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Abstract—In recent years, secure multiparty computation
(SMC) advanced from a theoretical technique to a practically
applicable technology. Several frameworks were proposed of
which some are still actively developed.

We perform a first comprehensive study of performance
characteristics of SMC protocols using a promising implemen-
tation based on secret sharing, a common and state-of-the-art
foundation. Therefor, we analyze its scalability with respect to
environmental parameters as the number of peers, network
properties – namely transmission rate, packet loss, network
latency – and parallelization of computations as parameters and
execution time, CPU cycles, memory consumption and amount
of transmitted data as variables.

Our insights on the resource consumption show that such a
solution is practically applicable in intranet environments and –
with limitations – in Internet settings.

Index Terms—Cryptography, Secure Multiparty Computation,
Privacy, Performance, Resource Consumption, Measurement

I. INTRODUCTION

While the foundations for secure multiparty computation
(SMC) were laid about forty years ago [1], the topic experi-
enced a revival in the last decade: Starting as mere theoretic
considerations, improvements in hardware performance made
practical implementations and productive use of SMC possible.
In consequence, a number of SMC frameworks emerged and
its practical application was considered in research [2]–[5].

Their use cases have in common that they focus on singular
events of orchestrated or manually triggered computations.
With Smart Buildings and the Internet of Things (IoT), a
new type of use case for privacy-preserving data processing
becomes relevant: Regular and automated processing of data
streams will be carried out on commodity or even low-end
hardware. Here, SMC can be the distributed system of choice
for performing privacy-preserving aggregation of distributed
data. But this is only the case when the environmental con-
straints do not render its application infeasible: Host nodes
will only have a low amount of memory and a constrained
CPU in terms of frequency and number of cores. Further-
more, communication might happen via wireless LAN or even
between different regions over the Internet. Then, network
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performance is restricted in terms of limited transmission rate
or high network latency and presence of packet loss.

It is hence vital to understand the resource requirements of
a productively usable SMC solution. Our work provides these
insights by performing a thorough performance evaluation of a
selected SMC framework based on secret sharing assessing the
influence of a multitude of parameters on variables quantifying
host (CPU and memory), network (transmitted data) and user
resources (time) alongside with the identification of critical
scaling behavior.

The remainder of the paper is structured as follows: In
Section II, we give an overview of SMC in general and argue
for the framework we select for further examination. Section
III presents the related work regarding practical evaluation of
SMC. We present preliminary theoretical performance consid-
erations for round based SMC protocols in Section IV. Section
V contains the description of our evaluation setup; the results
are presented and discussed in Section VI. We elaborate the
practical implications in Section VII and conclude our paper
with Section VIII.

II. SECURE MULTIPARTY COMPUTATION

Secure multiparty computation enables multiple communi-
cating parties to collaboratively compute a function while
being able to keep their respective input value completely
confidential. Yao initiated this field of research by presenting
the Millionaire’s Problem and the idea of Secure Function
Evaluation [1][6]. While many single purpose protocols were
proposed, the main interest was in the creation of a general
purpose framework which allows the computation of arbitrary
functions. Basic concepts were identified which allowed ap-
proaching this aim, most notably garbled circuits [6], homo-

morphic encryption [7] and secret sharing schemes [8] [9].
Its theory flourished early in the 80’s (cf. [9]–[14]) while
implementations have only been developed in the last decade.
Among them, many have been proposed as proof of concept
but were not publicly available [2] or have not been developed
further since then [3] [15] [16]. Currently, Sharemind [17],
SPDZ-2 [18] [19] and FRESCO [20] constitute the state-of-the-
art of actively developed SMC frameworks1.

1There are further frameworks for the special two-party case, but they are
not applicable in this multiparty context.
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a) Sharemind: Sharemind [17] was mainly developed
by Bodganov [21]. It is implemented in C++ and uses an
additive secret sharing scheme in the ring Z232 . Its focus was
to provide a real-world suitable framework with appropriate
performance. They therefore opted to prevent only passive
corruption – which is less computationally expensive – and to
constrain their solution to strictly three computation parties,
while allowing an arbitrary number of input parties. Their
argument is that further computation parties increase the com-
munication overhead. Sharemind is now part of the services
that Cybernetica [22] provides. It is under active development
but partially closed-source.

b) SPDZ-2: SPDZ-2 [18] [19] is currently developed
by the University of Bristol. The software is mainly written
in C++ while the protocols can be written in Python. It
features the SPDZ protocol, which follows the current research
direction of using additive secret sharing and performing a
(computationally expensive) preprocessing phase in order to
gain highly efficient protocol executions.

c) Framework for Efficient Secure Computation:

FRESCO [20] is developed by the Alexandra Institute in Den-
mark, a non-governmental organization for IT innovation and
IT research. It aims for being a non-prototypical, productively
applicable generic SMC framework written in Java. I.e. it
is desired that the framework provides an abstraction from
specific SMC primitives so that protocol specification can be
performed independently. The benefits are that primitives can
be switched afterwards while the specified protocol does not
have to be changed. This especially enables simple incorpora-
tion of newest research results on SMC.

Currently, they support the Ben-Or–Goldwasser–Wigderson
(BGW) [9] protocol based on secret sharing using polynomials
and the computation (“online”) phase of SPDZ [18] which has
been successfully applied in [23]. A full support of SPDZ is
work in progress.

All of these solutions are secret sharing based. Hence, a
similar performance behavior depending on the investigated
parameters can be expected. However, for our use case we
need a solution which is able to support computations with a
theoretically arbitrary number of participants. This is not given
by Sharemind. Furthermore, Sharemind is closed-source which
further obstructs assessment. SPDZ-2 is currently still work in
progress on a level of fundamental changes and consequently
not ready for a thorough performance measurement. Our
choice is therefore FRESCO, which aims for production-ready
application.

III. RELATED WORK

The newly gained interest in SMC during the last years re-
sulted in a multitude of publications, which propose successive
improvements or applications of established approaches. By
contrast, the body of research is missing thorough performance
measurements of SMC solutions.

Most of these publications do not provide performance data
or merely a single result for their exact setting of application
[2] [5] [24] [25] . Others typically only evaluate overall

execution time and to some lower degree transmitted bytes
measured while at most varying the number of parties and
the amount of input data [3] [4] [17] [26]–[30]. Only few
include further parameters like the transmission rate [19] and
technology-dependent factors like circuit size and depth [16]
and evaluate further parameters e.g. throughput.

For understanding whether SMC is also feasible in dis-
tributed systems, fog computing and the Internet of Things, it
is necessary to perform more thorough measurements includ-
ing further factors. It is vital to understand the influences of the
network characteristics and to further examine the impact on
host resources, i.e. CPU utilization and memory consumption.

We aim to provide the necessary insights by assessing
the parameters number of peers, transmission rate, network

latency, packet loss, and input data parallelization while mea-
suring the variables execution time, CPU cycles, heap memory

consumption, and transmitted bytes.

IV. PRELIMINARY EXECUTION TIME CONSIDERATIONS

A possible theoretic computation model for secret sharing
based SMC protocol foundations like BGW “is a complete
synchronous network of n processors” [9]. The protocol itself,
common to all processors, is dissected into rounds. “In one
round of computation each of the players can do an arbitrary
amount of local computation, send a message to each of the
players, and read all messages that were sent to it at this
round” [9]. In secret sharing based protocols, such a message
typically contains a share of a private local value – e.g. a
polynomial in the BGW protocol – held by the sender.

Considering the aforementioned rounds as a time factor, the
protocol becomes an alternating sequence2 of local computa-
tion and network communication:

comp1, comm1, . . . , compm−1, commm−1, compm (1)

Furthermore, the communication steps are synchronization
points for the players, as they typically need the shares of the
other participants in order to proceed with the next round.
We denote the costs in terms of time for a step compi as
costcompi

. The message sent from player Pk sent to Pl during
commi is referred to as msgi,k→l.

Two phases are typically common to all SMC protocols:
During the input phase the own private input is transformed
into shares and distributed among the participants. This takes
one round. In the output phase the shares of the computed
result are exchanged among all participants, so that each is
able to recombine them and to obtain the plaintext result. In
FRESCO this also takes a round3.

Regarding the basic arithmetic operations BGW provides,
the round complexity varies. Addition is “free” as it does not

2 We consider recombining the shares to be the last step compm. Hence,
there are only m− 1 communication steps.

3Some solution perform a resharing in order to make the final shares
independent from the shares obtained in the computation. This is, e.g.,
necessary when the shares should be reused to perform further calculation.
Then, another round becomes necessary during this phase.



need any communication. Multiplication requires rerandomiza-
tion of the polynomial and the reduction of its degree [9]. This
involves a step of communication between the participants, and
hence, requires a round.

Theoretically, the communication cost of the ith round
costcommi

depends on the number of messages sent during
the round. As every participant sends an individual share of a
polynomial to every other participant during communication
steps, the overall number of shares sent is O(n2). Furthermore,
every participant pi typically contributes its own input vi for
the computation. Hence, when a single multiplication step is
specified in the protocol, this means that the product of all
input values should be computed:

∏n

i=1
vi. In such a case,

n−1 single multiplication rounds are necessary; consequently
the costs for such an array multiplication are O(n3).

These theoretical costs assume a sequential execution of
each communication. However, inspection of the FRESCO

code and the analysis of its behavior show that sending and
receiving for every participant can happen in parallel4: Sending
is a non-blocking action for the computation layer which hands
over the messages to be sent to the communication layer of
FRESCO. Receiving is actually blocking on the computation
layer, however, the communication layer is nevertheless able to
receive all available messages simultaneously. In other words,
waiting times for receiving multiple shares are not strictly
additive.

When a host has sent out every share and it has received
all other participants’ shares, the next computation step can
be performed. So, in spite of the aforementioned theoretical
complexity, due to parallelization the overall communication
cost per round mainly depends on the pair of hosts, where
communication takes longest:

costcommi
= max

1≤k,l≤n
costmsgi,k→l

(2)

While every round is practically performed in constant
time, the number of rounds per array multiplication increases
linearly.

A further approximative simplification of the communica-
tion costs can be made: Communication between two peers
is always identically structured and bears shares as content.
We could verify this claim using the FRESCO code, which
specifically only sends instances of the single class which
represent the shares. Hence, we can simplify that

∀i ∈ {1, . . . ,m− 1} : costcommi
= costcomm (3)

Note that Equation 3 does not hold for computation steps,
as each phase performs different tasks.

Combining Equations 1 and 3 the overall costs of time can
be estimated by

costoverall =
m∑

i=1

costcompi
+ (m− 1) ∗ costcomm (4)

4One exception is the initial input sharing phase. Here, sending of shares
is only performed by a single host at a time.

Using the model of the alternating sequence, two types of
influences on the duration become visible: The computation
performance depends in the properties of the participants, the
communication performance depends on the properties of their
network links. Due to the synchronizing behavior of rounds,
the costs of both sides add up to the overall costs.

In the first part of our measurements (Section VI-A to
VI-C), we focus on how the overall costs are influenced
by an increasing number of participants as well as network
parameters, namely network latency, transmission rate and
packet loss. Besides duration measurements, we also assess the
memory footprint, the CPU utilization and the amount of data
transferred. In the second part (Section VI-D), we examine
whether the described sequential processing and the resulting
additivity of communication and computation costs can be
circumvented. Therefor, we regard cases, where multiple in-
dividual computation sessions can be parallelized instead of
being executed sequentially. We show that the amortized costs
per session decrease as a consequence.

Performance Comparison

Conceptually, SMC replaces a Trusted Third Party (TTP) by
providing a secure protocol implementation. Canetti [31] used
this understanding to propose a now well-established method
to prove secrecy and correctness of an SMC approach.

We can also apply this understanding to assess the perfor-
mance penalty that SMC introduces. The ideal world which
uses a TTP for computation can also be used as a performance
baseline. In fact, in today’s productively used systems, TTP
solutions are the established standard; hence, the comparison
with a TTP is also practically relevant.

In order to do so, we align the necessary actions when using
a TTP with the phases of an SMC computation. In a TTP set-
ting, the input phase can be understood as providing the input
data to the TTP. The output phase, in turn, comprises sending
the result from the TTP to the participants. Computation steps
themselves can be directly adapted. The whole comparison
applied to the BGW protocol is shown in Table I.

Presenting our results in section VI, we add – where ap-
plicable and foreseeable – an estimation how a TTP solution
would perform. In these cases we approximate the communi-
cation performance as described before while neglecting the
comparatively low influence of the computation steps.

V. EVALUATION SETUP

In the following we describe our test setup. The use case
explains which computations have been carried out via SMC.
Here, we refer to a real-world use case performed at our
lab; the functionality is however similar to other real-world
systems. In the second part, the methodology, we document the
measurement environment in terms of used software, hardware
and measurement tools.

A. Use Case

Our use case is inspired by MeasrDroid [32], a smartphone
app which allows users to gain insights in the sensor data of



SMC TTP
Phase Computation per host Communication (overall) Computation on TTP Communication (overall)

Close Generation of polynomial, calculation of n shares n
2
− n messages — n messages

Addition n− 1 additions — n− 1 additions —
Multiplication n− 1 multiplications, CompClose , CompOpen n

2
− n messages n− 1 multiplications —

Open Lagrange interpolation n
2
− n messages — n messages

Table I: Performance comparison SMC vs. TTP

their smartphones and allows comparison to other users. We
assume a set of moving devices. One property of interest is the
summed and averaged travel distance over the set of devices.

Insecurely and without SMC, the functionality is realized as
follows: Each client is able to derive a stream of distances from
the raw GPS coordinates. They can connect to a common cen-
tral trusted server. Upon each connection the client transmits
the travel distance since its last connection. These distances are
collected as a running average. At any given point in time the
overall average distance can then be computed by the server.

In order to apply FRESCO, the input has to be organized in
synchronous sessions. In every session, each device contributes
its distance since the last session, whereas the statistics server
inputs the current value of the running sum (starting with 0).
The result of each round is saved by the statistics server.

Knowing that communication between the peers is the
typical bottleneck for SMC [4] [5] [26], the choice of the
use case is beneficial for our performance measurement: The
computational part is comparatively low so that performance
effects caused by communication and their relationship to the
named parameters become clearly visible. This allows better
assessment of the communication bottleneck of SMC based
solutions with negligible influence by the local computations.

Input Data: We used real world data retrieved from Meas-
rDroid, yielding five traces consisting of 20000 GPS tuples
each, being collected in intervals of 15 to 20 minutes depend-
ing on the individual configuration per device. The utilization
of more nodes for some measurements made it necessary
to provide more input data to be used for the computation.
The data itself does in no way influence the performance of
the system. Hence, without loss of application and closeness
to reality we took our data from the original 5 donors and
duplicated the inputs until every used node had an own list of
GPS input tuples.

B. Methodology

We evaluated FRESCO in the following setting:
1) Hardware and Host Setup: For our tests we had 15

physical hosts available. Each host has an Intel Xeon CPU
with eight cores at 2.50 GHz and a cache size of 8192 KB.
They have 15.780 MB of RAM each and a 1 Gbit networking
interface. They are arranged in the shape of a star topology,
all hosts are connected via a single switch. The default link
latency is around 0.18 ms and there is no packet loss. The test
hosts use Debian Jessie (8.5) and a 3.16 Linux kernel. The
source code is compiled to a Java application which is in turn
executed by the Java VM from the OpenJDK 1.8.0_111. For
some tests simulating intranet, Internet and mobile Internet
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Figure 1: Impact of the number of peers on the maximum
allocated heap memory

settings we added an artificial delay of 16 ms, 50 ms, 200 ms
and 500 ms to the communication round-trip equally distribut-
ing the delay to both hosts of each link using tc . For this
purpose, tc delays every outgoing packet by the half of the
desired additional delay. Packet loss is also simulated via tc.

2) Software Setup: We use an orchestration layer which
configures all client-side parameters (latency, transmission rate,
packet loss, . . . ) and then starts the target application. The Java
application itself locally loads GPS coordinates in order to per-
form 1000 executions of the protocol per measurement. This
repetition makes the measurement results more robust against
random performance fluctuations during single computations.
Furthermore, each measurement itself has been repeated 50
times if not noted otherwise.

3) Measurement Software: Profiling is performed using
perf from the linux-tools (version 3.16+63) for counting CPU
cycles, BTrace (version 1.3.8.3 (20160926)) for assessing
memory consumption and execution time and tshark (version
2.2.4) from wireshark for collecting the raw transmitted data.

VI. RESULTS

In the next subsection we focus on the host resources heap

memory and consumed CPU cycles. Afterwards we analyze the
amount of transmitted data representing the network resource.
Then the execution duration, most directly affecting the user,
is discussed. As the last subsection, we analyse the influence
of parallelization of computations on the named resources.

A. Host Resources

1) RAM: In our context, RAM is separated in stack and
heap memory. Our measurements showed that stack memory
always ranged from 16 MBytes to 20 MBytes. We consider
these variations to be negligible. Therefore, we focus com-
pletely on heap memory consumption in the following.

Our baseline execution with 3 peers and a setup as described
in Section V-B1, the standard memory consumption is around
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Figure 2: Impact of network latency on the CPU cycles

69 MBytes. This is only negligibly influenced by networking
parameters. The delay in execution caused by a lower trans-
mission rate, higher network latency or packet loss typically
influences the speed of memory allocation and in consequence
the garbage collector. This yields variations up to ±3MBytes.

We identified a strong correlation when scaling the number
of peers. Increasing this parameter, heap memory consumption
gradually diverges step-wise (cf. Figure 1). The FRESCO

application uses around 70 MBytes during a computation with
3 to 5 peers, which increments to 530 MBytes for 7 to 9 peers
and increases again to 840 MBytes for 11 to 15 peers. This
is expectable as data about current connections as well as
intermediate results like the shares of all other participants are
stored on the heap. We deduce a linear trend from Figure 1
where the notable amount of outliers at x=15 already foreshad-
ows the next step of heap increment. In any case, this factor
rapidly becomes critical: With 15 peers, FRESCO already starts
exceeding the memory resources of a Raspberry Pi [33] 3 B
(1GByte RAM) and uses a considerate amount of the memory
of a current smartphone, where typically 2 GByte to 4 GByte
are available for the whole system and all concurrently running
applications.

2) CPU Cycles: During the CPU measurements we noticed
that there is a major difference in the number of consumed
CPU cycles when comparing a fixed node (in our case, node 2)
with the last node (having the highest ID) in the set of partici-
pants. This difference is not an effect of the actual computation,
but the reason is rather found in the setup phase of FRESCO.
The initial step before coordinating the computation, the hosts
have to establish connections with every other participant.
This is achieved by every application listening for incoming
connections and performing own connection attempts to other
hosts in parallel, driven by busy waiting.

During our measurements, the application was started on all
hosts with increasing ID, always having a little delay between
the invocations. Due to this reason, that phase exhibits a
specific pattern: The first application starts to poll for all other
hosts which are not yet listening for incoming connections.
This requires a notable number of CPU cycles. When the
second application comes up, it immediately connects to the
first host due to one of its connection attempts. From this point
in time, both hosts poll in order to connect to all other hosts.

In consequence, the first hosts performs most polling while
waiting for not yet started participants, while the last host
needs only a comparatively small amount of TCP SYN at-
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Figure 3: Impact of packet loss on the CPU cycles

tempts before all other hosts connected to it, wasting much
less CPU cycles. This understanding is necessary to interpret
our results.

Our baseline is around 21.5 ∗ 109 cycles for the first
peer node and 16.5 ∗ 109 cycles for the last node. When
reducing network performance as described in Section VI-A1,
consumption drops to approximately 12.5∗109. This effect ist
best depicted in the cases of network latency (Figure 2) and
packet loss (Figure 3) and can be attributed to the previously
explained startup phase: Impeded transmission adds another
constrain on the polling which in turn becomes slower and
less CPU intensive.

Additionally Figure 2 shows a slight increase in CPU cycles
when increasing the network latency further. As the number of
instructions did not increase during the same measurements,
we expect this effect to be caused by IO waiting time during
the delayed protocol execution.

On the side of number of participating nodes, the number
of consumed CPU cycles depends strictly linear on it. For the
first node we get (MSE5: 2.9451)

(5.16 + 5.83556 ∗ n) ∗ 109

and for the last node (MSE: 1.74056)

(15.263 + 0.69823 ∗ n) ∗ 109

We see that the amount of CPU cycles used in the startup
phase heavily outweighs the increase of participating nodes.

B. Network Resources

Our baseline of transmitted data for three peers is
5.35 MBytes per peer.

We identified that the amount of transmitted data per peer
varies around 400 KBytes upon network changes. By package
inspection a common reason could be found in the network
communication behavior of FRESCO:

The communication layer of FRESCO on the host of sender
s receives and buffers a serialized object or,1 from the compu-
tation layer to be sent to recipient r. The actual transmission
of or,1 happens in the moment when r is prepared to accept
the data. However, this action does not block on the sender
side. I.e. if the sender itself does not have to wait for any
further incoming data from other peers, it can proceed with
the next computation step immediately. Here, it can already

5Mean squared error
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Figure 4: Impact of packet loss on the transmitted KBytes

prepare the next step of communication, including to create
and prepare the next object or,2 to be sent to the same recipient.
Given the recipient did not request or,1 at this point in time,
the communication layer will combine or,1 and or,2 into a
single message, which is then sent to r when its request
happens. Combination of packets results in a reduction of the
overall amount to be sent by reducing the absolute number
of necessary packet headers. It is coincidence that this effect
is most useful in environments with constrained transmission,
where it also naturally happens most often.

The measurements of two network parameters reflect this
behavior up to some degree: When reducing the transmission
rate to 1 MBit, a drop to 5.10 MBytes can be detected. A
similar behavior occurs when adding artificial network latency,
however, without a distinct trend.

While these deviations undercut the baseline, packet loss
yields an increase of the amount of transmitted data (cf.
Figure 4). This behavior is expected as packet loss requires
retransmissions. With a maximum of 10 % packet loss, trans-
mitted data was increased by approximately 400 KBytes.

Regarding the number of peers, the number of messages to
be exchanged between all peers depends quadratically on it.
Our measurements support this by showing that the amount of
transferred bytes between a pair of hosts increases linearly. In
our setting the increase follows the following regression line
(MSE: 0.03332):

(−2.743 + 2.69419 ∗ n) MBytes

In other words, for each peer approximately 2 MByte of
additional data is transmitted per host.

C. User Resource: Time

The computation duration is the most interesting variable
from the user perspective. Our baseline is 5.35 seconds for
1000 calculations, i.e. each computation costs around 5 ms,
whereas the startup of the Java Virtual Machine is not included.

We can see that time is heavily and differently influenced by
the evaluated parameters: The increase in time is strictly linear
when adding more participants. At first, this might surprise
as the exchanged messages between all participants increase
quadratically in their number. However, in Section IV we
already elaborated how parallel execution of communication
can reduce the complexity by n. As a regression function (cf.
Figure 5) we yield (MSE: 0.24894):

(−1.086 + 2.01883 ∗ n) ms

0

10

20

30

3 5 7 9 11 13 15

Number of Peers [#]

T
im

e
[s

] Execution type

SMC

TTP (est.)

Figure 5: Impact of number of peers on the execution time
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Figure 6: Impact of network latency on the execution time

As comparison, the communication delay of a TTP solution
does not notably depend on the number of participants, given
that sending and receiving messages can happen in parallel.

Network latency also causes a linear increase. This directly
corresponds with the intuition that every message is delayed
by a constant factor. However, the influence is notably stronger
in absolute terms. The following regression function (cf. Fig-
ure 6) holds for three participating peers (MSE: 15415.50432):

47.327ms+ 4.61851 ∗ network latency

Execution inside an intranet takes around 4 seconds for
1000 sequential computations. When communicating via the
Internet (50 ms to 300 ms), the computations already cost 5
to 25 minutes. The magnitude of the duration can be roughly
estimated as follows: During the input phase with n = 3
participating hosts, n ∗ (n − 1) = 6 messages have to be
exchanged. Each participant sequentially waits for n− 1 = 2
messages from the other parties. The performed addition
operation is free of communication. During the output phase,
again 6 messages have to be exchanged, but this time waiting
is performed in parallel6. Hence, as an estimate in our setup,
every participant sequentially waits for n = 3 messages, which
can consist of one to two packets each. A message of one
packet costs a single network delay. A message of two packets
costs three times the network delay as the second packet is
only sent when the sender has received an acknowledgement
message from the recipient. In consequence, we gain an inter-
val of [n ∗ network latency, 3n ∗ network latency] per protocol
execution.

Utilizing a basic TTP solution, all hosts send their data
during a single network delay. The computation itself is
performed locally. At the end another network delay is added
for sending the results to all participants (in parallel). While it

6Using Equation 2 we count this as a single message.
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seems that the performance of the SMC solution is acceptably
worse in comparison, it is important to note that the duration of
the SMC session scales proportionally with increasing number
of peers, while the TTP does not depend on this factor (cf.
Figure 5).

When packet loss occurs, repeated retransmissions become
necessary. Due to this, we expect the execution time (Figure 7)
to constitute a geometric row and to increase hyperbolically in
the interval [0, 1[ with increasing packet loss probability ploss.
One would expect the same characteristics for the execution
time. However, the steep increase only happens very late when
ploss is near 1. The analyzed interval from 0 % to 10 % is at
the beginning of the function’s domain, where only a linear
increase becomes visible. The sessions started failing due to
timeouts at a packet loss rate of 10 %.

Comparatively weak constraints are given by the transmis-
sion rate (cf. Figure 8). A very low rate of 1 MBit does influ-
ence execution time negatively, but already between 10 MBit
and 100 MBit all rate-induced impediments are resolved.

Inspection shows that a transmission consists of sending
a share from one host to another. This encompasses one to
maximally two packets each having only a length between 100
and 1000 Bytes. This is the reason why network latency has
stronger influence than the transmission rate.

In conclusion, each single computation has a low duration;
the overall duration increases linearly with the number of
peers. While this influence is comparatively small, the network
parameters have the highest influence on the execution time. In
the ranges of the practically relevant intervals we saw that the
transmission rate can influence the execution time by factor 5,
packet loss has an influence up to a factor of approximately
110 and network latency can slow down the computation even
by factor 550. These impediments already occur at network
configurations which are realistic on the Internet or on the
mobile Internet at least.
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Figure 9: Impact of network latency on the execution time
depending on parallelization with 0 ms additional latency

0

1000

2000

3000

1 5 10 20 50 100 200 500 1000

Data points per invocation

T
im

e
[s

]

Execution type

SMC 1 core

SMC 8 cores

TTP (est.)

Figure 10: Impact of network latency on the execution time
depending on parallelization with 500 ms additional latency

D. Parallelization

Two potential bottlenecks can exist (cf. Section IV): The
computation steps are constrained by the host and the commu-
nication steps by the links between them. Due to their strict
sequential execution, the occurring delays are additive.

This situation can be generically improved in certain scenar-
ios: In our test setup we performed 1000 calculations sequen-
tially. When a given number of input data is known in advance,
multiple computations can be performed at the same time.
FRESCO provides a ParallelProtocolProducerwhich
allows combining subprotocols so that they are executed in par-
allel using individual threads. Parallelization was parametrized
with the values {1, 5, 10, 20, 50, 100, 200, 500, 1000}.

Our initial finding is that the benefit of parallelization
depends on the size of the delay introduced by host or network
parameters. Figure 9 shows that in our default setting paral-
lelization reduces an initial duration of 4.910 seconds with pf

== 1 in average to 3.631 with a pf == 500, a reduction
by 26 %. This improvement depends on the availability of
multiple CPU cores. Otherwise, parallelization leads to a slight
rise in execution time due to its organizational overhead.

However, when examining cases with e.g. higher network
latency (Figure 10), a higher reduction can be achieved. An
initial duration of 2315 seconds is reduced to 435 seconds
when pf == 200, a reduction by 81 %.

Investigation of the code shows that the network layer
does not combine messages of different but simultaneously
performed sessions; they are sent via different “channels”.
Instead, this layer processes the messages to be sent in a
strict sequential fashion. This means that the measured im-
provements result from the time-multiplex utilization of the
networking layer: During sequential execution of subsequent
computations, all other parties often wait for a single party
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Figure 12: Impact of parallelization on the transmitted bytes

to perform its computation and sending of shares. With par-
allelization, we achieve that every participant is kept busy on
the communication part – the bottleneck – all the time.

When employing parallelization on a basic TTP solution a
reduction of the actual communication overhead is possible.
Input data of multiple computations can be combined into
a single (or a low amount of) packets. In consequence, the
impact of network latency can be highly reduced.7

Figure 11 shows the consumed CPU cycles depending on
the degree of parallelization with non-zero additional network
latency and 8 available cores per host. Parallelization does not
impose notable penalties on the hosts’ CPU. Correspondingly,
as the execution duration is significantly reduced, the actual
degree of CPU utilization during that time increases.

Regarding transferred data, an increasing degree of paral-
lelization does not lead to a corresponding increase (cf. Figure
12). Instead, it is still bounded by approximately 5.7 MBytes.

Figure 13 shows that parallelization leads to a late and not
completely clear trend of memory increase when pf ≥ 50. This
could extend to higher degrees of parallelization. However, the
benefits of parallelization are achieved with a much lower pf

than where memory consumption starts to increase gradually.
That means a sweet spot of beneficial parallelization without
memory penalties should be generally identifiable. Neverthe-
less this is a trend where further investigations could provide
more insights on whether memory consumption is bounded or
not.

In conclusion, we could show that parallelization is able
to reduce the computation duration approximately by factor
5. Therefor, computation of 20 items in parallel is sufficient
and already exploits the full parallelization potential. Further
increase of the parallelization factor did not yield notable

7In Figure 10 we show an estimation of the TTP performance while
neglecting that a high parallelization rate makes it necessary to split the
packets again for transmission.
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Figure 13: Impact of parallelization on the maximum allocated
heap memory

improvements. However, different types of computations yield
protocols which differ in their ability to be parallelized. Hence,
the parallelization factor should be newly determined every
time a new protocol is used. Finally, while parallelization
yields a notable improvement on execution time, it does not
cause any changes regarding the CPU cycles. This shows that
parallelization can effectively be used to utilize all available
CPU resources. Concomitantly, the former sequential execu-
tion, creating two alternating bottlenecks – the CPU and the
network – is changed to a parallel execution of both phases
(with respect to different computations). In consequence, only
the stricter of both bottlenecks constitutes the limiting factor
instead of their sum. In any case, multi-core hosts are neces-
sary in order to leverage parallelization advantages at all.

VII. PRACTICAL IMPLICATIONS

Our results show that FRESCO as an implementation of
SMC possesses a performance and resource utilization behav-
ior which allows practical application: In the setting of an
intranet, computations are efficiently performed. The execution
time is around 2 to 3 ms per session and peer. This allows batch
processing of data and interactive use cases. Performance
might, however, not be sufficient for the realization of real-
time applications depending on the computation to be carried
out. Regarding the hosts systems, multiple cores are necessary
when parallelization can be utilized. In other cases, secure com-
putation should also be feasible with weaker devices. Memory
consumption can become critical when a multitude of peers
participates in the computations. This must be considered upon
productive use. However, regarding all identified performance
results, we deem the memory consumption to be more related
to Java than to secret sharing or SMC in general. Having a
setting of memory constrained devices, a more economical
programming language would be more appropriate.

In wide area networks as the Internet and possibly mobile
Internet, network latency is the most influential constraining
factor. Execution time degrades strongly with increasing la-
tency. In these contexts, we currently only see batch processing
as a use case: Given it is acceptable to wait several minutes
for a computation result, SMC can be utilized. However,
in this context it is more likely that parallelization can be
applied, which decreases the latency penalties to some degree.
Further improvement of the situation would require to reduce
the amount of transmitted packets. This could be possible



by stricter orchestration of computations running in parallel,
where packets between different peers would be used for
multiple sessions simultaneously. On contrary, our current so-
lution applies parallelization which does not enforce message
combination, but only enabled waiting times per host to be
used for further computations.

VIII. CONCLUSION

This paper presents the results of thorough measurements
to assess the fundamental practical applicability of secure
multiparty computation (SMC) in real-world contexts.

We show how SMC sessions can be understood with regard
to performance as a alternating sequence of local computation
and communication between participating peers. This yields
practical implications, bearing in mind that both types have
their own individual bottleneck: Typically, their delay is strictly
summative during a single execution.

In our measurements, we examine how network latency,
transmission rate and packet loss, as well as the number of
peers influence the execution time, the CPU utilization, mem-
ory allocation and the amount of transmitted data. Furthermore,
we analyze whether parallelization of formerly consecutive
sessions can overcome the additivity of delays.

Interpreting our findings, we conclude that SMC is prac-
tically applicable with weak limitations in intranet settings.
Here, requirements for participating host systems are in ranges
of today’s commodity hardware. Furthermore, SMC seems
to be applicable to some (lesser) degree in Internet settings.
Here, network latency has the biggest negative influence on
performance. However, as performance of SMC protocols
continues to increase, we expect that feasibility of SMC over
the Internet will also improve in the next years.
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