint communication.

Each peer in a peer-to-peer network not only has to decide with which peers it wants

to communicate, it also has to figure out which transport mechanism is the best to use

in the current environment. Each mechanism has a specific use case and has different

properties. When two peers supporting multiple transport mechanisms communicate with

each other, the best available transport mechanism should be used.

5.1.3 Transport Mechanisms with Multiple Addresses

In addition to decide which transport mechanism to use, the address selection mechanism

may also have to decide which address provided by a single transport mechanism to use.

Depending on the respective transport mechanism, a transport mechanism can provide

more than a single address, as described in Section 4.3.2. So for example the TCP and

UDP plugins can provide both IPv4 and IPv6 addresses when the peer supports both IPv4

and IPv6 and a system may have multiple network interfaces, each equipped with one or

more addresses. With the transport infrastructure proposed in the previous chapter, the

plugin notifies the TRANSPORT service about all available addresses and the TRANSPORT

service gives these addresses to the neighbor discovery and bootstrapping mechanisms

to publish them in the peer-to-peer network. Depending on the transport plugins of the

remote peer and the properties of the remote system, the remote peer then selects the

appropriate address from the set of available addresses to connect to a peer.

So the problem of address selection is extended to select the peers to communicate

with, select the most suitable transport mechanism and based on these decisions, select the

most suitable transport address if a transport mechanism provides more than one address.

As for the set of addresses provided by a single transport mechanism, the addresses

may have different properties depending on the transport mechanism, so the address

selection mechanism has to figure out the best address available from a set of addresses

to communicate with a peer.

5.1.4 Network Scopes

With TCP’s IPv4 and IPv6 addresses we saw that a single transport mechanism can provide

more than one address, for example to differentiate between different protocol versions.

But the number of available addresses can be even higher for a single transport mechanism.

If a system contains multiple network interfaces or if the protocol used by the plugin

provides this notion, a transport mechanism can provide different addresses for network

100 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

links located in different networks or network scopes. Most systems provide a virtual

local pseudo network interface for local communication, the so called loopback interface.

This interface is used by applications for network communication within the context of

the same operating system. Depending on the protocol, additional network scopes are

possible. With IPv6 additional network scopes are defined in [HD06]. IPv6 defines in

addition to global and private addresses known from IPv4 six additional network scopes:

interface-local, link-local, admin-local, site-local, organization-local and global. The idea

behind this approach is to make it easier to restrict certain traffic to an administrative

domain. This approach simplifies controlling and routing since traffic can be filtered or not

forwarded at the boundary of each administrative domain. So each IPv6 enabled network

interface can have an address assigned in each of these network scopes. With IPv4,

we can have a global IPv4 address and an address for the local loopback interface and,

when affected by NAT, an additional public IP addresses. In addition, a system can have

multiple network interfaces. A standard notebook may already have three active network

interfaces: the loopback interface, an Ethernet network interface and a wireless WLAN

interface. Each of these interfaces may support IPv4 and IPv6 with multiple addresses in

different network scopes.

For a transport selection and resource allocation mechanism for decentralized peer-to-

peer networks, it is important to know where a peer is located. A peer is communicating

with various other peers which may be close and cheap to talk to from a networking per-

spective or they may be far and it is expensive to communicate with these peer. A remote

peer may be reachable over an expensive and slow WAN dial-up connection, a lossy wire-

less connection or over a fast wired Ethernet connection in the local LAN. Communication

with peers in different network scopes can have different properties. Within the LAN, we

can have very fast communication with a high throughput since LANs provide communi-

cation with a low latency and high bandwidth, whereas WAN connections commonly have

a smaller line speed and communicating with peers connected over multiple intermediate

hops on the Internet will experience a higher latency. Communication in a WLAN may

have a higher bandwidth compared to a WAN connection but also a higher latency and

loss rate compared to the LAN.

Therefore, a transport selection mechanism has to be aware of different kinds of

addresses and how well each single one of them is suitable for communication with a peer.

The proposed address selections mechanism must have a notion of network scopes to

distinguish between the different addresses and the networks these addresses are located

in. Based on this notion, it can improve its decision which address is used to communicate

with a peer.

5.1.5 Bandwidth Restrictions for Network Scopes

Based on the notion of network scopes introduced in the previous section, we have to in-

troduce an additional aspect related to these network scopes with respect to the resources

available in these networks. In a LAN, the bandwidth available may be virtually unlimited

whereas in other network scopes bandwidth can be limited or restricted by policy. Some

network scopes can only provide a certain limited line speed, for example when using a

dial up connection. So when communicating with addresses in these network scopes, the

consumption of the scarce resource has to obey certain limits to not over-utilize the link

available. This is even more important since the peer-to-peer application may not be the

only application on a system using a network link. Therefore, bandwidth available must

not be fully exploited at full line speed to prevent cannibalization of other applications on

5.1. Background and Analysis of the Problem Setting 101

the same system.

A second aspect to be aware of is that for certain network scopes, like LAN, the

amount of bandwidth consumed may not matter, while this is not true for other network

scopes: when using a mobile 3G or 4G Internet connection with a data plan, the bandwidth

consumed will matter to the user. The same issue applies to users using a broadband

access with data capping, as described with economic motivations in Section 1 and an

application fully exploiting the bandwidth available.

A user may want to restrict the application with respect to the amount of bandwidth

it consumes. For every network scope, the user may want to provide a quota, restricting

the amount of bandwidth the application consumes in a certain time period. This time

interval can vary: a user may want to configure a certain amount of bandwidth to use per

month for his 3G connection (to not exceed his data plan) and on the other hand restrict

bandwidth consumption per second (to limit the transmission speed and not penalize other

applications). This restriction may be different per network scope: a user can define a high

quota for his LAN scope but restrict the bandwidth consumption in the WAN scope to a

ratio or total amount of the nominal par of bandwidth available. In addition, a user even

may want to configure separate quotas for incoming and outgoing traffic, since network

connections can be asymmetric.

5.1.6 Resource Allocation and Address Selection

An additional aspect to selecting a suitable address is the aspect of sharing and allocating

scarce resources to peers. Some resources on a system or in the network can be limited.

When deciding with which peers to communicate and which address is suitable, the ad-

dress selection mechanism also has to distribute the available resources to peers. The

network bandwidth available can be one of these scarce resources, other resources may

be local resources like network sockets, memory (when a transport mechanism requires

buffers) or computation time (when a transport mechanism is especially expensive with

respect to its computational requirements). Therefore, resource allocation is an imma-

nent aspect when having to select the best address to communicate with a peer. The

process of address selection and resource allocation are tightly intertwined: An address

must be evaluated with respect to its resource consumption in proportion to the resources

availability. Selecting a set of suitable addresses to communicate to a set of peers de-

pends on the available of resources to communicate with this peers. Then again the

decision to allocate resources strongly depends on the set of addresses selected from the

set addresses available to communicate with the peers: choosing a slightly worse address

with respect to its properties but with more resources for communication can result in

an improved overall performance. Therefore, finding a solution optimal with respect to

address selection and resource allocation will strongly improve the overall quality of the

solution.

5.1.7 Transport Properties

Different transport mechanisms and also the addresses provided by a mechanism can have

different properties. In Section 5.1.2, we introduced the different transport mechanisms.

As described there, a mechanism is a generalization since these mechanisms have com-

pletely different use cases or purposes, use different transport protocols and may even

work on different layers of the protocol stack. Based on these different concepts, it is

only natural that these mechanism behave differently. In Section 5.1.2 we described that

102 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

even for the same transport mechanism addresses can behave differently and have prop-

erties depending on the realization of the mechanism. A transport selection and resource

allocation mechanism must pay respect to these differences: in previous sections we used

the notion of the best or suitable addresses. We used this abstract generalization since at

a certain point the proposed address selection and resource allocation mechanism has to

evaluate and define what good is and when a mechanism or an address is better than a sec-

ond one. Therefore, we have to be able to evaluate and compare transport mechanisms

to figure out the best solution for the problem described in the previous sections. We

need a way to evaluate and compare between different addresses of the same or different

transport mechanisms with respect to various different aspects of their behavior.

To be able to collect information about the behavior of transport mechanisms, to

be able to evaluate mechanisms and addresses and to compare them with each other,

we introduce in the following sections the idea of so called transport properties. These

transport properties capture the properties and behavior of a transport mechanism or

address with numerical values with respect to different aspects of a transport mechanism.

By describing these properties with numerical values, we can compare between different

addresses and based on this comparison evaluate the quality of different transports to find

the best solution for the address selection and resource allocation problem described in

this chapter.

Transport properties describe various aspects how a transport mechanism can be cat-

egorized. We propose a generic approach, which enables us to extend and add additional

aspects later when required and by quantifying these properties we make them comparable

and introduce an order in the set of transport addresses available.

Initially, we distinguish between different kinds of properties a transport mechanism

can have. A property can be dynamic, so it can change over time, or it can be static.

A transport property can be influenced or implied by the way the transport mechanism is

working. This is what we call an intrinsic transport property. On the other hand, we define

extrinsic transport properties as properties which are influenced by external events and the

environment. These properties are not caused or influenced by the transport mechanism

itself. A specific property of a transport service can now by static or dynamic and intrinsic

or extrinsic.

5.1.7.1 Static and Dynamic Transport Properties

When analyzing properties of transport mechanisms, we can characterize them based on

their temporal behavior. To classify properties of transport mechanisms based on temporal

behavior, we can distinguish between properties constant over time and properties dynamic

properties changing their values over time.

A first example for static a static property is the overlay hop distance for a TCP or UDP

connection where communication partners are always directly connected with each other

with an overlay hop distance of 1. For a connection established with the DV transport

mechanism, described in Section 4.3.18, where traffic is routed over overlay peers, this

assumption is not true: peers must not be directly connected on transport layer but the

peers can be connected by a number of intermediate overlay hops. In addition, the number

of intermediate peers can be dynamic: peers are exchanging routing information during

operation and therefore new and possibly shorter routes may be learned and a peer may

switch a shorter and therefore better route. For TCP or UDP connections it is sufficient to

assume a static value fix over time and fix for all addresses for this property for example

the number of IP hops. For the DV transport mechanism, the overlay hop distance is

5.1. Background and Analysis of the Problem Setting 103

known a priori and can change over time.

A second example is the energy consumption required to send a specific amount of data

using a transport mechanism. This property is particularly interesting for mechanisms using

wireless transmission, like Bluetooth or WLAN. For a transmission over a wired Ethernet

connection using for example TCP, this property is hard to determine in a normal user

environment. But for a WLAN connection, this property beneficial to know if the remote

peer is far away and a high amount of sending power is required to transmit data to this

peer. Due to the mobility of both nodes or additional devices coming in range or leaving,

this value can change over time, requiring a frequent re-evaluation of the current situation.

5.1.7.2 Intrinsic and Extrinsic Transport Properties

A second aspect to be considered when categorizing possible properties of transport mech-

anism is if the transport mechanism itself is responsible for the specific property due to

its design, architecture or implementation or if the property is caused or implied by the

environment the mechanism is operating in. If a property is caused or implied by the

transport mechanism itself, we call it an intrinsic property. If the property is influenced

or caused by external factors, we call the property an extrinsic property. To distinguish

between properties being intrinsic and extrinsic is important when transport mechanisms

have to be evaluated and compared with each other. A intrinsic property can be analyzed

by inspecting the transport mechanism and its design and implementation off-line. In

addition, it is possible to evaluate intrinsic properties with a local view of the transport

mechanism and its state. To evaluate extrinsic properties, additional information or mea-

surements about the communication partner, intermediate systems or the current state

of the communication channel the mechanism is using are required.

An example for an intrinsic property is the computational overhead caused when using

encryption on transport layer. If a transport mechanism uses a layer of encryption, like

for example the HTTPS transport plugin described in Section 4.3.15, this causes higher

computational cost and therefore transport performance can be lower. So transport mech-

anisms using additional encryption on transport should therefore only be used when their

functionality is required since using these mechanisms shortens battery lifetime on mobile

devices and transport performance is less efficient in comparison to other transport mech-

anisms. This computational overhead is an intrinsic property caused by the design and

functionality of the transport mechanism and the impact can be evaluated by inspecting

the design and implementation of the transport mechanism.

An extrinsic transport property, not caused or influenced by the transport mechanism,

is for example the network delay for a network connection, so the time between sending

a data message and the message arriving at the destination host. This network delay

is influenced by a large number of aspects: the line speed of the network connection,

other applications the connection is shared with, the number of the intermediate hosts

routing the data to the destination and the current load of these nodes, possible failures

and misconfiguration and many many more aspects have an impact on the time required

to send a network message from one host and have it arrive at its destination. Not

only is this property dynamic and therefore has to be reevaluated frequently, it is also

not directly caused by the mechanism but the environment the transport mechanism is

operating in. Quantifying an extrinsic property can therefore be a non-trivial task and can

require expensive active measurements and this property is in addition different for each

communication partner and every transport address available.

104 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

5.1.8 Application Requirements

A transport selection and resource allocation mechanism has the objective to find the set

of best transport mechanisms to communicate with set of communication partners and

it has to distribute available resources among the communication partners to achieve an

optimal allocation. As in the previous sections, the question arises how to define and

choose the best transport mechanism and how to assign the required resources to achieve

an optimal resource allocation.

Since the communication infrastructure discussed in this work only provides the infras-

tructure for higher layer applications to communicate in the overlay network, the objectives

for an optimal address selection and resource selection strategy depend on the applications

using the communication infrastructure and their requirements with respect to communi-

cation. A voice or video communication application requires low latency communication

with the communication partner to provide a convenient user experience. If the latency is

too high, communication with the human partner is delayed and unresponsive, resulting in

an unsatisfying user experience. On the other hand a telephony application requires only

a small amount of bandwidth: codecs optimized for voice transmission and telephony,

like G.729 codec [US96], can work with as little as 8 KiB/s. So telephony connections

require a low latency connection and do not rely on high bandwidth between communi-

cation partners. In addition, due to the design of the codecs, they may even tolerate a

certain amount of loss in the communication without impacting the application’s quality

of service and user experience.

A file transmission application on the other hand has communication requirements

completely opposing to the requirements of a telephony application. A file transmission

application wants to transfer the data as fast as possible to finish the operation as soon

as possible. So a file sharing application requires a large amount of bandwidth but does

not care much about the latency of the communication. In addition, such applications

often tolerate no loss or corruption in the transmission since the data are required to be

transferred completely and correctly.

As we can see from these two completely different examples, the requirements appli-

cations have with respect to communication properties can be very different. A transport

selection and resource allocation mechanism to be used in an application framework has to

pay attention and comply with the requirements applications have. A suitable mechanism

must adapt its selection and allocation strategy to the applications’ requirements. To re-

alize this, interaction between the selection and allocation mechanism and the higher layer

applications is required to enable applications to specify their requirements with respect

to the communication properties.

5.1.8.1 Application Preferences for Communication Partners

An application following the client/server paradigm only has to find one best address to

communicate with the server and has to assign the resources accordingly to this connec-

tion. If such an application supports more than one transport mechanism, the application

may have to figure out the most suitable address out of a set of addresses. But an appli-

cation following the peer-to-peer paradigm does not communicate with only one but with

many communication partners in parallel and therefore has to specify their preferences for

peers in a larger set of peers. In a peer-to-peer environment, not every communication

partner may be equally valuable to communicate with for the applications for various rea-

sons: the peer can be the desired communication destination, a peer can be more valuable

since it provides better connection properties, for example a lower delay or a larger band-

5.1. Background and Analysis of the Problem Setting 105

width, a peer can be more valuable since previous application operations were successfully

performed or less valuable since previous operations failed. So in general, an application

may have a higher preference for a peer it can successfully collaborate with and a lower

preference for less valuable peers.

5.1.8.2 Application Feedback

Besides specifying their requirements and preferences with respect to communication with

other peers, applications can also give feedback about how satisfying the current solution

is. The application can specify how satisfied it is with the current solution with respect to

a communication partner and transport properties. While preferences and requirements

are specified to allow the address selection mechanism to find a solution aligned with the

requirements of the application, feedback is given after a solution was found and applied

with the system to allow the system to adapt its solution strategy.

5.1.8.3 Supporting and Balancing Multiple Applications

When designing a transport selection and resource assignment mechanism for decen-

tralized peer-to-peer frameworks supporting more than one application to use a shared

transport infrastructure, the challenge arises to strike a balance between the requirements

and preferences of the different applications. If the peer-to-peer application is directly

and tightly coupled with the peer-to-peer framework each peer-to-peer application em-

ploys their own instance of the framework. These instances are independent from each

other and may run in parallel without interfering or interacting. A transport selection and

resource assignment mechanism in a tightly coupled framework only has to pay respect to

a single application and its peer preferences and communication requirements. With the

GNUnet peer-to-peer framework all applications (on the same system or ran by the same

user) use the same instance of the GNUnet peer-to-peer framework. So there is only

one GNUnet instance running and all applications use and share this instance. With this

design approach, a framework does not provide communication facilities just for one upper

layer application but for a larger number number of applications. A transport selection

and resource allocation mechanism in such a system therefore has to handle and fulfill the

possibly conflictive requirements of a large and varying number of applications.

A second aspect to consider is that a framework like GNUnet is designed to provide

the foundation for developers to implement their of decentralized networking application.

As a consequence we do not a priori know what kind of application will use the framework

and which requirements and preferences such an application will have. The mechanism

designed in this chapter will therefore have to be generic and support differing kinds of

applications with differing and opposing requirements and preferences. The applications

and their requirements and preferences are not a priori known at the time when the

framework is developed and can change over time when the applications are running.

Since the applications are independent from each other and do not typically coordinate

or communicate their requirements and preferences, the address selection and allocation

mechanism has the goal to find a balance between the different applications.

5.1.9 Summary

To summarize this evaluation and to give a description of the problem being solved in

this chapter, we summarize here the problem of address selection and resource alloca-

106 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

tion in decentralized peer-to-peer networks with special focus on the use in peer-to-peer

frameworks like the GNUnet peer-to-peer framework.

In a peer-to-peer application, the transport infrastructure has to provide underlay com-

munication with a certain set of peers specified by higher layer applications requesting to

establish a connection with these peers. For each communication partner a set of ad-

dresses is available to establish a connection with this peer. Addresses have different

properties and can be located in different networking scopes. To restrict the resource

consumption of the peer-to-peer application, the user can specify resource restrictions

including the resources consumed in the respective networking scopes. In the given peer-

to-peer application, it is possible to have multiple applications using the transport in-

frastructure in parallel. These applications specify which communication properties they

cherish to communicate with communication partners and give feedback if the current

solution is satisfying their requirements.

A solution to this problem is the set of addresses having resources assigned to com-

municate with requested peers. From the given set of addresses, for each communication

partner an address has to be select and provided with a share of the resources available

to provide connectivity optimally satisfying the requirements and preferences of the appli-

cations. Since the set of peers, the addresses available and their properties may change

over time, this solution has to be recalculated when the environment changes.

5.2 Design and Architecture

In the previous sections, we analyzed the requirements for a transport selection and re-

source allocation mechanism particularly suited for the requirements of decentralized peer-

to-peer networks and formulated the problem to solve. Based on this analysis we will now

present our design and architecture of the proposed mechanism and the different solu-

tion approaches used to find a solution to the problem: a greedy heuristic, treating the

problem as mathematical optimization problem and using a machine learning to learn a

selection and allocation strategy. After describing our proposed design we will discuss in

the following sections related work and describe the implementation of our approach.

The goal of the address selection and resource allocation mechanism is to provide a

subset from the set of addresses the mechanisms evaluated to be the best in the current

situation to achieve best possible performance for the applications according to the prefer-

ences specified by the applications and with respect to the current properties each address

has and the currently given resource restrictions. To achieve this objective, the tasks are

two-fold: on the one hand the best address for each peer has to be determined and on the

other hand the available resources have to be distributed among these addresses. These

tasks are tightly intertwined: choosing an address with good properties but being able

to only assign few resources is a worse decision than selecting a slightly worse address

but being able to provide a larger amount of resources. Therefore, both aspects have

to be considered in an integrated approach. A solution found for the problem has to be

reconsidered when the environment changes due to peers joining or leaving, applications

changing their preferences or address properties changing.

The mechanism designed here has to be tightly integrated with its environment: on

the one hand higher layer applications have to interact with mechanism to announce their

preferences and on the other hand the mechanism has to collaborate with the transport

underlay. The transport underlay provides information about addresses available including

the properties of these addresses. When a new addresses or transport sessions are available

or become unavailable, the transport infrastructure notifies the address selection about

5.2. Design and Architecture 107

this change. When the transport infrastructure is requested to connect to a remote peer,

as described in Section 4.3.11.7, it requests an address to be suggested for this neighbor.

The address selection mechanism in return provides the transport underlay infrastructure

with information about the address to use to communicate with a neighbor and the amount

of resources assigned to this address.

5.2.1 Input for the Transport Selection

As an input for the transport selection problem, we have the set of peers known to a

peer and the addresses of the transport mechanisms to establish connections with the

remote peers. This information is provided by the transport underlay. To compare the

different addresses, the transport underlay provides information about the intrinsic and

extrinsic properties and network information for each address as soon as this information

is available or updated. The transport underlay also notifies the mechanism about changes

and updates to an address. Since the transport underlay requests addresses for neighbors

it wants to establish a connection with, the transport selection mechanism has to know

the set of neighbors addresses are requested for.

Information about the resource restrictions and resource restrictions for the different

network scopes are provided by the user specified in a configuration or predefined by the

developer. The transport selection mechanism can use this information to find a solution

obeying the current resource restrictions of the system.

Applications using the peer-to-peer system to communicate with other peers specify

their preferences to the transport selection mechanism. Applications specify their prefer-

ence for a specific peer and a certain preference properties particularly useful or important

for them. The transport selection mechanism uses these information to find a solution

matching the particular requirements of the applications. In addition, applications give

feedback to the mechanism how satisfying the current solution is with respect to peers

and properties. This allows the mechanism to adapt its solution strategy to meet the

requirements better.

5.2.2 Output from Transport Selection

A solution to the transport selection problem (in the remainder of the problem called an

allocation) is the set of addresses selected by the address selection mechanism to be used

to communicate with the requested peers together with the amount of resources allocated

to each of these addresses. This information is provided to the transport infrastructure

using the addresses to establish connections to remote peers and at the same time to

enforce the resource limits as described in Section 4.3.11.13. Addresses selected for

communication are called active or selected in the remainder of this document.

5.2.3 Objectives for Transport Selection and Resource Allocation

When finding such an allocation, the mechanism has to determine the best address for

each communication partner and distribute the resources available among these addresses.

At the same time, the mechanism has to obey the resource restrictions, ensure usability

of the communication and optimize the solution to satisfy the application requirements.

When finding a solution, the transport selection and resource allocation mechanism has

to follow the following objectives:

Usability of Communication:

108 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

To provide useful communication between participants, a minimum amount of re-

sources is required for each connection to a communication partner as just setting

up, maintaining and managing the connection creates a certain overhead. Thus, if

an address is selected at all, at least a certain minimum amount of resources has to

be assigned.

Diversity of Communication Partners:

Communicating with a larger number of participants increases the resilience of the

peer-to-peer network. Therefore, the resulting allocation has to distribute resources

over a range of peers instead of assigning resources only to a tiny number of peers.

Relativity of Resources to Peers:

Resources have to be allocated to peers according to their relative importance in the

communication as expressed by the applications’ preferences. So if a peer is valuable,

it has to get more resources assigned than a peer not valued by applications.

Utilization of Resources:

Available resources should be fully allocated to allow participants to achieve maxi-

mum utilization when communicating. Depending on the application, applications

are still free to not utilize the allocated resources.

Austerity when Using Resources: The resources provided by the system have to used

economically and communication performance maximized. Transports with high

communication overhead or resource requirements should be avoided to minimize

useless resource consumption and maximize application performance by preferring

transports with low resource consumption.

Stability of Connections: Allocations have to exhibit some stability when using con-

nections to minimize transport initialization overheads and provide predictable per-

formance to applications. Establishing and switching between connections creates

communication overhead, consumes resources and influences application communi-

cation, while using a connection for a longer period can improve performance, for

example when using congestion or flow control.

5.2.4 Scope and Limitations

The mechanism proposed in this work has a focus on finding set of addresses to com-

municate with a set of neighbors for a peer. We assume that the preferences with which

peers to communicate are specified by the higher layer applications and are issued to the

transport underlay responsible to establish connections. The address selection mechanism

does not decide which neighbors to communicate with, but it can disconnect peers when

no suitable allocation can be found according to the objectives defined in Section 5.2.2.

In this work we do not specify how it is determined with which neighbors connections

are established. This task is left to higher layer applications such as GNUnet’s TOPOLOGY

daemon.

In this work, we assume that only a single address per peer has to be determined.

This is based on the assumption that maintaining multiple connections at the same time

consumes too many resources and the transport underlay should prefer to switch between

different addresses if a single address performs not according to the requirements specified

by the applications.

5.3. Input Normalization and Correlation 109

Our approach does not depend on any centralized instances coordinating the process

of bandwidth allocation or address selection. Every participant in the networks finds this

allocation on his own. To ensure privacy and prevent leaking of peer specific information

as well as to prevent manipulation or DoS from remote peers in the network, the peer

does not exchange allocation information with other peers. The solution found by our

ATS approach is good from the local view of the peer, we do not try to achieve a globally

optimal solution for all peers. Since we assume that the network can contain malicious

participants in an unbounded fraction to the number of total peers, this is an restriction

to strengthen the security of our approach.

5.3 Input Normalization and Correlation

Inputs to the address selection and resource allocation process originate from different

sources like different applications specifying their preferences or giving feedback or from

different transport plugins notifying the address selection mechanism about the perfor-

mance properties of the addresses currently available. Different applications may use

different value ranges to specify their inputs. One application can specify its preferences

using a value range from [0..10], with 0 indicating a low preference and 10 indicating a

high preference, while a second application may use a range from [100..1000000].

The same issue exists for performance property values provided by the TRANSPORT

service and TRANSPORT plugins. For different performance values different value ranges

can be used: a performance metric containing information about the overlay hop distance

can use a range from [1..10] hops, while transmission delay could be in a range from

[1..1000] ms.

To be able to use these inputs, these values have to be transformed to a common and

known domain to be able to compare these values, perform computations and evaluate

addresses. Therefore, the address selection mechanism provides an normalization compo-

nent providing normalized preference and performance values to be used when solving the

problem. The address selection mechanism normalization component takes the uncorre-

lated and unnormalized inputs from applications and the transport underlay and normalizes

and correlates these values into a common value domain and provides these values to the

solvers where they can be used to compare preferences and performance information and

to perform computations using these values.

5.3.1 Preference Normalization and Correlation

With preference normalization, we transform the absolute preference values to a common

value range and with correlation make the values comparable between different peers and

addresses. In our approach, every application can specify their preference for a specific

preference type and a specific peer using an absolute floating number value. This floating

number represents the application’s preference. The ATS mechanism has to specify for

every peer how important a specific preference type is for the applications as an output

of the normalization and correlation process. For every peer and every preference type, a

relative value represents with a floating number this preference in the range of [0 . . . 1],

with a lower value indicating a lower preference for this peer. If no preference is specified

for a peer we use a default value of 0.

The basic idea for correlation and normalization is that every application issues which

preference types for which peers are important for this application. We can normalize the

110 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

preference types p ∈ P for the application c ∈ C by calculating a relative preference fc,p
for each peer p by normalizing the absolute preference values ac,p with:

fc,p =
ac,p∑

p∈P
ac,p

with ac,p = 0 if no preference was specified for a peer. As a consequence we have

normalized the absolute preference for an application to a range of fc,p = [0 . . . 1] and∑
p∈P

fc,p = 1 if an absolute preference with ac,p 6= 0 exists. This range was chosen since

preference values are often used with operations in solvers where no preferences should

lead to a (multiplicative) result of 0.

After normalizing these values, we have to correlate the different relative values bet-

ween the different applications to be able to provide a single relative preference value for

each peer and each preference type. In our approach we correlate these values with the

preferences specified by other applications by calculating a unified relative value fp for a

peer p as:

fp =

∑
c∈C

fc,p∑
c∈C

∑
p∈P

fc,p

with fp = 0 if no relative preference was specified for a peer. As a consequence we have

normalized and correlated the absolute preference values for an application to a range of

rp = [0 . . . 1] and
∑
p∈P

fp = 1.

In addition, we support the notion of preference aging to reflect that older preferences

are less important than currently issued preference requests. We use a preference aging

factor and update the current absolute preference value by multiplying the absolute value

ac,p with the aging factor faging in regular intervals:

ac,p = ac,p · faging

After applying the preference aging to the absolute preference values, the NORMALIZATION

component has to update the relative preference values to reflect this change.

5.3.2 Performance Property Normalization

The transport underlay and the different transport plugins provide the ATS service with

information about the different addresses available to communicate with a remote peer. As

described in Section 5.1.7 have different addresses and mechanisms different performance

properties. To be able to use these information in the solver, we have to normalize the

values for the different properties to a common value range: all values for a specific

property have to be normalized to same range. Contrary to application preferences, a

correlation between different property types is not required. For performance properties,

we assume that smaller values indicate better performance properties. If a property has

a different semantic (a smaller value indicating worse performance), the source (e.g. the

TRANSPORT service) has to provide the inverse value to comply with this semantic.

To normalize property values we inspect all values of a specific property, determine

the minimum and maximum values occurring, and based on these values, normalize the

remaining absolute values a to a common range in [1..2]. This range is different to the

range used for application preferences since property values are often used by the solvers in

5.4. The Greedy Heuristic Solver 111

(multiplicative) operations where a multiplication with the minimum relative value should

not imply an end result of 0.

So based on the minimum value amin and amax , we calculate the relative property

value r as:

r =
amax − 2amin + a

amax − amin
When a new property value has to normalized, we first have to check, if the value is

smaller than the current value amin or larger than the current value amax . In these cases,

we have to re-normalize all currently known relative values because otherwise the values

are not any longer correlated correctly with the current value range. If only one absolute

property value is known, we assume this value to be the maximum amax and use a default

of amin = 0.0.

5.4 The Greedy Heuristic Solver

The first proposed approach to find a solution to the address selection and resource

allocation problem is a fast greedy heuristic. This heuristic is based on the idea to distribute

resources proportionally to communication partners according to the importance higher

layer applications specify for the respective partner.

The heuristic solver is based on the idea of regarding to the different network scopes as

buckets of resources. The heuristic selects the best address to be used with each commu-

nication partner; bandwidth in each bucket is distributed to the addresses proportionally

to how important a peer is for applications. When the transport underlay requests an

address for a peer, the heuristic selects the best address available for a peer from the set

of addresses available. It selects the best address by comparing the properties provided by

the transport underlay (performance, austerity) and choosing the address with the best

performance properties. When an active address is existing for a peer, a different address

is only activated when the currently active address was used for a minimum amount of

time (stability). When an address is selected, the heuristic checks if in the network scope

this address belongs to sufficient resources are available (usability). A new address is only

selected if a minimum amount of bandwidth for all active addresses in this scope can be

provided (diversity). If sufficient bandwidth for all addresses is available, the resources in

the scope are distributed among the selected addresses in this network scope. Initially,

every address in the scope gets the required minimum bandwidth assigned (usability). The

remaining bandwidth is than distributed among all addresses according to the preferences

the higher layer applications have specified with respect to bandwidth requirements for

this peer (relativity, utilization). The heuristic can also explicitly tell the underlay to dis-

connect from a peer if not sufficient resources can be provided or no suitable address is

available.

5.4.1 Design of the Solver

With the heuristic solver, address selection and resource allocation is realized in a greedy

approach, so the heuristic first selects the best address to use and in the next step dis-

tributes resources. Whenever the transport underlay requests an address for a peer, the

heuristic has to find the address to activate and assign resources to this address. When-

ever addresses are requested or address requests are canceled and addresses and sessions

are added or removed, the heuristic has to reconsider its current allocation and rerun the

112 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

address selection process. As a consequence of activating addresses or deactivating ad-

dresses, the heuristic has to redistribute resources in the respective network scopes. When

addresses and addresses’ performance properties are updated, the solver has to reconsider

the address selection for the respective peer and when the active address changed redis-

tribute resources in the network scopes of the current and previously active address. When

(normalized) application preferences change, the heuristic has to redistribute resources in

all network scopes to reflect the changes in the allocated resources.

5.4.1.1 Address Selection

When the solver has to select an address for a peer, it analyzes all addresses available

for the peer and compares the address properties of the addresses. While comparing ad-

dresses, the heuristic remembers the addresses it currently designates as the best address

and replaces this address if it finds a better address. When done, address selection returns

the address it evaluated to be the best address to communicate with the peer.

For every address, the solver checks if the address can be activated in the network

scope it is located in. Hereby the heuristic ensures that with this address activated in the

scope all addresses can get at least the minimum bandwidth bmin assigned. If the current

address is already active, the solver checks how long the address was active. Addresses

are not switched if the connection was just established to ensure connection stability and

prevent frequent address switches. Here the solver uses the connection stability factor

fs : if the connection was active for less than 1 · fs seconds, the active address is kept as

active. Address selection is aborted and the heuristic returns the active address. After

checking if an address can be activated at all to ensure usability and checking an address’

activation time to ensure connection stability, the solver starts to compare the properties

of the current address with the address it has stored as the best address available. This

comparison is based on the normalized address performance properties as described in

Section 5.3.2. If the current address provides better performance, the solver replaces the

best address stored with the current address, otherwise the best address is kept. After

evaluating all addresses, the best address or no address (if no address can be provided)

is returned. Based on this selection, resources allocation has to redistribute resources in

network scopes where addresses were activated or deactivated (due to an address switch).

5.4.1.2 Resource Allocation

When the heuristic has to distribute the bandwidth within a network scope, it starts with

first assigning a minimum amount of resources bmin to all addresses selected as active in

this network scope. The remaining amount of bandwidth available in this network scope is

then distributed to the active addresses according to the preferences the applications have

specified with respect to bandwidth for the peers. Here the heuristic uses the normalized

relative preference values rp as described in Section 5.3.1. To distribute the remaining

bandwidth available in the current scope, the solver analyzes all active addresses in the

network scope and evaluates the relative preferences rp applications have specified with

respect to bandwidth requirements for the peer the address belongs to. Since the nor-

malized relative preference values represent the application preferences for all peers and

not only the peers with active addresses in the current network scope, the solver has to

re-align the relative preferences to reflect only the preferences for addresses in the cur-

rent network scope. If no application specified a preferences for a certain peer, the default

value rdefault = 0.0 is used. The heuristic calculates for every active address in the network

scope a preference weight wa used to assign bandwidth to addresses based on the relative

5.4. The Greedy Heuristic Solver 113

preferences for bandwidth and the total weight wt reflecting the sum all of bandwidth

preferences for peers with active addresses in the scope.

To distribute the remainder of the available bandwidth according to the preferences,

the solver uses the weight wa and an additional proportionality factor fprop with fprop ≥ 0 to

respect the application preferences. The closer the proportionality factor fprop is to 0, the

fairer and with less respect to preferences is bandwidth distributed among the addresses.

The bigger this value fprop is, the more respect is paid to the preferences. As a default, we

define in our implementation the value as fdef ault = 2.0. The impact of different values

for fprop is depicted in Figure 5.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

P
e
e
r-

sp
e
ci
fi
c

W
e
ig

h
t

w
p

fprop

r1 = 0.00
r2 = 0.25
r3 = 0.75

(a) Impact of Proportionality Factor fprop on Weights for Exemplary Relative Weights r1, r2, r3

 0
 5

 10
 15

 20
 25 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

w

fprop

rp

w

(b) Impact of Proportionality Factor fprop on Weights

Fig. 5.1: Impact of the Proportionality Factor fprop on Weights

114 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

The bandwidth ba,in/out assigned to every active address a from the set of active

addresses A in a network scope n, providing an inbound amount of bandwidth bn,in and

outbound of bn,out, is calculated as:

bremainder,out = bn,out − bmin · |A|
bremainder,in = bn,in − bmin · |A|
wa = 1.0 + fprop · rp
wt = |A|+ fprop ·

∑
a∈A

rp

ba,out = bmin +
wa
wt
· bremainder,out

ba,in = bmin +
wa
wt
· bremainder,in

5.4.2 Discussion

Heuristics are useful to find good solutions for problems where solving a problem is expen-

sive and finding an optimal solution is hard. The heuristic presented here can compute the

address selection and the resource allocation very fast even for a large number of peers,

addresses and address scopes. This is beneficial due to the expected frequent changes in

the problem caused by peers joining and leaving and updated properties. On the other

hand does this approach lack the idea of providing a combined solution for the selection

and allocation process. The heuristic first chooses an address and assigns resources in

the next step without paying respect to the amount of resources available. Since there

is no adaption with this approach, the heuristic does not benefit from the requirement to

solve the problem repeatedly. The usability and applicability of different types of heuris-

tics to the address selection and resource allocation problem is more in detail discussed in

[Sch13].

5.5 The Mixed Integer Linear Programming Solver

To combine address selection and resource allocation with an integrated approach, we

propose the use of mathematical programming and linear optimization to solve the address

selection and resource allocation problem. We treat and formulate the problem as an

optimization problem and use linear constraint programming to find an solution optimal

by maximizing a set of objectives and obeying a set of constraints.

In this chapter, the transformation from the model based on mathematical sets into a

linear optimization problem is introduced. Based on the model described in Section 5.2, we

formulate a mathematical optimization problem to be solved to find the optimal allocation

set in the given problem setting. For this transformation, we have to transform the

restrictions and properties of the given problem into linear constraints and craft a linear

objective function reflecting the objectives an optimal solution of the given problem has

to achieve as determined in Section 5.2.3.

5.5.1 Linear Programming

Linear programming is a standard technique established for several decades. It originates

from the field of Operations Research (OR) and was originally used to optimize production

and planning processes. The field of OR is well covered and several well-understood

5.5. The Mixed Integer Linear Programming Solver 115

algorithms to solve linear programming problems exist. A property of linear optimization

is that solutions found are provably optimal if such solutions exist and if no solutions to

the problem exist this is mathematically ensured.

Linear programming tries to optimize the solution for a given objective function subject

to a set of constraints. Both the objective function and the constraints are formulated

as linear equations. The goal of linear programming is to maximize the value of the

objective function within the constraints given by the constraint equations. To minimize

a problem, the problem is maximized with the objective function multiplied with −1. A

linear programming problem can be seen geometrically, where the linear constraints define

the feasible region. Geometrically this feasible region is a convex polyhedron. For a linear

function, every local minimum is a global minimum since a linear function is a convex

function. In addition, every maximum is a global maximum since a linear function is a

concave function. For two reasons, an optimal solution may not exist. The problem can

be infeasible, for example when constraints are inconsistent or conflicting. For example,

the constraints x ≤ 1 and x ≥ 10 are conflicting and cannot be satisfied at the same time.

As a second aspect, no optimal solution can be returned when the problem is unbounded,

so if no maximum value for the objective function can be determined since no constraints

exist limiting this value: geometrically, the polyhedron of the feasible region is unbounded

in the direction of the gradient of the objective function with the gradient of the objective

function being the vector of the coefficients in the objective function.

A linear programming problem can have distinct optimal solutions, all of them providing

the same maximum or minimum value of the objective function. The optimal solution

for a linear programming problem is always located on the boundaries according to the

maximum principle for convex functions. Therefore, optimal solutions can only be found

on the extreme point of the convex set of feasible solutions. If two extreme points are

optimal solutions, all convex combinations of the solutions are optimal. [DD95]

The standard form of a linear programming problem consists of three parts:

• A linear objective function f (~x) to be maximized or minimized

• A set of linear problem constraints with

• a set of non-negative variables ~x

A linear programming problem is often described in the matrix form and expressed as:

max{ ~cT~x |A~x ≤ ~b ∧ ~x ≥ 0}

With ~x being the variables to be determined, ~c and ~b are vectors and A a matrix of known

coefficients.

If values in the set of non-negative variables ~x are linear, the problem is a Linear

Programming (LP) problem. If a subset of these variable are required to be integers

(which is including binary values) the problem is called a Mixed Integer Linear Programming

(MILP) problem and an Integer Linear Programming (ILP) problem when all variables of

~x are required to be integer.

While an LP problem can be solved in polynomial time [Kar84], the restriction of

variables makes the problem NP-hard. When the variables are restricted to binary values,

the problem is one of Karp’s 21 NP-complete problems [Kar72]. To solve LP problems,

several well-established algorithms exist. Well-known methods to solve linear programming

problems are Basic-Exchange algorithms, for example the Simplex algorithm proposed by

Dantzig [Dan63], or Interior Point methods as Karmarkar’s algorithm [Kar72].

116 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

MILP and ILP problems are solved by finding a solution to the corresponding LP

problem (called the relaxation of the ILP) and then applying exact methods like Branch and

Bound algorithms [LD60] or Cutting-Plane methods [NW88] to find the integer solutions.

5.5.2 Design of the Solver

With the MILP solver, we formulate the address selection and resource allocation as a

linear optimization problem and apply mathematical optimization techniques to find an

(mathematically proven) optimal solution. We therefore have to transform the problem

described in 5.1.9 and formulated in 5.2 to a linear model usable in linear optimization.

We have to formulate a linear objective function to maximize the objectives as described

in 5.2.3 and to formulate a set of linear constraints to drive the objective function to the

maximum and to restrict the solution to be feasible within the restrictions of the given

problem domain.

As a result of solving the problem with an optimization process, we obtain for each

address the decision if it is to be used to communicate with a remote peer (active) and the

amount of resources assigned to this address. With our problem formulation, the vector

~x contains information for each address a from the set of addresses available A about the

inbound bandwidth ba,in assigned, the amount of outbound bandwidth assigned ba,out and

an additional indicator na ∈ 0, 1 indicating if the address a was selected (na = 1) or if it

was not selected to be active (na = 0). This indicator na being binary makes the problem

an MILP problem and therefore NP-hard to solve.

To restrict the solution to be valid and feasible in the problem domain and to restrict

the solution to obey the resource restrictions, we define a set of feasibility constraints used

in the problem. These constraints ensure the feasibility of the MILP problem and that the

solution is valid in the problem domain of address selection and resource allocation:

Communication Diversity

To provide resilient communication, we formulate this constraint to ensure a minimal

number of connections nmin with nmin = min(nmin, |A|) to be established:∑
a∈A

na ≥ nmin

Connection Usability

To ensure that established connections can provide a usable communication between

peers, we define that each address selected to be active, has to get a minimum amount

of resources outbound bout,min and inbound bin,min assigned:∧
a∈A ba,out ≥ na · bout,min∧
a∈A ba,in ≥ na · bin,min

Address Limit

To enforce that only one address per peer is selected, we enforce for all addresses belonging

to a peer a ∈ Ap and for all peers p ∈ P :∧
p∈P

∑
a∈Ap

na = 1

5.5. The Mixed Integer Linear Programming Solver 117

Scope-Specific Resource Limitations

To ensure that in the different network scopes s ∈ S the resource limits for outbound

bandwidth available bs,out and inbound bandwidth available bs,in are not exceeded and not

more resources are consumed than available in the network scopes, we require:

h(s, a) :=

{
1 a located in scope s

0 otherwise

∧
s∈S

∑
a∈A h(s, a) · ba,out ≤ bs,out∧

s∈S
∑
a∈A h(s, a) · ba,in ≤ bs,in

Enforce a Finite Solution

To ensure feasibility of the problem and prevent an unbounded solution, we enforce the

resources assigned to an address to reflect the resource limits of the scope s bs,in and bs,out
and in addition a (very large) virtual resource limit M to prevent numerical instabilities in

the equation system with Ms,in = min(bs,in,M) and Ms,out = min(bs,out,M):∧
a∈A ba,out ≤ na ·Ms,out∧
a∈A ba,in ≤ na ·Ms,in

To optimize the solution with respect to the objectives the address selection mecha-

nism has to achieve according to Section 5.2.3, we define a set of optimality constraints,

responsible to drive the objective function to the maximum to maximize the respective

objectives:

Resource Utilization

To improve communication between peers, more resources have to be assigned to the

different connections and the resources available have to be optimally used. We therefore

formulate an optimality constraint maximizing the resources used available on the system.

The resulting utilization u, used in the objective function weighted by the coefficient U,

is defined as: ∑
a∈A ba = u

⇔
∑
a∈A ba − u = 0

Resource Austerity

To provide good performance for the communication, resources have to be economically

used and resources with low overhead have to be preferred over mechanisms with high

overhead. So we add for all transport performance properties r ∈ R the following quality

constraint and use the resulting quality qp in the objective function. We therefore reduce

the communication overhead by trying to use mechanisms with low overhead:∧
r∈R

∑
a∈A raba,out = qr

⇔
∧
r∈R

∑
a∈A raba,out − qr = 0

118 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

Resource Relativity

The resources available on the system and in the different network scopes have to be

distributed among the peers according to their importance for higher layer applications.

Based on the preference values specified for their bandwidth requirements we distribute the

available resources using the following relativity constraint, ensuring that more valuable

peers get more bandwidth assigned than less valuable peers:∧
p∈P

∑
a∈A fpba,out = r

⇔
∧
p∈P

∑
a∈A fpba,out − r = 0

Connection Diversity

To provide resilient communication for the peer-to-peer overlay, maintaining connections

to a larger number of peers is an objective. We therefore define the objective to increase

connection diversity d with: ∑
a∈A na = d

⇔
∑
a∈A na − d = 0

5.5.2.1 Objective Function

Based on the optimality constraints, we can formulate the resulting linear objective func-

tion to maximize for the optimization problem. The objectives we include are the ob-

jectives utilization u, relativity r , austerity a and diversity d . The different components

included as objectives can be weighted using coefficients U,R,A,D in the objective func-

tion. The resulting objective function is defined as:

max u · U + r · R + a · A+ d ·D +
∑
i∈PxA

Qi · qi

Based on this formulation, the solver can create a MILP problem from the address

selection inputs and the system configuration and apply MILP solution techniques, as

described in Section 5.5.1, to find an optimal solution. When the problem environment

changes, the solver has to update the problem and resolve the problem. When new

peers get requested or requests are canceled, new addresses become available or existing

addresses become unavailable, the solver has to update the MILP problem and resolve the

problem. Here we can differentiate between modifying and updating the problem: when

information is added, the problem has to be updated: the size of the problem changes and

rows and columns in the problem (referring to the standard matrix form of an MILP) have

to be added or removed. When only transport performance properties are updated and

therefore coefficients in the problem matrix A change, the solver can reuse the existing

problem formulation and only update coefficients in the problem. This differentiation

is important since the Simplex algorithm used to solve the integer-relaxation can reuse

existing valid solutions from former solution runs when the problem size did not change.

This Simplex warm start can lead to significant performance improvements as we show in

the evaluation of this approach. The solution found by the MILP solver will be optimal

within the objectives formulated or the solver will return that the problem is unfeasible,

so no optimal solution exists. When the problem has multiple optimal solutions, it is

(depending on the implementation) possible to iterate over the different optimal solutions

and apply and additional mechanism to evaluate these solutions.

5.6. The Reinforcement Learning Solver 119

5.5.3 Discussion

With the MILP solver, we can provide a solution approach combining address selection

and resource allocation in an integrated approach solving both aspects of the problem

together. This will improve solution quality as shown in Section 5.9, since that solver can

pay respect to both address properties and resources available to find an optimal solution

and a trade-off between both aspects. With the MILP solver, we employ techniques from

a well-covered field of research providing well-studied algorithms to solve such problems.

Based on the problem definition requiring a binary output to indicating if an address

is active or inactive, the problem is a MILP problem NP-hard to solve. On the other hand

can the solver performance benefit from the warm-start property of the Simplex solver.

So the question arises if solving an expensive, NP-hard problem is a viable approach in the

dynamic environment of a peer-to-peer system. Here the properties of the environment

are a main factor impacting this question based on the number of and peers and the rate

peers join and leave the network, addresses get available and unavailable and performance

information and preferences are updated. This issue will be evaluated in Section 5.9.

5.6 The Reinforcement Learning Solver

As a third approach to solve the address selection and resource allocation problem, we

propose a solver which benefits from the requirement to solve the problem repeatedly when

the surrounding environment changes. The MILP solver, presented in the last section,

also benefits from this fact but only by being able to reduce execution time reusing a

solution found in a previous run. But the MILP solver is not able to improve the quality

of the solution since it does not benchmark the solution and evaluate if the solution found

matches the requirements of the applications and the transport underlay and adapt its

parameters and objective to better match the requirements.

With the solver presented in this section, we envision a solution approach which can

benefit from the fact of solving the problem repeatedly in an unknown, dynamic environ-

ment and being able to improve its allocation strategy by learning an allocation strategy

fitting the environment and the requirements of the applications. In addition, we try to

minimize bandwidth excess, caused by assigning peers more resources than applications

can or do actually use when communicating with the peer. Here we try to adapt the al-

location strategy by receiving feedback from the applications describing how satisfied the

applications are with the current allocation and by paying respect to bandwidth excess, so

the difference between bandwidth allocated to a peer and goodput achieved by the peer.

Different to the greedy heuristic and the MILP solver, we allow the solver to overutilize

the resources of the peer, so to allocate more resources than allowed to drive the link

utilization to the amount of resources available. An additional benefit of learning a good

strategy in an unknown and dynamic environment is that such an approach can overcome

limitations imposed by defining the objectives for a solution in advance. Defining objec-

tives a priori can lead to suboptimal solutions since these objectives may drive the solution

in a direction not suitable for the current environment. So instead of defining constraints

and objectives a priori, learning the properties of a solution online can improve the quality

of service provided for the applications.

To realize this idea, the solver proposed in this section employs learning techniques

from the field of machine learning. The RIL solver is based on the idea of reinforcement

learning and has the goal to learn an optimal resource allocation strategy to distribute

resources among the peers. The solver operates in an a-priori unknown environment and

120 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

tries to learn which actions lead to a good allocation. Learning in the context of address

selection and resource allocation means to improve the strategy to allocate resources by

evaluating how beneficial it is to perform a certain action in an unknown environment.

Every action taken is evaluated based on their impact for the quality of the allocation and

scored based on this impact to allow the solver to favor this action the next time he has to

choose an action. This evaluation is accompanied with feedback given by the applications

indicating how satisfied the applications are with the current allocation.

5.6.1 Machine Learning

The field of Machine Learning (ML) is a wide field of research, providing a rich set of

approaches and techniques for various purposes and use cases. Machine learning focuses

on enabling programs to solve problems without being explicitly programmed to do so.

Here the fundamental approach is to enable a program to perform correctly on new, unseen

tasks by generalizing over previous experience: with ML, programs learn how to treat new

tasks based on their experience with previous tasks. Here we can find the difference

between ML and data mining: with ML, a program tries to classify new inputs based on

properties it previously learned, while data mining tries to find a-priori unknown properties

in unknown data. ML techniques are used in a wide field of applications including spam

classification, credit card fraud detection, computer vision, search engines etc.. The field

of ML covers a wide field of techniques for different use cases. To structure the different

approaches, ML techniques are usually classified in the following classes [Mar09]:

Supervised Learning: With supervised learning, the algorithm is trained with a set of

training data and the expected output. Based on this training data, the algorithm

can adapt to later automatically perform correctly on previously unseen data. The

correct adaption of the algorithm is often ensured using a validation set with known

input/output mappings, checking if data are mapped to the correct output. Super-

vised learning methods are often used in classification or clustering problems. Com-

mon approaches are artificial neuronal networks, support vector machines, Bayesian

statistics, kernel estimators and decision trees.

Unsupervised Learning: With unsupervised learning, the algorithm is not adapted to

the environment but it tries directly to detect similarities between inputs. Well-

known approaches are k-nearest neighbor algorithms, Hidden Markov Models and

self-organization of neural networks often used for clustering analysis.

Reinforcement Learning: is a compromise between supervised and unsupervised learning

techniques. With reinforcement learning, the algorithm applies different solution

strategies and can learn based on a feedback how beneficial the strategy performed

was. So it is corrected if an output was incorrect but it is not told how to achieve

the correct output. Prominent examples are dynamic programming, Monte Carlo

methods and temporal difference learning.

Evolutionary Learning: adapts approaches from nature and biology by treating learning

as an evolutionary process where organisms have to adapt to improve their survival

rates. Here often a fitness function is used to score the quality of a given solution.

Evolutionary learning is often used in search heuristics and stochastic optimization

and well-known techniques are ant colony optimization and genetic algorithms.

5.6. The Reinforcement Learning Solver 121

All of these classes have the goal to learn from experiences in the past by generalizing

over these experiences to predict how to find correct decision in the future. The interested

reader can find an extensive introduction to ML in [Mar09] and [Alp04].

5.6.2 Design of the Solver

By using machine learning techniques to solve the address selection and resource allocation

problem we want to learn an optimal allocation strategy by improving our strategy based

on experience obtained from previous solutions and the feedback how satisfied applications

are with our solution. This learning process takes places in an unknown environment we

cannot a priori give a model for. So we do not know about the peers to communicate

with, we do not know about addresses available and we do not have any information

about the performance properties of the addresses, especially for extrinsic performance

properties depending on the networking situation. In addition, we have no information

about the applications and their requirements for communication for other peers. Based

on this unknown environment and since this environment can dynamically change, it is

not possible to formalize a model of the problem we can use to train a machine learning

algorithm.

Due to this environment, supervised and unsupervised learning techniques are not

suitable with the problem given here since they rely on valid training data (in the case of

unsupervised learning) and cannot cope with dynamic environments and changing learning

goals they have to adapt to. Evolutionary algorithms are not suitable since they only

learn how to improve the solution for a single execution but do not learn how to predict

the future by learning a generalized strategy. Evolutionary algorithms are often used as

a last resort when no algorithm is known to find a solution to a problem. Since they

often try to improve the solution with modifying and combining existing solutions (genetic

algorithms) and heuristics try solve a problem as a combinatorial optimization problem,

these algorithms are suitable for domains where solutions can be combined from other

solutions. With the strict requirements for feasible solutions with Automatic Transport

Selection and Resource Allocation (ATS), combining, modifying or a crossover of existing

solution will often lead to invalid solutions as analyzed in [Oeh14] and [Sch13]. RIL

approaches in contrary treat the problem as a control problem (which action to take)

known from the field of control theory and do not require a model of the environment.

RIL algorithms can learn a model of the environment and the allocation strategy on-line

by performing actions and measuring the impact of the action.

We therefore relay on a reinforcement learning approach with the machine learning

solver to find a suitable allocation strategy. Reinforcement learning has the objective

to learn a strategy by testing different strategies which is similar to search over a state

space of possible inputs and outputs in order to maximize a reward. RIL is generally

described with an agent operating in an (unknown) environment trying to solve a problem

by performing actions. It selects an action depending on the state it is currently in and

receives a reward from the environment how good the current strategy is and updates its

strategy based on this reward.

The RIL solver tries to learn an allocation for each peer the higher layer applications

want to communicate with. Each peer included in the ATS problem is provided with a

separate RIL agent learning a strategy for this particular peer. We define a set of actions

each agent can perform in the environment: a peer can switch to a different address,

the agent can increase the amount of bandwidth assigned to an address, it can decrease

the amount of bandwidth assigned to an address and he can decide to do nothing. The

122 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

state an agent is currently in depends on the address he has selected and the amount

of resources allocated to this address. Since the state space is based on the resources

available, having a discrete state for every resource assignment is impossible due to the

resulting dimensionality of the state space. Instead the RIL solver uses the concept of

Radial Basis functions as described in [SB98]. Here prototype features are distributed over

the state space and activation of this prototype state is calculated based on input address,

inbound and outbound bandwidth provided for the state. The design of the solver relies on

the basic concept of Temporal Difference (TD) learning algorithms allowing model-free

learning: TD learning algorithms maintain an action-value function Q(s, a), describing

the value for each action a in the current state s and derive the policy by choosing the

action with the highest value in every step. Our solver realizes two popular TD algorithms:

SARSA and Q-learning. These algorithms update their action-value functions using an

update rule based on the previous value estimation and the reward received from the

environment for taking an action. SARSA updates its action-value function based on the

reward it receives for the action taken in the previous step and the (discounted) return

it can achieve in the current step taking the best action with the current strategy. Q-

learning updates its action-value function based on the reward it receives for the action

taken in the previous step and the (discounted) return it can achieve in the current step

with taking the optimal future action, even if the action is not taken due to a exploratory

step.

When a new agent is added to the solver, the agent starts to learn without any knowl-

edge an allocation strategy by performing actions in regular intervals. When performing

an action, the agent has to decide if it wants to learn by exploring the action-state space

or to exploit the knowledge it acquired by following the current allocation strategy. Here

the agent uses an action-selection strategy to find a trade off between exploration and

exploitation. The solver supports two popular strategies, the ε-greedy strategy performing

an exploratory step with a probability of ε and the softmax strategy, introducing probabil-

ities for actions based on the current state to prevent to take actions known to lead to a

bad reward. Softmax introduces a temperature value τ leading to actions being selected

and performing exploratory steps ignoring the best action available.

When exploiting the acquired strategy, the agent chooses the action with the highest

value in the current state. When performing an exploratory step, the agent performs a

random action. The agent updates his allocation strategy by evaluating how valuable the

previous action was based on a reward it receives from the applications and the utilization

of available resources. In our approach we allow agents to overutilize resources in a scope,

so to assign more resources than available in the scope. If the agents over-utilize and more

resources are consumed than available in a network scope they receive a penalty with the

reward function. Based on the reward, the agents update the value of their actions in the

state the action was taken using the TD update rules approach described above.

With multiple agents learning in a shared environment, the solver has to achieve good

allocations for multiple peers at the same time. Therefore, coordination between the

different agents is required to prevent the cannibalization of peers while others are provided

with large amounts of resources. Here we apply the idea of social welfare algorithms to

achieve a global fair allocation for all peers. The idea of welfare is combined with the

reward function to give less reward to the agent when the solution is not balanced between

agents. The solver supports both the Egalitarian Social Welfare model defining the utility

of the current solution as the minimum utility from the utilities achieved for all peers and

the Nash product, defining the utility of the solution as the product of utility achieved

from all peers.

5.7. Related Work and Comparison 123

To allow faster learning when agents have not acquired knowledge yet, the solver

provides adaptive stepping to perform actions. After an agent is initialized, the agent

performs more actions to allow the agent to learn a strategy faster. This rate is decreased

based on the amount of bandwidth utilized and available, with a minimum time interval

between actions tmin and a maximum time interval between actions tmax and n an integer

value:

tadapted = (tmax − tmin) ·
(
butilized
bavailable

)n
+ tmin

To benefit from the allocation strategy learned over time and to allow the agent to

learn faster in the beginning, the agent’s action selection strategy is provided with a

decaying exploration rate decreasing over time. With the decay factor, the exploration

rate is decreased every time an exploratory step was taken.

An in-detail analysis of the suitability of different machine learning techniques and

how different machine learning algorithms can be adapted to fit the address selection and

resource allocation problem as well as description of the design and implementation details

for the RIL solver can be found in [Oeh14].

5.6.3 Discussion

The RIL solver realizes the idea to learn a suitable learning strategy for the current en-

vironment. This is particular useful for peer-to-peer systems, where no model for the

environment can be given in advance. For a peer-to-peer system, this environment is

unknown and in addition can dynamically change over time, a fact an adaptable learning

approach can benefit from. When no model can be given in advance it is hard to define

objectives a solver has to achieve in such a environment. This is a second aspect the RIL

solver can attempt to learn dynamically. Due to its ability to overallocate, the performance

of the peer-to-peer system can benefit by providing better performance for every single

peer.

Learning in a dynamic environment is a complex task for a RIL agent. With RIL, the

agent performs tasks to improve its strategy and therefore learning an allocation strategy

requires time. This rises the question, if a RIL agent can adapt to its environment fast

enough. In addition, the question has to be answered if the agent can adapt to a changing

environment and requirements. This requires the agent first to realize this change and

then to adapt by learning a current strategy. The speed of this adaption is a critical issue

for this type of solver.

5.7 Related Work and Comparison

In this section, we analyze and discuss how other decentralized and peer-to-peer applica-

tions supporting multiple transport mechanism or applications solve the problem of address

selection and transport selection covered in this section.

5.7.1 Quality of Service in IP Networks

Since the Internet is a network consisting of a large number of independent, interconnected

networks operated by different providers, no assertions about the provided quality of service

can be made and the behavior of the network can only be modeled stochastically. On the

Internet different approaches exist to ensure quality of service for applications. In general

124 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

we can distinguish between approaches trying to request and reserve resources through the

network, so called Integrated Services (IntServ) approaches, and approaches prioritizing

traffic classes by marking the traffic according to specific traffic classes and treating

these traffic classes special, so called Differentiated Services (DiffServ) approaches already

described in Section 2.6.1.

Integrated Services (IntServ) approaches try to reserve the resources required for a

communication in advance through the network. To do so they use a parametrized ap-

proach, where applications can specify their requirements with respect to traffic properties.

IntServ uses resource reservation protocols like RSVP [BZB+97] to reserve the required

resources on all intermediate hops on the way to the traffic destination. On every interme-

diate hop a soft state has to be established to manage the reservation on the intermediary

hop. When this state is not refreshed, it is automatically removed. IntServ requires all

intermediary systems to collaborate, accept such reservations and treat the traffic accord-

ing to the requirements. IntServ approaches are seen critical with respect to scalability in

particular with respect to routers on the core of the Internet as these systems’ main task

is packet-switching at highest possible rates. These routers would have to accept and

maintain a large number of reservations. Therefore, IntServ approaches are seen critical

with respect to scalability and became less important with the growth of the Internet.

DiffServ approaches classify network traffic according to predefined traffic classes and

treat these traffic classes differently using different queuing strategies to achieve the

expected performance expectations. As described in Section 2.6.1 uses DiffServ the IP

header to store traffic markings in IP traffic. With DiffServ approaches, all classification

and prioritization is performed in so called DiffServ Domains representing a group of routers

implementing the same DiffServ policies. Routers on a network may treat traffic according

to the classification but are not required to do so and can ignore or overwrite the DiffServ

markings. Network operators are often interested in controlling and managing the network

traffic in their networks. Therefore, traffic classifications are often dismissed when traffic

enters at ingress routers of a DiffServ domain. Therefore, DiffServ approaches can be

used to prioritize certain traffic classes within a DiffServ domain but they do not provide

end-to-end QoS between participants over the Internet.

5.7.2 The SpoVNet Project

The Spontaneous Virtual Network (SpoVNet) project1 is a research project with the goal

to allow decentralized applications to communicate over a heterogeneous communica-

tion infrastructure using self-organizing virtual overlay networks of decentralized systems.

SpoVNet is a framework with the aim to enable developers to implement a diverse set of

applications on top of a common foundation. SpovNet tries to overcome heterogeneity

in networks and network protocols as well as limitations (like NAT and firewalls) with a

self-organizing, decentralized transport infrastructure, virtual addressing of nodes and a

DHT-based control overlay.

SpovNet uses the Ariba underlay abstraction2, described in [BHMW08a], as a trans-

port infrastructure. Ariba provides communication over heterogeneous communication

links using an homogeneous interface for the different supported communication mech-

anisms and copes with mobility, heterogeneity, and middleboxes restricting end-to-end

connectivity. To provide this homogeneous interface, Ariba provides an abstraction layer

with virtual links for the various communication mechanisms. As underlay communica-

1 https://www.spovnet.net
2 http://www.ariba-underlay.org

https://www.spovnet.net
http://www.ariba-underlay.org

5.7. Related Work and Comparison 125

tion protocols Ariba supports multiple transport protocols including TCP, UDP, SCTP,

and IPv4, IPv6 and Bluetooth RFCOMM as communication mechanisms. Ariba supports

NAT relaying to connect hosts in restricted environments and protocol relays to overcome

heterogeneity in networks.

The Ariba documentation lacks documentation how protocols and addresses are man-

aged. According to the source code, Ariba employs a First-Come-First-Serve (FCFS)

approach to select from the available addresses. Ariba stores all available communica-

tion addresses in a list. When having to communicate with a communication partner, it

iterates this list and then selects the first address marked as available. In this decision

no additional aspects besides the availability are paid to respect to. To the best of our

knowledge, Ariba does not provide resources restrictions to limit resource consumption.

Ariba supports higher layer applications and provides communication for these applications

on a best-effort basis relying on FCFS address selection.

5.7.3 The Tor Project

The Tor project3 provides anonymous communication for users on the Internet. Tor,

already described with the transport infrastructure in Section 4.5.1, uses onion routing

to make it hard for an observer to match source and destination of network traffic as it

traverses the Internet. Tor uses so called Bridge relays [Din07], relays not listed in the

public directories, to make it harder for service providers to restrict access to the Tor

overlay.

To make Tor more resilient against filtering and censorship on the IP level, Tor pro-

vides pluggable transports. These pluggable transports obfuscate or morph the traffic

between the client and the Tor node to make it less susceptible to censorship based on

techniques like deep packet inspection. Prominent examples for pluggable transports are

Scramblesuit, Stegotaurus and FTE [DCRS13] for obfuscation, SkypeMorph [MMLDG12]

for traffic morphing, and Flashproxy [FHE+12].

If multiple pluggable transports are available, the Tor software also simply uses the

first pluggable transport configured that works. With respect to clients, Tor realizes a

best-effort service.

5.7.4 The Invisible Internet Project

The Invisible Internet Project (I2P)4, described in [ZH11], is a network to provide anony-

mous communication over the Internet. In contrast to Tor, I2P does not primarily try to

provide anonymous access to services on the Web, but instead creates an overlay net-

work where participants can anonymously exchange messages using a variety of different

services (like email, blogs or file sharing) that are operated within the I2P overlay.

I2P’s transport service provides message-based communication between I2P routers

using multiple transports. At the moment two transports are supported: a TCP-oriented

transport called NTCP, and secure semi-reliable UDP (SSU). I2P also supports NAT and

firewall traversal techniques to improve connectivity for devices in restricted networks.

I2P provides a transport selection mechanism based on so called bids: For each mes-

sage to be send, I2P evaluates which transport mechanism provides the best bid and

chooses this mechanism to send this message. This decision is using a heuristic that con-

siders multiple aspects like configured preferences, if an connection is already established,

3 https://torproject.org
4 https://geti2p.net

https://torproject.org
https://geti2p.net

126 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

if a previous attempt to send failed as well as additional information about the state and

the communication partner. To the best of our knowledge provides I2P a best-effort to

client applications relying on its address selection mechanism. Bandwidth limitations are

only used to enforce the maximum data rate for communication.

5.8 Implementation

In this section, the implementation of the automatic transport selection and resource

allocation mechanism is described based on the problem setting evaluated in Section 5.1

and the design elaborated in Section 5.2. We will present the implementation of the ATS

service and present implementations of the solver mechanisms described in the previous

sections. To support the different solution mechanisms proposed in this chapter, the

component employs the functionality to load the solver as loadable plugins and to interact

with them using a simple API. This section covers implementation details to allow the

reader to understand how ATS is integrated in the GNUnet peer-to-peer framework and

the following evaluation of the proposed design.

5.8.1 The ATS Service

The main component implementing the functionality for ATS in GNUnet is the ATS service.

In GNUnet functionality is typically split in separate components implemented as services

or daemons, as described in Section 2.8.3 and also described in the previous chapter

covering GNUnet’s low level transport infrastructure in Chapter 4. Each GNUnet service is

implemented as an operating system process and is accessed by other GNUnet components

using an API and communication based on IPC.

The main task of the ATS service, as described in Chapter 5 covering the ATS design,

is to provide address suggestions to GNUnet’s transport infrastructure and to allocate

resources to these addresses based on the requirements of higher layer applications spec-

ify to communication with peers. The decision about the set of addresses and resource

assignments has to be found based on the requirements of higher layer applications, cur-

rent performance properties of the addresses available to communicate provided by the

transport infrastructure and resource constraints set by the user. Based on these require-

ments, we see that the ATS service is interacting with at least three different components

to acquire the information required to make its decision. These collaboration is depicted

in Figure 5.2.

The ATS service needs to collaborate with the TRANSPORT service, responsible to main-

tain low level connectivity with other peers as described in Chapter 4, both to obtain infor-

mation about the set of addresses it can choose from as well as to present its suggestions

about the addresses to use and the resources to transport service.

On the other hand must high layer applications notify ATS about the requirements

they have for communication with remote peers. Based on these requirements the ATS

service can make an educated decision for address selection and resource allocation to

meet the applications’ requirements.

As a third aspect has ATS to obtain the user constraints on resources as described in

Section 5.1.5. The user can restrict the amount of resources to be used by GNUnet to a

specific amount. These restrictions are stored within the configuration and have therefore

to be obtained from the configuration to be used with the address selection process.

5.8. Implementation 127

ATS Service

PERFORMANCE API

SCHEDULING API

Client Applications

TRANSPORT Service

Configuration

Resource
Restrictions

Address & Performance InformationPreferences

Address & Performance Information
Active Addresses,

Resources

Fig. 5.2: ATS Interaction with Applications and Transport Infrastructure

5.8.2 ATS Information

To allow to exchange information between ATS and external components like TRANSPORT

service, ATS specifies a format to exchange these information and set information entities

to be used in the exchange.

The generic information format used defined with the ATS service and defines a data

structure GNUNET˙ATS˙Information to exchange this information and a fix but extensible

set of ATS information properties in the enumeration GNUNET˙ATS˙Property. Compo-

nents interacting with ATS use this information struct (and arrays of this structure) to pass

information to ATS. In each ATS information, elements specify the type of the property

and the value of the property in an 4 byte unsigned value.

To exchange information about network scopes and refer to these scopes, ATS defines

an extensible set of network scopes to be used in ATS and interacting components. These

network scopes are used to define resource restrictions for network scopes and to define

in which scope addresses are used. ATS currently defines the following network scopes:

UNSPECIFIED: used e.g. when no scope information is available for an address (yet)

LOOPBACK: used for loopback interfaces

LAN: address scope for addresses in the local network

WAN: address scope for addresses not in the local network

WLAN: network scope for addresses of the WLAN transport plugin

BT: network scope for addresses of the Bluetooth transport plugin

ATS information structs are also used to exchange information about network scopes

for addresses by setting in the struct the appropriate type GNUNET˙ATS˙NETWORK˙TYPE

and the value in the struct to one of the network types described above.

Information about performance properties of transport mechanisms and addresses are

exchanged between components by setting the ATS information type to the appropriate

property type (e.g. GNUNET˙ATS˙QUALITY˙NET˙DELAY for network delay) and setting the

value to the delay value. The set of performance properties is defined by ATS.

128 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

Applications can use the preference types predefined by ATS and use this preference

types when specifying their preferences about communication with remote peers with the

ATS service.

5.8.3 Interacting with ATS

To enable other components to interact with the ATS service to provide and obtain infor-

mation from the service, the ATS service provides several API interfaces for interaction,

depending on the respective purpose.

5.8.3.1 The scheduling API

For interaction between the ATS service and the TRANSPORT infrastructure, ATS provides

the SCHEDULING API. With the SCHEDULING API, the TRANSPORT service can initiate a

connection to the ATS service to provide the ATS service with information about addresses

available, notify the services about changes in the environment and issue address sugges-

tion requests and cancel these requests. To interact, ATS’s SCHEDULING API provides the

following functionalities:

Connect to ATS service

Add new addresses: When TRANSPORT’s validation tested new addresses or a peer has

connected and new addresses are available to communicate with a remote peer,

TRANSPORT notifies ATS about the availability of the new address. Together with

the address, TRANSPORT can pass session information if a transport session is existing

and ATS performance information.

Update an address: When properties of an address change, TRANSPORT updates the

information ATS knows about an address. This can be a transport session, which is

now established with this address, or updated transport performance information as

described in Section 5.8.2.

Specify that an address is currently used to communicate with a peer: To achieve

connection stability, it is useful for ATS to know if TRANSPORT is actually using a

suggested address so it can stick to this address. The API provides the possibility

to notify ATS, that an address is actively used or not used any longer.

Delete addresses: When an address is not valid any more, TRANSPORT notifies ATS and

ATS deletes this address and to exclude it from further solution iterations.

Request address suggestions: When TRANSPORT is instructed to establish an overlay

connections with a remote peer, it requests the address to use from ATS. ATS will

respond with the best address available and notify TRANSPORT about changes to this

decision as long as TRANSPORT does not cancel the request.

Cancel address suggestions: When TRANSPORT is not longer requiring address informa-

tion for an overlay peer, it cancels the suggestion request and ATS will stop to to

suggest addresses for this peer.

Disconnect from ATS service

5.8. Implementation 129

Clients issuing address suggestion requests to the ATS service are provided with infor-

mation about active addresses and assigned resources for the peers they requested. When-

ever the selected address or the amount of resources assigned to an address changes, ATS

notifies the clients about these changes until they cancel the request. The TRANSPORT

service uses this information to switch to the address now selected to be active, updates

the resource restrictions or disconnect a connection with a peer if ATS cannot provide an

address to communicate with a peer.

5.8.3.2 The performance API

To allow higher layer applications to interact with ATS service, the ATS service provides

the PERFORMANCE API. With this API, applications can interact with the service to obtain

information about the address currently used and to specify their preferences for peers

and transport performance properties. It provides functionality to:

Connect to ATS service: With the connect call, the application can register a callback

to be notified about changes for addresses and address properties.

List addresses: Returns a list of all available or only active address for a specific peer or

all peers.

Notify ATS about preferences: With this function applications can specify their prefer-

ences for peers and transport properties.

Disconnect from ATS service

The PERFORMANCE API allows applications to specify their requirements for the com-

munication with remote peers. With the PERFORMANCE API, applications can specify which

transport performance property or properties are particularly important for them. An ap-

plication can specify for each peer which transport performance property is important for

it. To specify this importance, a float value is specified coming from the domain of the

issuing application. This application-specific value is then normalized and correlated inside

of the ATS service for further use as described in Section 5.3.1.

In addition can applications use this API to obtain information about the addresses

currently selected and to obtain performance statistics about addresses and monitor the

address selection process continuously. When connecting to the ATS service they can

specify a callback function to be called whenever addresses or address properties change.

In addition to monitor continuously, the application can request the list of currently active

addresses for all peers or the address active for a specific peer.

5.8.4 Peer and Address Management

To manage information about peers, addresses, transport sessions and address properties

provided by the transport underlay and application preferences provided from applications,

the ATS service provides an ADDRESS component to manage this information. When

applications or the transport infrastructure pass information to the ATS service, the ATS

service gives this information to the ADDRESS component.

Information in the ADDRESS component is manipulated using the SCHEDULING API and

the functions provided by the API. The ADDRESS component provides functions to add

and delete addresses, add and remove transport sessions, update transport performance

information, information if address are used by TRANSPORT and to add and remove ad-

dress suggestion requests. The ADDRESS component passes updated information to the

130 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

PERFORMANCE clients and forwards this information to the solvers responsible to find a so-

lution to the address selection and resource allocation problem described in Sections 5.8.8.

The solvers notify the ADDRESS component about changes to selected addresses and re-

sources assigned to addresses and the ADDRESS component forwards this information to

the PERFORMANCE clients and the transport infrastructure. To prevent frequent notifica-

tions and to improve bandwidth stability, TRANSPORT is only notified, when the delta in

a bandwidth assignment has a reasonable size. With respect to bandwidth this requires

the delta to be larger than the minimum amount of bandwidth bmin required for useful

communication.

The ADDRESS component is responsible to load the ATS solver plugin, as described in

Section 5.8.8, and to forward information to the solvers. During initialization, the ADDRESS

component loads the network quotas from the configuration and passes this information

to the solver. For the interaction with the normalization component described in the next

sections, the ADDRESS component provides a callback function called by the normalization

component. When a normalized property or a preference is updated and the respective

update called, the ADDRESS component notifies the solver about the update in this callback.

The ADDRESS component provides a callback to allow the solver to notify it about updates

to selected addresses and to updates in the resource assignment. When this callback is

called, the ADDRESS component forwards this information to both the PERFORMANCE API

clients and the transport infrastructure.

5.8.5 Management of Transport Performance Properties

To use transport performance properties when solving the address selection problem, ad-

dress properties have to be normalized between the different properties as described in

Section 5.3.2. The ATS service provides a NORMALIZATION component to perform this

normalization and to make the normalized values available to components depending on

this information. NORMALIZATION is integrated with the ADDRESS component: when the

ADDRESS component receives performance properties from the transport infrastructure, it

forwards this information to the NORMALIZATION component.

The normalization component performs an input normalization for all transport perfor-

mance properties based on the formalization given in Section 5.3.2: for each property it

analyzes the minimum and maximum value and normalizes performance properties of this

type. As a result, the NORMALIZATION component can provide for all properties normalized

relative transport performance properties r with r ∈ [1, 2]. If a performance property is

updated and the computed relative value changes, the NORMALIZATION component no-

tifies the ADDRESS component to forward this updated value to the solvers, which can

recompute their allocations depending on this update.

The NORMALIZATION component stores the normalized values for all peers and ad-

dresses internally as it needs this information for its computation and to provide it to the

solvers requiring these values for their computations when solving the address selection

problem.

5.8.6 Management of Application Preferences

Since application preferences have to be normalized for an application and correlated

between applications, application preferences are managed by the NORMALIZATION com-

ponent, similar to the approach for transport performance properties described in the

previous section. When applications notify ATS about their preferences for a peer and a

transport property, this value is forwarded from the ADDRESS component the normalization

5.8. Implementation 131

component. NORMALIZATION computes the relative preference value as described in Sec-

tion 5.3.1. When this value is different from the previous value, the ADDRESS component

is notified to notify depending components about this update. As for the performance

properties, the NORMALIZATION component internally stores the computed relative values

and other components can request these values.

5.8.7 The Solver API

For the communication between ATS service and plugin, the service provides a program-

ming interface to allow the service to interact with the plugin, as well as to allow the solver

to initiate interaction with the service. The main focus of this interaction is to allow the

solver to notify the service about the results of the address selection and allocation process

and the service to notify the solver plugin about changes in the current environment. The

solver API therefore provides functionality for the following situations:

5.8.7.1 Service to Solver Interaction

Solver startup: When the ATS services loads the solver plugin, it initializes the solver

using the initialization function provided by the solver plugin. As an argument the

service passes an environment handle containing information about the callback

functions the solver can call with the service as well as additional information like

configuration information and network quotas required to initialize the solver.

Add a new address: When information about a new address is provided by the under-

lay, the service notifies the solver to add this address to the current problem. As

additional argument, information about the network scope and current transport

properties are provided to the solver with this function.

Update session: When a new session is available for an address, the service can notify

the solver to include this session together with the address in the problem.

Update in use: When an address is actively used by the transport underlay this fact is

reported to the solver to allow the solver to handle established and used connections

differently from addresses requiring a connection to be established. This function is

also used to indicate that an address is not actively used anymore by the underlay.

Update address properties: The services notifies the solver whenever the performance

properties of an address change and the solver has to reconsider its current selection

and allocation.

Network switch: When an address switches from one network scope to a new network

scope, the solver has to update its allocation. The solver can be notified using

this function that an addresses switches from one network to another. This is in

particular important when the network scope for an address cannot be determined

when the address is added. In this case, the address is added to the UNSPECIFIED

scope and when the scope is available, it is moved to the respective network scope.

Delete an address: When an address is not usable any more due to a disconnect etc.,

the service notifies the solver to remove this address from the current problem. If

a session is specified, first the session is deleted, but the address itself is kept, to

allow to establish a new outbound connection using this address.

132 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

Start address suggestions: When the transport underlay wants to communicate with a

peer, it requests address suggestions for this peer from the ATS service. As long as

this suggestion request is active, ATS will include this peer in the problem and suggest

addresses for this peer to the transport underlay until this request is canceled.

Stop address suggestions: When address suggestions are no longer required for a peer

since communication is not desired anymore, the service notifies the solver to not

include this peer in the problem anymore and to stop suggesting addresses.

Start a bulk operation: Since the service may want to issue a larger number of updates

at the same time and wants to prevent the solver from recalculating the solution

for every single update, the service can indicate the begin of a bulk operation to the

solver. This allows the solver to wait for the end of this operation before finding a

solution for the updated problem.

Stop a bulk operation: This function indicates the end of a bulk operation and indicates

to the solver that it now can start to find a solution for the updated problem.

Application preferences: To adapt address selection and resource allocation to corre-

spond with application preferences, the applications specify their requirements for

peers with respect to the different transport properties. With this function, the

service can notify the solver about changing application preferences for a peer.

Application feedback: Besides specifying their requirements, the applications can also

specify how satisfied they are with the current communication to a peer. Since

applications are not required to give this information and in addition not in a fix

time interval, applications can additionally specify for which time span in the past

this feedback is designated.

Solver shutdown: During shutdown, the ATS service calls the shutdown method to

unload the solver plugin. As a consequence, the solver stops all operations and frees

all data.

5.8.7.2 Solver to Service Interaction

To allow the solver plugin to notify the service, several functions are provided by the ATS

service to allow communication from the solver to the service. This includes functions to:

Notify about allocation changes: When the address selected for a peer or the resources

assigned to this address change, the solver can use this function to notify the service

about this change and the updated resource allocation.

Indicate solver operations: The solver can notify the service about the state of a

problem solution cycle using this notification callback. The solver can indicate

the begin of an solution cycle, the end of a solution cycle including more detailed

information about the result of the cycle. It also provides solver-specific information,

for example the begin or end of solving the LP relaxation of the MILP problem for

the MILP solver described in Section 5.5.

Get properties for an address: The solver can request the current transport proper-

ties for an address from the ATS service’s NORMALIZATION component described in

Section 5.8.6.

5.8. Implementation 133

Get preferences for a peer: The solver can request the current application prefer-

ences for a peer from the ATS service’s NORMALIZATION component described in

Section 5.8.5.

5.8.8 ATS Solvers

To support the different solution approaches we propose and to allow to easily exchange

the different solution approaches, compare them with each other and evaluate them under

a realistic setting, we provide an extensible solver plugin architecture with the ATS service.

This architecture supports to load the different solver implementations as plugins and

provides a uniform communication interface for the interaction of ATS service and the

solver plugin. In addition allows this architecture to instrument the solver plugins directly

using an instrumentation driver to evaluate the different solvers directly.

The resulting architecture for the ATS service including its internal components an the

interaction with applications and the transport infrastructure is depicted in Figure 5.3.

ATS Service

PERFORMANCE API

SCHEDULING API

ADDRESS

NORMALIZATION Solver

Client Applications

TRANSPORT Service

Configuration

Resource
Restrictions

Address & Performance InformationPreferences

Address & Performance Information
Active Addresses,

Resources

Fig. 5.3: ATS Service with Internal Structure and Interaction

5.8.9 The Greedy Heuristic Solver

The implementation of the greedy heuristic is (as for all solution approaches described in

the following sections) realized in a solver plugin, which is loaded by the address component

interacting with the address component using the solver API. During initialization, the

ADDRESS component passes the current resource constraints to the solver and the solver

creates a set of network scope structs representing the different network scopes available.

For each network scope, the solver stores information about the resources available in

this scope inbound and outbound, the number of available addresses and the number of

active addresses in the scope. In addition, it loads the configuration settings from the

configuration relevant for the solver. The list of configuration settings influencing the

greedy heuristic solver is given in Table 5.1.

134 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

The solver is notified about changes in the environment by the ADDRESS component

and whenever the environment changes the solver has to update and recalculate its alloca-

tion. When finding this allocation, the solver only includes information for peers actually

requested and performs an allocation update only when information for requested peers

change.

When a new address is added to the problem, the solver adds the address to the

respective network scope the address is located in and updates the information stored

with the network scope. If this address belongs to a peer with a pending address request,

the solver updates its allocation to ensure this address is included in the allocation.

When a new request for address suggestions is received for a peer, the solver first

finds the best address by comparing the performance properties for the peer’s addresses.

The algorithm ensures connection stability by not switching away from a connection just

established. Here the solver uses a stability factor fs obtained from the configuration and

keeps the address if it was activated less the than 1 · fs seconds ago. The solver checks

for every address if it is possible to activate this address. Here the solver checks if with

this address activated all active addresses in the respective network scope can get at least

the minimum bandwidth bmin assigned.

If it is possible to activate an address, the solver marks this address as active, updates

the respective network scope and redistributes the resources in the network scope as

described in Section 5.4.1.2 using the proportionality factor p obtained from the configu-

ration. When no address is available or can be activated due to bandwidth restrictions, the

solver returns and does not notify the ADDRESS component. When the resources assigned

to the active addresses in this network scope change, the solver notifies the ADDRESS

component using the respective callback for each address and notifies ADDRESS about the

address and the resources assigned.

When an address or transport session is deleted, the solver removes it from the network

scope it belongs to and redistributes the resources to the active addresses left in this scope.

When the address or session was marked as active and address suggestions are requested

for the peer this address belongs to, the solver tries to find an alternative address to use

using the address selection algorithm. If an address is found, it activates the address

and redistributes the resources in the respective scope. If no alternative address can be

suggested, the solver notifies the ADDRESS component to disconnect the respective peer

since no address is available by calling the ADDRESS component callback for the deleted

address with no resources assigned (both inbound and outbound bandwidth are 0).

When an active address switches network scopes, the solver checks if it is possible to

activate the address in the new scope and if possible, moves the address and redistributes

resources in both the previous and the new scope. If it is not possible, the solver tries

to find an alternative address to activate. If no alternative address is available the solver

disconnects the peer. Addresses switching network scopes can for example occur when

initially no scope information was provided and the address was added to the UNSPECIFIED

scope. When the address information is updated with the correct network scope, the

address has to be moved to the respective scope.

When transport performance properties are updated, the solver first checks if based on

the updated properties the address is still the best address. If the address is still designated

as best address, the solver redistributes resources in the address’ network scope. If another

addresses was designated best, the solver switches addresses, deactivates the old address,

activates the new address and redistributes resources in both network scopes and notifies

ADDRESS about the updates.

When application preferences change, the solver checks if based on the updated pref-

5.8. Implementation 135

erence, the current active address for the peer is still the best decision and otherwise

switches to the selected address. After this check the resources in the network scope(s)

are re-assigned.

The prevent multiple resolution processes, e.g. when relative properties strongly inter-

twined with each other change, the solver supports to lock the solver from resolving the

problem using bulk operations. The ADDRESS component can start a bulk operation and

lock a semaphore and the solver will not re-solve the problem until the last bulk operation

lock was removed. When no bulk lock is pending, the solver re-solves the problem and

notifies the ADDRESS component about the updated solution.

When the solver is shutdown, it cleans up all data and data structures allocated by

iterating over all network scopes. After the clean up the solver returns to the ADDRESS

component and shutdown is completed.

Tab. 5.1: Configuration Values for the Heuristic Solver

Name: PROP PROPORTIONALITY FACTOR Type: float

Default: 2.0 Range: ≥ 1.0
The proportionality factor represents a trade-off between preference compliance

and a fair bandwidth distribution when distributing resources within a network

scope as described in Section 5.8.9. For values close to 1.0, the resources are

distributed fairly, for larger values, the distribution follows closer to preferences

and penalizes peers without preferences from applications

Name: PROP STABILITY FACTOR Type: float

Default: 1.25 Range: [1.0 . . . 2.0]
To prefer addresses currently in use and prevent high frequent address switching,

this factor is used to control how stable the address selection process should stick

to an address.

5.8.9.1 Performance Evaluation

The scalability and performance of the proposed greedy heuristics was benchmarked using

a dedicated benchmarking tool, sequentially increasing the problem size the solver has to

solve and measuring execution times both for problems where the problem size changed

as well as for updated problems, were only a certain percentage of the addresses in the

problem was updated and the solution was recalculated. The results for the full execution

with a changed problem size are depicted in Figure 5.4(a) and for the updated problem

with 10% of all addresses in the problem updated in Figure 5.4(b). As we can see from

both figures increases the execution time linearly with the number of peers and addresses

in the problem for both the full execution and the updated execution run.

5.8.10 The Mixed Integer Linear Programming Solver

With the MILP solver we provide a solver for the address selection problem combining

address selection and resource allocation in an integrated approach and providing a math-

ematically optimal solution. With this solver we formulate the problem as a MILP problem

and use mathematical optimization algorithms to obtain the optimal solution and forward

this solution to the ADDRESS component. The main focus of the MILP solver is to main-

tain a MILP formulation of the current environment setting, to update or recreate the

136 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 i
n
 μ

s

Peers

Execution time (mean)

(a) Execution Time of the Heuristic Solver for a Full Solution

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 i
n
 μ

s

Peers

Execution time (mean)

(b) Execution Time of the Heuristic Solver for an Incremental Solution

Fig. 5.4: Performance of the Heuristic Solver

5.8. Implementation 137

problem when the environment changes and to find a solution for the MILP problem and

notify ADDRESS about the change. To solve the MILP problem provided by the MILP

solver, the solver uses the GNU Linear Programming Kit library5, a well-established free

software library with a focus on solving large-scale LP and MILP problems.

The GNU Linear Programming Kit (GLPK) provides extensive functionality to solve

both LP and MILP problems. To solve LP problems, GLPK supports both the Simplex

algorithm as well as the interior points method described in 5.5.1. To solve MILP problems,

GLPK provides a branch-and-cut solver as described in 5.5.1. This branch-and-cut solver

(intopt solver) requires a valid solution of the LP-relaxation of the problem to find the

MILP optimal solution. This solution can be obtained from a previous run of the Simplex

LP solver or using the intopt pre-solver. A limitation of the intopt solver is, that it

cannot use a solution provided by the interior point solver and therefore the interior point

solver cannot be used in our approach. A second limitation of the intopt solver is, that

if multiple optimal solutions exist, it is not possible to obtain all optimal solutions since

the solver can only provide one optimal solution. To prevent numerical instabilities, the

Simplex LP solver is equipped with an optimization functionality to automatically scale the

problem. GLPK supports the LP warm start, as described in 5.5.1, so when the problem

was only updated (coefficients changed) but the problem size did not change (no rows

or columns added or removed), an existing solution from a previous run can be reused

without having to solve the full LP. [Tea14]

In GLPK, optimization problems are represented using a GLPK specific problem struc-

ture. The problem is manipulated using GLPK functions, amongst others to set the

optimization direction (minimize or maximize), add constraints (rows) and structural vari-

ables (columns) to the problem and define the coefficients of the objective function. The

coefficients of the problem matrix A as described in 5.5, are stored in three arrays with

two integer arrays defining the row and column this coefficient is located in the coefficient

matrix and a third double array containing the coefficient itself. Information about GLPK

specific implementation details can be found in [Tea14]. When the GLPK problem is

configured with the objective function, columns and rows, these arrays representing the

coefficient matrix are with GLPK. After the solution process, the result can be analyzed,

so if an optimal solution was found or if the problem was unfeasible or the solution pro-

cess was interrupted. If an optimal solution was found, the solution can be analyzed for

the value of the objective function, value of structural variables (columns) and values of

auxiliary variables (rows).

During initialization, the MILP solver obtains the resource restrictions for the different

network scopes, loads the configuration parameters specified in Table 5.2 and initializes

the GLPK environment. The solver only runs the optimization process on external events,

so when the environment changes. When the MILP solver is notified about changes to

the environment, the solver has to update the GLPK problem to reflect the change. Here

the solver has to distinguish between updates changing the problem size and updates only

updating the problem to be able to benefit from the speed-up of the Simplex warm start.

Updates changing the problem size are new addresses and sessions added to the problem

or address suggestion requests added or removed from the problem. In this case the

solver has to recreate the MILP problem and include the update in the problem and then

solve the problem using the GLPK solver. Changes only updating the current problem

are updated transport performance properties and updated application preferences. In this

case the solver updates coefficient arrays described in the previous paragraph and uses the

intopt solver to find the optimal solution.

5 https://www.gnu.org/software/glpk/

https://www.gnu.org/software/glpk/

138 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

When creating the MILP problem, the solver first initializes the GLPK problem and

sets the optimization direction to maximize. In the next step, the solver initializes the

objective function with the coefficients D,U,R,A and Qi to weight the different opti-

mization objectives as described in Section 5.5. In the next step, the solver adds the

structural variables (the columns) to the problem. It adds one continuous value column

with bounds ≥ 0 for each objective in the objective function as defined in Section 5.5 to

allow to use the optimality constraints to drive the objective functions to the maximum.

In addition, the solver adds for each address to be included in the problem columns (struc-

tural variables) representing the bandwidth assigned and a binary column n indicating if

the address is selected to be active or not. In the next step the solver iterates over all

peers and addresses to be included in the problem and adds the feasibility and optimality

constraints described with the design to the problem and sets the respective coefficients

and their position in the constraint matrix A in the GLPK coefficient arrays. When done,

the solver loads the new coefficient matrix into the problem. For each address and peer

included in the current problem, the solver stores information about the constraints (rows)

and structural variables (columns) related to the peer or address. This is required to later

update the information related to a peer or address when the problem is updated and

to obtain the resulting resource assignment and activation information for each address

after solving the problem. After loading the matrix, the solver can automatically scale the

problem using GLPK’s problem scaling functionality to prevent numerical instabilities in

the optimization problem.

When the problem has to be updated, the solver can directly update the problem with

the new values based on the information about constraints and resources related with each

address stored while creating the problem. When the solver is notified about an update for

an address, it takes the updated value and sets the new coefficients in the problem matrix

to represent the update. For the update, the solver retrieves the respective constraint row

to update from the GLPK problem, locates the column to update, updates the respective

coefficient and stores the updated row in the GLPK problem.

When the solver has to find a solution for the optimization problem due to a change in

the problem size, the solver uses GLPK’s LP Simplex solver to find a solution for the LP-

relaxation of the problem which can be used by the intopt solver to find the solution for

the MILP problem. The execution time of the Simplex solver can be controlled with respect

to the number of maximum iterations and the maximum execution time to interrupt the

optimization process. After solving the LP problem, the solver uses GLPK’s branch-and-

cut integer optimizer to find a integer optimal solution based on the LP relaxation found

before. Since finding an optimal solution with the branch-and-cut solver is expensive and

takes a long time but the optimizer is often able to find a solution very close to the

optimal solution very fast, we added support for tolerating a solution slightly worse than

the LP optimal solution and terminate the optimization process faster. Our solver can stop

finding the optimal MILP solution when the branch-and-cut solver found a solution within

a (configurable) tolerance gap gmilp. By default this gap is set in our solver to accept

solution within a tolerance of 2.5% from the (LP) optimal solution. When a solution

for the MILP problem is found, the solver analyzes the solution found and notifies the

ADDRESS component about the results of the optimization process. The solver iterates

over all addresses included in the current problem and extracts the information about the

resources the intopt solver assigned to the address and if the address was selected to

be active. This information can be easily extracted based on the information about the

structural variables containing this information stored with each address when the problem

was created. When the selected addresses or resources assigned to an address change,

5.8. Implementation 139

the solver notifies the ADDRESS component about the updates. The MILP solver supports

bulk operations to prevent the solver from frequently solving the problem when a large

number of updates are performed. The solver implements these blocks using a semaphore

and when all bulk operations are completed, the solver performs a single optimization run

including all updates performed.

The relevant configuration parameters for the Mixed Integer Linear Programming

solver are depicted in Table 5.2.

Tab. 5.2: Configuration Values for the MILP Solver

Name: MLP MAX DURATION Type: time

Default: 3 s Range: ≥ 0

Maximum duration for a Simplex solution process

Name: MLP MAX ITERATIONS Type: int

Default: ∞ Range: ≥ 0

Maximum number of iterations for a Simplex solution process

Name: MLP COEFFICIENT D Type: float

Default: 1.0 Range: ≥ 0

Weight D for diversity objective

Name: MLP COEFFICIENT U Type: float

Default: 1.0 Range: ≥ 0

Weight U for utility objective

Name: MLP COEFFICIENT R Type: float

Default: 1.0 Range: ≥ 0

Weight R for relativity objective

Name: MLP MIN BANDWIDTH Type: int

Default: 1024 bytes/s Range: ≥ 0

Minimum bandwidth bmin required

Name: MLP MIN CONNECTIONS Type: int

Default: 4 Range: ≥ 0

Minimum number of connections nmin required to ensure diversity

Name: MLP MAX MIP GAP Type: float

Default: 0.025 Range: [0 . . . 1]
Tolerance gap gmilp used with branch-and-cut solver

5.8.10.1 Performance Evaluation

We evaluated the performance of the MILP solver with respect to scalability and per-

formance using the same tool as described with the heuristic solver. To benchmark the

solver we incrementally added peers to the problem to solve and forced the solver to find

a solution to the updated problem. For the MILP solver particularly interesting is the

performance for a full and an updated problem and if we can benefit from the warm start

property of the Simplex algorithm. The result of the benchmark is depicted in Figure 5.5.

For this benchmark we incrementally added a peers with 10 addresses to the problem

and the requested address suggestions for this peer. This change in problem size forces

140 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

the MILP solver to recreate the problem and fully resolve the problem. The resulting

performance is depicted in Figure 5.5(a). After this problem was solved, we updated the

performance properties of 10% of all addresses while locking the solver with a bulk oper-

ation. After updating all addresses, we released the bulk lock and measured the time the

solver needed to solve the updated problem. The execution time of the solver to find a

solution is depicted in Figure 5.5(b).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 i
n
 s

Peers

Execution time (mean)

(a) Execution Time of the Mixed Integer Linear Programming Solver for a Full Solution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 i
n
 s

Peers

Execution time (mean)

(b) Execution Time of the Mixed Integer Linear Programming Solver for an Incremental Solution

Fig. 5.5: Performance of the Mixed Integer Linear Programming Solver

5.8. Implementation 141

5.8.11 The Reinforcement Learning Solver

The implementation of the reinforcement solver provides two important data structures.

On the one hand the solver has to maintain a set of learning agents, a dedicated agent for

each peer known (not only peers requested) by the transport infrastructure. Each agent

stores information if the peer is currently requested for address suggestions and maintains

a list of addresses available for the peer it is responsible for and the address the agent

has chosen to be active. Besides this transport specific information, the agent has to

store information for the Temporal Difference (TD) learning algorithms. The solver uses

a the matrix W for action-value estimation. This matrix has a column for each action

available to the agent and a row for each prototype state depending on the number of

RBF prototype states as described in Section 5.6.2. A second matrix E is responsible to

store information for eligibility traces and storing information about the last action taken

and the last state-feature vector used.

As described with the design of the RIL solver, we define a set of actions the agent

can perform. With the current implementation the agent can:

• increase the inbound bandwidth assigned by a certain amount

• increase the outbound bandwidth assigned by a certain amount

• double the inbound bandwidth assigned

• double the outbound bandwidth assigned

• decrease the inbound bandwidth assigned by a certain amount

• decrease the outbound bandwidth assigned by a certain amount

• halve the inbound bandwidth assigned

• halve the outbound bandwidth assigned

• do nothing

All of these operations can be combined with the action to switch to a certain address.

During startup the solver loads configuration settings from configuration and stores

the inbound and outbound quotas passed for each network scope in a list. Different to the

heuristic solver and the MILP solver, the RIL solver performs learning steps independent

from changes to its environment in regular intervals. The frequency of these steps is

determined by the adaptive stepping described in Section 5.6.2 and the (configurable) tmin
and tmax parameters, defining the minimum and maximum period between two learning

steps.

When the solver is notified about addresses getting available for a peer, the solver

first checks if a learning agent for this peer is active. If no agent for this peer exists, the

solver initializes a new agent with default values and prepares the required data structures.

When an agent for this peer is ready, the solver adds the address to solver and increases

the data structures E and W to contain this address and unblocks the agent to start

learning and perform a learning step. When an address is deleted from a peer, the agent

removes this address from the agent and the data structures required for TD learning and

if the address was the selected as active, the solver suggests an alternative address. When

addresses are added or change the network scope, the solver first checks if at least the

142 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

minimum bandwidth bmin is available in the new network scope and otherwise the address

is marked as inactive and not used.

When the solver is scheduled to perform a learning step or due to changes in the envi-

ronment, the solver starts with calculating the global discount for all agents and updates

information for all network scopes about bandwidth assigned based on the assignment

done agents and bandwidth utilized based on transport performance properties provided

by the transport underlay. This update also includes the fairness of the current allocation

with respect to the social welfare algorithm used. The solver supports both the Nash prod-

uct and the egalitarian welfare algorithm described in the design. The resulting welfare

value is stored within the network and used later by the agents to calculate the reward

value they receive. After these updates, the solver performs a learning step for all agents

currently active.

In a learning step, the agent first determines the state vector currently available and

calculates the reward the agent retrieves based on penalty, agent utility and social welfare

obtained for all agents with addresses in the same network. The penalty is applied when

the last action increased the bandwidth and over-utilized available resources by giving a

negative reward increasing quadratically. The utility is calculated based on how good the

current address matches the application preferences with respect to transport performance

properties and bandwidth assigned. The reward function also includes a bonus for doing

nothing and getting no penalty for this action to improve the convergence behavior of

the solver. Based on this reward and the state vector obtained from the RBF function,

the agent selects the next action and updates the agents allocation policies. Here it

depends if the agent uses the Q-Learning or the SARSA algorithm as described in the

solver design. With Q-Learning, the solver updates the agent with the reward calculated,

the state vector and the action with the highest return the agent can choose in the next

step. This does not require this action to be performed, instead the agent can perform

any action obtained from the action-selection strategy used. With SARSA, the agent

updates the strategy with the calculated reward, the current state vector and the action

obtained to perform in the next step. The action selected to be executed next is obtained

using an action selection strategy as described in the solver design. This strategy provides

the trade-off between exploitation and exploration and returns the action to perform. The

solver implements a decreasing exploration strategy as defined in the design. When the

environment for an agent is updated, the exploration rate is reset to the default value to

allow the agent to learn about new addresses. The solver supports both the ε-greedy and

the softmax strategy and uses the algorithm defined in the configuration.

After performing the learning step, the solver updates the network scopes again to

reflect the changes caused by the learning step and notifies the ADDRESS component

about the changed resource assignments and addresses selected to be active. Finally,

the solver schedules the next learning step according to the current state of the adaptive

stepping mechanism controlling the learning speed as described in Section 5.6.2.

The relevant configuration parameters for the Reinforcement Learning solver are de-

picted in Table 5.3.

5.8.11.1 Performance Evaluation

Similar to the greedy heuristic and the MILP solvers presented before, we evaluated the

performance and scalability of the RIL solver with exactly the same evaluation tool and

under the same settings: we step by step increase the number of peers in the problem

setting and for each problem size we measured the execution time to solve the problem. In

5.8. Implementation 143

Tab. 5.3: Configuration Values for the RIL Solver

Name: RIL ALGORITHM Type: string

Default: SARSA s Range: {SARSA, Q-LEARNING}
Temporal Difference (TD) distance algorithm used

Name: RIL SELECT Type: string

Default: SOFTMAX Range: {EGREEDY, SOFTMAX}
Action selection strategy to use, ε-greedy or softmax

Name: RIL SOCIAL WELFARE Type: string

Default: NASH Range: {NASH, EGALITARIAN}
Social welfare mechanism to use: Nash product or egalitarian welfare

Name: RIL RBF DIVISOR Type: int

Default: 50 Range: ≥ 0

Number of prototype states for RBF state estimation

Name: RIL STEP TIME MIN Type: time

Default: 200 ms Range: ≥ 0

Minimum time between learning steps

Name: RIL STEP TIME MAX Type: time

Default: 2 s Range: ≥ 0

Maximum time between learning steps

Name: RIL DISCOUNT BETA Type: float

Default: 0.6 Range: [0..1]

Learning discount β in the TD-update for semi-MDPs

Name: RIL DISCOUNT GAMMA Type: floats

Default: 0.5 Range: [0..1]

Learning discount factor γ in the TD-update

Name: RIL GRADIENT STEP SIZE Type: floats

Default: 0.01 Range: [0..1]
Gradient step size α. Determines how much learning experience will update

current strategy, used in Q-Learning and SARSA update rule

Name: RIL DEFAULT EXPLORE RATIO Type: floats

Default: 1 Range: [0..1]
Exploration ratio r , with exploitation rate e = 1 − r , used with ε-greedy action

selection strategy

Name: RIL DEFAULT EXPLORE DECAY Type: floats

Default: 0.95 Range: [0..1]

Decay rd of exploration ratio used with ε-greedy action selection strategy

Name: RIL DEFAULT TEMPERATURE Type: floats

Default: 0.1 Range: ≥ 0

Default exploration ratio r used with softmax action selection strategy

Name: RIL DEFAULT TEMPERATURE DECAY Type: floats

Default: 1 Range: (0..1]

Decay rd of exploration ratio used with softmax action selection strategy

144 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

addition, we measured the time to solve the updated problems when 10% of all addresses

were updated.

The result is depicted in Figure 5.6(a) for the full solution run and in Figure 5.6(a)

for the updated problem. For the reinforcement learning solver, we expect no difference

between the performance for a full solution cycle and a solution cycle for an updated

problem since the solver has to perform the same operations in both cases. As we can

see, is the time to solve this problem linear for both situations over the number of peers.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 i
n
 s

Peers

Execution time (mean)

(a) Execution Time of the Reinforcement Learning Solver for a Full Solution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 i
n
 s

Peers

Execution time (mean)

(b) Execution Time of the Reinforcement Learning Solver for an Incremental Solution

Fig. 5.6: Performance of the Reinforcement Learning Solver

5.9. Evaluation 145

5.9 Evaluation

To evaluate the performance and quality of the solution provided by the address selection

mechanism and the three different solution approaches, we compared in addition to the

performance and scalability of the solvers the quality of the solutions provided by the

different approaches.

To evaluate the quality of the solutions provided by the solvers, we created a bench-

marking tool we can use to run experiments comparable between the different solvers in

a reproducible way. Our tool is based on the idea to define typical scenarios we want

to analyze the solvers in. These scenarios represent typical processes in a decentralized

networking environment. The timeline of a scenario is divided in episodes with a certain du-

ration. With the benchmarking tool we can define scenarios with peers joining and leaving

the network, addresses becoming available and unavailable, connections with peers being

requested and canceled. In addition, we can provide the solver with transport performance

properties for the different transport properties available and application preferences for

peers and transport preferences. The benchmarking tool provides functionality to gener-

ate these inputs with so called generators. These generators can generate properties and

preferences with a constant, linear and sinusoidal course of the function or with random

properties with a configurable base value, maximum amplitude, frequency and duration.

A typical scenario description is a set of episodes defining events in the network. These

events are given to the solver to test. The solver uses this inputs and calculates a solution

it returns to the benchmarking tool. The benchmarking tool logs the output passed by

the solver in regular intervals for later analysis.

To benchmark the three solvers, we defined several scenarios and ran these scenarios

with all of the three solvers. To measure the quality of the solutions provided by the

solvers, we defined a quality function similar to the objective function of the MILP solver

representing the objectives defined in Section 5.2.3. The quality function includes the

utility of the current solution, relativity of the assignment with respect to preferences, the

number of peers selected to be active and the quality with respect to transport performance

properties and, different to the objective function of the MILP solver, a penalty if resources

are over-utilized. In contrast to the objective function of the MILP solver, the goal function

includes a penalty x(t) if resource (bandwidth) constraints are violated. This is required

to penalize the reinforcement learning solver for over-allocation.

The quality function is in detail defined as follows:

Given a neighbor p ∈ P with inbound bandwidth bp,in assigned and outbound band-

width bp,out assigned, where the address is selected from network scope n with a network

scope inbound quota of ln,in and outbound quota of ln,out , and current properties values qi ,

preferences Qi for properties i ∈ P ×A for addresses A, including specifically a preference

of qp,bw for bandwidth, and a penalty x(t) in case of overallocation, the quality function

is calculated using the following four factors:

• Relativity: r(t, p) = qp,bw
bp,in(t)+bp,out(t)

ln,in+ln,out

• Diversity: d(t) = peersactive(t)
peersrequested (t)

• Utility: u(t, p) =
bp,in(t)+bp,out(t)

ln,in+ln,out

• Quality: q(t, p) =
∑
i∈P×A qi(t) ·Qi(t)

146 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

The overall quality function for an experiment running from tstart to tend is then

G =

∫ tend

tstart

d(t)− x(t) +
∑
p∈P

r(t, p) + u(t, p) + q(t, p) dt.

To evaluate quality of the solvers we used three different scenarios, with two different

durations (to observe the effect of learning). We run the simulations for 10 seconds in

the short variant and 20 seconds in the long variant. The three scenarios are modeled

to represent the behavior of a file sharing application, a telephony application, and the

case where both file-sharing and telephony execute together. We use two network scopes,

scope n0 with a large amount of bandwidth available, and n1 providing only half the

bandwidth of n0. We have two neighbors p0 and p1, each with one address in each of the

network scopes.

In the throughout scenario, we emulate an application trying to achieve a high through-

put to one peer, and not caring about other peers. The application wants to maximize

throughput to peer p0, and has no concern for latency at all. We generate delay values for

the addresses in n0 to provide better latency properties than for the addresses in scope n1,

which provides more bandwidth but worse delay properties. After this setup we then begin

to issue preferences in regular intervals of 500 ms with respect to bandwidth for p0 with

linearly increasing values and for p1 with a constant low value to indicate our disinterest

in this peer.

In the latency scenarios, we emulate an application requiring low latency values to

communicate with both p0 and p1. We generate delay values for the addresses of neighbor

p0 and p1 located with s0 with random values between 20 and 25 ms and better delay

values for addresses in scope n1, providing less bandwidth, with delay values between 10

and 15 ms for p0 and 1 and 30 ms for p1. We then begin to issue our preference for both

peers with respect to latency, linear increasing values for p0 and sinusoidal for p1.

In the mixed scenario, we simulate a peer-to-peer framework with applications issuing

conflicting preferences. For the addresses located in n0 providing more bandwidth, we

create delay properties for both addresses with values between 20 and 25 ms, whereas for

the addresses in scope n1 providing less bandwidth, we create delay values between 10

and 15 ms for p0 and linear increasing between 1 and 30 ms for p1. The values for p1’s

address in n1 were particularly chosen to make the solver switch to p1’s address in scope

n0. The application begins to generate preferences for p0 to prefer maximize throughput

and for peer p1 to maximize delay.

Table 5.4 and Figure 5.7 gives the results for the goal function (5.9) for the different

scenarios. The values are normalized in relation to the quality of the solutions produced

by the MILP solver. The results show that learning is effective as the RIL solver’s solution

improves for longer runs, and it outperforms the heuristic for most scenarios.

5.10 Discussion

Our heuristic computes the address selection and the resource allocation very fast, which

is beneficial given frequent changes in the problem due to peers joining and leaving and

updated address properties and application preferences. However, the greedy nature limits

the quality of the solution and therefore it performs worse then MILP and RIL solver in

most scenarios. Only in the throughput scenarios, where only the amount of resources

assigned to the peers is important, the greedy heuristic performs almost as good as the

MILP solver. Also, the heuristic does not benefit from the requirement to solve the

problem repeatedly and therefore does not benefit from running in longer scenarios.

5.10. Discussion 147

 0

 0.2

 0.4

 0.6

 0.8

 1

Throughput Short

Throughput Long

Latency Short

Latency Long

Mixed Short

Mixed Long

Solution Quality of ATS Solvers in Different Scenarios

Heuristic
MILP

RIL

Fig. 5.7: Solution Quality of ATS Solvers in Different Scenarios

Tab. 5.4: Normalized Quality of the Solutions Produced by the Solvers

Scenario Heuristic MILP RIL

Throughput Short 0.905 1.00 0.513

Throughput Long 0.949 1.00 0.690

Latency Short 0.510 1.00 0.692

Latency Long 0.506 1.00 0.803

Mixed Short 0.547 1.00 0.367

Mixed Long 0.552 1.00 0.969

Treating the address selection and resource allocation process as an optimization prob-

lem and using optimization techniques has multiple advantages. The solution found by this

approach is always an optimal solution and the different objectives can easily be weighted

according to the application’s needs by adapting the respective coefficients within the

objective function. However, having to formulate the problem as MILP requires a careful

design to formulate all constraints and the object function as linear equations. This re-

quirement to formulate constraints and objectives using linear equation make constraints

impossible where several inputs and objectives directly depend on each other or are used

in the same function and constraints not expressible as linear dependencies cannot be

formulated. Requiring the output to contain binary variables to indicate if an address

is selected makes solving the problem significantly more expensive since solving a mixed

integer problem is NP-hard, while for linear programming polynomial time algorithms exist.

The runtime can be reduced by exploiting the fact that the Simplex algorithm can

re-use an existing solution if only the coefficients in the problem changed (updated per-

formance properties and preferences) but not the size of the problem itself (peers joining

and leaving, addresses being added or removed). Furthermore, Simplex typically produces

feasible but suboptimal solutions quickly; thus it is important to bound CPU time with

148 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

timeouts or reduce CPU consumption by allowing the MILP solver to terminate with an

approximate solution of guaranteed quality.

While MILP provides optimal solutions with respect to its objective function, an a-priori

definition of the objectives for address selection and resource allocation is a difficult task,

especially as the requirements of applications may change over time. Furthermore, some

of the constraints that were formulated are rarely “hard” constraints — an application

that sometimes slightly overshoots bandwidth targets to meet critical application require-

ments might be more desirable than an application that sticks to such constraints and

fails to deliver performance when it is critical. These challenges can be addressed using

reinforcement learning which may predict future developments. In particular, a learning

algorithm has the chance to adapt to the current observed utilization behavior of the

application and can adjust its allocations accordingly. This can then reduce the amount

of allocated but unused resources. However, reinforcement learning takes time for the

adaptation, and thus naturally performs worse if evaluated under the same goal function

as the MILP. In addition is the solver performing sub-optimally if the requirements for an

optimal solution change, so the objective of the allocation strategy the solver is supposed

to learn in the current environment.

A special challenge for automatic transport selection and resource allocation mecha-

nisms is traffic not designated for the local peer but forwarded or relayed to other peers

in the peer-to-peer overlay. Components realizing such functionality are for example the

DV component of GNUnet’s transport infrastructure described in Section 4.3.18 or the

traffic relaying functionality of GNUnet’s CADET service described in [PG14]. Such traffic

should not be accounted to the resource consumption of applications running on the local

peer but has to considered when enforcing resource restrictions on a peer. In addition,

the question has to be answered which amount of a peer’s resources a user is willing to

contribute to relay traffic to other peers. The current implementation of the TRANSPORT

service and the ATS service support such functionality using information about the overlay

hop distance for the DV component. With this information, ATS solvers can prefer di-

rect connections with other peers over connections relaying traffic to the destination over

intermediate hops. To be able to consider such functionalities with respect to resource

consumption, applications have to collaborate with both the communication infrastructure

as well as with the ATS service to indicate if traffic is designated for the local peer and

has to be accounted to its resource consumption or if traffic is designated for an other

peer in the overlay and has to be accounted to the resources available to relay traffic to

other peers.

5.11 Conclusion and Findings

With the ATS mechanism presented in this section, we realized an important building

block for censorship-resistant peer-to-peer networks. It is designed both with a focus on

improving resilience for the communication underlay by selecting a best performing address

mechanism for the requested peers and also respects the requirements for higher layer

applications. The proposed ATS approach tries to increase the quality and performance of

communication in the peer-to-peer overlay network by favoring mechanisms providing good

communication properties and considering application requirements when selecting these

mechanisms and distributing resources among peers. In case of service degradation, the

presented approach can detect and counteract such attempts and switch to a mechanism

providing better communication properties than the degraded mechanism. The presented

design does not contradict the idea of a neutral network since it tries to achieve best

5.11. Conclusion and Findings 149

possible communication and does not discriminate against other traffic and complies with

the idea of a dumb network since every peer uses its local view of the network to find a

solution to the problem. To solve the problem of address selection and resource allocation,

we presented three different solution approaches each chosen for some specific property it

provides. We evaluated the different solvers and saw with the MILP solver, that treating

the address selection and resource allocation with an integrated approach is beneficial

and improves quality of the solution. Using the machine learning techniques is a promising

approach as we saw with the quality of the solutions provided by the RIL solver in scenarios

running for a longer time giving the RIL solver time to adapt to the environment and learn

a suitable allocation strategy.

The use of learning techniques in this domain is new and is therefore worth deeper

investigations. Improved heuristics and fitness functions better adapted to application

requirements should also be investigated. In this work we merely present an initial design

showing the suitability of the approach. In future work, the different parameters for

available algorithms should be analyzed with respect for their impact on the quality and a

deeper understanding of multiple agent systems versus using a single agent system should

be obtained, to see if using a single allocation strategy has benefits over the use of social

welfare algorithms. Future work should also focus on how traffic relayed to a peers is

treated and accounted in the transport selection and resource allocation mechanism.

150 5. Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks

6. GNS - A DECENTRALIZED, PRIVACY-PRESERVING AND

CENSORSHIP-RESISTANT NAME SYSTEM

One of the most important services on today’s Internet is the Domain Name System

(DNS), used to map human-memorable names to IP addresses used by computers to

address each other in the network. The human-memorable names provided by DNS are one

of the important building blocks for the World Wide Web and its idea to link information

and resources scattered over different servers. Due to its importance for today’s Internet

and its design and architecture, DNS is also a valuable target for malevolent parties trying

to prevent and suppress communication between users and to make information on the

Internet inaccessible. DNS architecture also allows powerful attackers to monitor which

websites, services and information users access, allowing such an attacker to establish a

system of mass surveillance. With DNS and its functionality to perform a reverse lookups

from names to IP addresses and to acknowledge the non-existence of a domain name, an

attacker can use DNS to analyze network infrastructure and enumerate IP networks.

Name systems are not only useful to map names to IP addresses but can also be used in

different contexts. The approach to (securely) map names to identifiers is used in various

other situations. Many services, like social networks, messaging or telephony providers,

today relay on centralized services to name, identify and authenticate their users. When

using centralized approaches, similar to DNS for name resolution, these services are easy

to attack and censor due to their centralized architecture. And when identity services fail,

all service building on top of these services also fail.

In this chapter we present the GNU Name System (GNS), a fully decentralized, privacy-

preserving and censorship-resistant name system as an alternative to the DNS and other

public key infrastructures and identity management systems. The GNS provides memo-

rable and secure but not globally unique names. It protects the users’ privacy by providing

confidential publication and resolution of name/value mappings. Due to the design of

GNS, it can be used as an replacement for security infrastructures like the X.509 public

key infrastructure. In the following section, we will give an introduction to DNS and its

limitations, explore the possible design space for name systems and present the adversary

model used in this work. We then present the design and implementation of GNS.

Parts of this chapter were previously published in [WSG13] and [WSG14] and re-

searched in collaboration with other researchers and students. An earlier design and

implementation were previously described in Martin Schanzenbach’s work [Sch12].

6.1 Introduction and Motivation

Preventing users from communicating and blocking access to information on the Inter-

net can be achieved in various ways and for various motivations as we saw in Chapter 1.

Besides preventing communication between participants on the network level, access to

information and services can also be censored by making information unavailable and in-

accessible for the users. An easy to employ and therefore well-known and widely used

approach to make information inaccessible is to tamper with the name systems and ma-

152 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

nipulate mappings between human-meaningful names for services and the addresses used

by machines to communicate in the network.

Name systems are a key service for the Internet and vital for most Internet applications.

IP addresses used by computers to address each other in the network are not suitable for

humans to remember. The current standard of IPv4 uses 32-bit addresses usually given

in the form of four octets separated by dots. The upcoming IPv6 standard, already in

use for example in China and with some ISPs in Europe and the United States, relies on

128-bit addresses written as eight groups of four hexadecimal digits each, separated by a

colon: such addresses are typically beyond human capacity to memorize. The standard

on today’s Internet to map human-memorable names to addresses useful for machines

to communicate is the Domain Name System (DNS). DNS, as briefly introduced in Sec-

tion 2.4, is a decentralized but hierarchical name system with the main purpose to map

human-meaningful names to IP addresses. When a user accesses a service, he provides a

DNS name which is then translated to an IP address the computer can use to establish a

connection to this service. Besides this core functionality, DNS increasingly provides more

widely used functions such as service discovery (e.g. with MX records for mail servers or

SRV records used with the Session Initiation Protocol (SIP) and the Extensible Messaging

and Presence Protocol (XMPP)), or mappings from names to arbitrary values (e.g., to

X.509 certificates that authenticate web servers). DNS is also often employed to increase

resilience for services on the Internet, using DNS to provide redundancy. DNS can be

used for load balancing and fail-over and DNS allows for seamless migration of services

from one physical system to another by using a DNS name to address a service instead

of an IP number to address a particular machine.

Based on the wide range of functionalities provided by DNS and their importance for

services, applications and communication on the Internet, DNS is one of the most impor-

tant services for today’s Internet. A failure in DNS can have an enormous impact not only

making websites inaccessible but also with serious impact on economy, technical processes

and societies. We can observe the importance for free and unrestricted communication

and how it can influence developments with events like the Green Revolution in Iran, the

Arab Spring and recent political developments in Turkey and the Ukraine. The awareness

for DNS and its importance for the functioning of the Internet has increased, as we can see

with the European Parliament emphasizing the importance of maintaining free access to

information on the Web in a resolution [Eur11] and Tim Berners-Lee, one of the inventors

of the WWW, stating:

The Domain Name Server is the Achilles heel of the Web. The important

thing is that it’s managed responsibly.

With the increasing importance of the Internet and DNS as one of the important

building blocks for the functioning of the Internet, interest for DNS arises not only from

benign parties.

With the commercialization and internationalization of the Internet in the last two

decades, the Internet and also the DNS are more and more at the mercy of commercial

and political interests. Often these economic interest can succeed over the public interest

just due to the economic power of the parties involved. Decisions with respect to the

functioning of the Internet and its future developments are not driven by technological

considerations anymore but by political and economic motivations. For DNS, a prime

example is the introduction of new gTLDs (like “.jobs” or “.asia” and many more) by

ICANN and IANA, under contract with the United States Department of Commerce

(DOC), in 2012. With this process we can see the economic predominance on today’s

6.1. Introduction and Motivation 153

Internet: to apply for such a gTLD, an initial fee of 185,000 US-$ and an annual renewal

priced with an additional 25,000 US-$ per year plus additional transaction fees have to

be paid by the applicant1, automatically limiting the possibility to apply for such a gTLD

to financially strong organizations: so Google Inc. applied for 101 gTLDs, Amazon.com

Inc. for 76 gTLDs and a company called donuts2, with the only purpose of being a

registrar to sell these names, is applying for a total number of 307 gTLDs. Not only is

this process dominated by commercial interests, these interests also conflict with public

interest, as we can see with incidents like the companies Ferrero SpA registering the

gTLD “.kinder” [Mey14] and Amazon.com Inc.’s (rejected) attempt to register the gTLD

“.amazon” [Ber14], both being generic terms used in many other relations and with such

a registration being successful, exclusively being given to a company. Besides having

economic implications, this process can even have political disputes as a consequence

as we saw with planned introduction of a gTLD “.wine”, a plan strongly objected by

the French government to protect the interests of their wine-producing industry having

political disputes between multiple governments and the ICANN as a consequence [Fiv14].

In addition to economic and political interests also malevolent and suppressive parties

are interested in DNS and its importance for the functioning of the Internet. Various

institutions are using their power including legal means to engage in attacks on the DNS,

thus threatening the global availability and integrity of information on the Web [Ess14],

as we have seen in the introduction in Chapter 1. One of the popular and easy to employ

methods to make information on the Web unavailable is to tamper with information in

DNS required to access these information and services. Since manipulating the DNS

system is easy to perform and effective on the other hand, it is one of the most common

methods for censors to make information inaccessible by making resolution of name/value

mappings fail or modify them to redirect the user to a censor controlled impostor site.

We saw this for example with Turkey’s blocking of the Twitter microblogging service and

as a consequence also Google DNS servers in 2014 [Raw14, HA14]. The structure and

design of DNS, based on names being owned by organizations and delegation of control

to subordinated organizations, even simplifies the realization of these attacks, especially

for adversaries like the adversary used in this work as described in Section 6.3.1. Since

DNS domains are typically owned by organizations, an adversary can put pressure on these

organizations by applying his legal or judicial powers to get control over these names or

to remove them. Prominent examples (all taking place only within one week in mid-2014)

demonstrating the power of such an adversary and its’ consequences are the (attempted)

seizure of Iran’s top level domain “.ir” and its IP block by an US court to compensate

Israel terror victims [Sha14] and Microsoft’s takeover of more than 20 DNS domains

owned by the DDNS provider No-IP3 based on a court granting a temporary restraining

order against No-IP based on the accusation to distribute malware. So tampering with the

DNS can cause collateral damage, too: As a consequence of Microsoft’s take-over, many

legitimate domains hosted with No-IP failed to resolve due Microsoft’s DNS servers being

overloaded and failed to respond. A recent study [Ano12] showed that Chinese censorship

of the DNS has had worldwide effects on name resolution. Other collateral damage can

be the filtering of benign websites as in [Kan14, Cow14] and [Hol12], already described

with DNS manipulation in Section 2.4. Besides tampering with DNS to make services

and information unavailable, it can also be used to prosecute users accessing information

designated as illegal and therefore suppressed by an censor. Here information leaking

1 http://newgtlds.icann.org/en/applicants/customer-service/faqs/faqs-en
2 http://www.donuts.co/about/
3 http://www.noip.com/

http://newgtlds.icann.org/en/applicants/customer-service/faqs/faqs-en
http://www.donuts.co/about/
http://www.noip.com/

154 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

from the DNS resolution process can by used by an adversary to identify users accessing

illegal information and based on this information prosecute the users using executive or

legislative powers.

DNS was not designed with security as a goal and it does not provide any mechanisms

to ensure authenticity, integrity or confidentiality of information published or resolved with

DNS. This makes DNS very vulnerable, especially to attackers that have the technical ca-

pabilities of an entire nation state at their disposal. The following are some of the most

severe weaknesses that the DNS exhibits even in the presence of the Domain Name System

Security Extensions (DNSSEC). DNSSEC [AAL+05a] only adds data integrity and origin

authentication to DNS, but does not address confidentiality of queries. Also, DNSSEC

maintains the hierarchical structure of DNS and thus places extensive trust in the root

zone and TLD operators. More importantly, DNSSEC fails to provide any level of query

privacy [Ber08]: the content of DNS queries and replies can be read by any adversary

with access to the communication channel and can subsequently be correlated with users

accessing the queried servers. On a technical level, current DNSSEC deployment suffers

from the use of the RSA crypto system, which leads to large key sizes. This can result

in message sizes that exceed size restrictions on DNS packets, leading to additional se-

curity vulnerabilities [HS13]. In mid 2014, DNSSEC is still not deployed for all ccTLDs

as we can see with the DNSSEC Deployment Maps provided by the Internet Society4

also depicted in Figure 6.1. Even fewer DNS requests are validated with DNSSEC as de-

picted on APNIC’s World Map of DNSSEC Deployment5. Here even in most high ranked

countries only a maximum of 30% of all requests are validated with DNSSEC as shown

in Figure 6.2. In combination with the use of stub resolvers in most operating systems

(explained in Section 2.4) can DNS and DNSSEC not provide end-to-end authenticity for

name resolution today.

Fig. 6.1: DNSSEC Adoption in ccTLDs in March 2014

Source: Internet Society DNSSEC deployment statistics

Finally, DNSSEC is not designed to withstand legal attacks. Depending on their

4 http://www.internetsociety.org/deploy360/dnssec/maps/
5 http://gronggrong.rand.apnic.net/cgi-bin/worldmap

http://www.internetsociety.org/deploy360/dnssec/maps/
http://gronggrong.rand.apnic.net/cgi-bin/worldmap

6.1. Introduction and Motivation 155

Fig. 6.2: Validation Rate of DNSSEC Requests in September 2014

Source: APNIC’s World Map of DNSSEC Deployment

Obtained in September 2014

reach, governments, corporations and their lobbies can legally compel operators of DNS

authorities to manipulate entries and certify the changes, and Soghoian and Stamm have

warned that similar actions might happen for X.509 server certificates [SS11]. There can

also be collateral damage: DNSSEC cannot prevent problems such as the recent brief

disappearance of thousands of legitimate domains during the execution of established

censorship procedures [Kar12, DK12], in which the Danish police accidentally requested

the removal of 8,000 (legitimate) domain names from DNS and providers complied. The

underlying attack vector in these cases is the same: names in DNS have owners, and

ownership can be taken away by different means.

So for a resilient and censorship-resistant communication infrastructure it is not only

important to provide and improve connectivity between participants to provide resilient

communication, it is also necessary for such an infrastructure to provide a resilient and

privacy-preserving way to make information and services addressable and accessible. Only

the combination of resilient communication and resilient addressing of information and

services can provide a holistic resilient infrastructure.

One of the key design aspects making current name resolution with DNS attackable

and DNSSEC useless with our adversary, is the hierarchical design of DNS and the re-

quirement of trusted, centralized registrars. Especially in fully decentralized peer-to-peer

systems, not relying on any centralized or trusted instances, the use of a name system

managed by organizations that may easily fall under the influence and the sphere of con-

trol of an adversary is not a viable option and we need to provide an alternative following

the ideas and design principles of the underlying peer-to-peer system.

156 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

6.2 Background

6.2.1 The Domain Name System

The Domain Name System (DNS) is an essential part of the Internet as it provides

mappings from host names to IP addresses, providing memorable names for users. DNS

is organized as a distributed, hierarchical database. It provides mappings from names to

values and stores name/value mappings in so-called records in a distributed database.

Names in DNS consist of labels delimited by dots. The root of the DNS hierarchy is

the empty label, and the right-most label in a name is known as the Top Level Domain

(TLD). Names with a common suffix are said to be in the same domain.

A DNS record consists of a name, type, value and expiration time. The record type

specifies what kind of value is associated with a name, and a name can have many records

with various types. The most common record types are A records that map names to IPv4

addresses.

The DNS database is partitioned into zones. A zone is a portion of the namespace

where the administrative responsibility belongs to one particular authority. A zone’s au-

thority has unrestricted autonomy to manage the records in one or more domains. Very

importantly, an authority can delegate responsibility for particular subdomains to other

authorities. This is achieved with an NS record, whose value is the name of a DNS server

of the authority for the sub-domain. The root zone is the zone corresponding to the empty

label. It is managed by the Internet Assigned Numbers Authority (IANA), which is cur-

rently operated by the Internet Corporation for Assigned Names and Numbers (ICANN).

The National Telecommunications and Information Administration (NTIA), an agency of

the United States Department of Commerce, assumes the (legal) authority over the root

zone. The root zone contains NS records which specify names for the authoritative DNS

servers for all TLDs.

6.2.2 The Domain Name System Security Extensions

The Domain Name System Security Extensions (DNSSEC) as defined in [AAL+05a,

AAL+05c, AAL+05b] add integrity protection and data origin authentication for DNS

records. But DNSSEC does neither add confidentiality nor denial-of-service protection. It

adds record types for public keys (DNSKEY) and for signatures on resource records (RRSIG).

DNSSEC relies on a hierarchical public-key infrastructure in which all DNSSEC operators

must participate. It establishes a trust chain from a zone’s authoritative server to the trust

anchor, which is associated with the root zone. This association is achieved by distributing

the root zone’s public key out-of-band with, for example, operating systems. The trust

chains established by DNSSEC mirror the zone delegations of DNS. With TLD operators

typically subjected to the same jurisdiction as the domain operators in their zone, these

trust chains are at risk of attacks using legal means.

One of the issues related to DNSSEC is that most operating systems APIs do not

provide the functionality to handle the DNSSEC security information. The function calls

used do not provide the possibility to give the security information to the applications

for verification. In addition do most operating systems only provide a stub DNS resolver.

These stub resolvers do not perform the full DNS resolution, but give the task to resolve

a name to a configured DNS server. By doing so they also rely on security verification

performed by the server.

6.2. Background 157

6.2.3 SDSI/SPKI

SDSI/SPKI is a merger of the Simple Distributed Security Infrastructure (SDSI) [RL96]

and the Simple Public Key Infrastructure (SPKI) [EI96] and is defined in [Ell99, EFL+99].

SDSI/SPKI was proposed to overcome over-complication and scalability problems of ex-

isting security infrastructures like the X.509 public key infrastructure. SDSI/SPKI defines

a public-key infrastructure that abandons the concept of memorable, global names and

does not require certification authorities.

SDSI/SPKI has the central notion of principals, which are globally unique public keys.

Each user in the SDSI system is a principal and owns a cryptographic key pair: every

users is uniquely identified by the public key and can issue certificates using the private

key. SDSI/SPKI, does not require a centralized infrastructure since every participant is

a certification authority issuing certificates. These principals serve as namespaces within

which local names are defined.

A name in SDSI/SPKI is a public key and a local identifier, e.g. K−Alice. This name

defines the identifier Alice, which is only valid in the namespace of key K. Thus, K1−Alice
and K2−Alice are different names. SDSI/SPKI allows namespaces to be linked, which

results in compound names: KCarol−Bob−Alice is Carol’s name for the entity which Bob

refers to as KBob−Alice. Bob himself is identified by Carol as KCarol−Bob. SDSI/SPKI

allows assertions about names by issuing certificates. Ultimately, SDSI/SPKI allows to

create authorizations based on certificates and is a flexible infrastructure in general, but we

will focus only on the names here. A name cert is a tuple of (issuer public key, identifier,

subject, validity), together with a signature by the issuer’s private key. The subject is

usually the key to which a name maps. Compound names are expressed as certificate

chains.

GNS applies these key ideas from SDSI/SPKI in its name resolution mechanism in

order to provide an alternative to DNS. The transitivity at the core of SDSI/SPKI is

found in GNS as delegation of authority over a name. In both GNS and SDSI/SPKI,

name resolution starts with a lookup in the local namespace defined by the local public

key.

Carol

Kcarol

Bob

Kbob

Kbob

alice

Kal ice

1 year

Alice

Kal ice
Carol’s Bob Bob’s Alice

Carol’s Bob’s Alice

Fig. 6.3: SDSI/SPKI : Principals, Certificates and Linked Local Name Spaces

158 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

6.2.4 Distributed Storage in Peer-to-Peer Overlay Networks

In peer-to-peer systems, it is common to use a Distributed Hash Table (DHT) [GRW05]

to exchange data with other participants in the overlay. A DHT creates a decentralized

key/value store to make mappings available to other users and to resolve mappings not

available locally. GNS uses a DHT to make local namespace and delegation information

available to other users and to resolve mappings from other users. To increase resilience

of the system, several DHTs with a focus on resilience and censorship-resistance exist.

Examples for such DHTs are R5N, which is particularly useful for restricted route envi-

ronments and supports replication of data on multiple nodes, described in [Eva11], and

X-Vine [MCB11], using a social-based approach to limit the impact of Sybill attacks on

peer-to-peer routing. When realizing an application using a DHT to store and retrieve

mappings, the choice of DHT used strongly affects availability of GNS data and has a ma-

jor impact on the overall performance of the system. A current approach of GNUnet is to

provide an additional DHT implementation based on X-Vine [Sin14]. With this approach,

we will be able to evaluate the impact of DHT performance on GNS.

6.3 Functional Requirements

To analyze the requirements a censorship-resistant name system has to fulfill, we start

with defining the adversary model used in the remainder, and the attacks a system has to

withstand. Based on this adversary model, we then develop functional requirements and

the design for an alternative censorship-resistant name system.

6.3.1 Adversary Model

The adversary model we use in the following has to be adjusted and adapted in the context

of evaluating name systems. In the following discussion of name systems we assume an

adversary modeled after a nation state trying to restrict access to information on the

Internet. Our adversary tries to use his legal and executive powers to control name to

value mappings and modify or remove these mappings to make information unavailable.

The adversary tries to modify name value mappings prior not under his control to make

resolution fail or redirect the resolution to an adversary-controlled impostor site. To

achieve his goals, he tries to attack directly the parties responsible to manage name/value

mappings in the name system.

Our adversary can assume any role in the system and even assume multiple identities.

This assumption prevents the use of a trusted third party like certification authorities. In

our model no upper limit in the number of adversaries in comparison to benign users is

assumed. We can also assume that our adversary has more computational power than

all benign users combined. We make this assumption since we expect a name system to

be adapted by technical users first and therefore an attacker with supercomputers may

initially have more computational power than early adopters.

On the other hand, we assume that the adversary cannot prevent basic communication

between participants. In addition, he cannot prevent the use of cryptography and cannot

break cryptography. We also have to assume that our adversary does not attack the end

systems directly. Fortunately even for a nation state attacking all end systems of all users

would be too costly.

6.4. Design Space for Name Systems 159

6.3.2 Functional Requirements for an Alternative Name System

The basic functionality of a name system for the Internet is to map memorable names to

correct values. After all, name resolution provides names for systems such that human

beings can easily remember them, instead of having to remember the more complicated

and possibly frequently changing address used by the network. In addition, name systems

provide the possibility to address a service on the network and not a system it is running

on, so providing an abstraction between services a user want to access and the physical

infrastructure the services are provided by.

An alternative name system has to adapt to existing use cases and usage patterns to

allow integration with the existing Internet and applications.

On today’s Internet, one of the most important Internet services is the Web, and a

fundamental building block for Web services is the ability to link to information hosted on

different systems; as humans often manually create these links, links are specified using

names. Thus, a name system has to be designed to support link resolution: a service

provider must be able to link to a foreign resource, and the users of the service must then

be able to resolve the name to an address for the intended destination.

Linking information is important for applications where users or information are in

relation with each other. Existing applications often require to access services directly

without following a link. So besides the requirement to link information and provide the

possibility to address information relative each other, a name system should provide the

functionality to address any participant in the system even without a prior relation existing

by supporting absolute names.

6.4 Design Space for Name Systems

To propose an alternative, privacy-preserving and censorship-resistant name system suit-

able for the use and following the demands, requirements and design ideas of peer-to-peer

systems, we start with evaluating the possible design space of name systems. For this

evaluation, we use a helpful conjecture formulated by Zooko Wilcox-O’Hearn about the

design space of name systems called Zooko’s Triangle [WO01].

Zooko’s Triangle states, that names in a name system can have three different prop-

erties. According to Zooko, names can be:

Memorable: Names are memorable to humans. They lack entropy and can therefore be

enumerated.

Global: A global or globally unique name provides the same mapping to a value for all

participants.

Secure: The name system can retrieve and add name to value mappings even under

attack.

Zooko’s triangle states that a name system can under our adversary model only achieve

two of the three desirable properties. With our adversary, names in a name system cannot

be memorable, global and secure at the same time. Name systems therefore have to

de-emphasize one of these aspects. This assumption that one property has to be de-

emphasized can be ensured with our adversary model and Zooko’s triangle is a conjecture

valid with our adversary model [WSG13]. If we assume a weaker adversary, not having

more computational power than the benign users, one can design a name system having

all three properties at the same time [Swa11a, Swa11b]. Zooko’s triangle, with the three

160 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

possible properties names in name system can have and the possible systems realizing two

of the properties and the respective efforts to achieve the missing properties are shown in

Figure 6.4.

Global Memorable

Secure

Hierarchical Registration

C
ry

pt
og

ra
ph

ic
Id

en
ti

fie
rs

P
etnam

e
S

ystem
s

C
er

ti
fi

ca
te

s

Mnemonic URLs
SDSI

Fig. 6.4: Zooko’s Triangle: Design Space for Name Systems

6.4.1 Hierarchical Registration

Name systems based on hierarchical registration, like DNS, can provide global and memo-

rable names. Names are globally unique since names are registered with a registrar having

control of the namespace or portions of it. This approach prevents duplicate or inconsis-

tent mappings and ensures consistency for the resolution process. Names in this system

can be memorable when registered with the registrar since the registration is controlled by

this party. Since names are global, the number of names is limited and important names

can be precious creating an economic market to deal with names. With our adversary

model this approach cannot be secure, since the adversary can assume any role in the

system and can therefore also assume the role of the party managing the namespace. In

this role the adversary can control the mappings and modify and remove them on demand.

In addition, since names are memorable and lack entropy, the adversary can enumerate

all available names and register valid mappings for these names based on the assumption

that he can assume an unlimited number of identities and has significant computational

power.

6.4. Design Space for Name Systems 161

6.4.2 Adding Security to Hierarchical Registration

A system based on hierarchical registration, like DNS, can try to achieve the missing se-

curity property by trying to add authentication to the system. DNSSEC is the standard

approach to add security to DNS, but alternatives trying to counteract the weaknesses

of DNS exist [Ber08]. On the one hand we have approaches trying to improve the ex-

isting DNS system and on the other hand systems with a different design approach.

DNSSEC, already described in Section 6.2.2, is an extension for DNS with the goal to

add security to DNS based on the threats defined in [AA04]. DNSSEC is defined in

[AAL+05a, AAL+05c, AAL+05b] and provides authenticity information for DNS names

by cryptographically signing records using a X.509 security infrastructure. In addition to

records, DNSSEC also provides functionalities to provide certificates for other services like

SSH with SSHFP [SG06], IPsec with IPSECKEY [Ric05] or TLS with TLS Trust Anchors

(TLSA) [HS12]. The records secured with DNSSEC are cryptographically signed and so

clients can check the authenticity of the records. Using the X.509 security infrastructure,

described in Section 2.5, with its hierarchical design, requires the use of so called trust

anchors. Trust anchors are used to sign the certificates of subordinated organizations and

provide a root of trust. DNSSEC is based on chains of trust and makes users validate the

chains. The certificates of the trust anchors have to be provided to the user out-of-band,

for example by shipping with the operating system.

With respect to the adversary model we have for a name system, DNSSEC cannot

help counteracting the adversary. The adversary could put pressure on the organization

managing DNS zones, and get them to sign the records to fake authenticity. With an

adversary forcing an organization to remove or modify DNS entries, DNS and DNSSEC

still return valid responses as the results will still be signed by the responsible organiza-

tion. Since this approach still depends on the existing DNS system with its hierarchical

organization structure and in addition introduces a new dependency to the X.509 security

infrastructure, well-known to be prone to attacks and compromise by adversaries similar to

our adversary as described in Section 2.5, the idea of extending an existing semi-centralized

system prone to be compromised with a second system prone to compromise is not suit-

able in the focus of this work. A censorship-resistant communication infrastructure for

a peer-to-peer system, which explicitly abdicates the use of any centralized authorities,

cannot rely on DNS as well as X.509.

The first practical system that improves confidentiality with respect to DNS queries

and responses was Bernstein’s DNSCurve [Ber08]. In DNSCurve, session keys are ex-

changed using Curve25519 elliptic curve cryptography [Ber06] and then used to pro-

vide authentication and encryption between resolvers, caches and authoritative servers.

DNSCurve can be used together with DNSSEC. DNSCurve is deployed with the OpenDNS6

and OpenDNS resolvers fully support DNSCurve. DNSCurve improves existing DNS with

confidentiality and integrity, but the fundamental issues of DNS with respect to the ad-

versary trying to modify DNS mapping is not within its focus. To improve confidentiality

for users, OpenDNS in addition to DNSCurve to also supports DNSCrypt7 to encrypt

communication between OpenDNS DNS servers and resolvers. Similar to CurveDNS,

DNSCrypt is based on ECC using Curve25519 [Den14].

6 http://opendns.com
7 http://www.opendns.com/about/innovations/dnscrypt/

http://opendns.com
http://www.opendns.com/about/innovations/dnscrypt/

162 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

6.4.3 Cryptographic Identifiers

A name system providing global and secure can be realized using cryptographic identifiers.

Each participant in such a system is identified by a globally unique cryptographic identifier

other users can use to refer to this user. Since these identifiers contain enough entropy

to prevent enumeration and if the name space of the system, in this case the key length,

is well chosen, the system is considered to be secure. The adversary, even when assuming

multiple identities and having more computational power than the benign users, cannot

enumerate all names to insert malicious mappings into the system. Due to the high

entropy in cryptographic identifiers, the names are globally unique but on the other hand

not memorable for humans. An implementation of such a system is Tor’s .onion naming

system, described in [Pro12]. This system is used withing the Tor anonymization system8.

It is used to address services within the Tor network, the so called hidden services. Tor

.onion names use the base32 encoding of the SHA-1 hash of the cryptographic RSA-1024

public key of the system. This approach results in names with 16 characters containing a

random sequence of the digits [2..7] and the letters [a..z]. This results in addresses like

http://suw74isz7wqzpmgu.onion/

users can use to access Tor hidden services.

6.4.4 Making Cryptographic Identifiers Memorable

Names based on cryptographic identifiers are hard or even impossible to memorize for

humans, as we saw with the example in the previous section, counteracting the funda-

mental idea of name systems to provide mappings from names memorable for humans to

addresses usable by machines so humans do not have to memorize these names. Systems

based on cryptographic identifiers can try to achieve the missing property of memorable

names.

Multiple approaches have been thought of to make the names memorable for humans,

as we see with existing finger print encoding systems like [McD94] or [HMNS98]. [McD94]

suggests a system to convert 128-bit public keys into a sequence of 12 words based on a

dictionary of 2048 English words. So a 128-bit key

CCAC 2AED 5910 56BE 4F90 FD44 1C53 4766

would become

RASH BUSH MILK LOOK BAD BRIM AVID GAFF BAIT ROT POD LOVE

A similar approach exists to make IPv4 addresses more memorable with the Four Little

Words system, translating any IPv4 in a combination of four words. When translating an

IPv4 address from and to the Four Little Words system, every octet of the IPv4 address

is translated to a word with lookup in predefined in the lookup table in [HMNS98]. So is

it possible to translate the IP address 65.49.90.35, belonging to the website of the U.S.

Whitehouse, to the words TEN OWL BLUR LAM.

The Tor project proposes the mnemonic .url system as described in [Sai12], to make

Tor .onion addresses memorable to humans by translating the 80-bit hashes into human-

memorable sentences based on template sentences and dictionaries. The mnemonic .url

system defines a set of requirements to overcome the limitations of simple finger printing

systems to create sentences (contrary to just a series) of words with a semantic and tries

8 https://www.torproject.org/

https://www.torproject.org/

6.4. Design Space for Name Systems 163

to prevent spelling errors and support non-native speakers by using simple and common

words.

An issue with this kind of systems is that they try to make names more memorable

using human language or at least words borrowed from languages, but resulting names are

often still hard to understand and memorize. So is it possible to represent the IPv4 address

65.49.90.35 with the four words TEN OWL BLUR LAM, but the result is still hard to

memorize since the combination lacks any semantics. This approach may by usable with

IPv4 addresses translated to four words, but when using this approach with IPv6 addresses,

users already have to memorize at least eight words. In addition, this causes internation-

alization and localization problems for these approaches, since the original schemes are

hard to use for non-native speakers and hard to translate to other languages. Even when

internationalization is paid respect in the design, most systems and grammatical rules if

used are based on ideas stemming from Indo-European languages, representing only a

small fraction of the world’s population.

6.4.5 Petname Systems

A secure name system with memorable names can be achieved based on the principle of

petname systems. In a petname system, as described in [Sti05], names are not globally

unique but only valid in the local context of the current user. In a petname system each

user can freely assign memorable names to values and use these names to resolve names

to values to access information and services. A petname system is considered to be secure

since and every user assigns names to values locally and no centralized instance is required

an adversary can attack. Since an adversary does not attack the users’ end systems,

as defined in Section 6.3.1, the adversary cannot prevent name resolution and modify

or remove local mappings. Since a user can freely choose names from the namespace

available, he will choose names which he can easily memorize. Since name resolution is

performed locally, the system is still secure with an adversary able to enumerate all possible

names in the namespace. With a petname system, names are not globally unique. So

every user can freely assign names locally within his name space and no coordination

between users or the existence of a centralized registrar is required. But names assigned

by a user are only valid for a particular user. A second user cannot resolve the users names,

so linking information and forwarding addresses based on local names is not possible with

a petname system without additional efforts. A prominent example for a petname system

is the “hosts” file, a predecessor of today’s DNS described in [HSF85], available on many

operation systems. In this file users can freely map names to IP addresses only valid

locally on their system and use this file to resolve their local mappings. Another example

is instant messaging software. In instant messaging software, users are identified with a

globally unique identifier. On first contact, users can add the new contact to their contact

list and assign a petname to the contact to later identify this contact. This petname is

only valid for the local user.

6.4.6 Linking Local Namespaces

Petname systems are useful when names are only used in local context, but on today’s

Internet and in particular the Web, linking information scattered over different systems

and exchanging links to information with other persons are the ideas which prepared the

ground for the breakthrough of the Web and the Internet. To allow linking and forwarding

links to information, petname systems try to attenuate the missing property of global

unique names. To allow users to resolve names of other users not in the local context,

164 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

petname systems can combine their approach of local namespaces with the idea of linking

local names using delegation. With delegation, users give control over a portion of the

local namespace to other users and names in this delegated portion are resolved in the

respective user’s context. Here petname systems can employ the idea of SDSI/SPKI,

previously introduced in Section 6.2.3.

Petname systems can strongly benefit from ideas provided by SDSI/SPKI when trying

to make name globally accessible. A petname system can use globally unique cryptographic

identifiers to make users globally unique. In addition these cryptographic identifiers can

be based on a cryptographic public/private key pair. With this approach, a user can cryp-

tographically bind names to values and other users can verify these bindings by checking

the certificate with the user’s public key. By using the idea of linked local namespaces,

a dissected namespace graph can be created by delegating control over names in a local

namespace to other users. With this approach the issue of linking and forwarding links can

be solved, since with delegation a user can refer to another user’s mappings and refer to

this user’s namespace. Since this approach does not depend on a centralized security in-

frastructure, like X.509, this approach is particularly suitable with respect to the adversary

used in this work and for the use in decentralized peer-to-peer systems.

6.5 Practical Considerations

As a preparatory work, we evaluated in Section 6.3 the adversary and possible attacks an

alternative censorship-resistant has to withstand and the functional requirements for an

alternative name system has to provide. The previous section has outlined the possible

design space for a name systems a possible design for an alternative name system can rely

on with respect to the given adversary. However, before we can elaborate the design for

GNS, we have to elaborate and discuss technical and practical considerations an alternative

name system to be used on the Internet and to integrate with existing infrastructure.

This in particular important to allow seamless transition to an alternative system and

convenient user adaption and facilitate coexistence and integration with existing systems

and application on the Internet.

6.5.1 Interoperability with DNS

To be accepted by users, a censorship-resistant name system should respect users’ usage

patterns and integrate with existing technologies. Users should not have to manually

switch between alternative name systems and DNS. Syntax and semantics of the different

name systems should also be similar to not confuse the user about the meaning of names.

Thus a central requirement for any alternative name system will be interoperability

with DNS. Users are used to DNS names and virtually all network applications today use

DNS for name resolution. Thus, being interoperable with DNS names and clients will

allow censorship-resistant alternatives to be used with a large body of legacy applications

and facilitate adoption by end users.

Interoperability with DNS largely implies that alternative name systems should fol-

low DNS restrictions on names, such as limiting names to 253 ASCII characters, limit-

ing labels to 63 characters and using Internationalizing Domain Names in Applications

(IDNA) [FHC03] for internationalization. Furthermore, the name system should be pre-

pared to support and return standard DNS records (such as A [Moc87b] or AAAA [THKS03])

to applications.

6.5. Practical Considerations 165

Interoperability with DNS should also include accessing the information of DNS from

within the namespace of the censorship-resistant name system. For example, it is conceiv-

able that a censor might block access to “www.example.com” by removing the nameserver

information for “example.com” in the “.com” TLD, without blocking access to the name-

server of “ example.com”. In this case, a censorship-resistant name system only needs

to provide an alternative way to learn the nameserver for “example.com” — the lookup

of “www” can then still be transmitted directly to the authoritative nameserver. In an

alternative name system supporting delegation, this simply requires support for delegating

subdomains back to DNS. This allows users to bypass censorship closer to the root of the

DNS hierarchy even if the operators of the censored service do not explicitly support the

censorship-resistant name system.

Finally, for good interoperability users must not be required to exclusively use an

alternative domain name system — alternating between accessing DNS for domain names

that are not censored and using the censorship-resistant name system should not require

the user to reconfigure his system.

Interoperability and using multiple name systems with the same configuration can be

easily achieved by integrating the different namespaces into one (virtual) holistic names-

pace. One possibility how this can be achieved is with the use of DNS pseudo Top Level

Domains (pTLDs) as described in [CK13] with respect to special-use domain names. A

pseudo Top Level Domain (pTLD) is a top level domain that is not actually participating

in the official DNS and is not resolved by DNS servers. Possible existing examples for such

pTLDs are “test.” or “localhost.”. So by using the pTLDs “key.”, a user might specify

“ID.key.” to access a name system based on cryptographic identifiers, or “NICK.pet.”

to access a pTLDs “pet.” for petnames. Naturally, this only works as long as the names

chosen for the pTLDs are not used by the global DNS.

Once pTLDs have been selected for an alternative system, an implementation of local

DNS stub resolver can be configured (for example, using the Name Service Switch [Fou])

to apply special resolution logic for names in the pTLDs. The special logic can then use

alternative means to obtain and validate mappings, which will work as long as the final

results returned can be again expressed as a DNS response.

6.5.2 End-to-End Security and Error Handling

Today, client systems typically only include a DNS stub resolver, delegating the name

resolution process to a DNS resolver operated by their ISP. As ISPs according to our

adversary model might be involved in censorship, they cannot be trusted to perform proper

name resolution. Thus, secure name systems (including DNSSEC) must be deployed end-

to-end to achieve the desired security.

Achieving end-to-end security for name resolution may not only require updating oper-

ating system resolvers but also name resolution APIs and to a certain degree applications.

So existing applications sometimes implement their own DNS clients, and typical DNS

APIs (such as POSIX’s name resolution functions) do not include error reporting that

incorporates security attributes. Browsers will thus be unable to benefit from TLSA

records [HS12] until they either implement full DNSSEC resolver functions, or until oper-

ating system APIs are enhanced to allow returning additional information. A particularly

critical example is the possibility to return unsigned records even within a DNSSEC de-

ployment. As a result, DNSSEC protections can easily be disabled by replacing signed

valid records with a set of invalid records without signature information.

166 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

6.5.3 Legacy Applications

In addition to integration with existing systems an alternative name system also has to

consider assumptions made by applications in higher layers, for example existing appli-

cations assuming globally unique names. Existing support for virtual hosting of websites

in HTTP-based applications and SSL/TLS certificate validation both assume that the

names given by the client match exactly the (DNS) name of the respective server. Links

to external websites are typically specified using (globally unique) DNS names; as a result,

names provided by a petname system names involving delegation from a SDSI/SPKI-based

name system would not be properly understood by today’s browsers.

In lieu of directly modifying legacy applications, it might be possible to perform the

necessary adaptations using proxies. Proxies might be used to translate hostnames from

websites using delegation, and to perform SSL certificate validation (for example, by

looking at TLSA [HS12] records from the secure name system instead of hostnames).

Reverse proxies could be used to generate the virtual host names expected by the server,

and to translate links with absolute links to those using the delegation chains provided by

a SDSI/SPKI-based name system. Additional records in the name system might be used

to aid the conversion between relative names and legacy names by the proxies. In order

to achieve end-to-end security, these proxies would naturally have to be operated within

the trusted zone of the respective endpoints in the system.

6.5.4 Censorship-Resistant Lookup

Censorship-resistant distributed name systems not using any trusted third parties need

to consult name information from other participants and thus require a network protocol

to perform censorship-resistant lookups. The most common method for implementing

key-based searches in decentralized overlay networks is the use of a DHT.

Typical attacks on DHTs include poisoning and eclipse attacks. In a poisoning attack,

the adversary attempts to make interesting mappings hard to find by placing many invalid

mappings into the DHT. A censorship-resistant DHT for a name system that uses public

keys to lookup values signed by the respective private key can easily defeat this type of

attack by checking signatures. In an eclipse attack, the adversary tries to isolate particular

key-value mappings from the rest of the network. Modern DHTs defend against this type

of attack by replicating values at multiple locations [Pol10].

Some censorship-resistant DHTs such as X-Vine [MCB11] and R5N [EG11] addition-

ally accept limited connectivity between the peers in the DHT, making it harder for the

adversary to disrupt DHT operations in the IP layer. Furthermore, this also allows peers

to restrict connections to known friends, making the DHTs more robust against Sybil

attacks [MDD02] by building the overlay topology using existing social relationships.

6.5.5 Privacy-Preserving Name Resolution

An additional requirement when designing a resilient name system and especially when

using in this context a decentralized storage like a DHT is the users’ privacy. In existing

centralized name systems, infrastructure providers can easily observe which names are

used by which users especially with existing DNS and DNSSEC providing no confidential-

ity. When the database is decentralized in a DHT, these central observation points are

eliminated; however, now ordinary users (and of course adversaries) can observe other

users’ queries, which maybe even more problematic for some applications. Thus, it is

desirable to have encryption for queries and responses in the DHT. The encryption could

6.6. Design of the GNU Name System 167

be based on secrets only known to the user performing the resolution (such as the label

and the zone); as a result, other users could only decrypt the resolution traffic with a

confirmation attack where they would have to guess the label and zone of a query (or

response). This would strengthen censorship-resistance as participants would typically

not know which requests they are routing. Additional query privacy might be achieved

by anonymizing the source of the request, for example by using onion routing. Naturally,

using anonymization techniques like Tor [DMS04] may further increases latency.

6.6 Design of the GNU Name System

To overcome the challenges and issues resulting from the design of current DNS described

in 6.2 and to provide a resilient alternative, we present in this section the design of GNS,

a fully decentralized, censorship-resistant and privacy-preserving name system, designed

as an alternative to DNS providing a generic mechanism to map names to arbitrary val-

ues. Due to its design, it can also double as a partial replacement of current public key

infrastructures, such as X.509. GNS is fully decentralized, so it does not requires any

centralized or trusted instances or registrars like in current DNS. It is censorship-resistant

since it does not rely on centralized instances and names do not have owners. Instead every

user manages his own namespace and can freely assign names to values. To make name

resolution resilient, GNS and the implementation provided relies on the communication

infrastructure described previously in this work and we chose a DHT resilient and resistant

to malicious attacks to realize a decentralized storage. GNS is privacy-preserving since

all information published and resolved with GNS are encrypted, preventing an attacker to

analyze published or resolved data by intercepting network or peer-to-peer traffic. The

design of GNS incorporates the capability to integrate and coexist with DNS.

With GNS, we propose a system in line with Richard Stallman stating in his essay

“Why Software Should Not Have Owners“:

When a program has an owner, the users lose freedom to control part of their

own lives. [Sta02]

and Pierre-Joseph Proudhon saying

If I were asked to answer the following question: What is slavery? and I

should answer in one word, It is murder, my meaning would be understood at

once. No extended argument would be required to show that the power to

take from a man his thought, his will, his personality, is a power of life and

death; and that to enslave a man is to kill him. Why, then, to this other

question: What is property! may I not likewise answer, It is robbery, without

the certainty of being misunderstood; the second proposition being no other

than a transformation of the first? [Pro40]

The foundation of the GNS system is a petname system, as described in Section 6.4.5,

where each individual user is provided with his own local namespace. The user can use this

namespace to provide and resolve name/values mappings. By using a petname system for

GNS, the user has full control over his namespace and the mappings in this namespace.

With a petname system, names do not have owners and cannot be owned: in his local

namespace the user can freely choose which names he assigns to a value. Since names

are only valid in the local namespace, there are no conflicts with names assigned by other

users: a names is always used with reference to the namespace it belongs. Therefore, every

168 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

user can freely create mappings and assign names to values. Giving users the possibility to

freely choose names corresponds to the possibility of freedom of thought and expression

with natural languages. Restricting and controlling the use of language can be used

to control people and suppress free expression, lead to censorship and ultimately to an

Orwellian, totalitarian tyranny [Kle47] as George Orwell stated in his essay “Politics and

the English Language” [Orw46]:

But if thought corrupts language, language can also corrupt thought.

But with a petname these names are only valid in the local namespace and can therefore

only be resolved by the local user. Since linking between information and resources is a

key concept of the Web, the second central idea of GNS is to provide users with the ability

to resolve names of other users by linking local namespaces as described in Section 6.4.6

with petnames system putting effort in making secure and memorable names global. This

linking of local namespaces is achieved by allowing users to securely delegate control over

a label in the local namespace to other users. Names under these delegated labels are

then resolved in the namespace of the responsible user.

With the combination of a petname system giving users full control over their names-

pace and delegation allowing users to resolve other users’ names, GNS is fully decentralized

and does not require nor depend on a centralized or trusted authority, a design property

making the system robust against censorship attempts. Decentralization and additional

censorship-resistance is achieved by using a DHT to enable the distribution and resolu-

tion of key-value mappings. Depending on the properties of the DHT in question, good

censorship-resistance can be achieved. Authenticity of records is ensured since data pub-

lished in the DHT are cryptographically encrypted and signed and can be verified during

the resolution process. Finally, GNS is privacy-preserving since mappings when published

in the DHT and responses for name resolutions are encrypted such that an active and

participating adversary can at best perform a confirmation attack, and can otherwise only

learn the expiration time of a response.

To introduce a new relation with other users and for applications relying on globally

unique names, GNS provides in addition to relative names the use of absolute identifiers

based on globally unique cryptographic identifiers as described in Section 6.4.3. These

absolute identifiers provide globally unique and secure names which are not memorable for

humans and can be used to refer to namespaces no prior relation was established with.

GNS is developed as an alternative to DNS, but was also designed with a focus on

coexistence with DNS. Labels in GNS have the same syntax as in DNS and names follow

the same syntax as names in DNS: in GNS names are labels separated by dots as in DNS.

Using the same syntax for both labels and names, allows a simplified integration of the

hierarchical DNS namespace and the relative and absolute identifiers and of GNS.

An additional focus with the design of GNS is the integration with existing, deployed

technologies on the Internet and especially integration with the Web. Special focus was put

on existing HTTP(S) infrastructures and to provide the mechanisms needed to smoothly

integrate GNS with existing processes and procedures in Web browsers. Specifically,

we show how GNS is able to transparently support many assumptions that the existing

HTTP(S) infrastructure makes about globally unique names.

6.6.1 Names, Zones and Delegations

GNS employs the same notion of names as SDSI/SPKI, described in Section 6.2.3: prin-

cipals are globally unique cryptographic public keys. Principals serve as namespaces with

6.6. Design of the GNU Name System 169

names only valid in the local namespace defined by the principal. In this namespace defined

by the principal, a user can freely assign local identifiers. These namespaces constitute

the zones in GNS. In GNS, a zone is a public-private key pair and a set of records with

labels assigned. In GNS, records consist of a label, type, value and expiration time. Labels

of records are equivalent to local identifiers in SDSI/SPKI and have the same syntax as

in DNS. With the possibility to link local namespaces using delegation, names in GNS

consist of a sequence of labels, which identifies a delegation path in a directed graph, with

the start of the path always being the local zone.

According to the principle of a petname system, in GNS each user manages his own

zones. Each user can manage a set of zones, but particularly important is his designated

personal master zone. Each user uses this master zone as his starting point for lookups

in the directed graph in lieu of the root zone from DNS. For interoperability with DNS,

names in GNS use the pseudo-TLD “.gnu”. “.gnu” refers to the GNS master zones (i. e.

the starting point of the resolution). Note that names in the “.gnu” pseudo-TLD are

always relative. The special use of the “.gnu” pTLD for the purpose of GNS is publicly

documented in [GWWA14] with respect to requirements defined for special-use domain

names in [CK13]. This integration is depicted in Figure 6.5.

de ... org gnu zkey

gnunet

www

FRDA

www

bobwww

www

.

Delegation in DNS Delegation in GNSIntegration with pTLD

Fig. 6.5: Integration of GNS and DNS Namespaces

Users can freely manage mappings for memorable names in their zones and, using a

special record type, delegate control over a subdomain to any other zone. Publicizing

delegations allows transitive resolution by following delegation chains. The records of a

zone are stored in a database on a machine under the control of the zone’s owner. Records

can be flagged as private or public, and public records are made available to other users by

publishing these records in the DHT. Users can specify for each zone a preferred nickname

to other users. This nickname is used as a suggestion for a label when another users adds

a delegation to this zone. This nickname functionality is realized using a special NICK

record, containing the desired label according to the restrictions for label in GNS. This

NICK record is stored with the special label “+” indicating in GNS the root entry of the

zone and is automatically added to every set of records in the zone. Record validity in

GNS is established using signatures and controlled using expiration values.

170 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

6.6.2 Zone Management with Nicknames and Petnames

We now explain how the actual management of names and zones is carried out in practice.

Suppose Alice runs a web server and wants to make it available with GNS. In the beginning

she sets up her master zone using GNS. After the public-private key pair is generated,

Alice can create a revocation notice to be able to revoke her GNS zone in case her master

zone key gets compromised. Suppose Alice wants to propose that her preferred nickname

is “carol” to other users. She therefore uses the new NICK record that GNS provides.

In the value of this record, she states that her nickname is “carol”. For her web server,

she creates an appropriate public A record under the name “www”. This A record is the

same as in DNS. To make it resolvable by other users, this record is marked as public and

published in the DHT.

Now suppose we have a second user, Bob. He performs the same setup on his system,

except that his preferred nickname is just “bob”. Bob gets to know Alice in real life and

obtains her public key. To be able to contact Alice and access her web server, he then adds

Alice to his zone by adding a new delegation using the new PKEY record. Bob can choose

any name for Alice’s zone in his zone. Nevertheless, Bob’s software will default to Alice’s

preferences and suggest “carol”, as long as “carol” has not already been assigned by Bob.

This is important as it gives Alice an incentive to pick a nickname that is (sufficiently)

unique to be available among the users that would delegate to her zone. By adding

Alice’s public key under “carol”, Bob delegates queries to all labels in “*.carol.gnu” to

Alice. Thus, from Bob’s point of view, Alice’s web server is “www.carol.gnu”. Note that

there is no need for Alice’s nickname “carol” to be globally unique, they should ideally

only not already be in use within Alice’s social group.

6.6.3 Relative Names for Transitivity of Delegations

Users can delegate control over a subdomain to another user’s zone by indicating this in a

new record, PKEY. Suppose Dave is Bob’s friend. Dave has added a delegation to Bob with

a PKEY record under the name “buddy” —ignoring Bob’s preference to be called “bob”.

Now suppose Bob wants to put on his web page a link to Alice’s web page. For Bob,

Alice’s website is “www.carol.gnu”. For Dave, Bob’s website is “www.buddy.gnu”. Due

to delegation, Dave can access Alice’s website under “www.carol.buddy.gnu”. However,

Bob’s website cannot contain that link: Bob may not even know that he is “buddy” for

Dave.

We solve this issue by having Bob use “www.carol.+” when linking to Alice’s website.

Here, the “+” stands for the originating zone. When Dave’s client encounters “+” at

the end of a domain name, it should replace “+” with the name of the GNS authority of

the site of origin. This mechanism is equivalent to relative URLs as defined in [BLFM05],

except that it works with hostnames.

6.6.4 Censorship-Resistant and Privacy-Preserving Publication and Name

Resolution

To enable other users to look up records of a zone, all public records for a given label

are stored in a cryptographically signed block in the DHT. To increase the resilience

with respect to availability and resilience of the name resolution process, it is beneficial

to choose a DHT implementation focusing on resilience and resistance as described in

Section 6.2.4. Here different types of DHTs exist with different features useful in the

context of GNS, supporting redundancy by storing the value on multiple nodes at the

6.6. Design of the GNU Name System 171

same time, DHTs being resilient to attacks and supporting restricted route networks.

When using a DHT, it is required to refresh the information stored in the DHT in regular

interval to prevent data from expiring and being removed and to prevent information from

getting lost due to peers storing the respective information leaving the network. Details

about the publication process is covered by Section 6.8 describing the implementation

of GNS. To improve name resolution performance, it is beneficial to provide extensive

caching of DHT results to reduce repeated lookup operations in the DHT. Our GNS

implementation supports extensive caching using a dedicated caching component described

in Section 6.8.6.

To resolve a name with GNS, the GNS has to follow the delegation path indicated

by the GNS name. The resolver starts in the local master zone, and iteratively resolves

every label contained in the name. If the name is found in the current zone, the resolver

returns the records stored under this label and stops. If the solver finds a label indicating

a delegation to another zone (so with a PKEY record returned as a result), the resolver

continues to resolve the next label in the delegation path in this zone. If a delegation to

legacy DNS is found (with a GNS2DNS record and additional A or AAAA records indicating

the DNS name server to use as described in Section 6.6.7), the resolver synthesizes the

name to resolve in GNS based on the remainder of the delegation path and resolves this

synthesized name with DNS using the nameserver indicated in the result.

To maximize user privacy when using the DHT to look up records, both queries and

replies are encrypted. The user publishing records in a DHT stores the encrypted infor-

mation under a key in the DHT derived from the public key of the zone and the label

to be resolved. The block stored in the DHT is encrypted using a symmetric encryption

key derived from the identifier (public key) of the zone and the label. To resolve a name

in a zone, the user can calculate the respective key to use for the DHT lookup based

on the public key of the zone and the label to lookup and in addition derive the sym-

metric encryption key to decrypt the record block obtained as a result from the DHT.

The full cryptographic protocol used with GNS is described with the implementation in

Section 6.8.8.

For GNS, we rely on ECC cryptography using the Elliptic Curve Digital Signature Algo-

rithm (ECDSA) signature scheme and Curve25519 [Ber06]. The cryptographic algorithms

used with GNS are described with the implementation in Section 6.8.2.

Let x ∈ Zn be the ECDSA private key for a given zone and P = xG the respective

public key, where G is the generator of the elliptic curve and n := |G|. Let l ∈ Zn be a

numeric representation of the label of a set of records Rl ,P .

Using

h : = x · l mod n (6.1)

j : = HKDF (l , P) (6.2)

Ql ,P : = H(hG) (6.3)

Bl ,P : = Sh(Ej(Rl ,P)), hG (6.4)

we can then publish Bl ,P under Ql ,P in the DHT, where H is a hash function, Sh represents

signing with the private key h, HKDF is a hash-based key derivation function [KE10] and

E represents symmetric encryption based on the derived key j .

Any peer can validate the signature (using the public key hG) but not decrypt Bl ,P
without knowledge of both l and P . Peers knowing l and P can calculate the query Ql ,P
to retrieve Bl ,P and then decrypt Rl ,P since

172 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

lP = lxG = hG

→ Ql ,P =H(lP) = H(lxG) = H(hG)

Theorem 1. An adversary monitoring GNS traffic and intercepting a DHT key Ql ,P and

a record block stored under Ql ,P containing the signed and encrypted set of records

Sh(Ej(Rl ,P)), the public key hG and the block expiration time t but not knowing the label

l and the public key P can only observe the size of the set of records and the expiration

time of the record block.

Proof. The adversary used in this work cannot break cryptographic primitives and ECDHE

as defined in Section 6.3.1. From monitoring GNS traffic, the adversary can learn the

DHT key Ql ,P used to store records, the derived public key hG, and the signature created

with Sh.

To decrypt the encrypted records, the adversary needs to derive the symmetric en-

cryption key j = HKDF (l , P). This is not possible without knowing l and P due to the

properties of [KE10]. Due to the properties of Elliptic Curve Diffie Hellman (ECDH), it

is not possible to derive l or P from the derived public key hG or the DHT key Ql ,P .

Given this scheme, an adversary can only perform a confirmation attack; if the adver-

sary knows both the public key of the zone and the specific label, he can perform the same

calculations as a peer performing a lookup and, in this specific case, gain full knowledge

about the query and the response. Users could in addition use passwords for labels to

restrict access to zone information to authorized parties. The presented scheme ensures

that an adversary that is unable to guess both the zone’s public key and the label cannot

determine the label, zone or record data.

6.6.5 Automatic Shortening

With delegation and transitivity of names, one problem arising is the challenge of long

delegation chains. Long delegation chains can lead to poor system performance when for

a name lookup many different zones have to be queried and on the other hand decrease

the resilience of the overall system, if a single element in the delegation path fails to

be resolved. Therefore, we provide with GNS the idea of automatic shortening aiming

to automatically decrease the length of delegation paths. With automatic shortening,

information about zones obtained with name resolution (PKEY records) and not yet known

in the current zone of the user, are automatically introduced into the current zone or a

dedicated shorten zone (based on a NICK record if provided).

With respect to the example for relative names in the previous section, once Dave’s

client translates “www.carol.+” to “www.carol.buddy.gnu”, Dave can resolve the name

“carol.buddy.gnu” to Alice’s public key and then lookup the IP address for Alice’s server

under the respective key in the DHT. At this point, Dave’s GNS system will also learn

that Alice has set her NICK record to “carol”. It will then check if the name “carol” is

already taken in Dave’s zone, and—if “carol” is available—offer Dave the opportunity

to introduce a PKEY record into Dave’s zone that would shorten “carol.buddy.gnu” to

“carol.gnu”.

Alternatively, the record could be automatically added to a special shorten zone that

is, in addition to the master zone, under Dave’s control. In this case, Alice would become

available to Dave under “carol.shorten.gnu”, thus highlighting to Dave that the name was

created by automatic shortening within the domain name.

6.6. Design of the GNU Name System 173

In either case, shortening eliminates Bob from the trust path for Dave’s future inter-

actions with Alice. As a consequence resilience and performance of the resolution process

is improved. Shortening is a variation of trust on first use (TOFU), as compromising Bob

afterwards would no longer compromise Dave’s path to Alice.

6.6.6 Absolute Names in GNS

In GNS, the “.gnu” pTLD is used to provide secure and memorable names which are

only defined relative to some master zone. To introduce new zones into the system, it is

ultimately required to be able to reference a zone by an absolute identifier, which must

correspond to the public key of the zone. To be able to refer to zones, GNS supports in

addition to names relative to zones, absolutes name based on the public key of the zone

as an identifier. To facilitate dealing with public keys directly, GNS uses the pseudo-TLD

“.zkey”, which indicates that the specified name contains the public key of a GNS zone.

As a result, the “.zkey” pTLD allows users to use secure and globally unique identifiers.

Applications can use the “.zkey” pTLD to generate a name for a GNS zone for which the

user does not (yet) have a memorable name.

A label in the “.zkey” pTLD must be the Crockford Base32 [Cro, Jos06] encoded

public key of a zone since with this encoding a public key can be represented within the

63 character limit imposed by DNS for labels. Based on the implementation of GNS as

described in Section 6.8, we use the compressed point encoding of the 255-bit coordinates

of Curve25519 [Ber06] to encode the name within the 63 character limitations for labels

imposed by DNS. Names in the “.zkey” pTLD are resolved by querying the respective GNS

zone. As each “.zkey” name uniquely identifies a public-private key pair, no authority is

required to manage the “.zkey” pTLD. The special use of the “.zkey” pTLD for the

purpose of GNS is publicly documented in [GWWA14] with respect to requirements as

defined for special-use domain names in [CK13].

With absolute names it is possible to exchange information like links to websites bet-

ween users or third parties were no delegation relationship exists. When a user contacts

another user, he can send him a link containing an absolute link and the user will be

able to access this link. With automatic shortening described in Section 6.6.5 enabled,

a delegation to the zone contained in the absolute name will be automatically created in

the respective shortenzone.

6.6.7 Delegation to Legacy Name Systems

To counteract censorship attempts in DNS, GNS provides the functionality to delegate

control over a label in GNS to DNS and a DNS server specified. Names under this label

will then be resolved using traditional DNS. This can be used when a particular DNS

subdomain was censored in DNS. Here GNS offers the possibility to still access this DNS

subdomain from GNS.

To delegate from GNS to DNS, GNS-specific GNS2DNS records are used. These records

are semantically similar to NS records in DNS, delegating control over a subdomain in

DNS to specific name server(s). A GNS2DNS record specifies the DNS subdomain and the

authoritative DNS resolver to use to resolve the given domain.

If we assume, since “example.com” was blocked by Alice’s ISP for some reason, she

configured a delegation for this service in her GNS zone. She added a GNS2DNS for “ex-

ample.gnu”, delegating this label to “example.com” using “example.com”’s DNS servers

a.iana-servers.net or b.iana-servers.net. When Alice tries to access “www.example.gnu”,

GNS finds the delegation to DNS and synthesizes for the label “www” the name new

174 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

name “www.example.com” and start over to resolve this synthesized name, by querying

the DNS resolver included in the delegation.

Delegation back to legacy systems does not provide any of the security and privacy

properties provided by GNS. Users can be put at risk since they assume to be protected

by the GNS and based on the name given, it is not evident that during resolution name

systems are switched to insecure DNS. Therefore, the use of GNS2DNS has to be exercised

with caution. On the one hand the possibility of delegating control could be disabled by

default and has to be enabled by default or GNS-to-DNS delegation could be restricted

to a dedicated GNS zone. The latter approach only protects a local user and not users

resolving a delegation path.

6.6.8 Handling TLSA and SRV Records in GNS

With respect to records provided by DNS, TLSA records are of particular interest for GNS,

as they allow TLS applications to use DNSSEC as an alternative to CA-based the X.509

Public Key Infrastructure (PKI). With TLSA support in GNS, GNS provides an alternative

to X.509 CAs and DNSSEC using this established standard. Furthermore, GNS does not

suffer from the lack of end-to-end verification that currently plagues DNSSEC.

However, to support TLSA in GNS, a peculiar hurdle needs to be resolved. In DNS,

both TLSA and SRV records are special in that their domain names are used to encode the

service and protocol to which the record applies as defined with the [HS12]. For example,

a TLSA record for HTTPS (port 443) on www.example.com. would be stored under the

domain name 443. tcp.www.example.com.. The same issue applies for SRV records,

so the SRV record for “example.com”’s SIP server reachable with TCP would be stored

under sip. tcp.example.com. in DNS.

In GNS, this way structuring names is a problem since dots in GNS names are supposed

to always correspond to delegations to another zone. Furthermore even if a special rule

would be applied for labels starting with underscores, this would mean that say the A

record for www.example.com would be stored under a different key in the DHT than the

corresponding TLSA record. As a result, an application would experience an unpredictable

delay between receiving the A record and the TLSA record. As a TLSA record is not

guaranteed to exist, this would make it difficult for the application to decide between

delaying in hope of using a TLSA record (which may not exist) and using traditional

X.509 CAs for authentication (which may not be desired and likely less secure).

GNS solves this problem by introducing an additional GNS-specific record type, the

BOX record. A BOX record contains a 16-bit port protocol identifier (6 = TCP, 17 = UDP,

etc), a 16-bit service identifier (port number), a 32-bit embedded record type (so far

always SRV or TLSA) and the embedded record value as depicted in Figure 6.6. This way,

BOX records can be stored directly under www.example.gnu and the corresponding SRV

or TLSA values are thus never delayed — not to mention the number of DHT lookups is

reduced. When GNS is asked to return SRV or TLSA records via DNS, GNS recognizes the

special domain name structure, resolves the BOX record and automatically unboxes BOX

record during the resolution process. Thus, in combination with a powerful user interface

to manage these records, GNS effectively hides the existence of BOX records from DNS

users.

6.6.9 Records in GNS

GNS is designed to provide a generic and extensible name/value mapping mechanism. So

GNS supports resource record types used with DNS as described in Section 6.6.9.2 and

6.6. Design of the GNU Name System 175

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Protocol Service

Record Type

Record Data

Fig. 6.6: Network Format of GNS BOX Records

resource record types specific to GNS as described in Section 6.6.9.1. GNS is designed

to support additional (application-specific) record types to ensure extensibility with new

record types in the future.

With GNS, records (locally, not published to the DHT) consist of a label assigned to

the record and contain information about the record type, expiration time of the record,

a set of flags, the length of the data contained in the record and a variable length data

field. The label itself is not stored in the record but in GNS, a record is stored under a

label in the respective zone. For the type field, GNS uses a 4 octet field, so providing

a maximum of 232 record types, ensuring compatibility with existing DNS supporting a

maximum number of 216 record types. Legacy DNS record types use their record types

with record type numbers < 216 and additional records types introduced with GNS have

a record type numbers ≥ 216 to avoid conflicts with DNS record types that might be

introduced in the future.

GNS records contain an 8-octet expiration field defining how long the record is valid.

Locally, the user can specify an absolute or a relative record lifetime. With an absolute

expiration time, a record can expire on a specific date (e.g. Jan 1 2020), while with a

relative expiration time, a record can be valid for a certain period of time (e.g. 1 day). This

approach is useful for mappings frequently changing, e.g. with dynamic addresses. When

records are published to the DHT, relative expiration times are converted to absolute

expiration times.

Records provide an additional field to store additional information and options related

to this record. GNS distinguishes between local flags and flags also published in the DHT.

Local flags supported by GNS are the private flag indicating that a record is a private

record and must not be published in the DHT and the relative expiration flag indicating

that the expiration time in the expiration time field is a relative value. The shadow flag is

a flag published in the DHT to indicate that a record is a shadow record as described in

Section 6.6.10.

When records get published to the DHT, as described in detail in Section 6.6.4, the

records are serialized to a record block, containing all records assigned to a label in a zone

(plus a NICK record if existing as described in Section 6.6.2). During this process local

flags are removed, records marked as private are excluded, and relative expiration times

are converted in absolute expiration times.

176 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

6.6.9.1 GNS-Specific Record Types

GNS itself introduces several new records required for its options:

PKEY for delegation: PKEY records securely delegate control over a label to another

zone as described in Section 6.6.1. PKEY records contain the public key of the zone

control is delegated to. The ECC Curve25519 public key is encoded in a format

suitable for network transmission and signatures. GNS uses the Ed25519 standard

compact format as described in [BDL+11] with a key having a size of 32 byte.

Repeated delegation allows GNS to achieve transitivity of names. Secure delegation

using PKEY records is central to GNS and replaces the tree structure of DNS with

a directed graph.

NICK for nicknames: this record type is used to specify the desired nickname for a

zone as described in Section 6.6.1. The value of the record consists of a label with

the 63-character limit from DNS. If a nickname is specified for a zone, the same

NICK record is added under each label of the respective zone when published; this

ensures that the nickname is part of every response and thus no additional lookup

is required to obtain the nickname, for example during automatic shortening.

GNS2DNS: GNS2DNS records delegate resolution for a label from GNS to DNS. Similar to

NS records in DNS, the value in the GNS2DNS record is the name of the subdomain

in DNS and the authoritative DNS server to use to resolve the subdomain. For

example:

Name RR Type Value Description

Q: www.example.gnu A

A: example.gnu GNS2DNS example.com DNS domain

a.iana-servers.net DNS server

Resolved in DNS:

Q: www.example.com A

A: www.example.com A 93.184.216.119

Given the first response received, the GNS system will synthesize the DNS name

“www.example.com” from the GNS2DNS record and the “www” remaining from the

GNS name and send a DNS query to the DNS server at a.iana-servers.net based on

the glue information from the A record. The resolution then continues using DNS.

Note that this record type enables delegation to DNS from within GNS. Naturally,

GNS cannot secure the DNS part of DNS resolution process.

BOX: records are used in GNS to support the name structure required by DNS’ TLSA

and SRV records in GNS as described in Section 6.6.8 and TLSA or SRV value. BOX

records contain a 16-bit protocol, a 16-bit port number and a 32-bit field to specify

the record type contained in the BOX record (e.g. TLSA or SRV) as depicted in

Figure 6.6. BOX records are stored under the label in the DHT and when a lookup

for SRV or TLSA records are performed, the lookup for the respective BOX record is

synthesized.

For example:

6.6. Design of the GNU Name System 177

Name RR Type Value Description

Q: 443. tcp.www.example.gnu TLSA

Translated by GNS to :

Q: www.example.gnu BOX

A: www.example.gnu BOX 6 Protocol

443 Port

TLSA RR Type

TLSA RDATA Value

Translated by GNS to :

A: 443. tcp.www.example.gnu TLSA TLSA RDATA See [HS12]

VPN: this record type is used with GNUnet’s VPN service to establish a redirection. VPN

provides protocol translation and allows to tunnel IP traffic over GNUnet9. A VPN

record contains information about the peer to establish the tunnel with, the protocol

to use (TCP or UDP) and a service name. When a connection with GNUnet VPN was

successful, as a result an A or AAAA is returned depending which type was requested.

Name RR Type Value Description

Q: www.example.gnu A

A: www.example.gnu VPN ABCD Peer ID

tcp Protocol

srv xyz Service Name

A: www.example.gnu A 192.0.2.3

LEHO: This record type specifies the legacy (DNS) hostname for a name in GNS.

LEHO records are used to enable backwards-compatibility for virtual hosting and SSL

certificate validation in combination with the client side proxy. For example:

Name RR Type Value Description

Q: www.example.gnu A

A: www.example.gnu A 192.0.2.1

A: www.example.gnu LEHO www.example.com

These are all the special record types that GNS needs. GNS maximizes compatibility

with DNS by using the same length limits for labels and names, and the same encoding

rules for internationalized names as DNS.

6.6.9.2 DNS Record Types

As GNS is designed to allow integration and coexistence with DNS, most DNS resource

records from [Moc87b, THKS03] (e. .g., A, MX) are used with identical semantics and

binary format in GNS. DNS resource records supported when this document was written

are A, CNAME, SOA, PTR, CERT, MX, TXT, AAAA, SRV, TLSA.

For DNS, the format of resource records is defined in [Moc87b]: In DNS resource

records consist of a variable length name field, a two octets TYPE field specifying the

9 https://gnunet.org/gnunet-vpn

https://gnunet.org/gnunet-vpn

178 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

kind of record by containing one of the RR TYPE codes, a TTL field defining validity of

the record, a CLASS field, a field containing the length of record data and variable length

record data. With the type field 216 different record types can be defined with DNS.

One exception to DNS records supported in GNS are NS records, which we replace

with GNS2DNS records as described in Section 6.6.7, used to delegate control for a name

back to legacy DNS and minor semantic modifications to support relative names in record

values.

GNS slightly modifies the rules for some existing record types in DNS when using these

types in GNS. In particular, names in DNS values are always absolute; GNS allows the

notation “.+” to indicate that a name is relative. For example, consider CNAME records in

DNS, which map an alias (label) to a canonical name: as specified in RFC 1035 [Moc87b],

the query can (and in GNS will) be restarted using the specified “canonical name”. The

difference between DNS and GNS is that in GNS, the canonical name can be a relative

name (ending in “.+”), an absolute GNS name (ending in “.zkey”) or a DNS name.

As with DNS, if there is a CNAME record for a label, no other records are allowed to

exist for the same label in that zone. Relative names using the “.+” notation are not only

legal in CNAME records, but in all records that can include names. This specifically includes

MX and SOA records.

6.6.10 Shadow Records

A common use case scenario in current DNS is to use DNS to migrate between systems

providing a service. Due to DNS servers caching name resolution results, it is not possible

to switch between systems by just modifying the value of the record to point to a new

system and switch off the old system. With DNS, migration is based on record lifetimes,

reducing the lifetime of the record pointing to the old value and adding a new record

pointing to the new system. This approach enables in theory a smooth transition between

systems facilitating DNS caching approaches.

GNS supports a similar approach. In GNS, records can be marked as shadow records.

A receiver only interprets these shadow records if all other records of the respective type

have expired. This is useful to ensure that upon the timeout of one set of records the next

set of records is immediately available. This may be important, as propagation delays in

the DHT are expected to be larger than those in the DNS hierarchy.

6.6.11 Revocation in GNS

In case a zone’s private key is lost or compromised, it may be important that the key can

be revoked. Whenever a user decides to revoke a zone key, other users must be notified

about the revocation. However, we cannot expect users to explicitly query to check if a key

has been revoked, as this increases their latency (especially as reliably locating revocations

may require a large timeout) and bandwidth consumption for every zone access just to

guard against the relatively rare event of a revoked key. Furthermore, issuing a query for

zone revocations would create the privacy issue of revealing that a user is interested in a

particular zone. Existing methods for revocation checks using certificate revocation lists

in X.509 have similar disadvantages in terms of bandwidth, latency increase and reduced

privacy.

Instead of these traditional methods, GNS takes advantage of the peer-to-peer overlay

below the DHT to distribute revocation information by flooding the overlay. When a peer

wants to publish a revocation notice, it simply forwards it to all neighbors; all peers

do the same when the receive previously unknown valid revocation notices. However,

6.6. Design of the GNU Name System 179

this simple-yet-Byzantine fault-tolerant algorithm for flooding in the peer-to-peer overlay

could be used for denial of service attacks. Thus, to ensure that peers cannot abuse

this mechanism, GNS requires that valid revocations include a revocation-specific proof

of work. This proof is based on computing a scrypt key derivation, which was designed

to be computational expensive to prevent hardware attacks as described in [PJ13]. As

revocations are expected to be rare special events, it is acceptable to require an expensive

computation by the initiator. After that, all peers in the network will remember the

revocation forever (revocations are a few bytes, thus there should not be an issue with

storage).

In the case of peers joining the network or a fragmented overlay reconnecting, revo-

cations need to be exchanged between the previously separated parts of the network to

ensure that all peers have the complete revocation list. This can be done using bandwidth

proportional to the difference in the revocation sets known to the respective peers using

Eppstein’s efficient set reconciliation method [EGUV11] realized in GNUnet’s SET service.

In effect, the bandwidth consumption for healing network partitions or joining peers will

then be almost the same as if the peers had always been part of the network.

This revocation mechanism is rather hard to disrupt for an adversary. The adversary

would have to be able to block the flood traffic on all paths between the victim and the

origin of the revocation. Thus, our revocation mechanism is not only decentralized and

privacy-preserving, but also much more robust compared to standard practices in the X.509

PKI today described in Section 2.5, where blocking of access to certificate revocation lists

is an easy way for an adversary to render revocations ineffective [Ltd13]. This has forced

vendors to include lists of revoked certificates with software updates [Lan12]. With CRLs,

the client has for every operation to check the CRL if the certificate is revoked. This is

expensive if the client obtains the CRL from the CRL operator frequently or unreliable of

it does not use a recent version of the CRL. OCSP is also expensive since with OCSP

the certificate issuer has to provide an OCSP responder cryptographically signing the

response for every request. With OCSP stapling, the revocation certificate is provided

by the owner of the certificate and not issued for every request. This approach improves

performance and reduces the cost for a revocation check, but the issuer still has to

provide an infrastructure to issue and sign the OCSP responses. With GNS’ approach for

revocation, revocation checks are performed locally without communicating with other

participants. To issue a revocation, the required proof has to be calculated only once

and can be used when a zone has to be actually revoked. Network communication to

distribute revocation information is designed to be efficient using the SET service and

efficient flooding where information is dismissed if invalid.

6.6.12 Dealing with Legacy Assumptions: Virtual Hosting and TLS

In order to integrate smoothly on application level with DNS, GNS needs to accommodate

some assumptions that current protocols make. We can address most of these with the

LEHO resource record. In the following, we show how to do this for Web hosting. There

are two common practices to address here; one is virtual hosting (i. e. hosting multiple

domains on the same IP address); the other is the practice of identifying TLS peers by

their domain name when using X.509 certificates.

The problem we encounter is that GNS gives additional and varying names to an ex-

isting service. This breaks a fundamental assumption of these protocols, namely that they

are only used with globally unique names. For example, a virtually hosted website may ex-

pect to see the HTTP header Host: www.example.com, and the HTTP server will fail to

180 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

return the correct site if the browser sends Host: www.example.gnu instead. Similarly,

the browser will expect the TLS certificate to contain the requested “www.example.gnu”

domain name and reject a certificate for “www.example.com”, as the domain name does

not match the browser’s expectations.

In GNS, each user is free to pick his own petname for the service. Hence, these

problems cannot be solved by adding an additional alias to the HTTP server configuration

or the TLS certificate. Our solution for this problem is to add the LEgacy HOstname

record type (LEHO) for the name. This record type specifies that “www.example.gnu” is

known in DNS as “www.example.com”. A proxy between the browser and the web server

(or a GNS-enabled browser) can then use the name from this record in the HTTP Host:

header. Naturally, this is only a legacy issue, as a new HTTP header with a label and

a zone key could also be introduced to address the virtual hosting problem. The LEHO

records can also be used for TLS validation by relating GNS names to globally unique DNS

names that are supported by the traditional X.509 PKI. Furthermore, GNS also supports

TLSA records, as described in Section 6.6.9.2, and thus using TLSA records instead of

CAs would be a better alternative once browsers support it.

6.7 Security Analysis

One interesting metric for assessing the security of a system is to look at the size of the

Trusted Computing Base (TCB). In GNS, users explicitly see the trust chain and thus

know if the resolution of a name requires trusting a friend, or also a friend-of-a-friend,

or even friends-of-friends-of-friends—and can thus decide how much to trust the result.

Naturally, the TCB for all names can theoretically become arbitrarily large—however,

given the name length restrictions, for an individual name it is always less than about 125

entities. The DHT does not have to be trusted; the worst an adversary can do here is

reduce performance and availability, but not impact integrity or authenticity of the data.

For DNS, the size of the TCB is first of all less obvious. The user may think that

only the operators of the resolvers visible in the name and their local DNS provider need

to be trusted. However, this is far from correct. Names can be expanded and redi-

rected to other domains using CNAME and DNAME records, and resolving the address of

the authority from NS records may require resolving again other names [Ber]. Such “out-

of-bailiwick” NS records were identified as one main reason for the collateral damage of

DNS censorship by China [Ano12]. For example, resolving “google.com” requires correct

information from “x.gtld-servers.net” (the authority for “.com”), which requires trusting

“X2.gtld-servers.net” (the authority for “.net”). While the results to these queries are

typically cached, the respective servers must be included in the TCB, as incorrect answers

for any of these queries can change the ultimate result. Thus, in extreme cases, even

seemingly simple DNS lookups may depend on correct answers from over a hundred DNS

zones [DSKM12]; thus, with respect to the TCB, the main difference is that DNS is very

good at obscuring the TCB from its users.

We will now discuss possible attacks on GNS within our adversary model. The first

thing to note is that as long as the attacker cannot gain direct control over a user’s com-

puter, the integrity of master zones is preserved. Attacks on GNS can thus be classified

in two categories: attacks on the network, and attacks on the delegation mechanism.

Attacks on the network can be staged as Eclipse attacks. The success depends di-

rectly on the DHT. Our choice, R5N, shows a particularly good resistance against such

attacks [EG11]. For revocation, the flooding mechanism is even harder to disrupt. The

adversary would have to be able to censor traffic on all paths between the victim and

6.8. Implementation of GNS 181

the origin of the revocation. Thus, our revocation mechanism is not only decentralized

and privacy-preserving, but also much more robust compared to standard practice in the

X.509 PKI today, where blocking of access to certificate revocation lists is an easy way

for an adversary to render revocations ineffective [Ltd13].

Concerning the delegation mechanism, the attacker has the option of tricking a user

into accepting rogue mappings from his own zones. This requires social engineering. We

assume that users of an anti-censorship system will be motivated to carefully check whose

mappings they trust. Nevertheless, even if the attacker succeeds the damage will be

limited to users that resolve via the compromised zone, limiting damage to users that use

that zone’s mappings. If a malicious user modifies an established mapping to a rogue

mapping, the user can still change the origin for a mapping using an agile approach in

whom they trust. For important mappings, it would still possible to use a somehow more

trusted source for mappings like a trusted registrar.

6.8 Implementation of GNS

In this section, we present the implementation of the GNS based on the design presented

in the previous sections. We give an overview how identities and zones in GNS are

managed and decentralized and privacy-preserving name resolution is realized. In addition,

we describe how caching is realized with GNS to improve performance and explain GNS

integration in the name resolution process of the operating system and additional tools

employed to improve integration with established applications on the Internet.

6.8.1 Architecture

Our implementation of the GNS is realized in the GNUnet peer-to-peer framework and

relies on the building blocks provided by GNUnet. GNUnet provides the functionality to

create a censorship-resistant peer-to-peer overlay network relying on the communication

infrastructure described in Chapter 4 and R5N, GNUnet’s implementation of a censorship-

resistant DHT with a focus on restricted route networks.

An implementation of the design presented in the previous sections has to realize

different functionalities required to provide a working implementation of GNS:

Management of cryptographic information: Zones in GNS are based on a crypto-

graphic public/private key pairs. With GNS, a user can use more than just a single

zone. To manage the cryptographic key pairs, we employ an IDENTITY service.

Administration of local GNS zones: the NAMESTORE component is used to provide a

persistent storage of local GNS zone information and provides programmatic access

to this information for other components and to manage local GNS zone information.

Publication of local information and name resolution: the GNS service realizes GNS

name resolution functionality and publishes public GNS information in the DHT to

allow other users to resolve this information.

Integration with the name resolution process: To allow applications to natively use

GNS, we integrate GNS directly with the name resolution process of the operating

system. In addition, we describe how applications using their own name resolution

mechanism can be supported.

182 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

Revocation of GNS information: In case a GNS zone gets compromised, the zone has

to be revoked and this information has to be distributed to other users. This is

realized by GNS’ REVOCATION service.

Caching of GNS information: To increase the overall performance of GNS, we provide

extensive caching of GNS information obtained from the DHT. This caching is

realized by the GNS’ NAMECACHE service.

According to the design principles of GNUnet to implement functionality in separate

collaborating services, we employ the same design principle to implement GNS the most

important components to realize with GNS are the IDENTITY service (managing cryp-

tographic information), the NAMESTORE service (administration of zone information and

persistent storage), the NAMECACHE service (caching of GNS information) and the GNS

service (publication of GNS information and name resolution). The interaction of these

services is depicted in Figure 6.7.

GNS

NAMECACHE

NAMESTORE

IDENTITY

GNS

Clients

GNS Helper

Proxy...
DHT

REVOCATION

SETCORE

RECORD Library

GNS

Plugin

DNS

Plugin

Records Record BlocksRecords

Crypto Key Records

Records

Revocations Revocations

Revocations

Used by multiple components
to handle records and record blocks

Fig. 6.7: GNS Components and Interaction

6.8.2 Cryptography Used in GNS

For our implementation of GNS, we rely on Ecliptic Curve Cryptography (ECC) using

Curve25519, and the ECDSA signature scheme, providing cryptographic authentication

and integrity. With ECDSA, we benefit from the possibility to use ECDSA with key

derivation functions to derive new cryptographic key material from existing cryptographic

keys. For symmetric encryption of records in record blocks, GNS relies on both AES-256

and Twofish-256 [SKW+98]. We use SHA-512 to hash data when creating DHT keys.

6.8.3 Identity Management for GNS

As discussed with the design of GNS in Section 6.6.1, the basic principles of GNS are

to provide each user with his own local namespace and to allow users to freely manage

name/value mappings in their namespace. Namespaces in GNS are based on cryptographic

public/private key pairs. A zone in GNS is a cryptographic public/private key pair and a

set of records assigned to labels in this namespace. With GNS, a user is not restricted to

a single zone but instead he can have multiple zones for different purposes (e.g. private

mappings or automatic shortening). Every user has a designated master zone, used as

the starting point for lookup operations mapped in GNS to the pTLD .gnu.

6.8. Implementation of GNS 183

GNUnet provides a convenient way to manage cryptographic identities (here called

egos) and provide these identities to other GNUnet services. Identities in GNUnet are so

called egos: egos are a cryptographic public/private key pairs with a human-memorable

label assigned to refer to this ego. The label is an alphanumerical string with a maximum

length of 63 chars. GNUnet’s IDENTITY subsystem provides the functionality to create

and manage cryptographic identities and GNUnet components can interact with IDENTITY

to obtain this cryptographic key material by using the ego to refer to a specific key pair.

The most important functionality provided by the IDENTITY service is to retrieve the

public and the private key for existing egos, to add or delete new egos, and to assign egos

as default identities to particular GNUnet services. Interaction with the IDENTITY service

is available using the IDENTITY CLI tool or for other components using the API provided.

With GNS, egos are used to refer to GNS zones using a human-memorable name.

For every GNS zone, an ego is created with IDENTITY. The default ego assigned by

the IDENTITY service to the GNS component is the ego of the designated GNS master

zone used by GNS as a starting point for name resolutions. The respective GNS tools,

like the gnunet-namestore command line tool used to manage zones as described in

Section 6.8.5, or the GNUNET-GNS command line client, used to perform name resolutions,

accept egos as an argument when a particular GNS zone has to be specified. These

components interact with the IDENTITY service to obtain the required keys associated

with this ego. Based on the IDENTITY service’s functionality to assign default egos to

services, the GNS service performs a lookup for the GNS master zones and the obtain

associated key material.

When Alice sets up her GNS installation, she starts with creating her zones. Most

importantly, she creates the master zone where she will store the records for the services

she provides and used as start point for name lookups. To refer to this zone when creating

records, she decides to assign the ego masterzone to this zone. In addition, she typically

creates a zone for automatic shortening with the ego shortenzone.

6.8.4 Records in GNS

To store resource records with GNS, GNS uses resource records similar to DNS. In GNS,

records have a 32-bit record type, a 64-bit expiration time, a variable length data field,

and a 32-bit field indicating the size of the value contained. The expiration time for a

record can be defined as an absolute point in time (Jan 1 2020) or a relative point in time

(1 week). In the 32-bit flag field, additional options for a record can be set:

GNUNET˙RECORD˙RF˙PRIVATE:

This is a private record. If this flag is set, the record will not be published in the

DHT to make it available to other users.

GNUNET˙RECORD˙RF˙RELATIVE˙EXPIRATION:

The expiration time contained in the record has to be interpreted as relative time.

GNUNET˙RECORD˙RF˙SHADOW˙RECORD:

This record is a shadow record only to be used when all other records available have

expired as described in Section 6.6.10. The shadow flag is the only flag published

in the DHT.

The record itself does not include the label it is assigned to since in GNS records

are stored under a label in a zone, so the record is assigned to a label. The structure

184 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

of a record is depicted in Figure 6.8 with the private flag denoted as P-bit, the relative

expiration flag denoted as R-bit, and the shadow flag denoted as S-bit.

When records are published in the DHT, records are stored in record blocks containing

all records assigned to a label. These record blocks have a maximum size of 63 KiB and

are cryptographically signed using a ECDSA key derived from the zone’s private key and

the label. The record payload is in addition encrypted with AES-256 and Twofish-256

using a symmetric key derived from the public key of the zone and the label. This sig-

nature and encryption process are described in detail in Section 6.8.8. A record block

contains a 64-byte signature of the content, the 32-byte public key of the derived key,

an 8-byte signature purpose and the 8-byte expiration time of the block followed by en-

crypted record data. For signed record blocks, the signature purpose with GNS is always

GNUNET˙SIGNATURE˙PURPOSE˙GNS˙RECORD˙SIGN. When a record block for a label in a

zone is created, all private records assigned to a label are left out so only public records

get published in the DHT. In addition, relative expiration times in records are converted

to absolute times. The structure and payload of a record block is depicted in Figure 6.9.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Expiration Time

 8 Byte
Data Size

}
4 Byte

Record Type
}
4 Byte

P R S
}
Flags, 4 Byte

Record Data

Fig. 6.8: Network Format of GNS Records

GNS supports an extensible architecture to support new application-specific record

types. To support applications adding additional record types, GNS supports a plugin

architecture with its RECORD library. So applications can add application specific record

types by providing GNS with a loadable plugin providing the functionality to parse and

process these records.

6.8.5 Managing GNS Zones and Persistent Storage

With GNS, a zone is cryptographic key pair and a set records assigned to labels in this

zone. To store zone information, provide other GNS components with zone information

and to allow users to administer mapping in zones, GNS requires a centralized, persistent

storage for zone information.

Administration of GNS zones and persistent storage of GNS zone information is pro-

vided by the NAMESTORE service. With NAMESTORE, users can manage name and records

in zones and zone delegations to other zones. Other GNS components can obtain zone

6.8. Implementation of GNS 185

ECDSA Signature

64 Byte

ECDSA Derived Public Key

32 Byte

ECDSA Signature Purpose
}
8 Byte

Block Expiration Time
}
8 Byte

Encrypted Record Data

Fig. 6.9: Network Format of GNS Record Blocks

information from NAMESTORE. To administer GNS zone information, users can access the

NAMESTORE information using the NAMESTORE CLI gnunet-namestore or other tools like

the graphical user interface gnunet-namestore-gtk, providing a convenient interface to

NAMESTORE. (Human) users can use egos provided by the IDENTITY service to refer to

zones when using tools like the command line tool, while programmatic clients use the

private key to refer to zones. The structure of zones in GNS is depicted in Figure 6.10.

To provide reliable and high-performance storage, NAMESTORE provides a plugin based

storage mechanism and supports multiple database storage back ends. Supported storage

backends are SQLite10 and PostgreSQL11 database systems. All storage back ends are

implemented as loadable plugins and are accessed using an API, hiding the specific imple-

mentation. The NAMESTORE plugin API provides functions for NAMESTORE to add, delete

and lookup zone information as well as to monitor zones, iterating over zone information

and perform zone to name mappings. An overview over the plugin API is included in

Appendix A.1.

The NAMESTORE service maintains a database (table) for every GNS zone, containing

10 https://www.sqlite.org/
11 http://www.postgresql.org/

https://www.sqlite.org/
http://www.postgresql.org/

186 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

Alice Bob

Zone masterzone

Public Key ERFA

Zone masterzone

Public Key 0FGA

Zone shortenzone

Public Key HGFU

www shortened bob www

PKEY

HGFU

...

PKEY

ERFA

...

A

192.0.2.1

...

A

192.0.2.8

...

Fig. 6.10: Structure of Zones in GNS

information about the records existing in this zone and the labels the records are stored

under. To add a new label and records, users have to specify the zone where to store

the mapping (e.g. using the ego provided by IDENTITY), the label they want to store the

records under, the type of record to create and the value for the record plus additional

information about the record (for example if the records are public or private). The

NICK record is stored in NAMESTORE assigned to the root of the zone with the label “+”.

The record is a private record to prevent the record from being published in the DHT.

NAMESTOREmerges this record if it exists automatically with the every set of records passed

to the NAMESTORE clients.

When Alice wants to create a mapping with the label web for her web server in her

master zone with the IP 192.0.2.1, she instructs NAMESTORE to create in the zone with the

ego masterzone under the label www a public A record with the value 192.0.2.1. Alice can

now use the name www.gnu to access her web server. NAMESTORE stores this information

in the database for the respective zone. Clients like the GNS service can query NAMESTORE

for this information, for example to publish the records in the DHT. NAMESTORE forwards

the information to the NAMECACHE component to allow the GNS resolver to access the

local mappings.

To administer and retrieve zone information, NAMESTORE provides an extensive API

to clients to manage information in zones and to obtain information about zones. To

manage records in GNS zones, NAMESTORE provides functions to programmatic clients to

store, remove and lookup records in GNS zones.

To create records in a zone with NAMESTORE, the client has to provide the private key

for the zone to store the records in, the desired label and the records to store. Storing

and deleting records are internally realized with the same API function: to delete records

stored under a name, a call to the store command with zero records included is used.

When NAMESTORE receives the information, it first checks if the name is to be deleted

based on the number of records included and if the name exists in the database: if not,

the operation can be skipped. If the name exists, NAMESTORE stores the records in the

database using the plugin API call to store records. This call replaces all existing records

6.8. Implementation of GNS 187

if such records exist and if no new records are given, the name is deleted. No merging

of existing records and new records is done. When the store operation was successful,

NAMESTORE notifies all clients monitoring this zone about this change. In addition, it

creates a new record block as described with record handling in Section 6.8.4 using the

modified record data and the private key of the zone required to cryptographically sign and

encrypt the record block. This block is the given to NAMECACHE and periodically refreshed

to allow lookup operations for local information purposes as described in Section 6.8.6.

To look up a name in a zone, the client has to specify the private key of the zone,

the desired label and an iterator to call with each result. NAMESTORE uses the plugin API

to retrieve the required records from the database. If a NICK record exists, the records

returned will be merged with the NICK record. The result are be given to the client which

is notified by calling the iterator function with the results.

NAMESTORE can also perform a reverse lookup to check if a delegation for a given zone

exists. NAMESTORE clients pass the public key of the zone to lookup to NAMESTORE and

NAMESTORE returns (if existing) the PKEY record and the label the record is stored under.

This functionality is used to check if a delegation for a public key exists, for example with

automatic shortening.

NAMESTORE also provides the possibility to iterate over the content of a specific zone

or all zones available, particularly useful for caching and to publish public records in the

DHT. To monitor changes in a zone or to iterate over all records stored in a zone, the

client has to specify the private key of the respective zone and a callback function to call

with results. When iterating over zones, NAMESTORE provides the client with every single

result it obtains from the database, passes this result to the client and waits for the client

to process the result and notify NAMESTORE to continue. Similar to the lookup, for each

result an existing NICK record is merged into the result. A client can also specify to be

notified about changes to a zone. A client has to specify the private key of the zone and

whenever a zone is updated, the client gets notified about this change from NAMESTORE.

6.8.6 Caching GNS Information

While the NAMESTORE component is used to store information for zones the specific user is

authoritative for is the NAMECACHE subsystem intended to cache GNS information retrieved

before, for example by a DHT lookup. This caching improves performance since the GNS

resolver can reuse cached data and avoid repeated DHT lookups. NAMECACHE uses a plugin

architecture similar to NAMESTORE to store the cached entries in a persistent way. The

NAMECACHE plugin API consists of two functions to cache a record block and to lookup

record blocks as shown in Appendix A.2.

To allow lookup operations for zones administrated by the local user, NAMECACHE

caches blocks created by NAMESTORE when a record is stored in NAMESTORE. The GNS

resolver stores records retrieved from a DHT lookup in the NAMECACHE and asks NAMECACHE

for cached results before performing a DHT lookup to resolve a name as described with

the lookup process in Section 6.8.8.

To store records in the cache, the client passes the GNS record block to be cached

to NAMECACHE. If an entry is already existing in the cache, this block is replaced by the

updated block. To lookup a cached block, the client specifies the derived hash for the

zone and the name as described in Section 6.8.8. NAMECACHE performs a lookup in the

database and returns the record block if it is existing.

188 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

6.8.7 Zone Revocation with GNS

In GNS, revocation and revocation checks processes are managed by a separate REVOCATION

service. This service provides the possibility to check during a resolution process if a zone

was revoked and manages the decentralized revocation process by maintaining revoca-

tion information received from the peer-to-peer system and providing the possibility to

distribute revocation information.

To manage revocations, the REVOCATION service maintains a local, persistent list of

all revocations it is currently aware of. This revocation list is stored in file written to

disk to be available after a restart. To spread revocation information, REVOCATION ex-

changes revocation information with other peers. To exchange the revocation information

with other peers, REVOCATION uses GNUnet’s CORE service to communicate with other

participants in the network, previously described in Section 4.3.19. When two GNS and

revocation enabled peers connect, the peers exchange revocation information in an effi-

cient way using efficient set reconciliation provided by GNUnet’s SET service. Every peer

maintains a set of all revocation it knows and when it connects to another peer, both

peers exchange their revocation information by building the union of their revocation sets.

New elements a peer learns from this process are added to this set and forwarded to other

peers. Later on, these peers exchange new revocation information they acquire using a

flooding mechanism: all new acquired revocation information is flooded to all connected

peers which store this information and pass them to other peers.

To revoke a zone, a proof of work is required. This proof is based on computing

a scrypt key derivation, which was designed to be computational expensive to prevent

hardware attacks as described in [PJ13]. To be able to immediately revoke a zone if

required, a revocation proof of work can be pre-generated and stored in a file. Using this

pre-generated file, the revocation can be performed immediately. If a zone is revoked

locally by the user or the REVOCATION service receives new revocation information from

other peers via the set or the flooding mechanism, the revocation service first checks the

proof work and stores the revocation entry in the persistent file. The new revocation

element is added to the revocation set of the SET service and sent to other peers on CORE

level. A user can revoke his zone using the gnunet-revocation command or the service

can be accessed by other applications using the REVOCATION API.

6.8.8 Censorship-Resistant and Privacy-Preserving Publication and Name

Resolution

Name publication and resolution with GNS is realized by the GNS service. GNS is a sepa-

rate GNUnet process collaborating with the NAMESTORE, NAMECACHE and IDENTITY service

described in previous sections. GNS is also responsible to publish users’ public zone infor-

mation obtained from NAMESTORE to the DHT. GNS service is responsible to resolve GNS

names using local GNS zone information and by querying the DHT. To resolve names,

the GNS service interacts with NAMECACHE to obtain local zone information stored with

NAMECACHE by NAMESTORE and to obtain cached information from previous lookup oper-

ations in the DHT. In addition it can interact with NAMESTORE during name resolution if

automatic shortening for GNS names is enabled.

The R5N DHT implementation provided by GNUnet supports an extensible block

plugin architecture to validate blocks stored and retrieved in the DHT. To prevent attacks

storing malformed blocks for zones and labels, GNS uses a R5N block plugin to validate

the signature of record blocks stored in the DHT. Every participant in the DHT overlay

automatically checks the correct signature of GNS record blocks routed over this peer and

6.8. Implementation of GNS 189

when data are retrieved from the DHT using the public key and the signature stored in

the record block. So malformed or malignant blocks are automatically discarded by the

DHT and not stored, forwarded or retrieved.

6.8.8.1 The GNS Publication Process

To publish GNS information in the DHT, the GNS service collaborates with the NAMESTORE

service responsible to manage local zone information and publishes and refreshes local zone

information in regular intervals in the DHT. Here GNS iterates over all local zones using

the respective zone iteration functionality provided by NAMESTORE and publishes the public

zone information in the DHT. The zone publication process uses an adaptive frequency:

by default, zone information is refreshed every 4 hours. This interval is adapted based

on the minimum relative expiration time (divided by 4) found in the GNS zone. This is

required to keep records with a relative expiration time valid in the DHT.

In addition to periodic store operations, GNS also monitors NAMESTORE for changes to

zones to immediately publish modified GNS information to the DHT. Here it relies on

NAMESTORE’s zone monitoring functionality as described with NAMESTORE in Section 6.8.5.

When NAMESTORE notifies GNS about changes in a zone, it includes the (ECDSA) private

key of the zone, the respective label and the records assigned to this label. Before records

are be published to the DHT, they are processed and converted to record blocks as

described in Section 6.8.4. During this conversion, relative expiration times are converted

to absolute times and all private or pending records are skipped. The resulting set of

records plus the optional NICK record are serialized to a record block. The expiration

time of the record block is based on the minimum expiration contained in the block. If

a SHADOW record exists with a longer validity is the block expiration set to the expiration

time of the SHADOW record.

The record data in the record block are encrypted using AES-256 and Twofish-256

with a symmetric encryption key and an initialization vector both derived from the label

and the ECDSA private key of the zone. The record block containing the encrypted record

is signed using an ECDSA key derived from the private key of the zone, the label this block

belongs to and an additional context string (here “gns”). The signature, the signature

purpose (for signing records in GNS GNUNET˙SIGNATURE˙PURPOSE˙GNS˙RECORD˙SIGN),

the expiration time of the record block and the public key of the derived key used to

sign the block is stored in the block. The signed record block, containing only encrypted

records, is now stored in the DHT. This DHT key is the SHA-512 hash of a public key

derived from the public key of the zone, the label and an additional context string (here

“gns”) used to allow different applications to use this publication mechanism without

conflicting DHT data.

The process of creating a signed and encrypted record block is depicted in pseudo-code

in Listing 6.1.

List. 6.1: Encryption and Signing of GNS Record Blocks

RECORD˙Block
block˙create (EcdsaPrivateKey zone˙private˙key, TIME˙Absolute expire, string label, RECORD˙Data ←↩

public˙records)
–
RECORD˙Block block;
EcdsaPrivateKey derived˙private˙key;
EcdsaPublicKey zone˙public˙key;
EcdsaPublicKey derived˙public˙key;
SymmetricSessionKey symmetric˙key;
InitializationVector iv;

190 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

zone˙public˙key = ecdsa˙key˙get˙public (zone˙private˙key);
derived˙private˙key = ecdsa˙private˙key˙derive (zone˙private˙key, label, ”gns”);
derived˙public˙key = ecdsa˙key˙get˙public (derived˙private˙key);

block-¿derived˙key = derived˙public˙key;
block-¿pubkey = derived˙public˙key;
block-¿expiration˙time = expire;

(symmetric˙key,iv) = derive˙block˙symmetric˙key (label, zone˙public˙key);
block-¿records = symmetric˙encrypt (public˙records, symmetric˙key, iv);
(block-¿signature, block-¿purpose) = ecdsa˙sign (block, derived˙private˙key,←↩

PURPOSE˙GNS˙RECORD˙SIGN))
return block;
˝

DHT˙Key
query˙from˙private˙key (EcdsaPrivateKey zone˙private˙key, string label)
–
EcdsaPublicKey zone˙public˙key;
EcdsaPublicKey derived˙public˙key;
DHT˙Key key;

zone˙public˙key = ecdsa˙key˙get˙public (zone˙private˙key);
derived˙public˙key = ecdsa˙public˙key˙derive (zone˙public˙key, label, ”gns”);
key = hash (derived˙public˙key);
return key;
˝

perform˙dht˙put (EcdsaPrivateKey zone˙private˙key, string label, RECORD˙Data public˙records)
–
RECORD˙Block block;
TIME˙Absolute expire;
DHT˙Key dht˙key;
size˙t block˙size;

expire = get˙mininum˙expiration˙time (public˙records);
block = block˙create (zone˙private˙key, expire, label, public˙records);
dht˙key = query˙from˙private˙key (zone˙private˙key, label);
DHT˙put (dht˙key, block);
˝

6.8.8.2 The GNS Resolution Process

The second major functionality of the GNS service is to resolve names using local zone in-

formation and the DHT. This name resolution process is integrated with caching of name

information with NAMECACHE as described in Section 6.8.6 to increase resolution perfor-

mance and with automatic shortening of delegation chains as introduced in Section 6.6.5.

Integration of GNS name resolution with the operating system will be explained in the

following Section 6.8.11.

When a name has to be resolved, a (GNS) client requests a name resolution with the

GNS service. Since GNS was designed to integrate with existing DNS and GNS names

are integrated into the DNS namespace using the “.gnu” pTLD for relative and “.zkey”

pTLD for absolute names, the GNS service supports to resolve both GNS and DNS names.

GNS inspects the name to resolve and when the name is a GNS name it uses the GNS

resolver or otherwise instructs a DNS resolver to resolve the name in DNS.

To resolve a name with GNS, the client passes the name to resolve, the desired record

type to lookup (e.g. A) and the ego (as described in Section 6.8.3) of the GNS zone used

as a starting point for name resolutions. If no zone is specified, by default the master

zone configured by the user for GNS with the IDENTITY service is used. The GNS resolver

first evaluates based on the TLD if the name passed is a DNS name or a IPv4 or IPv6

address (and therefore a (reverse) lookup using the DNS resolver is required) or if the

name passed is a GNS name ending in one of the GNS TLDs “.gnu” or “.zkey”. If a GNS

6.8. Implementation of GNS 191

name is passed, a GNS resolution process is initiated, otherwise the name is passed to the

legacy DNS resolver.

With the GNS resolution process, GNS names (representing a delegation path in GNS)

are resolved recursively from right to left, starting with the TLD “.gnu” or “.zkey”. Due

to delegation to different zones, different authorities responsible for the labels exist. The

resolver creates an authority chain, containing the zone information for the each specific

label, to be able to resolve relative names in records and replaces relative names with

absolute names.

When resolving a relative GNS name (using the “.gnu” pTLD), the resolver removes

the TLD and starts the authority chain with the zone passed by the client as a starting

point and begins to lookup the right-most label in the specified zone. For an absolute

“.zkey” name, the resolver removes the “.zkey” TLD and converts the identifier to a

public key representing the zone to start the recursive lookup for labels in.

The resolver now resolves recursively all labels in the given name from right to left,

label by label. If resolution for one of the labels fails, the resolver cancels the resolution

process and notifies the client about the failed resolution process.

When resolving a label, the resolver first performs a revocation check (as described in

6.8.7) to check if the current zone was revoked and fails the resolution process if the zone

is marked as revoked. If the zone information was not revoked, the resolver performs a

lookup for the label in the NAMECACHE (described in Section 6.8.6) to check if a cached

version of the information exists. To perform this lookup in the cache, the resolver uses

the same lookup key (based on the zone’s public key and label) as used with the DHT to

perform a lookup. The key used for the lookup is the SHA-512 hash of an ECDSA public

key derived from the zones ECDSA public key, the label and an additional context string

(“gns”). If a record block is found in the NAMECACHE, the resolver checks the expiration

time of the block and decrypts the encrypted record data stored in the block and uses this

information to continue the resolution process. To decrypt an encrypted record block, the

resolver derives a symmetric decryption key and initialization vector from the zone’s public

key and the label to lookup. The symmetric key and initialization vector are used to decrypt

the records in the record block. The correctness of the block’s signature is ensured by the

R5N block plugin when the block was obtained from the DHT and therefore the resolver

does not have to check the signature again. If the block is not expired, the decrypted

record block is used to continue the resolution process. If no block was found with the

NAMECACHE lookup, a lookup in the DHT using the same key as with the NAMECACHE is

performed. If the DHT returns a response, the signature of the record block returned is

verified by the DHT automatically and the block is discarded if the signature is invalid. If

a result was returned from the DHT the blocks expiration time is checked and the block

is stored in NAMECACHE. The resolver decrypts the record block using the same symmetric

decryption key as described with the cached block.

The process of calculating the required lookup key and the derivation of the symmetric

decryption key is depicted in pseudo-code in Listing 6.2.

192 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

List. 6.2: Decryption of GNS Blocks

RECORD˙Data
perform˙dht˙get (EcdsaPublicKey zone˙public˙key, string label)
–
EcdsaPublicKey derived˙public˙key;
SymmetricSessionKey symmetric˙key;
InitializationVector iv;
DHT˙Key dht˙key;
RECORD˙Data public˙records;

derived˙public˙key = ecdsa˙public˙key˙derive (zone˙public˙key, label, ”gns”);
dht˙key = hash (derived˙public˙key);
record˙block = DHT˙get (dht˙key);

(symmetric˙key,iv) = derive˙block˙symmetric˙key (label, zone˙public˙key);
public˙records = symmetric˙decrypt (block-¿records, symmetric˙key, iv);)

return public˙records;
˝

When a decrypted block is retrieved from NAMECACHE or the DHT, the records con-

tained in the decrypted block are evaluated. The resolver iterates over the records con-

tained in the record block and extracts the required information.

GNS records can contain relative names as described in Section 6.6.9.2. Relative

names in records (containing “+.”) are translated to absolutes name. This translation

is based on the current authority in the authority chain. If the resolver encounters DNS

specific records such as CNAME, SOA, MX, SRV, records, it parses the values of the records

and translates relative to absolute names and continues name resolution or returns the

resulting records to the clients.

If the record block contains GNS specific record types such as PKEY, NICK, GNS2DNS,

VPN records or records types treated differently from DNS, the resolver handles these GNS

specific records:

PKEY records are used to delegate labels to a zone. A PKEY records makes the resolver

extract the public key in the record and create a new entry in authority chain based

on this public key. Based on this delegation information, the resolver now initiates

a new recursive lookup with the leftover name and the new authority information.

NICK records specify the desired label a user suggests for a zone when added to a zone

e.g. due to automatic shortening. The solver extracts the proposed nickname for the

zone and stores this information in the current authority entry in the authority chain.

This NICK record is used with automatic shortening as described in Section 6.8.9: if

additional records are found for a name and shortening is enabled on the system, the

resolver tries to apply automatic shorting to the zone name with the given nickname.

GNS2DNS records are used to delegate a name from within the GNS system to legacy

DNS. A GNS2DNS makes the resolver start a new recursive resolution based on the

DNS domain included in the GNS2DNS record and the IP address of the DNS server

as described with GNS2DNS in Section 6.6.9

CNAME records are used to specify an additional common name for a label. If such an

record is encountered, this alternative is merged in the resolution chain and a new

resolution process based on alternative name is initiated. Since CNAME records can

contain relative names, the resolver has to check if the name is relative or absolute.

If the name is relative, the resolver creates a new request for the absolute name

based on the remaining name and the current zone the CNAME record origins from.

6.8. Implementation of GNS 193

VPN records If the label resolved is the last (left-most) label and the record is a VPN

record, a redirection to the destination specified in the VPN record using GNUnet’s

VPN service is initiated. If the VPN redirection was successful, depending on the

requested record type (A or AAAA) the IPv4 or IPv6 address of the redirected service

is returned in an A or AAAA record.

If the last (left-most) label is resolved or no further recursion is required, the processed

records are returned to the client and the resolution process is terminated. If any of the

steps before fails, the resolution process is terminated and the clients is notified about the

failed resolution. Figure 6.11 depicts how the name “www.buddy.gnu” is resolved to the

IP address 192.0.2.4.

REVOCATION Service

NAMECACHE Service

DHT Service

G
N
S

S
ervice

GNS Client IDENTITY Service

E{ } : Encrypted Record Block
Px : Public Key of zone x

K() : Function to calculate DHT key

0 www.buddy.gnu, RR=A?
1 Public Key for GNS Master Zone?

2 Pmaster

3 Pmaster , RR=A,

www.buddy.gnu?

6 K (buddy, Pmaster , “gns”)?

10 K (www, Pbuddy , “gns”)?

14 STORE (K (www, Pbuddy , “gns”), E {A=192.0.2.4})

7 E {PKEY=Pbuddy }

11 not found

12 GET (K(www, Pbuddy , “gns”))

13 E {A=192.0.2.4}

4 Pmaster revoked?

8 Pbuddy revoked?

5 Pmaster not revoked

9 Pbuddy not revoked

15 A=192.0.2.4

16 A=192.0.2.4

Fig. 6.11: The GNS Resolution Process

6.8.9 GNS Shortening

Delegation is a central concept in GNS, since it allows users to resolve names provided by

other users. But having long delegation chains is also not desired. Long delegation chains

make name resolution error prone if one of the elements in the chain cannot be resolved.

Therefore, long delegation chains are shortened once the names could be resolved. The

194 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

shortened names are put in a special shorten zone, one of the default zones used by GNS.

This default zone is addressed by the GNS using an ego as introduced in Section 6.8.3.

To enable automatic delegation chain shortening, NICK records stating a user’s desired

nickname are used. As described in Section 6.4.5, in a petname system a user is identified

by a globally unique identifier. Each user can freely assign a petname to this user when

referring to this user. But the user can propose a nickname to be used. In GNS this

preferred nickname is distributed in GNS specific NICK records and NAMESTORE creates a

private NICK record in the root of the zone assigned to “+” label. Since this record is

private it will not be published, but instead the NAMESTORE service automatically includes

this NICK record in the set of records for all labels in a zone. So the desired nickname

gets published with all labels published for a zone.

The shortening (if enabled) occurs in the GNS resolver when records in a remote zone

were successfully resolved. When a name is resolved, the resolver recursively resolves all

labels in a name. By doing so, the resolver may also find delegations in the name. When

it received a NICK records for this zone, it will initiate a shortening process based on the

preferred nickname contained in the NICK record and the public key for the zone.

When a shortening process is initiated, the shortening logic first checks if for the zone

to shorten a delegation entry in the NAMESTORE exists and if so the shortening process

is not required and therefore aborted. In the next step, the shorten logic performs a

lookup in the NAMESTORE if the preferred nickname is already taken and existing in the

shorten zone, and if so the shortening is aborted. If the preferred nickname was taken, the

shortening request is re-issued with the original label. If this request also fails, shortening

is not possible. Otherwise a new private PKEY record is created in the shorten zone and

the shortening process successfully terminated.

6.8.10 GNS on Multi-User Systems

GNS is designed to provide every user with his own namespace and the possibility to

manage mappings in his zones. So name resolution with GNS is user-specific contrary to

DNS resolving globally unique names similar for all users.

So in an environment where multiple users share an environment, the GNS imple-

mentation has to provide the functionality to support user-specific name resolution. This

requirement is supported by the GNUnet framework GNS is implemented with. GNUnet

can differentiate between system services, shared between all users, and user services, spe-

cific to a particular user on the system. With GNUnet, system services are services which

are only required to be run once and which can be shared between users since they do

not realize user-specific functionality. System services are for example services providing

functionality to create the overlay network and provide connectivity between peers. User

services provide user-dependent functionality with GNS being a prime example. GNUnet

uses access control to limit access to services based on group and user ids. So user services

can only be accessed from the user they belong to. To support multi-user environments

with GNS, GNS services like NAMESTORE and GNS are executed as user services, running

in a separate instance for every user, while using shared system services to communicate

with the overlay network.

6.8.11 Integration with the Name Resolution Process

GNS is designed as an alternative to existing DNS to allow seamless migration and coex-

istence. It was designed and implemented to allow users to use GNS without having to

learn and understand new concepts and only advanced users may choose to use advanced

6.8. Implementation of GNS 195

features of GNS. This is particularly true for GNS names, designed to look like common

DNS names and GNS names being integrated in DNS namespace using pTLDs.

But to allow users to use GNS and to resolve names provided by GNS, GNS name

resolution has to be integrated in the name resolution process of the operating system to

provide convenient user experience. Here it is important to provide GNS name resolution

to applications without having to adapt and modify applications.

Several approaches have been implemented to integrate GNS name resolution with

the operating system and existing applications:

6.8.11.1 Name Service Switch

On GNU systems, libc’s Name Service Switch (NSS) [Fou] provides an flexible and exten-

sible method to provide configuration information to system components and name resolu-

tion mechanisms. Supported sources are local operating system files (e.g. /etc/passwd,

/etc/group, and /etc/hosts), DNS or directory services like Network Information Ser-

vice (NIS) or Lightweight Directory Access Protocol (LDAP). NSS supports to be ex-

tended with new information sources using plugins. To integrate GNS name resolution

with the operating system, we provide a GNS plugin for NSS. With NSS, a set of plugins

can be configured in a specific order to resolve service information. For names, the hosts

service is used with a set of plugins to resolve hostnames. The GNS plugin has to be

configured to be used before names are used with DNS. With the GNS plugin activated,

the GNS NSS plugin is used before the DNS NSS plugin to resolve names. When the

plugin cannot resolve a GNS name, name resolution fails. Otherwise, the next plugin

configured is used to try to resolve the name.

This approach has the advantage of offering fully personalized resolution even on multi-

user systems, but applications not using libc’s name resolution mechanisms can bypass the

GNS name resolution. Mechanisms similar to NSS exist for other platforms and we have

an equivalent plugin working on Microsoft Windows using so called Namespace Providers.

Details for the Windows specific implementation can be found on our website12.

6.8.11.2 GNS-Enabled Resolver

Integration of GNS can also be achieved by using a GNS-enabled resolver. With our imple-

mentation, we provide a DNS-to-GNS gateway. The gateway resolves names in the “.gnu”

and “.zkey” pTLD internally and acts as a proxy for all other TLDs, forwarding requests

to an actual DNS server. The resolver configuration (for example /etc/resolv.conf on

Linux systems) has to be modified to point to an IP address (i.e. 127.0.0.1) running the

GNS-enabled resolver software.

Applications bypassing the system’s name resolution mechanisms and implementing

their own name resolution mechanism do not benefit from this approach and using this

approach in a multi-user environment depends if the system supports per-user resolver

configuration which is not true for most systems. On many systems, this approach inter-

feres with other networking management software, using DHCP information to set DNS

server information dynamically. These issues make this approach not suitable even for

more advanced users.

12 https://gnunet.org/dev-gns-w32

https://gnunet.org/dev-gns-w32

196 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

6.8.11.3 Intercepting Queries

An additional possibility to integrate GNS with name resolution, is to intercepts DNS

queries from the local system using packet filtering rules e.g. using iptables. With our

implementation, we support to intercept DNS traffic using policy based routing. With

this approach, we MARK an outgoing DNS request if it is not send by the GNS service. By

using a second routing table in the Linux kernel, these marked packets are then routed

through a virtual network interface and can thus be captured unmodified. The interception

application then processes the query and decides how to handle it: A query to an address

ending in “.gnu” or “.zkey” is hijacked by the GNS service and resolved internally using

GNS. Other queries not hijacked will be sent to the respective DNS nameserver. The

answer to the query will always be sent back through the virtual interface with the original

nameserver as source address.

This approach allows to intercept all name resolution traffic and is independent from

the resolver and supports applications implementing their own resolution logic. But this

approach is not suitable for multi-user environments with multiple users running GNS

on the same system since the interception logic cannot distinguish to which user an

intercepted request belongs to resolve names using the user’s GNS zone.

6.8.11.4 GNS Proxy Server

An approach in particular useful to integrate GNS with the name resolution in combination

with the support if legacy applications is to use a proxy server to access GNS enabled

websites. Here the proxy server resolves the GNS names and can in addition process the

websites with respect to relative names and HTTPS connections.

With our GNS implementation, we provide the gnunet-gns-proxy, a SOCKS proxy al-

lowing arbitrary networking applications to access services using GNS names. The SOCKS

protocol [LGL+96] allows networking application to access services using a proxy server

to traverse firewalls or other network filters. SOCKS proxies work on a lower level than

HTTP proxies and supports both TCP and UDP as well as IPv6 and name resolution for

proxy requests.

This approach is particularly useful to enable any networking application to use GNS

names, but requires in a multi-user setup a per-user proxy instance. The use of a proxy

requires to configure every application manually, especially when the application does not

support to retrieve proxy information from the operating system environment.

With the gnunet-gns-proxy, we enable networking applications to establish connec-

tions using GNS or DNS names. When the gnunet-gns-proxy is instructed to establish

a connection using a GNS name, the proxy resolves GNS using the local GNS installation.

The gnunet-gns-proxy collaborates with GNS service to resolve the GNS names.

To link information scattered over different systems together with GNS, we introduced

in Section 6.6.3 the idea of relative names for GNS. GNS uses relative names which have

to be interpreted relative to the current zone of origin, similar to relative URLs commonly

used with web sites.

When Alice creates a website and puts a link to Bob’s web server (she can access

using www.bob.gnu) on the site, she uses the relative name www.bob.+ for the link.

When Dave accesses Alice’s website using www.alice.gnu the the link on the website with

the relative name www.bob.+ has to be rewritten to www.bob.alice.gnu since alice.gnu

is the current zone of origin. This translation is provided by the GNS proxy server which

translates GNS names on websites according to the current zone of origin. This rewriting

6.8. Implementation of GNS 197

is depicted in Figure 6.12. Issues related with this approach are URLs created on the

client-side for example with JavaScript or URLs stored in cookies.

GNS Proxy AliceDave GET www.alice.gnu GET www.alice.gnu

HREF=“www.bob.alice.gnu” HREF=“www.bob.+”

Fig. 6.12: Using Relative GNS Names with the Web

An additional issue when integrating GNS with Web surfing, is the use of HTTPS.

HTTPS provides secure communication using X.509 certificates. A web server provides

a X.509 certificate binding a name to a certificate to the client, the client can use to

establish a secure connection. With X.509 and GNS, these certificates contain the Fully

Qualified Domain Name (FQDN) of the web server. This approach is not useful with GNS,

since GNS names are not globally unique and cannot be included in a X.509 certificate.

GNS uses a GNS specific LEHO record type, containing the LEgacy HOstname to use when

verifying the certificate received. GNS-PROXY uses the name contained in the LEHO record

to verify the certificate. To prevent clients like browsers to display a warning to the user

(since they accessed a GNS name but received a X.509 certificate for a different name),

the gnunet-gns-proxy can create X.509 certificates on the fly containing the correct

GNS hostname. To create these certificate, the gnunet-gns-proxy realizes a X.509

certification authority, which has to be trusted by the browser validating the certificates

provided by the proxy. Therefore, it is important to run the proxy directly with the user

to prevent adversaries using the proxy to offer malevolent certificates to the user. This

approach is depicted in Figure 6.13.

GNS Proxy

GNS Proxy CA

AliceDave https://www.alice.gnu https://www.alice.gnu

CNAME=“www.alice.gnu” CNAME=“www.alice.com’

Fig. 6.13: Using GNS Names with the HTTPS

A similar issue is related to virtual hosting, where multiple websites are hosted under

one IP address. Here the HTTP client includes a header in the HTTP request to specifying

which host he wants to access. With DNS the FQDN is included in the header, an

approach not suitable with GNS. Therefore, the proxy includes the FQDN obtained from

the LEHO record in the HTTP header.

However, compared to native support by browsers, using a proxy has the disadvantage

that dynamic links, which might be generated by (e.g. JavaScript) code executing within

the browser, cannot be translated. Native support for GNS by browsers would improve

security and usability.

Another issue the client proxy tackles is the Same-Origin-Policy (SOP) imposed by

modern browsers. The SOP forbids scripts or cookies to access a different name in

the domain namespace. For example, if a user browses www.example.gnu JavaScript

code from www.example.com is forbidden to run due to SOP. This can be an issue as the

cookies and JavaScript code might use the legacy hostname instead of the GNS name and

would then be ignored in accordance with SOP. To solve this issue, the proxy translates

links pointing to the LEHO name and modifies the domain names in cookies to satisfy the

198 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

SOP. This is implemented using HTML rewriting and the use of Cross-Origin-Resource-

Sharing [vK14].

6.8.12 Accessing GNS from DNS

With GNS we, in addition to integrate GNS with DNS, provide the possibility for users

only using DNS, to access GNS information from within DNS. This allows GNS users

to make their services available to DNS users and enables DNS users to access services

available with GNS.

We provide a DNS-to-GNS gateway acting as an intermediary between DNS and

GNS. When this gateway software is installed on a GNS enabled system and functions as

a DNS server, authoritative for a DNS domain, on the other hand, it is possible to access

(absolute) GNS names from DNS as subdomains of the domain the server is authoritative

for. The gateway receives DNS requests for the DNS domain it is authoritative for and

resolves names in subdomains as names in GNS as an absolute name.

The DNS-to-GNS gateway is useful to allow legacy systems to access the GNS dis-

tributed database without installing GNS or changing their system configuration. We

have registered a domain name in DNS (“zkey.eu”) where the DNS authority passes all

requests on to GNS. Anyone controlling a name in DNS can use the DNS-to-GNS gateway

software to create such a gateway.

While this approach can help users to access GNS information without installing GNS,

it only offers advantages with respect to security and censorship-resistance if the gateway

operator and the network to the gateway can be trusted. Using a DNS domain as an entry

point makes this approach susceptible to all issues described with DNS in the previous

sections, allowing such a service to be easily monitored and censored.

6.9 Related Work and Comparison

Besides the systems mentioned before, there are other approaches to make DNS resilient

against failures and attacks. The approaches described in the following sections are pre-

sented here, even though they have a different focus, goal or adversary model.

6.9.1 OpenDNS

OpenDNS, previously mentioned in Section 6.4.2, is an commercial DNS service, providing

DNS services to customers as an alternative to using ISPs’ DNS servers. “Open” refers to

the property to accept name resolution requests from all sources. Its revenue is based on

providing an ad-based service and paid premium services and OpenDNS provides additional

services including phishing filter, domain blocking and typo correction.

Most important with respect to this work, OpenDNS fully supports CurveDNS to en-

crypt and authenticate DNS communication between resolvers and authoritative servers.

To provide confidentiality for users, OpenDNS also supports to encrypt communica-

tion between OpenDNS servers and users using DNSCrypt13. DNSCrypt uses similar

to CurveDNS ECC with Curve25519 [Ber06] to authenticate DNS responses between

users and OpenDNS servers.

OpenDNS aims to increase security for users by adding confidentiality and authentica-

tion to DNS communication but (based in its business model) still relies on existing DNS.

This approach does not help against the adversary used in this paper, since our adversary

13 http://www.opendns.com/about/innovations/dnscrypt/

http://www.opendns.com/about/innovations/dnscrypt/

6.9. Related Work and Comparison 199

still can make name mappings change or fail by tampering directly with the authoritative

name servers. Since OpenDNS is a company falling under jurisdiction and legal power of

a state, a censor could also try to put pressure on OpenDNS directly.

6.9.2 Namecoin

An alternative to DNS is the Namecoin system, described in [Swa11a], based on the

idea of the Bitcoin cryptographic currency. Bitcoin is intended as an alternative digital

currency, as described in [Nak08], not requiring any centralized authorities to create money

or perform transfers.

Since with Bitcoin no centralized authority is required, a common history and consensus

within the peer-to-peer network is required. With Bitcoin this is achieved by having a

public transaction and consensus log. This public consensus log, in Bitcoin called the

block chain, is a central and important component for crypto currencies. Bitcoin’s block

chain contains information about the history of all transactions with a cryptographically

signed timestamp. It is used to achieve a consensus in the network on transactions and to

prevent double spending, a hard to solve issue with electronic currencies. This system is

used as a proof-of-work system, since to append a new block to the chain, the solution of

a computational expensive cryptographic problem has to be computed. With Bitcoin the

proof required is to find a partial hash collision of a SHA256 hash: a client has to increase

an initial starting value, the nonce, and apply the SHA256 hash function two times, until

the resulting has a certain number of leading zeros. If such a collision is found, a new

block can be appended to the block chain and in addition new bitcoins are generated. A

bitcoin is a monetary unit of value in this system. It is created by solving these proofs of

work to append blocks to the block chain. The longest block chain is the one peers in

the network have consensus about representing the current state of the system: the block

chain cannot be changed, because to do so all prior work would have to be repeated.

Aaron Swartz had the idea [Swa11a] that decentralized electronic currencies and de-

centralized name systems basically have the same challenges and issues. Therefore, he

suggested to transfer the Bitcoin idea to a decentralized alternative naming system called

Namecoin. Namecoin is a decentralized name system providing a generic and decentral-

ized key/value store serving as an alternative DNS system. It is based on the Bitcoin

system, but uses a different block chain. It is designed to securely register and trans-

fer names in a censorship-resistant way with a peer-to-peer based infrastructure without

trusted authorities. It is supposed to not only be used as an alternative to DNS, but also

as a generic key/value store used for any application like identity, messaging, voting or

login systems and many many more.

In Namecoin names are registered within a transaction of a small fee in the system of

the cryptographic currency. The transaction is directed to no one, so the transaction fee

will be destroyed. It only ensures that names cannot be registered in unlimited number.

All these registrations/transfers are broadcast within the system. Miners, the nodes trying

to find the proofs-of-work, collect these registrations in a block and try to find the proof-

of-work hash collision. If a node finds the required collision, it broadcasts the block in the

network. Peers now start to work on the next block based on the hash of this block. The

system also provides the possibility to transfer the possession of a name from user to user

with a transaction in the system. Within such an transaction, the name and the value are

included. When a block is added to the chain this registration is fixed within the block

chain. Names have to be renewed about every 250 days with an additional transaction.

To resolve a name a client has to check the blockchain if the name is contained in it.

200 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

With Namecoin it is possible to square Zooko’s triangle and achieve all three properties

of Zooko’s triangle at the same time: memorable, global and secure names. Names are

globally unique since with the blockchain a consensus in the network about the current

state of the system and therefore all registered names exist. Names are memorable since

they are explicitly chosen that way when registering these names. But with initial cheap

cost when bootstrapping the system, the problem of name squatting exists. Initially the

registration cost of names are low and therefore early adopters register names with the

expectation to sell these names when the system is popular. So with Namecoin, names are

an economic object possessed by an owner and are object of trade and economic behavior.

The system is said to be secure, since with a majority of benign nodes in the network,

the consensus of the block chain cannot be attacked. This assumption is only valid with

an adversary model weaker than the adversary model used for this work. Note that our

adversary model is not a far-fetched assumption in this context: as we saw with recent

revelations about a single mining pool in the Bitcoin network possessing more than 51%

of the computational power in the network [Far14a], it is conceivable that a nation-state

can muster more resources than the small number of other entities that participate in

the system, especially for systems used as an alternative in places where censorship is

encountered or during the bootstrapping of the network, when only a small number of

users participate.

Security can also be lowered by the concept of the Namecoin resolution process: a

client resolving a name has to be in possession of the complete block chain to validate a

name. The complete block chain can be large in size and therefore not be available on

devices with restricted resources. These devices would then have to rely on third party

resolvers and so creating a trusted third party, which may not be trustworthy or may be

manipulated, just like in DNS.

6.9.3 TrickleDNS

Another system with similar goals is TrickleDNS, an extension to DNS that pushes (“crit-

ical”) DNS records between DNS resolvers of participating domains to provide “bet-

ter availability, lower query resolution times, and faster update propagation” [SCSR12].

TrickleDNS is focused on defeating attacks on the availability (and performance) of record

propagation in DNS, for example via Distributed Denial of Service (DDoS) attacks on DNS

root servers. TrickleDNS is thus only concerned with ensuring distribution of authoritative

records.

6.9.4 CoDNS

CoDNS, described in [PPPW04], is an approach to increase the reliability and resilience

of the existing DNS system. CoDNS tries to increase the possibility of successful name

lookup operations in case of a name server failure. Therefore, they provide the possibility of

collaborative lookup operations. If a local name server fails, the client can use the CoDNS

network to resolve the name. CoDNS is based on a large number of geographically

distributed nodes which provide a DHT based DNS cache. These nodes cache DNS

information in the DHT and all peers can retrieve this information for resolution processes

from the DHT.

CoDNS’s focus is to achieve resilience in case of technical issues by replicating infor-

mation over a DHT. Against an adversary directly manipulating DNS information with the

organizations providing this information or monitoring DNS traffic this approach cannot

help.

6.10. Use Cases for GNS 201

6.9.5 Unmanaged Internet Architecture

Our idea shares some properties with the name system in the Unmanaged Internet Ar-

chitecture (UIA) [For08], as both systems are inspired by SDSI/SPKI. In UIA, users can

define personal names bound to self-certifying cryptographic identities and can access

namespaces of other users. UIA’s focus is on universal connectivity between a user’s

many devices. With respect to naming, UIA takes a clean-slate approach and simply as-

sumes that UIA applications use the UIA client library to contact the UIA name daemon

and thus understand the implications of relative names. In contrast, GNS was designed

to inter-operate with DNS as much as possible, and we have specifically considered what

is needed to make it work as much as possible with the existing Internet. In terms

of censorship-resistance, both systems inherit basic security properties from SDSI/SPKI

with respect to correctness. UIA’s main focus is to provide a decentralized approach to

connect user devices and to allow users to communicate with each other. UIA assumes

users to communicate most of the time in local environment. Due to this assumption does

UIA not focus on user privacy and censorship-resistance. Devices in a local environment

try to automatically locate each other and to exchange information. [For08] proposes

that information exchange could be restricted to device groups the respective devices are

interested in, but this approach is proposed for performance reasons and not to improve

the system’s privacy.

6.10 Use Cases for GNS

While using GNS primarily as an alternative to DNS may seem appealing, there are other

applications where GNS is much more likely to succeed as DNS has failed to be com-

petitive. In particular, we are deploying GNS in the broader domain of social networking

applications, as GNS is a natural fit when it comes to handling social relationships.

6.10.1 Telephony

A simple use case for GNS is to use GNS for peer-to-peer voice applications. Existing

peer-to-peer voice applications, such as Skype, typically use a centralized service for user

authentication. This is highly problematic as this is one place where attacks can be

mounted against the system, from denying access to interception and impersonation.

We implemented Conversation (Figure 6.14), a peer-to-peer voice application in-

cluded in GNUnet which uses GNS to establish a secure connection between the partici-

pants. Conversation strongly benefits from the possibility to extend GNS with additional,

application-specific record types. When Conversation is started, it automatically creates

a PHONE record in the GNS zone of the local user. A call can then be made by specifying

the respective GNS domain name. The name is then resolved to obtain the PHONE record,

which includes the necessary addressing information to initiate a secure channel to the

callee.

From the user’s perspective, a GNS zone in Conversation is simply an address book,

and our Graphical User Interface (GUI) allows the user to manipulate the contents of a

GNS zone as if it were a simple address book: Alice can add entries (via copy-and-paste)

and call bob.gnu if “bob” is in her address book. In Conversation, the address book of

a user contains PHONE records, CNAME records (aliases) and PKEY records (public keys) as

depicted in Figure 6.14. The user specifies the “Target” of the call using a GNS name. If

Bob calls Alice, she will see that the call is from bob.gnu, because the reverse lookup of

Bob’s public key results in bob.gnu. If the reverse lookup fails, Conversation displays an

202 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

Fig. 6.14: Screenshot of the Conversation User Interface

identifier in the .zkey TLD with the respective public key of the caller as the label. The

callee can then choose to import the caller’s public key to his address book.

Thus, in Conversation the public key of a GNS zone functions as the caller identity.

Naturally, a GNS user can create many zones as described in Section 6.6.2. Consequently,

a Conversation user can easily assume many identities, which are called egos in Conver-

sation. This way, a user can assume multiple identities to easily separate professional and

personal interactions.

Note that Conversation does allow users to benefit from GNS’ delegations. For exam-

ple, Bob could choose to make carol.gnu a public record in his address book and then

tell Alice to call “carol”. Alice could then call Carol using carol.bob.gnu as she got the

referral from Bob — and if Bob was trustworthy, she would be assured of a connection to

the correct Carol. As described with automatic shortening in Section 6.6.5, Alice’s GNS

can then shorten carol.bob.gnu to carol.gnu such that her future interactions with

Carol no longer depend upon Bob.

6.10.2 Decentralized Online Social Networking

Most current alternatives to centralized online social networks use a federated architec-

ture [vdV13]. In these architectures, social data is still hosted at more or less centralized

servers, and identities are still represented using accounts of the form username@host (or

the equivalent host/∼username). This is a key reason why federated architectures offer

at best minimal privacy benefits over centralized systems.

GNS offers a natural, secure and decentralized way to name users in online social

networks. As with Conversation, GNS can easily function as an address book for social

circles, and the initial key exchange can be facilitated via the usual social interactions

of the respective groups. Unlike certain commercial offerings, GNS users will enjoy the

benefits of being able to create multiple egos and thus are more able to segregate their

online identities when desired.

At the time of writing this work, a concrete design for a fully decentralized peer-to-

peer social networking application using GNS in combination with an extensible messaging

protocol exists [Tot13] and the community is working on its implementation.

6.10. Use Cases for GNS 203

6.10.3 Messaging

A first simple application to use GNS for messaging is to store Pretty Good Privacy

(PGP)/GnuPG public keys in GNS. Once users do this, GNS provides an alternative to

the Web of Trust (WoT). However, unlike the WoT, GNS provides query privacy. Further-

more, the identity model is different. In key signing parties for the WoT, users are expected

to correctly perform a complicated seven-step process14 to assure that government-issued

identity cards match e-mail addresses, thus linking PGP keys to DNS information and real-

world identities. This is problematic as DNS and mail server operators can theoretically

change the identity associated with an e-mail address. Furthermore, the use of real-world

identities makes the protocol fundamentally unsuitable for users that would like to be

pseudonymous.

With GNS, the key exchange protocol can be dramatically simplified. After creating

his key, Bob only needs to give his public key to Alice via a secure channel. Alice then

assigns a label for the key (or confirms the suggested nickname) in her zone.

Naturally, given that GNS can contain more information than just the PGP key, it will

be possible to use GNS as a PKI for the various “secure” messaging systems that are

currently being developed. In most of these designs, users still rely on the provider of the

“secure” messaging system to provide some form of identity management. Systems like

ZRTP [ZJC11] and PANDA15 that side-step the identity provider issue using out-of-band

information can be easily integrated with GNS to facilitate the GNS key exchange as well,

broadening the utility of these mechanisms beyond their current domain.

6.10.4 DNSSEC Done Right: Securing the Web

Many of the envisioned benefits of DNSSEC are currently not realized as DNSSEC sig-

natures are typically only validated by the ISP’s resolver and not by the stub resolver of

the end-user. Furthermore, even if DNSSEC records were validated by the stub resolver,

existing legacy DNS resolution APIs fail to provide validation information to the applica-

tions. Finally, legacy DNS resolution APIs also fail to expose details of most DNS record

types (such as TLSA records) to the application. Thus, to really benefit from DNSSEC a

major overhaul of existing applications and operating system functions would be needed.

Even on the provider side further changes are needed, as for example many commercial

DNS providers currently do not support users adding DNSSEC, TLSA or other “unusual”

record types to their hosted zones.

The situation is much simpler with GNS’ clean slate approach. GNS-enabled appli-

cations always receive the locally cryptographically verified, decrypted raw values for all

record types. Furthermore, the GNS zone management GUI makes it easier to plugin

support for additional record types and can, for example, create advanced DNS records

such as TLSA records. The user can remain unaware of the technical details when creating

TLSA records in the GNS zone management interface as depicted in Figure 6.15.

With respect to using TLSA records to secure connections of legacy Web clients, we

have created an HTTP SOCKS proxy that enables legacy applications to resolve domain

names via GNS (or DNS, depending on the TLD). Furthermore, the proxy automatically

validates TLS connections, using X.509 for DNS and TLSA records (if present) for GNS.

If the validation is successful, the proxy acts as a certificate authority and uses its own

private key to certify the GNS name to the application using an X.509 certificate that is

created on-the-fly. The legacy HTTP client using the proxy must be configured to accept

14 https://wiki.debian.org/Keysigning
15 https://pond.imperialviolet.org/tech.html

https://wiki.debian.org/Keysigning
https://pond.imperialviolet.org/tech.html

204 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

Fig. 6.15: GNS User Interface to Create TLSA Records

the public key of the proxy’s certificate authority. As the proxy is expected to run on the

local host, this has the effect of end-to-end certificate validation using TLSA records.

6.10.5 Other Applications

Other applications that would be a good fit for GNS include naming for Tor hidden services

(memorable names for “.onion”), and assigning names for the future Internet-of-Things

where effectively each user will need to manage his own namespace to address the plethora

of embedded networked devices under his control.

6.10.6 Synergy

GNS as a name system, public key infrastructure and identity management approach is

not limited to one particular application domain. However, once users start to populate

their zones for one application, they can trivially use the resulting structure for all of

the other GNS-enabled applications. For example, Alice might follow Bob’s social status

updates at social://bob.gnu/, visit his website at https://bob.gnu/ and call him

using conversation://bob.gnu/.

6.10.7 Out-of-Band Exchange of Zone Information

To be able to resolve names from other users it is required to establish a relationship

between users and exchange zone information between users to be able to securely resolve

names from other users. While in trust-based systems like the PGP’s WoT a complicated

seven step exchange and verification process is required, as described in Section 6.10.3,

GNS provides a convenient way to introduce new delegation relationship between zones.

When a trusted secure online channel between users is already established, it is possible

to exchange GNS information via this channel. GNS zone information can be easily

exported as human-readable URI and can be imported using the gnunet-uri tool. A

GNS URI contains the public of the zone to import and the desired nickname the user

6.11. Conclusion and Findings 205

specified. When using the gnunet-uri tool to import such an URI, the tool automatically

creates the zone delegation for the new zone in GNS.

With GNS, we provide to encode GNS zone information in QR codes and exchange

this information bound to an identification of the person as an out-band-band mechanism.

An example for a business card containing a GNS QR-code is depicted in Figure 6.16. The

QR-codes contains the GNUnet URI and can be read using any standard QR reader. With

gnunet-qr, we provide a tool to read QR code using a web cam and automatically invoke

the gnunet-uri tool to import the information contained in the code.

Technischen Universität München
Free Secure Network Systems Group

Tel
Fax

+49.289.187037
+49.289.187033

wachs@net.in.tum.de
http://www.net.in.tum.de /wachs
GPG Fingerprint:
8568 6A9A 6C06 41D8 7E11
DD14 416F E981 A701 A336

Dipl.-Inform.

Matthias Wachs

Technischen Universität München
Free Secure Network Systems Group

Tel
Fax

+49.289.187037
+49.289.187033

wachs@net.in.tum.de
http://www.net.in.tum.de /wachs
GPG Fingerprint:
8568 6A9A 6C06 41D8 7E11
DD14 416F E981 A701 A336

Dipl.-Inform.

Matthias Wachs

Technischen Universität München
Free Secure Network Systems Group

Tel
Fax

+49.289.187037
+49.289.187033

wachs@net.in.tum.de
http://www.net.in.tum.de /wachs
GPG Fingerprint:
8568 6A9A 6C06 41D8 7E11
DD14 416F E981 A701 A336

Dipl.-Inform.

Matthias Wachs

Technischen Universität München
Free Secure Network Systems Group

Tel
Fax

+49.289.187037
+49.289.187033

wachs@net.in.tum.de
http://www.net.in.tum.de /wachs
GPG Fingerprint:
8568 6A9A 6C06 41D8 7E11
DD14 416F E981 A701 A336

Dipl.-Inform.

Matthias Wachs

Technischen Universität München
Free Secure Network Systems Group

Tel
Fax

+49.289.187037
+49.289.187033

wachs@net.in.tum.de
http://www.net.in.tum.de /wachs
GPG Fingerprint:
8568 6A9A 6C06 41D8 7E11
DD14 416F E981 A701 A336

Dipl.-Inform.

Matthias Wachs

Technischen Universität München
Free Secure Network Systems Group

Tel
Fax

+49.289.187037
+49.289.187033

wachs@net.in.tum.de
http://www.net.in.tum.de /wachs
GPG Fingerprint:
8568 6A9A 6C06 41D8 7E11
DD14 416F E981 A701 A336

Dipl.-Inform.

Matthias Wachs

Technischen Universität München
Free Secure Network Systems Group

Tel
Fax

+49.289.187037
+49.289.187033

wachs@net.in.tum.de
http://www.net.in.tum.de /wachs
GPG Fingerprint:
8568 6A9A 6C06 41D8 7E11
DD14 416F E981 A701 A336

Dipl.-Inform.

Matthias Wachs

Technischen Universität München
Free Secure Network Systems Group

Tel
Fax

+49.289.187037
+49.289.187033

wachs@net.in.tum.de
http://www.net.in.tum.de /wachs
GPG Fingerprint:
8568 6A9A 6C06 41D8 7E11
DD14 416F E981 A701 A336

Dipl.-Inform.

Matthias Wachs

Technischen Universität München
Free Secure Network Systems Group

Tel
Fax

+49.289.187037
+49.289.187033

wachs@net.in.tum.de
http://www.net.in.tum.de /wachs
GPG Fingerprint:
8568 6A9A 6C06 41D8 7E11
DD14 416F E981 A701 A336

Dipl.-Inform.

Matthias Wachs

Technischen Universität München
Free Secure Network Systems Group

Tel
Fax

+49.289.187037
+49.289.187033

wachs@net.in.tum.de
http://www.net.in.tum.de /wachs
GPG Fingerprint:
8568 6A9A 6C06 41D8 7E11
DD14 416F E981 A701 A336

Dipl.-Inform.

Matthias Wachs

Fig. 6.16: A Business Card Containing a GNS QR-Code

6.11 Conclusion and Findings

With the GNU Name System, we have presented a fully decentralized, censorship-resistant

privacy-preserving name system and public key infrastructure. Already from the develop-

ment of DNSSEC it seems logical that name systems and public key infrastructures should

merge in the future. The PGP Web-of-Trust also already links identities, keys, and names

(in the form of e-mail addresses). Having a unified system for name, identity, and key

management is thus the next logical step. Specifically, we expect that the identity man-

agement functionality of the GNU Name System will result in names that are not merely

used to address network services, but also individuals and their pseudonyms. Having

such an integrated system will simplify the realization of end-to-end encrypted messaging

systems, as keys can be easily linked to the names used for addressing.

As the world is not inherently hierarchical, it is logical that future name systems should

depart from the restrictions imposed by a tree structure, and instead opt for directed

graphs as they are more flexible and robust. That does not mean hierarchical addressing

is dead. Users and services are still likely to be assigned names in the various hierarchies

that they participate in. However, the same GNS zone may be reachable via multiple

hierarchies, and users may choose to use different entry points into the various planned

structures. For example, a community may build a hierarchy to address community services

(service.neighborhood.city.county.community), but citizens of city are likely to

establish a direct link with their local organization (city), making the operation of the

local organization largely independent of that of county and community.

By encrypting the record data in the network, the GNU Name System enables applica-

tions that were previously impossible. In particular, by using passwords for the labels, the

name system can now be used for authentication based on a shared secret. One possible

application for this technique is TCP Stealth [Kir14], an extension of TCP where the user

206 6. GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System

must authenticate himself within the first SYN packet. The GNU Name System could be

used to easily communicate the shared secret to users that are aware of the name of the

service, while hiding the existence of the TCP server from brute force attacks using port

scanning. We expect further applications will be created based on this new possibility of

communicating non-public information via the name system.

To have a system like GNS being adopted by users, it is important to not require users

to learn how to use a system but just use it. When designing GNS, we focused on adapting

the syntax for names known from DNS and to integrate the namespaces provided by GNS

and DNS. At the moment integration of GNS with applications does not perfectly cover

all possible use cases as we saw with integration in the name resolution process or web

surfing. But we showed that it is possible to integrate GNS with existing applications

and usage patterns. Operating systems and applications with native support for GNS and

improved tools for users to use and administer GNS are therefore a desirable functionality

for the future.

7. CONCLUSION AND FINDINGS

In this work, we have presented an architecture for building a decentralized and censorship-

resistant overlay network as a foundation for future decentralized networking applications.

The work was set out to explore the requirements to re-establish unrestricted end-to-

end connectivity between users in a peer-to-peer network by realizing a communication

infrastructure overcoming limitations with respect to restricted end-to-end connectivity

and best-effort communication on today’s Internet and being resistant against degradation

and censorship attempts. Unrestricted communication between participants is in particular

important for decentralized peer-to-peer networks as they strongly rely on the possibility to

establish connections between participants and are often affected by service degradation

attempts. In addition, this work has focused on how a secure, resilient, and censorship-

resistant security infrastructure for the use with future secure Internet applications can be

realized. Such an infrastructure is, in combination with resilient communication between

users, important for the realization of future decentralized applications to allow users to

refer to services and other information in a secure and privacy-preserving way. Existing

hierarchical architectures have inherent problems causing issues with respect to the user’s

privacy and censorship-resistance of the system. This work sought to answer the following

questions:

• What are restrictions to end-to-end connectivity and best-effort communication on

today’s Internet? How do adversaries try to prevent access to information and

services on the Internet?

• Does the Internet provide a suitable foundation to re-establish end-to-end commu-

nication between users with a resilient peer-to-peer overlay?

• What are the requirements and a possible design for a secure and censorship-resistant

communication infrastructure?

• How can a communication infrastructure support multiple communication protocols

and optimally satisfy applications with a priori unknown requirements in a dynamic

peer-to-peer environment?

• How can services and information be accessed in a resilient, decentralized and

privacy-preserving way without relying on centralized authorities?

The main findings found in this work with respect to these questions are:

• A main restriction towards end-to-end connectivity between participants of a peer-

to-peer network are approaches to mitigate the exhaustion of IPv4 addresses like

NAT, CGN, or DS-Lite, often employed by ISPs and particularly affecting users

in perimeter networks. In addition, security appliances can impose limitations to

end-to-end connectivity. Traffic management and degradation attempts impact

best-effort communication on today’s Internet.

208 7. Conclusion and Findings

• Manipulation and censorship of the DNS is an easy to realize and therefore often

employed approach to make services unavailable or remove information from the

Internet. Name systems are a key service for the functioning of the Internet but

current architectures are prone to censorship due to their design and names being

owned by organizations. Efforts to extend DNS with source authentication and

integrity do not help against an adversary modeled after a nation state.

• Security infrastructures, like the X.509 public key infrastructure, suffer from the

same problems as hierarchical name systems and do not withstand an adversary as

the one used with this work as they both rely on a hierarchical architecture. On

today’s Internet, these security infrastructures play an important to provide secure

communication but are not suitable for the use with future decentralized applications

and alternative approaches are required.

• The Internet can provide a suitable infrastructure as its routing infrastructure is sur-

prisingly resilient against failures of networks and communication links. It requires a

large numbers of networks or links to fail to partition the Internet and impact routing

in a peer-to-peer overlay. Special focus has to be put on making communication

resilient for perimeter networks, not as well connected as networks in the Internet’s

core.

• A design for a communication infrastructure has to focus on four aspects: increas-

ing connectivity for peers in restricted environments, counteracting degradation at-

tempts, providing communication in case of failing communication infrastructure,

and allowing users to name services and other information in a secure way. Providing

mechanisms to increase connectivity and detect degradation attempts and switching

to an alternative mean of communication can be key approaches such an infrastruc-

ture can employ in combination with the use of a decentralized name system and

security infrastructure to refer to entities on the network in a censorship-resistant

way.

• A communication infrastructure has to pay respect to both requirements of higher-

layer applications and communication properties when finding the optimal commu-

nication mechanism and distributing resources. Combining address selection and

resource allocation in an integrated approach provides better solutions than solving

both problems separately.

• Existing name systems and security infrastructures suffer from inherent problems

due to their design and are not suitable for the use in decentralized peer-to-peer

systems and as a foundation for future secure Internet applications. Privacy and

security are main requirements for an alternative approach, not provided by current

systems and or alternative approaches when using a strong adversary as the one

used in this work. An alternative system can be based on human-memorable names

which are not globally unique. The missing feature of uniqueness can be mitigated

by linking local namespaces and additionally providing a namespace with absolute

but not memorable names.

• An alternative security infrastructure should unify the functionalities of name sys-

tems and security infrastructures.

The communication infrastructure presented in this work tries to tackle both require-

ments to provide resilient communication between users and to provide a secure and

7.1. Future Work 209

censorship-resistant way to refer to services and information in the network. As with our

communication infrastructure both application requirements as well as the tactics deployed

by adversaries to free communication vary and can change over time, a key concept of

our solution is using an extensible architecture: from pluggable transports to pluggable re-

source allocation strategies to pluggable record types in the name system. While we could

demonstrate that the strategies developed in this thesis work as expected to address our

pre-conceived notions of system requirements and adversarial behavior, the real strength

is in the flexibility of the design. Like with TCP congestion control, we expect that the

specific details will continue to evolve with the underlying network, application require-

ments and the adversary and therefore provide a system which provides the possibility to

adapt to changes in the future.

7.1 Future Work

One challenge for designing realistic network experiments to guide future evolution of

the presented methods will be to realize an approach for distributed experimentation and

privacy-preserving and secure data collection in deployed distributed systems. With a

decentralized system, we have the opportunity to test the system under realistic conditions

in real-world environments and directly with the user. But deploying, conducting and

controlling such experiments with a decentralized system, where participating nodes may

be distributed and may not be under the developers direct control, rises challenges with

respect to security and privacy and needs further investigation.

While the current system tries to detect and counteract network failures and degrada-

tion attempts, future work will also have to understand and analyze such events. Analyzing

anomalies in decentralized system with a developer’s, operator’s, or user’s restricted local

view is hard to achieve. To make communication resilient, it is also required to understand

the cause and the impact of anomalies in the underlying communication infrastructure used

and also in the peer-to-peer overlay. Here a promising first approach is currently realized

with the work done in [Tar14], presenting a design for a decentralized and resilient moni-

toring infrastructure for peer-to-peer networks which can serve as a foundation for future

research on this topic.

For the pluggable transports, one area where we expect that future extensions may

require non-trivial changes to the design and implementation is NAT traversal. We are

aware of dozens of different NAT traversal techniques, and our current design and imple-

mentation only supports a small fraction. Here an extensible architecture to extend the

infrastructure with new traversal approaches and to manage the traversal process is major

focus for the future. This also includes usability as such an approach should work without

user intervention or configuration.

An additional concern are existing, more generic systems for NAT traversal as many

of those approaches neglect security and privacy issues. Security and privacy are major

concerns on today’s Internet and in particular for a communication infrastructure as the

one presented in this work. Future work should therefore focus on providing secure,

privacy-preserving, and user-friendly alternatives to current NAT traversal techniques and

also pay attention to the requirements of decentralized networking applications.

Finally, a key issue this thesis does not investigate is usability. Our extensible design

may be flexible enough to provide robust communication in theory, but in practice it also

means that the system is complex to configure and use correctly. This is particularly

true for the GNU Name System, which will always require a bit more involvement from

end-users compared to DNS. Thus, one key challenge will be to hide this complexity from

210 7. Conclusion and Findings

the user and to, where possible, automatically configure the system to achieve usability,

performance, and security.

Bibliography

[3rd11] D. Eastlake 3rd. Transport Layer Security (TLS) Extensions: Extension

Definitions. RFC 6066 (Proposed Standard), January 2011.

[AA04] D. Atkins and R. Austein. Threat Analysis of the Domain Name System

(DNS). RFC 3833 (Informational), August 2004.

[AAL+05a] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security

Introduction and Requirements. RFC 4033 (Proposed Standard), March

2005. Updated by RFCs 6014, 6840.

[AAL+05b] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol Modi-

fications for the DNS Security Extensions. RFC 4035 (Proposed Standard),

March 2005. Updated by RFCs 4470, 6014, 6840.

[AAL+05c] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Resource

Records for the DNS Security Extensions. RFC 4034 (Proposed Standard),

March 2005. Updated by RFCs 4470, 6014, 6840, 6944.

[AAMS01] Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper. IANA Guidelines for

IPv4 Multicast Address Assignments. RFC 3171 (Best Current Practice),

August 2001. Obsoleted by RFC 5771.

[AKW09] Brice Augustin, Balachander Krishnamurthy, and Walter Willinger. Ixps:

mapped? In Proceedings of the 9th ACM SIGCOMM conference on Internet

measurement conference, IMC ’09, pages 336–349, New York, NY, USA,

2009. ACM.

[Alp04] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.

[Ano12] Anonymous. The collateral damage of internet censorship by dns injection.

ACM SIGCOMM Comp. Comm. Review, 42(3):22–27, July 2012.

[AvEM12] Hadi Asghari, Michel van Eeten, and Milton Mueller. Unraveling the eco-

nomic and political drivers of deep packet inspection. Technical report, Delft

University of Technology, November 2012.

[AZH09] Riyad Alshammari and A Nur Zincir-Heywood. Machine learning based en-

crypted traffic classification: identifying ssh and skype. In Computational

Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE

Symposium on, pages 1–8. IEEE, 2009.

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Ar-

chitecture for Differentiated Services. RFC 2475 (Informational), December

1998. Updated by RFC 3260.

212 BIBLIOGRAPHY

[BDL+11] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin

Yang. High-speed high-security signatures. In Bart Preneel and Tsuyoshi

Takagi, editors, CHES, volume 6917 of Lecture Notes in Computer Science,

pages 124–142. Springer, 2011.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin

Yang. High-speed high-security signatures. Journal of Cryptographic Engi-

neering, 2(2):77–89, 2012.

[Ber] Daniel J. Bernstein. Notes on the domain name system. http://cr.yp.

to/djbdns/notes.html. accessed: 2014-07-7.

[Ber06] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In

Public Key Cryptography - PKC 2006, 9th International Conference on

Theory and Practice of Public-Key Cryptography, volume 3958 of Lecture

Notes in Computer Science, pages 207–228. Springer, 2006.

[Ber08] Daniel J. Bernstein. Dnscurve: Usable security for dns. http://dnscurve.

org/, August 2008. accessed: 2014-10-08.

[Ber14] Michael Berkens. ICANN Votes To Kills .Amazon. http://www.

thedomains.com/2014/05/17/icann-votes-to-kills-amazon/, May

2014. accessed: 2014-07-1.

[BHMW08a] R. Bless, C. Hübsch, S. Mies, and O. Waldhorst. The Underlay Abstraction

in the Spontaneous Virtual Networks (SpoVNet) Architecture. In Proc. 4th

EuroNGI Conf. on Next Generation Internet Networks (NGI 2008), pages

115–122, April 2008.

[BHMW08b] R. Bless, C. Hübsch, S. Mies, and O.P. Waldhorst. The underlay abstraction

in the spontaneous virtual networks (spovnet) architecture. In Next Gener-

ation Internet Networks, 2008. NGI 2008, pages 115 –122, April 2008.

[BJ93] Thang Nguyen Bui and Curt Jones. A heuristic for reducing fill-in in sparse

matrix factorization. In PPSC, pages 445–452, 1993.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol –

HTTP/1.0. RFC 1945 (Informational), May 1996.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier

(URI): Generic Syntax. RFC 3986 (INTERNET STANDARD), January

2005. Updated by RFC 6874.

[BLS10] George Dean Bissias, Brian Neil Levine, and Ramesh K. Sitaraman. Assess-

ing the vulnerability of replicated network services. In Proceedings of the

6th International COnference, Co-NEXT ’10, pages 24:1–24:12, New York,

NY, USA, 2010. ACM.

[BM95] S. Bradner and A. Mankin. The Recommendation for the IP Next Generation

Protocol. RFC 1752 (Proposed Standard), January 1995.

[Bon10] Paul S. Bonsma. Most balanced minimum cuts. Discrete Applied Mathe-

matics, 158(4):261–276, 2010.

http://cr.yp.to/djbdns/notes.html
http://cr.yp.to/djbdns/notes.html
http://dnscurve.org/
http://dnscurve.org/
http://www.thedomains.com/2014/05/17/icann-votes-to-kills-amazon/
http://www.thedomains.com/2014/05/17/icann-votes-to-kills-amazon/

BIBLIOGRAPHY 213

[BZB+97] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSer-

Vation Protocol (RSVP) – Version 1 Functional Specification. RFC 2205

(Proposed Standard), September 1997. Updated by RFCs 2750, 3936,

4495, 5946, 6437, 6780.

[CAG05] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4

Link-Local Addresses. RFC 3927 (Proposed Standard), May 2005.

[CB02] B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. RFC 3234

(Informational), February 2002.

[CCG+02] Qian Chen, Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scott

Shenker, and Walter Willinger. The origin of power-laws in internet topolo-

gies revisited. In INFOCOM, 2002.

[CET+11] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire. Internet

Assigned Numbers Authority (IANA) Procedures for the Management of

the Service Name and Transport Protocol Port Number Registry. RFC

6335 (Best Current Practice), August 2011.

[CK13] S. Cheshire and M. Krochmal. Special-Use Domain Names. RFC 6761

(Proposed Standard), February 2013.

[CM01] B. Carpenter and K. Moore. Connection of IPv6 Domains via IPv4 Clouds.

RFC 3056 (Proposed Standard), February 2001.

[CNP11] G. Camarillo, O. Novo, and S. Perreault. Traversal Using Relays around

NAT (TURN) Extension for IPv6. RFC 6156 (Proposed Standard), April

2011.

[Coh08] Bram Cohen. Bep 3: The bittorrent protocol specification. http://www.

bittorrent.org/beps/bep˙0003.html, February 2008. accessed: 2014-

06-04.

[Cow14] Pam Cowburn. Org’s blocked project finds almost 1 in 5 sites are

blocked by filters. https://www.openrightsgroup.org/blog/2014/

blockedproject, July 2014.

[CR06] Rami Cohen and Danny Raz. The internet dark matter - on the missing

links in the as connectivity map. In INFOCOM, 2006.

[Cro] Douglas Crockford. Base32 encoding. http://www.crockford.com/wrmg/

base32.html. accessed: 2014-07-10.

[CV10] M. Cotton and L. Vegoda. Special Use IPv4 Addresses. RFC 5735 (Best

Current Practice), January 2010. Obsoleted by RFC 6890, updated by RFC

6598.

[DA99] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed

Standard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546,

5746, 6176.

[Dan63] George Dantzig. Linear programming and extensions. Princeton Univ. Press,

August 1963.

http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
https://www.openrightsgroup.org/blog/2014/blockedproject
https://www.openrightsgroup.org/blog/2014/blockedproject
http://www.crockford.com/wrmg/base32.html
http://www.crockford.com/wrmg/base32.html

214 BIBLIOGRAPHY

[DCRS13] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.

Protocol misidentification made easy with format-transforming encryption.

In Proceedings of the 2013 ACM SIGSAC Conference on Computer #38;

Communications Security, CCS ’13, pages 61–72, New York, NY, USA,

2013. ACM.

[DD95] Wolfgang Domschke and Andreas Drexl. Einführung in die Operations Re-

search. Springer, 1995.

[DDWL11] A. Durand, R. Droms, J. Woodyatt, and Y. Lee. Dual-Stack Lite Broadband

Deployments Following IPv4 Exhaustion. RFC 6333 (Proposed Standard),

August 2011.

[Den14] Frank Denis. Dnscrypt protocol and implementation details. https://

github.com/jedisct1/dnscrypt-proxy/blob/master/TECHNOTES, Au-

gust 2014. accessed: 2014-09-17.

[DH98] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.

RFC 2460 (Draft Standard), December 1998. Updated by RFCs 5095, 5722,

5871, 6437, 6564, 6935, 6946, 7045, 7112.

[Din07] Roger Dingledine. Behavior for bridge users, bridge relays, and bridge au-

thorities. https://gitweb.torproject.org/torspec.git/blob/HEAD:

/proposals/125-bridges.txt, November 2007. accessed: 2014-10-08.

[DK12] Politi DK. Fejl blokerede internetsider kortvarigt. https:

//www.politi.dk/da/aktuelt/nyheder/2012/Fejl+blokerer+

internetsider+kortvarigt.htm, March 2012. accessed: 2014-10-

08.

[DMG+10] Marcel Dischinger, Massimiliano Marcon, Saikat Guha, Krishna P. Gum-

madi, Ratul Mahajan, and Stefan Saroiu. Glasnost: Enabling End Users to

Detect Traffic Differentiation. In Proceedings of the USENIX Symposium

on Networked Systems Design and Implementation (NSDI), 2010.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. In Proc. 13th USENIX Security Symposium, August

2004.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The

Advanced Encryption Standard. Springer Verlag, Berlin, Heidelberg, New

York, 2002.

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated by

RFCs 5746, 5878, 6176.

[DSKM12] Casey Deccio, Jeff Sedayao, Krishna Kant, and Prasant Mohapatra. Quan-

tifying dns namespace influence. Comput. Netw., 56(2):780–794, February

2012.

[EFL+99] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.

SPKI Certificate Theory. RFC 2693 (Experimental), September 1999.

https://github.com/jedisct1/dnscrypt-proxy/blob/master/TECHNOTES
https://github.com/jedisct1/dnscrypt-proxy/blob/master/TECHNOTES
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/125-bridges.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/125-bridges.txt
https://www.politi.dk/da/aktuelt/nyheder/2012/Fejl+blokerer+internetsider+kortvarigt.htm
https://www.politi.dk/da/aktuelt/nyheder/2012/Fejl+blokerer+internetsider+kortvarigt.htm
https://www.politi.dk/da/aktuelt/nyheder/2012/Fejl+blokerer+internetsider+kortvarigt.htm

BIBLIOGRAPHY 215

[EG11] Nathan S. Evans and Christian Grothoff. R5n : Randomized recursive rout-

ing for restricted-route networks. In 5th International Conference on Net-

work and System Security (NSS 2011), Milan, Italy, 09/2011 2011. IEEE,

IEEE.

[EGUV11] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese.

What’s the difference?: efficient set reconciliation without prior context.

In Proceedings of the ACM SIGCOMM 2011 conference, SIGCOMM ’11,

page 218–229, New York, NY, USA, 2011. ACM, ACM.

[EI96] Carl Ellison and Cybercash Inc. Establishing identity without certification

authorities. In 6th USENIX Security Symposium, pages 67–76, 1996.

[Ell99] C. Ellison. SPKI Requirements. RFC 2692 (Experimental), September 1999.

[Ess14] Loek Essers. German court finds domain registrar liable for torrent site’s

copyright infringement. http://www.itworld.com/print/403869, Febru-

ary 2014. accessed: 2014-10-08.

[Eur11] European Parliament. Resolution on the EU-US Summit of 28 November

2011, November 2011. P7-RC-2011-0577.

[Eva11] Nathan S. Evans. Methods for Secure Decentralized Routing in Open Net-

works. PhD thesis, Technische Universität München, Garching bei München,

August 2011.

[Far14a] Cyrus Farivar. After reaching 51% network power, Bitcoin mining pool

says “trust us”. http://arstechnica.com/security/2014/06/after-

reaching-51-network-power-bitcoin-mining-pool-says-trust-

us/, June 2014. accessed: 2014-10-08.

[Far14b] Cyrus Farivar. In sudden announcement, us to give up control of dns root

zone. http://arstechnica.com/tech-policy/2014/03/in-sudden-

announcement-us-to-give-up-control-of-dns-root-zone/, March

2014. accessed: 2014-07-25.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616

(Draft Standard), June 1999. Obsoleted by RFCs 7230, 7231, 7232, 7233,

7234, 7235, updated by RFCs 2817, 5785, 6266, 6585.

[FHC03] P. Faltstrom, P. Hoffman, and A. Costello. Internationalizing Domain

Names in Applications (IDNA). RFC 3490 (Proposed Standard), March

2003. Obsoleted by RFCs 5890, 5891.

[FHE+12] David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Dan Boneh,

Roger Dingledine, and Phil Porras. Evading censorship with browser-based

proxies. In Simone Fischer-Hübner and Matthew Wright, editors, Privacy

Enhancing Technologies, volume 7384 of Lecture Notes in Computer Sci-

ence, pages 239–258. Springer, 2012.

[Fin01] Seth Finkelstein. Thoughts On Winning An EFF Pioneer Award. http:

//www.spectacle.org/0401/sethf.html, March 2001. accessed: 2014-

10-15.

http://www.itworld.com/print/403869
http://arstechnica.com/security/2014/06/after-reaching-51-network-power-bitcoin-mining-pool-says-trust-us/
http://arstechnica.com/security/2014/06/after-reaching-51-network-power-bitcoin-mining-pool-says-trust-us/
http://arstechnica.com/security/2014/06/after-reaching-51-network-power-bitcoin-mining-pool-says-trust-us/
http://arstechnica.com/tech-policy/2014/03/in-sudden-announcement-us-to-give-up-control-of-dns-root-zone/
http://arstechnica.com/tech-policy/2014/03/in-sudden-announcement-us-to-give-up-control-of-dns-root-zone/
http://www.spectacle.org/0401/sethf.html
http://www.spectacle.org/0401/sethf.html

216 BIBLIOGRAPHY

[Fiv14] Kelly Fiveash. France frostily foists flat fizz fear on icann’s .wine

plans. http://www.theregister.co.uk/2014/06/23/winemakers˙

whine˙on˙about˙icann/, June 2014. accessed: 2014-10-08.

[FKK11] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL)

Protocol Version 3.0. RFC 6101 (Historic), August 2011.

[FM06] Uriel Feige and Mohammad Mahdian. Finding small balanced separators.

In Proceedings of the thirty-eighth annual ACM symposium on Theory of

computing, STOC ’06, pages 375–384, New York, NY, USA, 2006. ACM.

[For03] UPnP Forum. UPnP device architecture 1.0, December 2003.

[For08] Bryan Alexander Ford. UIA: A Global Connectivity Architecture for Mobile

Personal Devices. PhD thesis, Massechusetts Institute of Technology, 2008.

[Fou] Free Software Foundation. The GNU C Library - System Databases and

Name Service Switch. http://www.gnu.org/software/libc/manual/

html˙node/Name-Service-Switch.html. accessed: 2014-07-03.

[FR14] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1):

Message Syntax and Routing. RFC 7230 (Proposed Standard), June 2014.

[GA92] P. Gross and P. Almquist. IESG Deliberations on Routing and Addressing.

RFC 1380 (Informational), November 1992.

[Gol99] Yaron Y. Goland. Multicast and Unicast UDP HTTP Messages. draft-

goland-http-udp-01.txt, November 1999.

[GRW05] Stefan Götz, Simon Rieche, and Klaus Wehrle. Selected DHT Algorithms,

volume 3485 of Lecture Notes in Computer Science, chapter 8, pages 95–

117. Springer, 2005.

[GSC+96] Audio-Video Transport Working Group, H. Schulzrinne, S. Casner, R. Fred-

erick, and V. Jacobson. RTP: A Transport Protocol for Real-Time Appli-

cations. RFC 1889 (Proposed Standard), January 1996. Obsoleted by RFC

3550.

[GWWA14] Christian Grothoff, Matthias Wachs, Hellekin Wolf, and Jacob Appelbaum.

Special-Use Domain Names of Peer-to-Peer Systems. draft-grothoff-iesg-

special-use-p2p-names-02, March 2014.

[HA14] Selcan Hacaoglu and Onur Ant. Turkey Blocks Google DNS as Erdogan

Defends Twitter Action . http://www.bloomberg.com/news/2014-03-

22/turkey-blocks-google-s-dns-after-move-against-twitter-

hurriyet.html, March 2014. accessed: 2014-10-08.

[Hac09] M. Hachman. Sabotage Suspected in Silicon Valley Cable Cut. http:

//www.pcmag.com/article/print/239065, April 2009. accessed: 2014-

10-08.

[HD06] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC 4291

(Draft Standard), February 2006. Updated by RFCs 5952, 6052, 7136.

http://www.theregister.co.uk/2014/06/23/winemakers_whine_on_about_icann/
http://www.theregister.co.uk/2014/06/23/winemakers_whine_on_about_icann/
http://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
http://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
http://www.bloomberg.com/news/2014-03-22/turkey-blocks-google-s-dns-after-move-against-twitter-hurriyet.html
http://www.bloomberg.com/news/2014-03-22/turkey-blocks-google-s-dns-after-move-against-twitter-hurriyet.html
http://www.bloomberg.com/news/2014-03-22/turkey-blocks-google-s-dns-after-move-against-twitter-hurriyet.html
http://www.pcmag.com/article/print/239065
http://www.pcmag.com/article/print/239065

BIBLIOGRAPHY 217

[HHA+] Young Hyun, Bradley Huffaker, Dan Andersen, Emile Aben, Matthew

Luckie, kc claffy, and Colleen Shannon. The ipv4 routed /24 as

links dataset - 12/30/2010,12/29/2010. http://www.caida.org/data/

active/ipv4˙routed˙topology˙aslinks˙dataset.xml.

[HJ10] Erik Hjelmvik and Wolfgang John. Breaking and Improving Protocol Ob-

fuscation. Technical report, Chalmers University of Technology, 2010.

[HL95] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partition-

ing graphs. In Proceedings of the 1995 ACM/IEEE Conference on Super-

computing, Supercomputing ’95, New York, NY, USA, 1995. ACM.

[HMNS98] N. Haller, C. Metz, P. Nesser, and M. Straw. A One-Time Password System.

RFC 2289 (INTERNET STANDARD), February 1998.

[Hol12] Martin Holland. Daenischer Polizist sperrt versehentlich 8000 Websites.

http://heise.de/-1447571, March 2012. accessed: 2014-10-08.

[HS12] P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named

Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC

6698 (Proposed Standard), August 2012. Updated by RFC 7218.

[HS13] Amir Herzberg and Haya Shulman. Fragmentation Considered Poisonous:

or one-domain-to-rule-them-all.org. In CNS 2013. The Conference on Com-

munications and Network Security. IEEE. IEEE, 2013.

[HSF85] K. Harrenstien, M.K. Stahl, and E.J. Feinler. DoD Internet host table

specification. RFC 952, October 1985. Updated by RFC 1123.

[Hui06] C. Huitema. Teredo: Tunneling IPv6 over UDP through Network Address

Translations (NATs). RFC 4380 (Proposed Standard), February 2006. Up-

dated by RFCs 5991, 6081.

[IEE12] IEEE. IEEE standard for information technology–telecommunications

and information exchange between systems local and metropolitan area

networks–specific requirements part 11: Wireless lan medium access con-

trol (mac) and physical layer (phy) specifications. IEEE Std 802.11-2012

(Revision of IEEE Std 802.11-2007), pages 1–2793, 2012.

[IF02] K. Ingham and S. Forrest. A History and Survey of Network Firewalls.

Technical report, University of New Mexico, 2002.

[ISO94] ISO/IEC JTC 1. Information Technology — Open Systems Interconnection

— Basic Reference Model: The Basic Model. ISO/IEC 7498-1:1994, ISO,

Geneva, Switzerland, November 1994.

[Jos06] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648

(Proposed Standard), October 2006.

[Kan14] Ruby Kannan. Uk gov compiling ’whitelist’ to counter porn filter

over-blocking. http://www.ecotopiaproject.com/975640/uk-gov-

compiles-whitelist-counter-porn-filter-blocking/index.htm,

February 2014. accessed: 2014-10-08.

http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml
http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml
http://heise.de/-1447571
http://www.ecotopiaproject.com/975640/uk-gov-compiles-whitelist-counter-porn-filter-blocking/index.htm
http://www.ecotopiaproject.com/975640/uk-gov-compiles-whitelist-counter-porn-filter-blocking/index.htm

218 BIBLIOGRAPHY

[Kar72] R. Karp. Reducibility among combinatorial problems. In R. Miller and

J. Thatcher, editors, Complexity of Computer Computations, pages 85–

103. Plenum Press, 1972.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming.

In Proceedings of the Sixteenth Annual ACM Symposium on Theory of

Computing, STOC ’84, pages 302–311, New York, NY, USA, 1984. ACM.

[Kar12] Jiten Karia. Danish Police Accidentally Censor 8,000 Sites With Child Porn

Filter. http://www.techweekeurope.co.uk/news/danish-police-

accidentally-censors-8000-sites-with-child-porn-filter-

64365, March 2012. accessed: 2014-10-08.

[KE10] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Deriva-

tion Function (HKDF). RFC 5869 (Informational), May 2010.

[Kel14] Simon Kelley. dnsmasq - A lightweight DHCP and caching

DNS server. http://manpages.ubuntu.com/manpages/trusty/man8/

dnsmasq.8.html, 2014.

[Kir14] Julian Kirsch. Improved kernel-based port-knocking in linux. Master’s thesis,

Technische Universität München, August 2014.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM J. Sci. Comput., 20:359–392, De-

cember 1998.

[KL70] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partition-

ing Graphs. The Bell system technical journal, 49(1):291–307, 1970.

[Kle47] Victor Klemperer. LTI; Notizbuch eines Philologen. Aufbau-Verlag, 1947.

[KSS08] Jon Kleinberg, Mark Sandler, and Aleksandrs Slivkins. Network failure de-

tection and graph connectivity. SIAM J. Comput., 38:1330–1346, August

2008.

[Lan12] Adam Langley. Revocation checking and chrome’s crl. http://www.

imperialviolet.org/2012/02/05/crlsets.html, February 2012. ac-

cessed: 2014-07-1.

[LD60] A. H. Land and A. G. Doig. An automatic method of solving discrete

programming problems. Econometrica, 28(3):pp. 497–520, 1960.

[LGL+96] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS

Protocol Version 5. RFC 1928 (Proposed Standard), March 1996.

[LMP+12] Patrick Lincoln, Ian Mason, Phillip Porras, Vinod Yegneswaran, Zachary

Weinberg, Jeroen Massar, William Simpson, Paul Vixie, and Dan Boneh.

Bootstrapping Communications into an Anti-Censorship System. In Free

and Open Communications on the Internet, Bellevue, WA, USA, 2012.

USENIX.

[LP09] Yangyang Liu and Jianping Pan. The impact of nat on bittorrent-like p2p

systems. In Peer-to-Peer Computing, 2009. P2P ’09. IEEE Ninth Interna-

tional Conference on, pages 242–251, September 2009.

http://www.techweekeurope.co.uk/news/danish-police-accidentally-censors-8000-sites-with-child-porn-filter-64365
http://www.techweekeurope.co.uk/news/danish-police-accidentally-censors-8000-sites-with-child-porn-filter-64365
http://www.techweekeurope.co.uk/news/danish-police-accidentally-censors-8000-sites-with-child-porn-filter-64365
http://manpages.ubuntu.com/manpages/trusty/man8/dnsmasq.8.html
http://manpages.ubuntu.com/manpages/trusty/man8/dnsmasq.8.html
http://www.imperialviolet.org/2012/02/05/crlsets.html
http://www.imperialviolet.org/2012/02/05/crlsets.html

BIBLIOGRAPHY 219

[Ltd13] Netcraft Ltd. How certificate revocation (doesn’t) work in practice. Blog

entry at Netcraft blog: http://news.netcraft.com/archives/2013/05/

13/how-certificate-revocation-doesnt-work-in-practice.html,

May 2013. accessed: 2014-07-7.

[LuTP06] Ludde, uau, The 8472, and PargNolar. Message stream encryption protocol

version 1.0. http://wiki.vuze.com/w/Message˙Stream˙Encryption,

January 2006. accessed: 2014-06-04.

[M1̈3] Andreas Müller. Analysis and Control of Middleboxes in the Internet. PhD

thesis, Technische Universität München, July 2013.

[Mar06] Dániel Marx. Parameterized graph separation problems. Theor. Comput.

Sci., 351:394–406, February 2006.

[Mar09] Stephen Marsland. Machine Learning - An Algorithmic Perspective. Chap-

man and Hall / CRC machine learning and pattern recognition series. CRC

Press, 2009.

[MCB11] Prateek Mittal, Matthew Caesar, and Nikita Borisov. X-vine: Secure and

pseudonymous routing using social networks. Computer Research Reposi-

tory, abs/1109.0971, 9/2011 2011.

[McD94] D. McDonald. A Convention for Human-Readable 128-bit Keys. RFC 1751

(Informational), December 1994.

[MCK08] A. Müller, G. Carle, and A Klenk. Behavior and classification of nat devices

and implications for nat traversal. Network, IEEE, 22(5):14–19, September

2008.

[MDD02] John Douceur Microsoft, John R. Douceur, and Judith S. Donath. The

sybil attack. In Lecture Notes in Computer Science, pages 251–260, 2002.

[MEGK10] Andreas Müller, Nathan S. Evans, Christian Grothoff, and Samy Kamkar.

Autonomous nat traversal. In 10th IEEE International Conference on Peer-

to-Peer Computing (IEEE P2P’10), Delft, The Netherlands, 2010. IEEE,

IEEE.

[Mey14] Stefan Mey. Ferrero und das .kinder-monopol im netz. http:

//www.heise.de/newsticker/meldung/Ferrero-und-das-kinder-

Monopol-im-Netz-2213681.html, June 2014. accessed: 2014-10-08.

[Mic09] Microsoft Technet. Understanding DNSSEC in Windows. http:

//technet.microsoft.com/de-de/library/ee649277%28v=ws.10%29.

aspx, October 2009. accessed: 2014-10-08.

[MMLDG12] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian

Goldberg. Skypemorph: Protocol obfuscation for tor bridges. In Proceedings

of the 2012 ACM Conference on Computer and Communications Security,

CCS ’12, pages 97–108, New York, NY, USA, 2012. ACM.

[MMR10] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using Relays around

NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT

(STUN). RFC 5766 (Proposed Standard), April 2010.

http://news.netcraft.com/archives/2013/05/13/how-certificate-revocation-doesnt-work-in-practice.html
http://news.netcraft.com/archives/2013/05/13/how-certificate-revocation-doesnt-work-in-practice.html
http://wiki.vuze.com/w/Message_Stream_Encryption
http://www.heise.de/newsticker/meldung/Ferrero-und-das-kinder-Monopol-im-Netz-2213681.html
http://www.heise.de/newsticker/meldung/Ferrero-und-das-kinder-Monopol-im-Netz-2213681.html
http://www.heise.de/newsticker/meldung/Ferrero-und-das-kinder-Monopol-im-Netz-2213681.html
http://technet.microsoft.com/de-de/library/ee649277%28v=ws.10%29.aspx
http://technet.microsoft.com/de-de/library/ee649277%28v=ws.10%29.aspx
http://technet.microsoft.com/de-de/library/ee649277%28v=ws.10%29.aspx

220 BIBLIOGRAPHY

[Moc87a] P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034

(INTERNET STANDARD), November 1987. Updated by RFCs 1101, 1183,

1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033, 4034, 4035, 4343, 4035,

4592, 5936.

[Moc87b] P.V. Mockapetris. Domain names - implementation and specification. RFC

1035 (INTERNET STANDARD), November 1987. Updated by RFCs 1101,

1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535,

2673, 2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604.

[Mog84] J.C. Mogul. Broadcasting Internet Datagrams. RFC 919 (INTERNET

STANDARD), October 1984.

[MSF11] Gregor Maier, Fabian Schneider, and Anja Feldmann. Nat usage in residen-

tial broadband networks. In Neil Spring and GeorgeF. Riley, editors, Passive

and Active Measurement, volume 6579 of Lecture Notes in Computer Sci-

ence, pages 32–41. Springer Berlin Heidelberg, 2011.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:

//bitcoin.org/bitcoin.pdf, 2008. accessed: 2014-10-08.

[NALB10] P. Natarajan, P. Amer, J. Leighton, and F. Baker. Using SCTP as a Trans-

port Layer Protocol for HTTP. draft-natarajan-http-over-sctp-02.txt, Jan-

uary 2010.

[NBBB98] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differen-

tiated Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474

(Proposed Standard), December 1998. Updated by RFCs 3168, 3260.

[NG05] E. Nordmark and R. Gilligan. Basic Transition Mechanisms for IPv6 Hosts

and Routers. RFC 4213 (Proposed Standard), October 2005.

[Nor09] Arvid Norberg. Bep 29: utorrent transport protocol. http://www.

bittorrent.org/beps/bep˙00029.html, June 2009. accessed: 2014-06-

04.

[NW88] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization.

Wiley-Interscience, New York, NY, USA, 1988.

[Oeh14] Fabian Oehlmann. Machine learning for bandwidth management in decen-

tralized networks. Master’s thesis, Technische Universität München, Garch-

ing bei München, February 2014.

[Orw46] George Orwell. Politics and the English Language. Horizon, 1946.

[Par12] Brid-Aine Parnell. Epic net outage in Africa as FOUR undersea cables

chopped: Ship blunders allegedly to blame. http://www.theregister.co.

uk/2012/02/28/east˙africa˙undersea˙cables˙cut/, February 2012.

accessed: 2014-10-08.

[PG14] Bartlomiej Polot and Christian Grothoff. Cadet: Confidential ad-hoc decen-

tralized end-to-end transport. In Med-Hoc-Net 2014, June 2014.

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://www.bittorrent.org/beps/bep_00029.html
http://www.bittorrent.org/beps/bep_00029.html
http://www.theregister.co.uk/2012/02/28/east_africa_undersea_cables_cut/
http://www.theregister.co.uk/2012/02/28/east_africa_undersea_cables_cut/

BIBLIOGRAPHY 221

[PJ13] Colin Percival and Simon Josefsson. The scrypt password-based key deriva-

tion function - draft-josefsson-scrypt-kdf-01. http://tools.ietf.org/

id/draft-josefsson-scrypt-kdf-01.txt, March 2013.

[Pol10] Bart Polot. Adapting blackhat approaches to increase the resilience of white-

hat application scenarios. Master’s thesis, Technische Universität München,

2010.

[Pos80] J. Postel. User Datagram Protocol. RFC 768 (INTERNET STANDARD),

August 1980.

[Pos81a] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD), Septem-

ber 1981. Updated by RFCs 1349, 2474, 6864.

[Pos81b] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STAN-

DARD), September 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[PPPW04] Kyoungsoo Park, Vivek S. Pai, Larry Peterson, and Zhe Wang. Codns:

Improving dns performance and reliability via cooperative lookups. In In

Proceedings of the Sixth Symposium on Operating Systems Design and

Implementation (OSDI, 2004.

[Pro40] Pierre-Joseph Proudhon. What is Property? Or, an Inquiry into the Principle

of Right and of Government. Humboldt Publishing Company, 1st english

translation, 1890 edition, 1840.

[Pro12] Tor Project. Tor hidden service names. https://trac.torproject.

org/projects/tor/wiki/doc/HiddenServiceNames, February 2012. ac-

cessed: 2014-10-08.

[Ram99] B. Ramsdell. S/MIME Version 3 Message Specification. RFC 2633 (Pro-

posed Standard), June 1999. Obsoleted by RFC 3851.

[Raw14] Kevin Rawlinson. Turkey steps up bid to block Twitter after users

flout ban. http://www.theguardian.com/world/2014/mar/23/turkey-

twitter-ban, March 2014. accessed: 2014-10-08.

[Res99] E. Rescorla. Diffie-Hellman Key Agreement Method. RFC 2631 (Proposed

Standard), June 1999.

[Res00] Certicom Research. Standards for efficient cryptography, SEC 1: Elliptic

curve cryptography, September 2000. Version 1.0.

[Ric05] M. Richardson. A Method for Storing IPsec Keying Material in DNS. RFC

4025 (Proposed Standard), March 2005.

[RL96] Ronald L. Rivest and Butler Lampson. Sdsi - a simple distributed security

infrastructure, 1996.

[RLH06] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).

RFC 4271 (Draft Standard), January 2006. Updated by RFCs 6286, 6608,

6793.

[RM12] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version

1.2. RFC 6347 (Proposed Standard), January 2012.

http://tools.ietf.org/id/draft-josefsson-scrypt-kdf-01.txt
http://tools.ietf.org/id/draft-josefsson-scrypt-kdf-01.txt
https://trac.torproject.org/projects/tor/wiki/doc/HiddenServiceNames
https://trac.torproject.org/projects/tor/wiki/doc/HiddenServiceNames
http://www.theguardian.com/world/2014/mar/23/turkey-twitter-ban
http://www.theguardian.com/world/2014/mar/23/turkey-twitter-ban

222 BIBLIOGRAPHY

[RMK+96] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.

Address Allocation for Private Internets. RFC 1918 (Best Current Practice),

February 1996. Updated by RFC 6761.

[RMMW08] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal

Utilities for NAT (STUN). RFC 5389 (Proposed Standard), October 2008.

[RMRW10] Amir H. Rasti, Nazanin Magharei, Reza Rejaie, and Walter Willinger. Eyeball

ases: from geography to connectivity. In Internet Measurement Conference,

pages 192–198, 2010.

[Ros10] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for

Network Address Translator (NAT) Traversal for Offer/Answer Protocols.

RFC 5245 (Proposed Standard), April 2010. Updated by RFC 6336.

[RTM08] Matthew Roughan, Simon Jonathan Tuke, and Olaf Maennel. Bigfoot,

sasquatch, the yeti and other missing links: what we don’t know about the

as graph. In Proceedings of the 8th ACM SIGCOMM conference on Internet

measurement, IMC ’08, pages 325–330, New York, NY, USA, 2008. ACM.

[RWHM03] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN - Sim-

ple Traversal of User Datagram Protocol (UDP) Through Network Address

Translators (NATs). RFC 3489 (Proposed Standard), March 2003. Obso-

leted by RFC 5389.

[Sai12] Alex Fink Sai. Mnemonic .onion urls. https://gitweb.torproject.org/

torspec.git/blob/HEAD:/proposals/194-mnemonic-urls.txt, Febru-

ary 2012. accessed: 2014-10-08.

[Sau08] R. Sauder. Connecting The Many Undersea Cut Cable Dots. http://www.

rense.com/general80/cable.htm, February 2008. accessed: 2014-10-

08.

[SB98] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT

Press, 1998.

[Sch12] Martin Schanzenbach. Design and implementation of a censorship resistant

and fully decentralized name system. Master’s thesis, Technische Universität

München, Garching bei München, September 2012.

[Sch13] Robert Schirmer. Evaluation of operation research approaches to solve allo-

cation problems in decentralized networks. In Proceedings of the Seminars

Future Internet (FI), pages 91–99. Chair for Network Architectures and

Services, Technische Universität München, 2013.

[SCSR12] S. Sankararaman, J. Chen, L. Subramanian, and V. Ramasubramanian.

Trickledns: Bootstrapping dns security using social trust. In Communication

Systems and Networks (COMSNETS), pages 1–10, 2012.

[SG06] J. Schlyter and W. Griffin. Using DNS to Securely Publish Secure Shell

(SSH) Key Fingerprints. RFC 4255 (Proposed Standard), January 2006.

[SH99] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Ter-

minology and Considerations. RFC 2663 (Informational), August 1999.

https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/194-mnemonic-urls.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/194-mnemonic-urls.txt
http://www.rense.com/general80/cable.htm
http://www.rense.com/general80/cable.htm

BIBLIOGRAPHY 223

[Sha14] David Shamah. Israeli, US terror victims could ’own’ Iran’s Inter-

net. http://www.timesofisrael.com/israeli-us-terror-victims-

now-own-irans-internet/, June 2014. accessed: 2014-07-01.

[Sin14] Supriti Singh. Experimental comparison of byzantine fault tolerant dis-

tributed hash tables. Master’s thesis, Technische Universität München,

Garching bei München, October 2014.

[SJP+11] Rob Smits, Divam Jain, Sarah Pidcock, Ian Goldberg, and Urs Hengart-

ner. Bridgespa: Improving tor bridges with single packet authorization. In

WPES’11 - Proceedings of the Workshop on Privacy in the Electronic So-

ciety, Chicago, IL, United States, 10/2011 2011. ACM, ACM.

[SKW+98] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and

Niels Ferguson. Twofish: A 128-bit block cipher. In in First Advanced

Encryption Standard (AES) Conference, 1998.

[SM02] Emil Sit and Robert Morris. Security considerations for peer-to-peer dis-

tributed hash tables. In IPTPS ’01: Revised Papers from the First Inter-

national Workshop on Peer-to-Peer Systems, page 261–269, London, UK,

2002. Springer-Verlag, Springer-Verlag.

[SMA+13] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams.

X.509 Internet Public Key Infrastructure Online Certificate Status Protocol

- OCSP. RFC 6960 (Proposed Standard), June 2013.

[SNDW06] Atul Singh, Tsuen-Wan Ngan, Peter Druschel, and Dan S. Wallach. Eclipse

attacks on overlay networks: Threats and defenses. In INFOCOM. IEEE,

2006.

[SRC81] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end argu-

ments in system design. In ICDCS, pages 509–512. IEEE Computer Society,

1981.

[SS11] C. Soghoian and S. Stamm. Certified lies: Detecting and defeating govern-

ment interception attacks against SSL. In Proc. 15th. Int. Conf. Financial

Cryptography and Data Security, March 2011.

[Sta02] Richard M. Stallman. Free Software: Freedom and Cooperation. In Joshua

Gay, editor, Free Software, Free Society: Selected Essays of Richard M.

Stallman, chapter Free Software: Freedom and Cooperation, pages 157–

189. GNU Press, Boston, 2002. http://www.gnu.org/doc/book13.html.

[Sti05] Marc Stiegler. An introduction to petname systems. http://www.

skyhunter.com/marcs/petnames/IntroPetNames.html, February 2005.

accessed: 2014-10-08.

[Swa11a] Aaron Swartz. Squaring the triangle: Secure, decentralized, human-readable

names. http://www.aaronsw.com/weblog/squarezooko, January 2011.

accessed: 2014-10-08.

[Swa11b] Aaron Swartz. Squaring the triangle: Secure, decentralized, human-readable

names: Frequently asked questions. https://squaretriangle.jottit.

com/faq, January 2011. accessed: 2014-10-08.

http://www.timesofisrael.com/israeli-us-terror-victims-now-own-irans-internet/
http://www.timesofisrael.com/israeli-us-terror-victims-now-own-irans-internet/
http://www.gnu.org/doc/book13.html
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
http://www.aaronsw.com/weblog/squarezooko
https://squaretriangle.jottit.com/faq
https://squaretriangle.jottit.com/faq

224 BIBLIOGRAPHY

[TA12] National Telecommunications and Information Administration. Com-

merce department awards contract for management of key in-

ternet functions to icann. http://www.ntia.doc.gov/press-

release/2012/commerce-department-awards-contract-management-

key-internet-functions-icann, July 2012. accessed: 2014-10-08.

[Tar14] Omar Tarabai. A decentralized and autonomous anomaly detection infras-

tructure for decentralized peer-to-peer networks. Master’s thesis, Technis-

che Universität München, October 2014.

[Tea14] The GLPK Team. Gnu linear programming kit reference manual for glpk ver-

sion 4.54. http://ftp.gnu.org/gnu/glpk/glpk-4.54.tar.gz, March

2014.

[TGT08] F. Templin, T. Gleeson, and D. Thaler. Intra-Site Automatic Tunnel Ad-

dressing Protocol (ISATAP). RFC 5214 (Informational), March 2008.

[The] The Tor Project. Tor: Pluggable transports. https://www.torproject.

org/docs/pluggable-transports.html.en. accessed: 2014-10-08.

[The14] The Tor Project. How do i use pluggable transports? https://trac.

torproject.org/projects/tor/wiki/doc/TorBrowserBundle3FAQ#

HowdoIusepluggabletransports, April 2014. accessed: 2014-10-08.

[THKS03] S. Thomson, C. Huitema, V. Ksinant, and M. Souissi. DNS Extensions to

Support IP Version 6. RFC 3596 (Draft Standard), October 2003.

[TNJ07] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autocon-

figuration. RFC 4862 (Draft Standard), September 2007.

[Tor13] TorrentFreak.com. Bittorrent traffic drops in america, grows in eu-

rope. https://torrentfreak.com/bittorrent-traffic-drops-in-

america-grows-in-europe-131111/, November 2013. accessed: 2014-

08-29.

[Tot13] Gabor X Toth. Design of a social messaging system using stateful multicast.

Master’s, University of Amsterdam, Amsterdam, 2013.

[TZL10] D. Thaler, L. Zhang, and G. Lebovitz. IAB Thoughts on IPv6 Network

Address Translation. RFC 5902 (Informational), July 2010.

[US96] International Telecommunication Union and International Telecommunica-

tion Union Telecommunication Standardization Sector. Coding of Speech

at 8 Kbit/s Using Conjugate-structure Algebraic-code-excited Linear-

prediction (CS-ACELP): A silence compression scheme for G.729 optimized

for terminals conforming to Recommendation V.70. Number v. 70 in ITU-T

recommendation. International Telecommunication Union, 1996.

[VAC+08] Fabien Viger, Brice Augustin, Xavier Cuvellier, Clémence Magnien, Matthieu

Latapy, Timur Friedman, and Renata Teixeira. Detection, understand-

ing, and prevention of traceroute measurement artifacts. Comput. Netw.,

52:998–1018, April 2008.

http://www.ntia.doc.gov/press-release/2012/commerce-department-awards-contract-management-key-internet-functions-icann
http://www.ntia.doc.gov/press-release/2012/commerce-department-awards-contract-management-key-internet-functions-icann
http://www.ntia.doc.gov/press-release/2012/commerce-department-awards-contract-management-key-internet-functions-icann
http://ftp.gnu.org/gnu/glpk/glpk-4.54.tar.gz
https://www.torproject.org/docs/pluggable-transports.html.en
https://www.torproject.org/docs/pluggable-transports.html.en
https://trac.torproject.org/projects/tor/wiki/doc/TorBrowserBundle3FAQ#HowdoIusepluggabletransports
https://trac.torproject.org/projects/tor/wiki/doc/TorBrowserBundle3FAQ#HowdoIusepluggabletransports
https://trac.torproject.org/projects/tor/wiki/doc/TorBrowserBundle3FAQ#HowdoIusepluggabletransports
https://torrentfreak.com/bittorrent-traffic-drops-in-america-grows-in-europe-131111/
https://torrentfreak.com/bittorrent-traffic-drops-in-america-grows-in-europe-131111/

BIBLIOGRAPHY 225

[vdV13] Lonneke van der Velden. Unlike Us Reader, chapter Meeting the Alter-

natives: Notes about making profiles and joining hackers, pages 312–322.

Institute of Network Cultures, Amsterdam, 2013.

[vK14] Anne van Kersteren. Cross-origin resource sharing. Technical report, W3c

Working Draft 3, http://www.w3.org/TR/cors/, January 2014. accessed:

2014-10-08.

[VTRB97] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. Dynamic Updates in the

Domain Name System (DNS UPDATE). RFC 2136 (Proposed Standard),

April 1997. Updated by RFCs 3007, 4035, 4033, 4034.

[WB11] M. Wasserman and F. Baker. IPv6-to-IPv6 Network Prefix Translation.

RFC 6296 (Experimental), June 2011.

[WGT12] Matthias Wachs, Christian Grothoff, and Ramakrishna Thurimella. Parti-

tioning the internet. In 7th International Conference on Risks and Security

of Internet and Systems (CRiSIS), Cork, Ireland, October 2012. IEEE Com-

puter Society.

[WKD+12] J. Weil, V. Kuarsingh, C. Donley, C. Liljenstolpe, and M. Azinger. IANA-

Reserved IPv4 Prefix for Shared Address Space. RFC 6598 (Best Current

Practice), April 2012.

[WO01] Zooko Wilcox-O’Hearn. Names: Distributed, Secure, Human-Readable:

Choose Two. http://web.archive.org/web/20011020191610/http://

zooko.com/distnames.html, January 2001. accessed: 2014-10-08.

[WOG14] Matthias Wachs, Fabian Oehlmann, and Christian Grothoff. Automatic

transport selection and resource allocation for resilient communication in

decentralized networks. In IEEE Fourteenth International Conference on

Peer-to-Peer Computing (P2P), IEEE, September 2014. IEEE, IEEE.

[WSG13] Matthias Wachs, Martin Schanzenbach, and Christian Grothoff. On the

feasibility of a censorship resistant decentralized name system. In 6th In-

ternational Symposium on Foundations & Practice of Security (FPS 2013),

La Rochelle, France, October 2013. Springer Verlag, Springer Verlag.

[WSG14] Matthias Wachs, Martin Schanzenbach, and Christian Grothoff. On the fea-

sibility of a censorship resistant decentralized name system. In The 13th In-

ternational Conference on Cryptology and Network Security (CANS 2014),

Heraklion, Greece, October 2014. Springer Verlag, Springer Verlag.

[XYK+08] Haiyong Xie, Y. Richard Yang, Arvind Krishnamurthy, Yanbin Grace Liu, and

Abraham Silberschatz. P4p: Provider portal for applications. SIGCOMM

Comput. Commun. Rev., 38(4):351–362, August 2008.

[ZH11] Bassam Zantout and Ramzi Haraty. I2p data communication system. In

Proceedings of ICN 2011, The Tenth International Conference on Networks,

January 2011.

[ZJC11] P. Zimmermann, A. Johnston, and J. Callas. ZRTP: Media Path Key Agree-

ment for Unicast Secure RTP. RFC 6189 (Informational), April 2011.

http://www.w3.org/TR/cors/
http://web.archive.org/web/20011020191610/http://zooko.com/distnames.html
http://web.archive.org/web/20011020191610/http://zooko.com/distnames.html

List of Figures

2.1 Packet Filter Firewall Used as Gateway to Protect a Network Segment . 16

2.2 Classification of Different NAT Types According to [RWHM03] 18

(a) Full Cone NAT . 18

(b) Port Restricted Cone NAT . 18

(c) Restricted Cone NAT . 18

(d) Symmetric NAT . 18

2.3 IPv6 Transition Mechanisms: Carrier-grade NAT (CGN) and Dual-Stack

Lite (DS-Lite) . 21

(a) Carrier-grade NAT (CGN) . 21

(b) Dual-Stack Lite (DS-Lite) . 21

2.4 Comparison of Client/Server and Peer-to-Peer Architectures 23

(a) Client/Server Architecture . 23

(b) Peer-to-Peer Network . 23

2.5 GNUnet’s Layered Service Architecture 25

3.1 Weight Distribution for Websites in Alexa’s Top 100,000 Websites 35

3.2 Weight Distribution in Terms of Page Views for ASes 36

3.3 Size of the Computed Separators for the Unweighted AS Graph. 37

(a) Size of the Edge Separator . 37

(b) Size of the Node Separator . 37

3.4 Size of the Computed Separators for the Weighted AS Graph. 38

(a) Size of the Edge Separator . 38

(b) Size of the Node Separator . 38

4.1 Components of GNUnet’s Transport Infrastructure 44

4.2 The HOSTLIST Daemon . 49

4.3 The TRANSPORT Service . 54

4.4 The TRANSPORT Service Three Way Handshake 64

4.5 The TRANSPORT Service State Machine 66

4.6 GNUnet’s HTTP(S) Transport . 76

4.7 GNUnet’s HTTP(S) Transport Using a Reverse Proxy 76

4.8 GNUnet’s Distance Vector Routing Transport Plugin 79

4.9 Comparison of TRANSPORT Performance with Different Plugins on a Local

System . 84

4.10 Local Performance UNIX Plugin on a DELL Precision T3500 84

4.11 Local Performance TCP Plugin on a DELL Precision T3500 85

4.12 Local Performance UDP Plugin on a DELL Precision T3500 85

4.13 Local Performance UDP Plugin on a DELL Precision T3500: Impact of

Fragmentation . 86

4.14 Local Performance HTTP Plugin on a DELL Precision T3500 86

226

4.15 Local Performance HTTP Plugin on a Lenovo T440s 87

4.16 Local Performance HTTPS Plugin on a DELL Precision T3500 not sup-

porting AES-NI . 87

4.17 Local Performance HTTPS Plugin on Lenovo T440s supporting AES-NI . 88

4.18 Performance Comparison Between Plugins over Gigabit Ethernet 89

4.19 Performance TCP Plugin over Gigabit Ethernet 90

4.20 Performance UDP Plugin over Gigabit Ethernet 90

4.21 Performance HTTP Plugin over Gigabit Ethernet 91

4.22 Performance HTTPS Plugin over Gigabit Ethernet 91

4.23 Performance WLAN Plugin . 92

5.1 Impact of the Proportionality Factor fprop on Weights 113

(a) Impact of Proportionality Factor fprop on Weights for Exemplary

Relative Weights r1, r2, r3 . 113

(b) Impact of Proportionality Factor fprop on Weights 113

5.2 ATS Interaction with Applications and Transport Infrastructure 127

5.3 ATS Service with Internal Structure and Interaction 133

5.4 Performance of the Heuristic Solver . 136

(a) Execution Time of the Heuristic Solver for a Full Solution 136

(b) Execution Time of the Heuristic Solver for an Incremental Solution 136

5.5 Performance of the Mixed Integer Linear Programming Solver 140

(a) Execution Time of the Mixed Integer Linear Programming Solver

for a Full Solution . 140

(b) Execution Time of the Mixed Integer Linear Programming Solver

for an Incremental Solution . 140

5.6 Performance of the Reinforcement Learning Solver 144

(a) Execution Time of the Reinforcement Learning Solver for a Full

Solution . 144

(b) Execution Time of the Reinforcement Learning Solver for an Incre-

mental Solution . 144

5.7 Solution Quality of ATS Solvers in Different Scenarios 147

6.1 DNSSEC Adoption in ccTLDs in March 2014 154

6.2 Validation Rate of DNSSEC Requests in September 2014 155

6.3 SDSI/SPKI : Principals, Certificates and Linked Local Name Spaces . . . 157

6.4 Zooko’s Triangle: Design Space for Name Systems 160

6.5 Integration of GNS and DNS Namespaces 169

6.6 Network Format of GNS BOX Records 175

6.7 GNS Components and Interaction . 182

6.8 Network Format of GNS Records . 184

6.9 Network Format of GNS Record Blocks 185

6.10 Structure of Zones in GNS . 186

6.11 The GNS Resolution Process . 193

6.12 Using Relative GNS Names with the Web 197

6.13 Using GNS Names with the HTTPS . 197

6.14 Screenshot of the Conversation User Interface 202

6.15 GNS User Interface to Create TLSA Records 204

6.16 A Business Card Containing a GNS QR-Code 205

227

228 LIST OF TABLES

List of Tables

3.1 Characterization of the AS Graphs Generated Using Route View’s BGP

Snapshot . 33

3.2 Characterization of the AS Graphs Generated Using CAIDA’s Routed AS

Links Dataset . 34

4.1 Performance of Cryptographic Cipher Suites on an Intel Xeon W3520 and

i5-4200U . 82

5.1 Configuration Values for the Heuristic Solver 135

5.2 Configuration Values for the MILP Solver 139

5.3 Configuration Values for the RIL Solver 143

5.4 Normalized Quality of the Solutions Produced by the Solvers 147

APPENDIX

A. HEADERS

A.1 The NAMESTORE Plugin API

List. A.1: The NAMESTORE Plugin API

/**
* Function called by for each matching record.
*
* @param cls closure
* @param zone˙key private key of the zone
* @param label name that is being mapped (at most 255 characters long)
* @param rd˙count number of entries in @a rd array
* @param rd array of records with data to store
*/
typedef void (*GNUNET˙NAMESTORE˙RecordIterator) (void *cls,
const struct GNUNET˙CRYPTO˙EcdsaPrivateKey *private˙key,
const char *label,
unsigned int rd˙count,
const struct GNUNET˙GNSRECORD˙Data *rd);

/**
* @brief struct returned by the initialization function of the plugin
*/
struct GNUNET˙NAMESTORE˙PluginFunctions
–

/**
* Closure to pass to all plugin functions.
*/
void *cls;

/**
* Store a record in the datastore for which we are the authority.
* Removes any existing record in the same zone with the same name.
*
* @param cls closure (internal context for the plugin)
* @param zone private key of the zone
* @param label name of the record in the zone
* @param rd˙count number of entries in @a rd array, 0 to delete all records
* @param rd array of records with data to store
* @return #GNUNET˙OK on success, else #GNUNET˙SYSERR
*/
int (*store˙records) (void *cls,
const struct GNUNET˙CRYPTO˙EcdsaPrivateKey *zone,
const char *label,
unsigned int rd˙count,
const struct GNUNET˙GNSRECORD˙Data *rd);

/**
* Lookup records in the datastore for which we are the authority.
*
* @param cls closure (internal context for the plugin)
* @param zone private key of the zone
* @param label name of the record in the zone
* @param iter function to call with the result
* @param iter˙cls closure for @a iter
* @return #GNUNET˙OK on success, else #GNUNET˙SYSERR
*/
int (*lookup˙records) (void *cls,
const struct GNUNET˙CRYPTO˙EcdsaPrivateKey *zone,
const char *label,
GNUNET˙NAMESTORE˙RecordIterator iter, void *iter˙cls);

232 A. Headers

/**
* Iterate over the results for a particular zone in the
* datastore. Will return at most one result to the iterator.
*
* @param cls closure (internal context for the plugin)
* @param zone private key of the zone, NULL for all zones
* @param offset offset in the list of all matching records
* @param iter function to call with the result
* @param iter˙cls closure for @a iter
* @return #GNUNET˙OK on success, #GNUNET˙NO if there were no results, #GNUNET˙SYSERR on error
*/
int (*iterate˙records) (void *cls,
const struct GNUNET˙CRYPTO˙EcdsaPrivateKey *zone,
uint64˙t offset,
GNUNET˙NAMESTORE˙RecordIterator iter, void *iter˙cls);

/**
* Look for an existing PKEY delegation record for a given public key.
* Returns at most one result to the iterator.
*
* @param cls closure (internal context for the plugin)
* @param zone private key of the zone to look up in, never NULL
* @param value˙zone public key of the target zone (value), never NULL
* @param iter function to call with the result
* @param iter˙cls closure for @a iter
* @return #GNUNET˙OK on success, #GNUNET˙NO if there were no results, #GNUNET˙SYSERR on error
*/
int (*zone˙to˙name) (void *cls,
const struct GNUNET˙CRYPTO˙EcdsaPrivateKey *zone,
const struct GNUNET˙CRYPTO˙EcdsaPublicKey *value˙zone,
GNUNET˙NAMESTORE˙RecordIterator iter, void *iter˙cls);

˝;

A.2 The NAMECACHE Plugin API

List. A.2: The NAMECACHE Plugin API

/**
* Function called for matching blocks.
*
* @param cls closure
* @param block lookup result
*/
typedef void (*GNUNET˙NAMECACHE˙BlockCallback) (void *cls,

const struct GNUNET˙GNSRECORD˙Block *block);

/**
* @brief struct returned by the initialization function of the plugin
*/
struct GNUNET˙NAMECACHE˙PluginFunctions
–

/**
* Closure to pass to all plugin functions.
*/
void *cls;

/**
* Cache a block in the datastore. Overwrites existing blocks
* for the same zone and label.
*
* @param cls closure (internal context for the plugin)
* @param block block to cache
* @return #GNUNET˙OK on success, else #GNUNET˙SYSERR
*/
int (*cache˙block) (void *cls,

const struct GNUNET˙GNSRECORD˙Block *block);

/**

A.2. The NAMECACHE Plugin API 233

* Get the block for a particular zone and label in the
* datastore. Will return at most one result to the iterator.
*
* @param cls closure (internal context for the plugin)
* @param query hash of public key derived from the zone and the label
* @param iter function to call with the result
* @param iter˙cls closure for @a iter
* @return #GNUNET˙OK on success, #GNUNET˙NO if there were no results, #GNUNET˙SYSERR on error
*/
int (*lookup˙block) (void *cls,

const struct GNUNET˙HashCode *query,
GNUNET˙NAMECACHE˙BlockCallback iter, void *iter˙cls);

˝;

ISBN 3-937201-45-9
ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)
DOI: 10.2313/NET-2015-02-1

	Title
	Acknowledgments
	Abstract
	Zusammenfassung
	Table of Contents
	Introduction
	Thesis Objectives and Research Questions
	Positioning and Goals
	Contributions and Document Structure

	Background
	The Internet Protocol Architecture
	Internet Layer Protocols
	Internet Protocol
	IPv4
	IPv6

	Transport Layer Protocols
	TCP
	UDP

	Domain Name System
	The X.509 Public Key Infrastructure
	Middleboxes
	DiffServ
	Deep Packet Inspection
	Packet Filter
	Network Address Translation
	DS-Lite
	Proxy Servers

	Centralized Client/Server Architectures
	Decentralized Peer-to-Peer Networking Architectures
	Structured and Unstructured Peer-to-Peer Architectures
	Distributed Hash Tables
	The GNUnet Peer-to-Peer Framework

	Conclusion and Findings

	Resilience of Communication on the Internet
	Introduction
	Background and Related Work
	Calculating Separators
	Finding Edge Separators
	Edge Separators for Weighted Graphs
	Finding Node Separators

	Graph Generation
	Construction of AS Graphs from BGP Routing Information
	Construction of AS Graphs from Traceroutes
	Merge of BGP and Traceroute Graphs
	Weight Generation

	Experimental Results
	Unweighted AS Graphs
	Weighted AS Graphs

	Discussion
	Conclusion and Findings

	Resilient and Secure Communication for Decentralized Networks
	Objectives
	Scope and Limitations
	Design and Implementation
	Peers and Peer Identities
	Plugin Specific Address Formats
	Generic Address Format
	Transport Sessions
	HELLO messages
	Bootstrapping and Neighbor Discovery
	Persistent Storage of Peer Information
	Address Management and NAT Support
	Overlay Topology Management
	Managing Active Addresses and Session
	The Transport Service
	The UNIX Domain Socket Transport
	The TCP Transport
	The UDP Transport
	The HTTP(S) Transport
	The WLAN Transport
	The Bluetooth Transport
	The Distance Vector Routing Transport
	Secure Communication Between Peers with core

	Evaluation
	Methodology and Setup
	Experimental Setup
	Methodology
	Results on Local Performance
	Results on Network Performance

	Related Work and Comparison
	Tor's Pluggable Transport Architecture
	SPOVnet's ARIBA Resilient Transport Underlay
	I2P's Transport Architecture
	BitTorrent Protocol and Obfuscation

	Conclusion and Findings

	Address Selection and Resource Allocation in Decentralized Peer-To-Peer Networks
	Background and Analysis of the Problem Setting
	Peers
	Transport Mechanisms
	Transport Mechanisms with Multiple Addresses
	Network Scopes
	Bandwidth Restrictions for Network Scopes
	Resource Allocation and Address Selection
	Transport Properties
	Application Requirements
	Summary

	Design and Architecture
	Input for the Transport Selection
	Output from Transport Selection
	Objectives for Transport Selection and Resource Allocation
	Scope and Limitations

	Input Normalization and Correlation
	Preference Normalization and Correlation
	Performance Property Normalization

	The Greedy Heuristic Solver
	Design of the Solver
	Discussion

	The Mixed Integer Linear Programming Solver
	Linear Programming
	Design of the Solver
	Discussion

	The Reinforcement Learning Solver
	Machine Learning
	Design of the Solver
	Discussion

	Related Work and Comparison
	Quality of Service in IP Networks
	The SpoVNet Project
	The Tor Project
	The Invisible Internet Project

	Implementation
	The ATS Service
	ATS Information
	Interacting with ATS
	Peer and Address Management
	Management of Transport Performance Properties
	Management of Application Preferences
	The Solver API
	ATS Solvers
	The Greedy Heuristic Solver
	The Mixed Integer Linear Programming Solver
	The Reinforcement Learning Solver

	Evaluation
	Discussion
	Conclusion and Findings

	GNS - A Decentralized, Privacy-Preserving and Censorship-Resistant Name System
	Introduction and Motivation
	Background
	The Domain Name System
	The Domain Name System Security Extensions
	SDSI/SPKI
	Distributed Storage in Peer-to-Peer Overlay Networks

	Functional Requirements
	Adversary Model
	Functional Requirements for an Alternative Name System

	Design Space for Name Systems
	Hierarchical Registration
	Adding Security to Hierarchical Registration
	Cryptographic Identifiers
	Making Cryptographic Identifiers Memorable
	Petname Systems
	Linking Local Namespaces

	Practical Considerations
	Interoperability with DNS
	End-to-End Security and Error Handling
	Legacy Applications
	Censorship-Resistant Lookup
	Privacy-Preserving Name Resolution

	Design of the GNU Name System
	Names, Zones and Delegations
	Zone Management with Nicknames and Petnames
	Relative Names for Transitivity of Delegations
	Censorship-Resistant and Privacy-Preserving Publication and Name Resolution
	Automatic Shortening
	Absolute Names in GNS
	Delegation to Legacy Name Systems
	Handling TLSA and SRV Records in gns
	Records in GNS
	Shadow Records
	Revocation in GNS
	Dealing with Legacy Assumptions: Virtual Hosting and TLS

	Security Analysis
	Implementation of GNS
	Architecture
	Cryptography Used in GNS
	Identity Management for GNS
	Records in GNS
	Managing GNS Zones and Persistent Storage
	Caching GNS Information
	Zone Revocation with GNS
	Censorship-Resistant and Privacy-Preserving Publication and Name Resolution
	GNS Shortening
	GNS on Multi-User Systems
	Integration with the Name Resolution Process
	Accessing GNS from DNS

	Related Work and Comparison
	OpenDNS
	Namecoin
	TrickleDNS
	CoDNS
	Unmanaged Internet Architecture

	Use Cases for GNS
	Telephony
	Decentralized Online Social Networking
	Messaging
	DNSSEC Done Right: Securing the Web
	Other Applications
	Synergy
	Out-of-Band Exchange of Zone Information

	Conclusion and Findings

	Conclusion and Findings
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Appendix
	Headers
	The namestore Plugin API
	The namecache Plugin API

