Turning the TableS
– and how we got there

Ralph Holz, Thomas Riedmaier

Network Architectures and Services
Technische Universität München

Berlinsides 2011
We’ll talk about SSL/TLS and X.509

SSL/TLS

- The backbone protocols for securing the WWW and e-mail
- Authentication, confidentiality, integrity
- Public-key cryptography

X.509: Public Key Infrastructure standard

- Certification Authorities (CAs) certify Web sites
- Non-forgeable signature:
 \[Cert(X) = Sig_{CA}(id_X, \text{pubkey}_X) \]
Part 1 of talk: the SSL landscape

- Background
- The state of the PKI for the WWW

Part 2 of talk: Man-in-the middle attacks on HTTPs

- Our tool: Crossbear
- We want hard data
What we already have done

Let us tell you a story: the SSL Landscape
Browser panic (Berlinsides)

This is probably not the site you are looking for!

You attempted to reach berlinsides.org, but instead you actually reached a server identifying itself as aabc. This may be caused by a misconfiguration on the server or by something more serious. An attacker on your network could be trying to get you to visit a fake (and potentially harmful) version of berlinsides.org. You should not proceed.

Precede anyway Back to safety

Help me understand
Basic idea of X.509 PKI: hierarchy

- **Root Store**
- **CA_1**
- **CA_2**
- **CA_3**

- **R_1** (Root Certificate)
- **I_1**
- **E_1**
- **E_2**
- **I_5**
- **I_6**
- **E_3**
- **E_4**

- **R_2**
- **I_2**
- **E_5**
- **E_6**

- **R_3**
- **E_7**

Ralph Holz, Thomas Riedmaier: Crossbear
Basic idea of X.509

Root Store

CA_1

CA_2

CA_3

Root

Certificates
Basic idea of X.509

CA_1

I_1

E_1

E_2

I_4

I_5

I_6

E_3

E_4

Root Store

CA_2

I_2

CA_3

R_3

E_7

I_3

E_5

E_6

Host Certificates
Basic idea of X.509

Root Store

CA 1

CA 2

CA 3

Intermediate Certificates

Ralph Holz, Thomas Riedmaier: Crossbear
Basic idea of X.509

CAAs in Root Store

CA 1

CA 2

CA 3

Root Store

R 1

I 1

E 1

E 2

I 4

I 2

R 2

R 3

E 7

E 5

E 6

I 5

I 3

I 6

E 3

E 4

I 2

I 6

CA not in Root Store

Ralph Holz, Thomas Riedmaier: Crossbear
Basic idea of X.509

Root certificate not in Root Store

- CA1
 - I1
 - E1
 - E2
 - I5
 - I6
 - E3
 - E4

- CA2
 - I4

- CA3
 - R3
 - E7

Ralph Holz, Thomas Riedmaier: Crossbear
An X.509 certificate

<table>
<thead>
<tr>
<th>x509v3 Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Issuer</td>
</tr>
<tr>
<td>Validity</td>
</tr>
<tr>
<td>Subject</td>
</tr>
<tr>
<td>Subject Public Key Info</td>
</tr>
<tr>
<td>Algorithm</td>
</tr>
<tr>
<td>x509 v3 Extensions</td>
</tr>
<tr>
<td>CA Flag, EV, CRL, etc.</td>
</tr>
<tr>
<td>Signature</td>
</tr>
</tbody>
</table>
Root Stores contain CA certificates

CA in Root Store

Root Store

CA

I

R

E

Ralph Holz, Thomas Riedmaier: Crossbear
Your browser chooses the ‘trusted CAs’. Not you.

Any CA may issue a certificate for any domain.

This means the weakest CA determines the strength of the whole PKI.
Development of Mozilla Root Store

More than 150 trustworthy Root Certificates
Certificate issuance

How is a certificate issued in practice?

- **Domain Validation:**
 - Send e-mail to (CA-chosen) mail address with code
 - Confirmed ownership of mail address = ownership of domain

- **Organisational Validation (OV, rare)**

- **Extended Validation (later, rare)**

Race to the bottom

- CAs have incentive to lower prices
- Translates into incentive to control less, not more
How this got our interest

PKI weaknesses in 2008

- Early December 2008:
 - ‘Error’ in Comodo CA: no identity check
 - Reported by Eddy Nigg of StartSSL (a CA)
 - A regional sub-seller just took the credit card number and gave you a certificate
 - No real reaction by Mozilla

- Late December 2008: whitehat hacks StartSSL CA
 - Technical report: simple flaw in Web front-end
 - Certificate for mozilla.com issued
 - Caught by 2nd line of defence: human checks for high-value domains
PKI weaknesses in 2008

- Early December 2008:
 - ‘Error’ in Comodo CA: no identity check
 - Reported by Eddy Nigg of StartSSL (a CA)
 - A regional sub-seller just took the credit card number and gave you a certificate
 - No real reaction by Mozilla

- Late December 2008: whitehat hacks StartSSL CA
 - Technical report: simple flaw in Web front-end
 - Certificate for mozilla.com issued
 - Caught by 2nd line of defence: human checks for high-value domains
How this got our interest

PKI weaknesses in 2008

- Early December 2008:
 - ‘Error’ in Comodo CA: no identity check
 - Reported by Eddy Nigg of StartSSL (a CA)
 - A regional sub-seller just took the credit card number and gave you a certificate
 - No real reaction by Mozilla

- Late December 2008: whitehat hacks StartSSL CA
 - Technical report: simple flaw in Web front-end
 - Certificate for mozilla.com issued
 - Caught by 2nd line of defence: human checks for high-value domains
In 2011, the foundations of X.509 were rocked.

- March 2011: Comodo CA hacked (a sub-seller, again)
 - Attacker claims to come from Iran
 - ≈ 10 certificates for high-value domains issued
 - Browser reaction: blacklisting of those certificates in code
 - Neither CRLs nor OCSP trusted enough to work for victims
- July 2011: DigiNotar CA hacked
 - Attacker claims to be the same one as in March
 - 531 fake certificates, high-value domains
 - E.g., Google, Facebook, Mozilla, CIA, Mossad, Skype
 - Some hints pointed at Man-in-the-middle attack in Iran
 - For the first time, a Root CA is removed from a browser for being compromised
How this got our interest

In 2011, the foundations of X.509 were rocked.

- March 2011: Comodo CA hacked (a sub-seller, again)
 - Attacker claims to come from Iran
 - ≈ 10 certificates for high-value domains issued
 - Browser reaction: blacklisting of those certificates *in code*
 - Neither CRLs nor OCSP trusted enough to work for victims

- July 2011: DigiNotar CA hacked
 - Attacker claims to be the same one as in March
 - 531 fake certificates, high-value domains
 - E.g., Google, Facebook, Mozilla, CIA, Mossad, Skype
 - Some hints pointed at Man-in-the-middle attack in Iran
 - For the first time, a Root CA is removed from a browser for being compromised
In 2011, the foundations of X.509 were rocked.

- March 2011: Comodo CA hacked (a sub-seller, again)
 - Attacker claims to come from Iran
 - ≈ 10 certificates for high-value domains issued
 - Browser reaction: blacklisting of those certificates \textit{in code}
 - Neither CRLs nor OCSP trusted enough to work for victims

- July 2011: DigiNotar CA hacked
 - Attacker claims to be the same one as in March
 - 531 fake certificates, high-value domains
 - E.g., Google, Facebook, Mozilla, CIA, Mossad, Skype
 - Some hints pointed at Man-in-the-middle attack in Iran
 - For the first time, a Root CA is removed from a browser for being compromised
Can we assess the quality of this PKI?

A good PKI should

- allow HTTPS on all WWW hosts
- contain only valid certificates
- offer good cryptographic security
 - Long keys, only strong hash algorithms, ...
- have a sensible setup
 - Short validity periods (1 year)
 - Short certificate chains (but use intermediate certificates)
 - Number of issuers should be reasonable (weakest link!)
Acquiring our data sets

Active scans to measure *deployed* PKI

- Scan hosts on Alexa Top 1 million Web sites
- Nov 2009 – Apr 2011: scanned 8 times from Germany
- March 2011: scans from 8 hosts around the globe

Passive monitoring to measure *user-encountered* PKI

- Munich Research Network, monitored all SSL/TLS traffic
- Two 2-week runs in Sep 2010 and Apr 2011

EFF scan of IPv4 space in 2010

- Scan of 2-3 months, no *domain* information
Our data sets

Active Scans

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (run)</th>
<th>Type</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuebingen, DE</td>
<td>November 2009</td>
<td>Active scan</td>
<td>833,661</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>December 2009</td>
<td>Active scan</td>
<td>819,488</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>January 2010</td>
<td>Active scan</td>
<td>816,517</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>April 2010</td>
<td>Active scan</td>
<td>816,605</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Active scan</td>
<td>829,232</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>November 2010</td>
<td>Active scan</td>
<td>827,366</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan</td>
<td>829,707</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan with SNI</td>
<td>826,098</td>
</tr>
<tr>
<td>Shanghai, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>798,976</td>
</tr>
<tr>
<td>Beijing, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>797,046</td>
</tr>
<tr>
<td>Melbourne, AU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,571</td>
</tr>
<tr>
<td>İzmir, TR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>825,555</td>
</tr>
<tr>
<td>São Paulo, BR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,246</td>
</tr>
<tr>
<td>Moscow, RU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>830,765</td>
</tr>
<tr>
<td>Santa Barbara, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,173</td>
</tr>
<tr>
<td>Boston, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,054</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Passive monitoring</td>
<td>183,208</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Passive monitoring</td>
<td>989,040</td>
</tr>
<tr>
<td>EFF servers</td>
<td>March–June 2010</td>
<td>Active IPv4 scan</td>
<td>11,349,678</td>
</tr>
</tbody>
</table>

25 million certificates to evaluate.
Our data sets

Active Scans — Passive Monitoring — EFF IPv4 scan

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (run)</th>
<th>Type</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuebingen, DE</td>
<td>November 2009</td>
<td>Active scan</td>
<td>833,661</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>December 2009</td>
<td>Active scan</td>
<td>819,488</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>January 2010</td>
<td>Active scan</td>
<td>816,517</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>April 2010</td>
<td>Active scan</td>
<td>816,605</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Active scan</td>
<td>829,232</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>November 2010</td>
<td>Active scan</td>
<td>827,366</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan</td>
<td>829,707</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan with SNI</td>
<td>826,098</td>
</tr>
<tr>
<td>Shanghai, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>798,976</td>
</tr>
<tr>
<td>Beijing, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>797,046</td>
</tr>
<tr>
<td>Melbourne, AU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,571</td>
</tr>
<tr>
<td>İzmir, TR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>825,555</td>
</tr>
<tr>
<td>São Paulo, BR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,246</td>
</tr>
<tr>
<td>Moscow, RU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>830,765</td>
</tr>
<tr>
<td>Santa Barbara, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,173</td>
</tr>
<tr>
<td>Boston, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,054</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Passive monitoring</td>
<td>183,208</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Passive monitoring</td>
<td>989,040</td>
</tr>
<tr>
<td>EFF servers</td>
<td>March–June 2010</td>
<td>Active IPv4 scan</td>
<td>11,349,678</td>
</tr>
</tbody>
</table>

25 million certificates to evaluate.
Our data sets

Active Scans — Passive Monitoring — EFF IPv4 scan

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (run)</th>
<th>Type</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuebingen, DE</td>
<td>November 2009</td>
<td>Active scan</td>
<td>833,661</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>December 2009</td>
<td>Active scan</td>
<td>819,488</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>January 2010</td>
<td>Active scan</td>
<td>816,517</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>April 2010</td>
<td>Active scan</td>
<td>816,605</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Active scan</td>
<td>829,232</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>November 2010</td>
<td>Active scan</td>
<td>827,366</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan</td>
<td>829,707</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan with SNI</td>
<td>826,098</td>
</tr>
<tr>
<td>Shanghai, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>798,976</td>
</tr>
<tr>
<td>Beijing, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>797,046</td>
</tr>
<tr>
<td>Melbourne, AU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,571</td>
</tr>
<tr>
<td>İzmir, TR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>825,555</td>
</tr>
<tr>
<td>São Paulo, BR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,246</td>
</tr>
<tr>
<td>Moscow, RU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>830,765</td>
</tr>
<tr>
<td>Santa Barbara, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,173</td>
</tr>
<tr>
<td>Boston, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,054</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Passive monitoring</td>
<td>183,208</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Passive monitoring</td>
<td>989,040</td>
</tr>
</tbody>
</table>

EFF servers March–June 2010 Active IPv4 scan 11,349,678

25 million certificates to evaluate.
Our data sets

Active Scans — Passive Monitoring — EFF IPv4 scan

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (run)</th>
<th>Type</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuebingen, DE</td>
<td>November 2009</td>
<td>Active scan</td>
<td>833,661</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>December 2009</td>
<td>Active scan</td>
<td>819,488</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>January 2010</td>
<td>Active scan</td>
<td>816,517</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>April 2010</td>
<td>Active scan</td>
<td>816,605</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Active scan</td>
<td>829,232</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>November 2010</td>
<td>Active scan</td>
<td>827,366</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan</td>
<td>829,707</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan with SNI</td>
<td>826,098</td>
</tr>
<tr>
<td>Shanghai, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>798,976</td>
</tr>
<tr>
<td>Beijing, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>797,046</td>
</tr>
<tr>
<td>Melbourne, AU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,571</td>
</tr>
<tr>
<td>İzmir, TR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>825,555</td>
</tr>
<tr>
<td>São Paulo, BR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,246</td>
</tr>
<tr>
<td>Moscow, RU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>830,765</td>
</tr>
<tr>
<td>Santa Barbara, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,173</td>
</tr>
<tr>
<td>Boston, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,054</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Passive monitoring</td>
<td>183,208</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Passive monitoring</td>
<td>989,040</td>
</tr>
<tr>
<td>EFF servers</td>
<td>March–June 2010</td>
<td>Active IPv4 scan</td>
<td>11,349,678</td>
</tr>
</tbody>
</table>

25 million certificates to evaluate.
Our data sets

Active Scans — Passive Monitoring — EFF IPv4 scan

<table>
<thead>
<tr>
<th>Location</th>
<th>Time (run)</th>
<th>Type</th>
<th>Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuebingen, DE</td>
<td>November 2009</td>
<td>Active scan</td>
<td>833,661</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>December 2009</td>
<td>Active scan</td>
<td>819,488</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>January 2010</td>
<td>Active scan</td>
<td>816,517</td>
</tr>
<tr>
<td>Tuebingen, DE</td>
<td>April 2010</td>
<td>Active scan</td>
<td>816,605</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Active scan</td>
<td>829,232</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>November 2010</td>
<td>Active scan</td>
<td>827,366</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan</td>
<td>829,707</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Active scan with SNI</td>
<td>826,098</td>
</tr>
<tr>
<td>Shanghai, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>798,976</td>
</tr>
<tr>
<td>Beijing, CN</td>
<td>April 2011</td>
<td>Active scan</td>
<td>797,046</td>
</tr>
<tr>
<td>Melbourne, AU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,571</td>
</tr>
<tr>
<td>Ízmir, TR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>825,555</td>
</tr>
<tr>
<td>São Paulo, BR</td>
<td>April 2011</td>
<td>Active scan</td>
<td>833,246</td>
</tr>
<tr>
<td>Moscow, RU</td>
<td>April 2011</td>
<td>Active scan</td>
<td>830,765</td>
</tr>
<tr>
<td>Santa Barbara, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,173</td>
</tr>
<tr>
<td>Boston, US</td>
<td>April 2011</td>
<td>Active scan</td>
<td>834,054</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>September 2010</td>
<td>Passive monitoring</td>
<td>183,208</td>
</tr>
<tr>
<td>Munich, DE</td>
<td>April 2011</td>
<td>Passive monitoring</td>
<td>989,040</td>
</tr>
<tr>
<td>EFF servers</td>
<td>March–June 2010</td>
<td>Active IPv4 scan</td>
<td>11,349,678</td>
</tr>
</tbody>
</table>

25 million certificates to evaluate.
Results

Most results in our paper

- The SSL Landscape – A thorough analysis of the X.509 PKI using active and passive measurements
- Here: brief tour-de-force over the most interesting stuff
Validity of end-host certificates

Ralph Holz, Thomas Riedmaier: Crossbear
Validation of certificate chains

Just check chains, not host names

- Chain valid
- Expired
- Self-signed end host certificate
- Root certificate not in root store
- No root certificate found

% of all certificates
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Germany.Nov09
Germany.Apr11
China.Apr11
EFF
MON1.Sep10
MON2.Apr11

Ralph Holz, Thomas Riedmaier: Crossbear
Now also check host names

- Look in Common Name (CN) and Subject Alternative Name (SAN)
- Munich, April 2011, only valid chains:
 - 12.2% correct CN
 - 5.9% correct SAN

Only **18%** of certificates are fully verifiable

- Positive ‘trend’: from 14.9% in 2009 to 18% in 2011
Host names in self-signed certificates

Self-signed means:

- Issuer the same as subject of certificate
- Requires out-of-band distribution of certificate

Active scan

- 2.2% correct Common Name (CN)
- 0.5% correct Subject Alternative Name
Certificate quality

We defined 3 categories

- ‘Good’:
 - Correct chains, correct host name
 - Chain ≤ 2
 - No MD5, strong key of > 1024 bit
 - Validity ≤ 13 months

- ‘Acceptable’
 - Chain ≤ 3, validity ≤ 25 months
 - Rest as above

- ‘Poor’: the remainder
Validity correlates with rank

- Share of ‘poor’ certificates higher among high-ranking sites
X.509 for the WWW is a mess

Many more results in the paper.

In great part, the X.509 PKI is in a sorry state.

- 18% of certs in Top 1m fully valid
- Much carelessness
Coming slowly to 2nd part of talk: Men-in-the-middle

- Question: what do users experience?
- Can we find attacks?
- Can we find proof for attacks?
THE CROSSBEAR SYSTEM

- Distributed data aquirement for detection and localization of TLS Men-In-The-Middle
Connecting to a TLS server guarded by Crossbear
Connecting to a TLS server guarded by Crossbear

User connects to a TLS enabled server
Connecting to a TLS server guarded by Crossbear

User requests certificate verification from the Crossbear server
Connecting to a TLS server guarded by Crossbear

Crossbear stores the observed Certificate and the event of its observation.
Connecting to a TLS server guarded by Crossbear

Crossbear queries the server for its certificate.
Connecting to a TLS server guarded by Crossbear

Crossbear stores the observed certificate and the event of its observation.
Connecting to a TLS server guarded by Crossbear

Crossbear judges the certificate taking into account various criteria
Connecting to a TLS server guarded by Crossbear

If the user’s certificate is classified as “might be mitm” a Hunting Task is created.
Connecting to a TLS server guarded by Crossbear

The certificate’s rating is transmitted to the user and displayed.
Rating scheme

- Black & White rating is not flexible enough
 - What about certificate that changed recently?
 - What about pages with several certificates?
 - What about certificates not issued for a page?

- Better: Grayscale rating (0-255)
 - Result of the certificate comparison
 - Last continuous observation period
 - Total number of observations
 - Is the certificate valid for the domain?
 - Is the certificate valid today?
 - Used Algorithms and keylength
 - What do Perspectives/Convergence think about it?
Hunting with Crossbear
Hunting with Crossbear

Crossbear clients ask the server periodically for Hunting Tasks
The server generates a list of tasks …
Hunting with Crossbear

... and transmits it to the clients
Hunting with Crossbear

The clients query the Task's server for its certificate and record the route they have to this server.
The Hunting Task results are transmitted to the server …
Hunting with Crossbear

... and stored for further analysis
Constraints that shaped the system

- **Usability**
 - Client implemented as Firefox Plug-in
 - No external dependencies (out-of-the-box)

- **Security**
 - Data Confidentiality
 - Data Integrity
 - User Privacy

- **Performance & Efficiency**

- **State-of-the-art protocols**
 - Full support for IPv4 and IPv6
 - Full support for SNI
 - SHA-256 / RSA-OAEP-2048 / AES-256
How it is implemented

Firefox Plug-in

- Javascript extended by the Mozilla API
- Native c-library calls through the c-types interface
 - Downloading certificate chains by the use of Firefox internal libraries
 - Traceroute by the use of Iphlpapi.dll on Windows
 - Traceroute by the use of ping and ping6 on Linux

Server

- Tomcat and JSP
 - JSP performs better than PHP
 - Java libraries like bouncy-castle available
 - Java code more readable than PHP

- Located in the Faculty of Computer Science in the TU-München
 - Unlikely to be compromised by a local Mitm
 - 1GB/s uplink
Crossbear vs. Convergence/Perspectives

- Convergence/Perspectives
 - Problems with some pages
 - SNI-enabled pages
 - Non-TLS legacy systems
 - Focus on users’ privacy and protection
 - Guard functionality only

- Crossbear
 - Works with all pages that Firefox can show
 - Focus on collection of Mitm-related data
 - IPs are stored (partly anonymized)
 - Observations will be published
 - Guard and hunting functionality
Threats to data integrity

- Crossbear Firefox plug-in is freely available
 - No user authentication (anybody can use it)
 - Source code is known to potential attackers (Open Source)

- Attackers could send invalid Hunting Task Replies
 - False positive: forged certificate instead of correct one
 - False negative: correct one instead of forged one
 - False routes

- Why one would do that
 - Accidentally (e.g. because of proxies)
 - To cover the position of ones Mitm
 - To make somebody else look like a Mitm
 - ...
Verification of server traces

- Route verification using knowledge about Internet topology
- Assert first IP in trace equals client’s public IP
 - Reduce attacker’s options
 - Might not be the IP sending the Hunting Task Reply (IPv4 <-> IPv6)
- Implementation:
 - PublicIP-Notification-Messages contain HMAC of public IP
 - Hunting Task results contain that HMAC, too:

```
T | L | Task ID | Time of execution | HMAC of public IP | N | Observed certificate chain of length N
```

T: Message Type; L: Message Length
Verification of certificate chains

- General Problem: It is unknown which certificate should be observed
 - Client might or might not be behind a Mitm
 - Mitm might or might not attack a connection
 - Websites like Facebook use
 - Multiple certificates at the same time
 - Multiple Root CAs

- What can be done
 - Check if the sent chains are sane
 - Statistics: Identification of outliers
 - Manual Certificate chain inspection
Current level of implementation

- Hunter basic functionality: fully implemented
- Guard basic functionality: fully implemented
- Firefox-Plug-in GUI: fully implemented
- Dozens of little improvements: partially implemented
- Source code documentation: almost done
- Usage of Perspectives / Convergence: partially implemented
- Crossbear website: not yet created
- Evaluation of measured data: not yet done due to missing data

You Could Help!
Why you should use Crossbear

- Crossbear protects you against Mitm attacks
 - Setting up a Mitm is very easy (and attractive)!
 - Frequent travelers are likely to run into one of them (hotels, cafés, …)

- Crossbear contributes to a safer internet
 - Detection and location of Mitm
 - Warn users
 - Notify authorities
 - Possible discovery of new threats on X.509 PKI
 - Collection of data which will be publically available for security research

- Crossbear is a young project and needs users to improve
URL: pki.net.in.tum.de
Mail: crossbear@pki.net.in.tum.de
Twitter: @crossbearteam
[1]: Performance Comparison of PHP and JSP as Server-Side Scripting Languages by Scott Trent et al.

[3]: Packet Forensics 5-series: https://www.packetforensics.com/pfli5b.safe

Indication of image sources

- Tomcat: http://tomcat.apache.org/images/tomcat.gif
- Perspectives: http://perspectives-project.org/about-us/
- Convergence: http://convergence.io/imgs/logo.png
- Good/Average/Excellent: http://ipwatchdog.com/images/excellent-good-average.jpg

All images that are not listed explicitly are created by myself using non-copyrighted material.
Distributed Position Estimation

- **The Cross-Bearing Method**
 - **Output**: Position of a ship
 - **Given**: Observers along the coast, with
 - Known Position
 - Direction towards the target
 - **Method**: Intersect the observations

- **The CrossBear-System**
 - **Output**: Position of a Man-in-the-middle
 - **Given**: Observers around the world, with
 - Known IP-Address
 - Route to an attacked TLS-server
 - Knowledge if that route is poisoned
 - **Method**: Compare & Intersect the routes