
Proceedings of the 5th International Workshop on Reconfigurable Com...

A Secure Keyflashing Framework for Access
Systems in Highly Mobile Devices

Alexander Klimm, Benjamin Glas, Matthias Wachs, Jürgen Becker, and Klaus D. Müller-Glaser
Institut für Technik der Informationsverarbeitung, Universität Karlsruhe (TH)

email: {klimm,glas,mueller-glaser,becker}@itiv.uni-karlsruhe.de

Abstract—Public Key Cryptography enables for entity authen-
tication protocols based on a platform’s knowledge of other
platforms’ public key. This is particularly advantageous for
embedded systems, such as FPGA platforms with limited or none
read-protected memory resources. For access control to mobile
systems, the public key of authorized tokens need to be stored
inside the mobile platform. At some point during the platform’s
lifetime these might need to be updated in the field due to loss or
damage of tokens. This paper proposes a secure scheme for key
flashing of Public Keys to highly mobile systems. The main goal of
the proposed scheme is the minimization of online dependencies
to Trusted Third Parties, certification authorities, or the like
to enable for key flashing in remote locations with only minor
technical infrastructure. Introducing trusted mediator devices,
new tokens can be authorized and later their public key can be
flashed into a mobile system on demand.

I. INTRODUCTION

Embedded systems in various safety critical application
domains like automotive, avionic and medical care perform
more and more complex tasks using distributed systems like
networks of electronic control units (ECUs). The introduction
of Public-Key Cryptography (PKC) to embedded systems
provides essential benefits for the production of electronic
units needing to meet security requirements as well as for
the logistics involved. Due to the nature of PKC, the number
of keys that need to be stored in the individual platforms
is minimized. At the same time only the private key of the
platform itself needs to be stored secretly inside each entity
- in contrast to symmetric crypto systems where a secret key
needs to be stored inside several different entities at the same
time. In context of PKC, if one entity is compromised, the
others remain uneffected.

Computational efforts of cryptographic functionalities are
very high and time consuming if carried out on today’s
standard platforms (i.e. microcontrollers) for embedded appli-
cations. Integrating security algorithms into FPGA platforms
provides for high speed up of demanding PKC crypto systems
such as hyperelliptic curve cryptography (HECC). By adding
dedicated hardware modules for certain parts of a crypto
algorithm, a substantial reduction of computation time can be
achieved [10] [9].

Besides encrypting or signing messages, PKC can be em-
ployed to control user access to a device via electronic tokens.
Examples for this are Remote Keyless Entry (RKE) systems
[17] in the automotive domain, or Hilti’s TPS technology
[2]. These systems incorporate contactless electronic tokens

that substitute classical mechanical keys. The owner or au-
thenticated user identifies himself to the user device (UD) by
possession of the token. The UD and token are linked. Only if
a linked token is presented to the UD it is enabled or access
to the UD is granted. In order to present a token to a UD,
information needs to be exchanged between the two over an
usually insecure channel. To prevent the usage of a device
or its accessibility through an unauthorized person this data
exchanged needs to be secured.

Authentication schemes based on Public Key Cryptography
such as the Needham-Schroeder protocol [11], Okamoto Pro-
tocol [12], and Schnorr-Protocol [16] provide authentication
procedures where no confidential data needs to be transmitted.
Secret keys need only be stored in the tokens and not in the
UD thus omitting the need for costly security measures in the
UD. Only public keys need to be introduced into the UD (see
section II). This operation certainly does need to be secured
against attacks. For real-world operation this operation is done
in the field where the UD is not necessarily under the control
of the manufacturer (OEM) and a live online connection to the
OEM is not possible.

In this paper we propose a system to introduce public keys
into FPGA based user devices to pair these with a new token.
The proposed key flashing method allows for authorization of
the flashing process through an OEM. At the same time it can
be carried out with the UD in the field and with no active
online connection while flashing the key.

Introduction or flashing of new keys to an embedded device
can be seen as a special case of a software update. Here
the main focus is usually on standardization, correctness,
robustness, and security. Recent approaches for the automotive
area have been developed e.g. in the german HIS [8], [7] or
the EAST-EEA [3] project. A general approach considering
security and multiple software providers is given in [1].
Nevertheless general update approaches are focused on the
protection of IP and the provider against unauthorized copying
and less on the case that the system has to be especially
protected against unwanted updates as in our keyflashing
scenario.

The remainder of this paper is structured as follows. In sec-
tion II we present the basic application scenario followed by
a short introduction of public key cryptography in section III.
The requirements for the targeted scenario are described in IV.
In section V the protocol is shown and some implementational
results are given in section VI. We conclude in section VII.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 121



Proceedings of the 5th International Workshop on Reconfigurable Com...

II. APPLICATION SCENARIO

A mobile user device (UD) such as a vehicle, construction
machine or special tool with restricted access is fitted with an
FPGA based access control system. This allows only the owner
or certified users access to the device’s functionalities or even
the device itself. This is achieved with a transponder (TRK)
serving as an electronic version of a mechanical key. The
transponder is able to communicate to the UD via a wireless
communication channel. The user device accepts a number of
transponders. If one of these is presented to the user device it
authenticates the transponder and the device is unlocked, thus
granting access.

Authentication is done using Public Key Cryptography
(PKC). The Public Key of the transponders are stored securely
inside the user device thus establishing a ”‘guest list”’ of legal
users to the device. During production two initial Public Keys
are introduced into the user device.

In case of loss of a transponder it is desirable to replace it,
particularly if the user device itself is very costly or actually
irreplaceable. Since the user device is mobile, replacement of
the transponder’s public key usually needs to be done in the
field. This might include very remote areas with minor to none
communication infrastructure.

III. BASIC PKC FUNCTIONALITIES

In 1976, Whitfield Diffie and Martin Hellman introduced
PKC crypto systems [6]. Two different keys are used, one
public and the other secret (SK). SK and VK are a fixed
and unique keypair. It is computational infeasible to deduce
the private or secret key (SK) from the public key1 (VK).
With VK a message Mp can be encrypted into Mc but not
decrypted with the same key. This can only be done with
knowledge of SK. If an entity Alice wants to transmit a
message MAlice,plain to an entity Bob, it encrypts it with Bobs
public key VKBob. Only Bob can retrieve the plain text from
the encrypted message, by applying the appropriate decryption
algorithm using his own secret key SK.

PKC can also be used to digitally sign a message. For this
a signature scheme is used that is usually different from the
encryption scheme. When signing a message the secret key is
used and the signature can be verified by using the according
public key. In other words, if Bob wants to sign a message,
he uses his own private key that is unique to him. This key is
used to encrypt the hash value of the message MBob,plain. The
resulting value {HASH(MBob,plain)}sig is transmitted the
together with MBob,plain. A receiver can validate the signature
by using Bob’s public key and retrieving HASH(MBob,plain).
From MBob,plain the receiver can reconstruct the received hash
value and compare it with the decrypted value. If both match
the signature has been validated.

IV. SITUATION AND REQUIREMENTS ANALYSIS

In our application scenario we have the following main
entities:

1In the case of signature schemes the public key is often called verification
key.

• A user device UD that can only be accessed or used by
an authenticated user

• A human user OWN. He is authorized to access or use UD
if he possesses a legit token

• A transponder key token TRKorig originally linked to UD
and a second token TRKnew that shall be flashed to UD
additionally.

• The manufacturer OEM that produces UD
UD accepts a number of TRK to identify an authenticated

human user OWN of the UD. At least two tokens are linked
to a UD, by storing the respective public keys VKTRK inside
the UD. The OEM is initially the only entity allowed to write
public keys into any UD.

Solely the public keys stored inside the UD are used for any
authorization check of TRKs using any PKC authentication
protocol (e.g. [11], [12], [16]). The OEM’s public key VKOEM

is stored in the UD as well.
OEM, TRK, and UD can communicate over any insecure

medium, through defined communication interfaces.

A. Goals

A new TRKnew should be linked to a UD to substitute for
an original TRKorig that has been lost or is defective. From
this point on we’ll call the process of linking TRKnew to
a UD flashing. Flashing a TRK should be possible over the
complete life cycle of the UD. When flashing the UD it is
probably nowhere near the OEM’s location while flashing of a
TRK needs to be explicitly authorized by the OEM. Any TRK
can only be flashed into a single UD. Theft or unauthorized
use of the UD resulting from improper flashing of the TRK
needs to be prohibited.

In addition we demand that online connection of UD and
OEM during flashing a TRK must not be imperative.

B. Security Requirements

The protocol shall allow dependable authorized flashing
under minimal requirements while preventing unauthorized
flashing reliably. Therefore it has to guarantee the following
properties, while assuming communication over an unsecured
open channel:

• Correctness: In absence of an adversary the protocol has
to deliver the desired result, i.e. after complete execution
of the protocol the flashing should be accomplished.

• Authentication: The flashing should only be feasible if
both OEM and OWN have been authenticated and have
authorized the operation.

• No online dependency: The protocol shall not rely on
any live online connection to the OEM.

• Confidentiality: No confidential data like secret keys
should be retrievable by an adversary.

C. Adversary model

We assume an in processing power and memory polynomi-
ally bounded adversary A that has access to all inter-device
communications, meaning he can eavesdrop, delete, delay,
alter, replay or insert any messages. We assume further that

122 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010



Proceedings of the 5th International Workshop on Reconfigurable Com...

the adversary is attacking on software level without tampering
with the participating devices.

Without choosing particular instances of the cryptographic
primitives we assume that the signature scheme used is secure
against existential forgery of signatures and regard the hashing
function used as a random oracle.

V. KEY FLASHING CONCEPT

Focus of the proposed key flashing protocol is the intro-
duction of a public key VKTRK into UD. We abstract over
the implementation of communication interfaces, PKC systems
as well as the immediate implementation of the devices and
entities themselves.

Two basic Flashing Scenarios are conceivable. One is that
TRKs are flashed directly by the OEM, either during production
or via an online connection. We concentrate on the second one,
flashing of TRKs through an authorized service point (SP) with
no immediate online connection to the OEM.

A. Entities

In addition to the entities introduced above (UD, OWN,
TRK and OEM) we use two additional participants, namely a
service point SP and an employee SPE of this service point
conducting the flashing procedure.

1) OEM - Manufacturer: The OEM manufactures the UD
and delivers it to OWN. OWN is issued the corresponding TRKs
linked to the UD. All UDs are obviously known to the OEM.
The verification keys VKTRK are stored by the OEM together
with their pairing to the UD. Therefore the OEM knows what
TRK is linked to what UD. We regard the entity OEM as a
trusted central server with a database functionality.

The OEM can store data, sign data with SKOEM and
send data. It possesses all cryptographic abilities for PKC
based authentication schemes and can thereby authenticate
communication partners.

2) UD - User Device: UD is enabled only when a linked
TRK is presented by authenticating the TRK via a PKC
authentication scheme. All linked TRKs’ public keys VKTRK

are stored in the UD. Additionally the public key of the OEM
VKOEM is stored in the UD and can not be erased or altered
in any way and UD has a OEM-issued certificate for it’s own
public key certifying being a genuine part. UD grants read
access to all stored public keys. Write access to the memory
location of VKTRK is only granted in the context of the
proposed key flashing scheme.
UD possesses all cryptographic abilities for PKC based

authentication schemes and can thereby authenticate commu-
nication partners.

3) OWN - Legal User: OWN is the legal user of UD and can
prove this by possession of a linked TRKorig .

4) TRK - Transponder: TRK2 possesses a keypair
VKTRK /SKTRK for PKC functionality. It is generated inside
the TRK to ensure that the secret key SKTRK is known solely

2TRKs can be manufactured by a supplier that has been certified by the
OEM

to TRK. Read access to VKTRK is granted to any entity over
a communication interface.
TRK possesses cryptographic primitives for PKC based

authentication schemes on prover’s side and can thereby be
authenticated by communication partners.

5) SP - Service Point: SP is a service point in the field
such as a wholesaler, certified by the OEM. Typically a SP
is a computer terminal. Access to the terminal is secured by
means of a password as in standard PC practice. A SP can
communicate to the OEM as well as to the UD. At the same
time it is able to read the VKTRK of any TRK.

Furthermore the SP constitutes a trusted platform meaning
that it always behaves in the expected manner for the flashing
procedure and accommodates a trusted module responsible for:

• storage of authorized VKTRK

• secure counter
• key management of authorized VKTRK

SP possesses cryptographic primitives for PKC based au-
thentication schemes on prover’s and verifier’s side and can
thereby be authenticated by communication partners as well
as authenticate communication partners.

6) SPE - Employee of Service Point: A SPE is a physical
person that is operating the SP and is regarded as a potential
attacker of the flashing operation. Access control of a SPE to
the SP is enforced via password or similar. SPE is responsible
for the system setup for the flashing application consisting of
establishing the communication links of UD, SP, TRK, and
OEM if needed.
UD, TRKnew, and SP are under control of the SPE and the

communication links to UD, TRKorig , TRKnew, SP, and OEM
can be eavesdropped, the trusted module can not be penetrated
though.

B. Steps

The following steps are necessary to introduce an new
VKTRK into a UD avoiding online dependency. All of them
are included in figure 1.

1) Delegation of trust to SP
2) Authorization of SPE by SP
3) Authorization of TRKnew by OEM
4) Introducing an authorized TRKnew into a UD
Authorization of SPE can be done e.g. via a password

(knowledge) or by biometrical identification (physical prop-
erty). The delegation of trust and authorization of TRKnews is
very closely related and described in section V-C. These steps
form the first phase of the flashing process and can be done in
advance without UD and OWN but need a communication link
to OEM. The final introduction of a new VKTRK is the second
phase and is detailed in section V-D. It does no longer depend
on interaction with OEM.

C. Trust Delegation and TRKnew Authorization

To be able to perform a key flashing procedure without an
active link to OEM a local representative has to be empowered
by the OEM to perform the flashing, assuming that UD trusts

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 123



Proceedings of the 5th International Workshop on Reconfigurable Com...

Fig. 1. Flashing Scheme

only the OEM to flash legit keys. This is done by presenting a
credential to UD accounting that flashing is authorized by OEM.
The exchange of this credential is denoted in the following as
trust delegation.

In our case SP is the local representative. In order to request
the flashing credential from the OEM, SPE has to be authen-
ticated first to prevent SP abusive operations. Afterwards SP
can connect to OEM and request a trust credential. This is
issued only after mutual authentication and only to known
partner service points. It is always valid for only a limited
time and limited number of flashing operations to minimize
negative impact of compromised SPs. This is controlled and
enforced by the trusted component inside SP using the secure
unforgeable counter keeping track of the number of flashing
cycles.

The public key of a TRKnew needs to be authorized by
OEM. SP can read out VKTRK and send it to OEM. If SP is
allowed to flash TRKs into a UD, the OEM sends the authorized
VKTRK back to SP which is stored in SP’s trusted module.
Only a limited number of authorized TRKs can be stored at
any given point in time.

As soon as a TRK has been authorized by the OEM, physical
access to the TRK needs to be controlled. The authorization
process of TRKs is the only step that demands for a data
connection between SP and OEM. This does not necessarily
need to be an online connection since data could be transported
via data carriers such as CDs, memory sticks, or the like.

D. Flashing of TRK

The actual flashing of a TRKnew to a given UD demands
for a valid new transponder TRKnew, authorization by OEM

and OWN, former either directly or delegated to SP using the
credential introduced above, latter done by presenting a valid
linked TRKorig assumed to be solely accessible by OWN. If
an online connection to OEM is available the protocol can
be performed by UD and OEM directly, SP only relaying
communication.

In either case UD and SP authenticate each other mutually
using their respective OEM-issued certificates. UD additionally
checks authorization by OWN, testing whether a valid linked
token is present or not. If all these tests passed, SP presents the
authorized and OEM-signed new TRKnew to UD which checks
the OEM signature and credential. In the case of successful
verification UD accepts the new token TRKnew and adds
VKTRK to it’s internal list of linked tokens.

E. Entity Requirements

Regarding the proposed flashing protocols certain require-
ments for the entities’ functionalities have to be satisfied. An
overview is given in table I

OEM SP UD TRK
Initiate Communication • •
Acknowledge Communication • • •
Generation of Keypairs • •
Signatures Generation • • • •
Signature Verification • • •
Random Number Generation • • •
Datamanagement for suppliers •
Datamanagement for User Devices •
Datamanagement for Service Points •
Datamanagement for TRKs • •
Secure Storage for delegated Trust •
Knowledge of OEM’s public key • •

TABLE I
ENTITY REQUIREMENTS

Data management is one of the key requirements in the
protocol in the sense that public key data needs to be stored.
Secure storage for delegated trust has some additional require-
ments such as intrusion detection to protect data from being
altered in any way. At the same time it is mandatory that this
data is always changed correctly as demanded by the protocol.
Also the OEM’s public key needs to be firmly embedded into
the entity and must not be altered in any case, otherwise the
OEM can not be identified correctly from the protocol’s point
of view.

VI. IMPLEMENTATION

The protocol has been implemented as a proof of concept
in a prototypical setup based on a network of a standard PC
representing OEM and SP. Furthermore Digilent Spartan3E
Starter Boards with a Xilinx XC3S500 FPGA represent TRKs
and UDs.

In figure 2 all implemented instances are depicted. TRK,
SP, and UD have to be connected when flashing the key. The
OEM connection needs to be established anytime prior to the
flashing according to the proposed protocol and is connected
via TCP/IP with the SP.

124 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010



Proceedings of the 5th International Workshop on Reconfigurable Com...

Fig. 2. Component Interaction

Key Length 1024 Bit
Exponent 216 + 1 (65537)
Padding Scheme PKCS#1 v1.5
Signature Scheme PKCS#1 v1.5
Hashing Scheme used for signing SHA1

TABLE II
PARAMETERS FOR RSA-SYSTEM

All other communication is done over RS232 interfaces
that are available both on PC and the FPGA boards as well.
These can be substituted for other communication structures
if needed, i.e. wireless transmitters.

A. Choice of cryptographic Algorithms

The proposed keyflashing concept demands for asymmetric
encryption and a cryptographic hashfunction. RSA [15] is
chosen for encryption and signing, SHA1 for hash function-
ality. Both schemes are today’s standard and have not been
broken yet, but can be substituted in our implementation
for more secure schemes if needed. RSA as well as SHA1
implementations are freely available as software and hardware
IP for numerous platforms. In table II the RSA parameters
chosen are given.

All signatures in our context are SHA1-hash values of
data that has been encrypted according to the signing scheme
PKCS#1 v1.5 [14]. Such a signature has a length of 128 Byte
when using a keylength of 1024 bit and hashvalues of 160 bit
bitlength.

B. OEM/Service Point - Software Platform

Both components OEM and SP have been implemented on
a standard PC. All functionalities have been implemented in
software under the .NET frameworks version 2.0 using C#.
The .NET framework provides the Berkeley Socket-interface
for communication over the PC’s serial interface. At the same
time in includes the Cryptography-namespace providing
all needed cryptographic primitives including hashing func-
tions and a random number generator that are based on the
FIPS-140-1 certified Windows CryptoAPI. The software is
modularized to enable for easy exchange of functional blocks
and seamless substitution of algorithms. Software modules
communicate only over defined interfaces to enable for full

Module lines of code percentage
Main application 1234 41.77
GUI 264 8.94
Cryptography 385 13.03
Interaction 383 12.97
Communication 545 18.45
Data Management 143 4.84
Total 2954 100

TABLE III
PROPERTIES OF OEM COMPONENT

Slices 1.791 of 4.656 (38%)
Slices: FlipFlops uses 1.590 of 9.312 (17%)
Slices: LUTs used 1.941 of 9.312 (20%)
BlockRAMs used 16 of 20 (80%)
Equivalent Logic Cells 1.135.468
Minimal clock period 18,777 ns
Maximum clock frequency 53,257 MHz

TABLE IV
FPGA RESOURCES

functional encapsulation. For ease of usage a graphical user
interface (GUI) is included as well in both entities.

C. Transponder/UserDevice - FPGA platform

The targeted user device is an FPGA. To enable for
easy reuse of functionalities the exemplary TRK has been
implemented on FPGA as well, but can also be integrated
into a smart card or RFID chip as long as the appropriate
cryptographic primitives are provided.

A MicroBlaze softcore processor is incorporated that pro-
vides all functionality including cryptographic functions.
Hardware peripherals such as a LCD controller have been
integrated for debugging purposes. To enable for handling of
big numbers, as are used in the cryptographic functions of the
protocol, the libraries libtommath [5] and libtomcrypt
[4] are used. Only necessary components have been extracted
from those libraries and are integrated into TRK and UD.

D. Resource Usage

The resource usage of the components OEM and SP are very
similar, since almost identical functional software blocks are
used in both. Table III gives an exemplary overview of the lines
of codes of the OEM implementation. The memory footprint of
the compiled OEM implementation is 129 KB (139 KB for the
SP implementation). At start up 15400 KB of main memory
is used. The execution times for RSA- and SHA1-operations
were measured on a PC (2 GHz, 1024 MB RAM) and are all
in the range of milliseconds.

Resource usage of the FPGA based components UD and
TRK are given in table IV. By implementing all functionality
on a MicroBlaze softcore, the hardware usage is quite moder-
ate. On the other hand the software footprint is 295 KB for the
UD implementation, due to the non-optimized memory usage
of the crypto library used.

Shown in table V are the execution times of the divers pro-
tocol instances. The duration of parts of the protocol that are

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 125



Proceedings of the 5th International Workshop on Reconfigurable Com...

Protocol instance Duration
(min:sek.ms)

ReadOut of Transponder 01:32.000
Mutual Authentication of UD und TRK 03:14.000

Direct Keyflashing
Keyflashing to Transponder by OEM 23:50.000

Keyflashing by ServicePoint
Delegation of trust OEM to SP 00:00.350
Transponderdelegation 00:00.250
Keyflashing to Transponder by SP 12:43.000

TABLE V
PROTOCOL EXECUTION TIMES

based soley on OEM and SP is in the area of few milliseconds.
As soon as mobile devices (UD, TRK) process parts of the
protocol, speed is declining since all crypto operations are
currently carried out on an embedded microcontroller. Main
factor here is the RSA decryption operation. With appropriate
hardware support, choice of parameters and cryptosystem,
substantial speedups can be achieved as shown in [9].

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a scheme for flashing public keys
into mobile FPGA devices under the constraint that no online
connection to the system manufacturer (OEM) is mandatory.
It is applicable for a variety of embedded systems that need
to implement and enforce access or usage restrictions in the
field. The scheme was implemented as a proof-of-concept
using a combination of PC-based and FGPA-based protocol
participants.

A. Security Analysis

Looking at the security of the proposed concept some
points can be identified where security relies on policies and
implementing rules while other issues are covered by design.

Using PKC primitives and trusted computing approaches the
protocol ensures confidentiality of secret keys and mutual au-
thentication of SP and OEM, OWN and UD, SP and UD, SP and
SPE. But due to the necessity of online-independence there are
some assumptions that have to be made to guarantee security.
This is mainly the trustworthiness of the SP in combination
with the physical protection of authorized TRKorig .

If these assumptions are broken e.g. by theft of authorized
TRK, the corresponding SP and the SPE password, unautho-
rized flashing may be possible. As countermeasures the usage
of the protocol can be adapted to dilute effects of such events.
So the number of allowed authorized TRK should be as low
as possible and the SP should be implemented using trusted
components and based on a trusted platform secrets should be
especially protected against misuse by a physical attacker.

B. Future Work

Flashing speed is of utmost importance in real world im-
plementation. To make allowance for a real world integration
of the proposed flashing schemes, optimizations regarding
usage and speed of the computational units involved are
needed. In the current prototype the MicroBlaze processor

has been used for simplicity. Speed up can be achieved with
a hardware/software codesign as done in [10]. For maximal
speed a full FPGA hardware implementation is desirable, as
has been done in [13] for cryptographic functionalities of a
HECC system.

The user authentication via PKC can be a solution for
dedicated function enabling. Different functionalities can be
configured onto an FPGA using partial dynamic reconfigura-
tion. By either allowing or prohibiting, the configuration of a
certain bitstream depending on the user employing the system,
usage policies could be enforded thus opening up new business
models for suppliers of FPGA based systems.

One crucial point is the protection of the TRK’s public key
stored in the UD against physical attackers. The possibility
of countermeasuring attacks that might alter stored keys on a
physical level needs to be investigated in the future as well.

REFERENCES

[1] Andr Adelsbach, Ulrich Huber, and Ahmad-Reza Sadeghi. Secure
software delivery and installation in embedded systems. In Robert H.
Deng, editor, ISPEC 2005, volume 3439 of LNCS, pages 255–267.
Springer, 2005.

[2] Hilti Corporation. Electronic theft protection. Available electronically
at www.hilti.com, 2007.

[3] Gerrit de Boer, Peter Engel, and Werner Praefcke. Generic remote
software update for vehicle ecus using a telematics device as a gateway.
Advanced Microsystems for Automotive Applications, pages 371–380,
2005.

[4] Tom St. Denis. Libtomcrypt. http://libtomcrypt.com/.
[5] Tom St. Denis. Libtommath. http://math.libtomcrypt.com/.
[6] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.

IEEE Transactions on Information Theory, IT-22(6):644–654, 1976.
[7] Herstellerinitiative Software (HIS). HIS-Presentation 2004-05, 2005.

available electronically at www.automotive-his.de.
[8] Herstellerinitiative Software (HIS). HIS Security Module Specification

v1.1, 2006. available electronically at www.automotive-his.de.
[9] Alexander Klimm, Oliver Sander, and Jurgen Becker. A microblaze

specific co-processor for real-time hyperelliptic curve cryptography on
xilinx fpgas. Parallel and Distributed Processing Symposium, Interna-
tional, 0:1–8, 2009.

[10] Alexander Klimm, Oliver Sander, Jürgen Becker, and Sylvain Subileau.
A hardware/software codesign of a co-processor for real-time hyperel-
liptic curve cryptography on a spartan3 fpga. In Uwe Brinkschulte, Theo
Ungerer, Christian Hochberger, and Rainer G. Spallek, editors, ARCS,
volume 4934 of Lecture Notes in Computer Science, pages 188–201.
Springer, 2008.

[11] Roger M. Needham and Michael D. Schroeder. Using encryption
for authentication in large networks of computers. Commun. ACM,
21(12):993–999, December 1978.

[12] Tatsuaki Okamoto. Provably secure and practical identification schemes
and corresponding signature schemes. In CRYPTO ’92: Proceedings of
the 12th Annual International Cryptology Conference on Advances in
Cryptology, pages 31–53, London, UK, 1993. Springer-Verlag.

[13] J. Pelzl, T. Wollinger, and C. Paar. Embedded Cryptographic Hardware:
Design and Security, chapter Special Hyperelliptic Curve Cryptosystems
of Genus Two: Efficient Arithmetic and Fast Implementation. Nova
Science Publishers, NY, USA, 2004. editor Nadia Nedjah.

[14] RSA Laboratories Inc: RSA Cryptograpy Standard PKCS No.1. Elek-
tronisch verfügbar unter http://www.rsasecurity.com/rsalabs.

[15] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[16] Claus P. Schnorr. Efficient identification and signatures for smart cards.
In CRYPTO ’89: Proceedings on Advances in cryptology, pages 239–
252, New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[17] Henning Wallentowitz and Konrad Reif, editors. Handbuch Kraft-
fahrzeugelektronik: Grundlagen, Komponenten, Systeme, Anwendungen.
Vieweg, Wiesbaden, 2006.

126 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010


