
Keeping up to Date with P4Runtime:
An Analysis of Data Plane Updates on P4 Switches

Henning Stubbe, Sebastian Gallenmüller, Manuel Simon, Eric Hauser, Dominik Scholz, Georg Carle
TUM School of Computation, Information and Technology, Technical University of Munich

Garching near Munich, Germany
{ stubbe | gallenmu | scholz | simonm | hauser | carle }@net.in.tum.de

Abstract—The continuous increase of achievable data rates
in computer networks is both blessing and curse. Increasing
data rates enable novel applications through higher bandwidths.
However, support for higher data rates requires devices to process
packets reliably in an ever-decreasing amount of time per packet.
In terms of software-defined networking: higher data rates call
for a faster data plane. Nevertheless, the control plane must not
be ignored; to faithfully react to data plane behavior, a high-
performance control plane is essential. Otherwise, e.g., the data
plane’s state cannot be updated fast enough to cope with fast-
paced traffic changes. In this case study, we investigate the control
plane of a high-performance P4 switching ASIC. Moreover, we
create a measurement methodology to track the delay between
the reception of a rule update on the control plane and its
actual application on the data plane of a P4 hardware switch.
By applying the methodology to said ASIC, we can precisely
describe its performance and non-atomicity in updates. Based on
our findings, we apply multiple different approaches to optimize
control plane latency. Our results highlight the need to consider
latency on the control plane proportionate with the increase of
achievable data rates.

Index Terms—Reproducibility, Network Experiments, P4, P4-
Runtime, Control Plane

I. INTRODUCTION

Among the intriguing changes in networks in recent years
is the continued growth of achievable data rates and the
improved programmability of network devices. Combined with
latency guarantees, the bandwidth growth and increased flexi-
bility enable novel applications. Examples include distributed
control processes in the area of transportation, industry, and
medicine [1]. The improved programmability of the network,
e.g., through OpenFlow [2] or P4 [3], can help tailor the
network toward these novel applications. Consequently, such
applications with custom protocols and the popularity of
programmable network devices thrive.

As with OpenFlow, match-action tables are a crucial ele-
ment of P4-programmed network devices. The table configu-
ration defines a network device’s behavior, matching patterns
in packet headers with executed actions. Table entries can be
modified at runtime to adapt the behavior of the device. This
transition from an old table state to a new one can cause harm-
ful delay or packet loss [4]–[6]. Higher data rates exacerbate
this problem, as more flows or packets can be affected by
these transient states. Similarly, execution time reliability is
essential. The roll-out of table updates may involve several

devices. Carefully scheduled and deterministically executed
match-action table modification instructions may be used to
counteract undesired but unavoidable delays. To orchestrate
such distributed updates, the update behavior and latency of
individual devices must be known. However, latency prediction
is aggravated with table updates being processed in software
that are subjected to random interrupts or short-time overload.

In this paper, we present a measurement methodology to
investigate the behavior of P4 switches during table updates.
Due to the importance of table updates across devices, we
further want to determine the table update latency quanti-
tatively and qualitatively. Therefore, we introduce a setup
that allows the hardware timestamping of the entire data and
control plane traffic using the same hardware reference clock.
Based on this investigation, we apply optimization methods
to create a more deterministic update behavior. We focus
our investigations on P4Runtime, which was introduced to
configure, among others, the mentioned match-action tables in
P4 switches. Aiming to unify device-specific implementations
of similar control plane interfaces, P4Runtime plays a key role
in enabling programmable network devices across different de-
vices or vendors. The contributions of this paper include: the
creation of an accurate measurement setup to monitor data and
control plane simultaneously, the evaluation of reconfiguration
behavior and latency of a programmable switching ASIC, the
comparison of different control plane implementations, and the
optimization of Linux that hosts the control plane to reduce
latency and jitter.

The remainder of this paper is structured as follows. Sec-
tion II gives background information on the architecture of P4
switches and describes the procedure for data plane updates
on a single device. Section III investigates the state of the
art for control planes, with a focus on performance in the
context of P4. Afterward, Section IV introduces the experiment
setup used throughout this work. Subsequently, Section V
evaluates the behavior of an exemplary P4-programmable
ASIC. Section VII concludes the paper.

II. BACKGROUND

To understand a system’s behavior, background knowledge
of its underlying architecture is valuable. This section presents
the typical structure of today’s switch architecture. Based on
this architecture, we describe the procedure of updating theISBN 978-3-903176-57-7© 2023 IFIP

Control Plane
Data Plane

Trad. CPU

Switch ASIC

NIC

PC
Ie

E
th

er
ne

t

Conf. NIC
Component
PCIe
Ethernet

Figure 1: High-level switch architecture

data plane with a particular focus on latency. Afterward, we
provide a case study on the impact of control plane latency.

A. Router Architecture

The typical architecture of current networking devices,
cf. Figure 1, splits the device’s tasks and assigns the result-
ing subtasks to different components. Instead of one single
processing unit, the architecture of these devices features not
only a traditional CPU but also a configurable ASIC. This
fundamental architecture is present in the switches of multiple
vendors, such as Intel [7], Cisco [8], and Arista [9], or the open
hardware design of the Wedge400 [10]. While the switch’s
CPU is programmed to handle subtasks related, in particular,
to the control plane, the ASIC focuses on the data plane.
Thus, this architecture combines the benefits of a versatile
but slow CPU with the power of a restricted but performant
ASIC. The communication between these two components
is essential, to ensure CPU and ASIC work together as a
single switch. Here, two popular options for communication
channels are observable, often combined: Ethernet and PCIe.
The former allows for the message exchange as envisioned in
software-defined networking, e.g., for the data plane to forward
unhandled packets to the control plane. PCIe, on the other
hand, is a convenient interface to change the ASIC’s state.
Such state changes can include, e.g., reprogramming the ASIC
to handle packets differently or updating its configuration, such
as match-action table entries in P4.

Hence, in this switch architecture, a control plane update,
issued externally by another party, is processed as follows.
Initially, the other party sends its update message to the
system in charge of the switch’s control plane running on
the traditional CPU. The control plane system often has a
separate NIC (cf. Figure 1) to receive such update messages.
After reaching said NIC, the update message passes through
the system’s network stack until it reaches the application
listening on the addressed port. The application then processes
the message’s information and translates it into a sequence of
PCIe transactions involving the ASIC. In case of an update,
these transactions ensure the addressed table and table entries
exist, replacing the intended table entry value. Therefore, a
single control plane update message results in a potentially
complex process until it is applied.

Table I: Optical Ethernet standards, transmission rates, and
corresponding serialization delay of a minimum-sized Ethernet
packet (60 B packet + 4 B frame check sequence + 12 B inter-
packet gap + 7 B preamble + 1 B start-of-frame delimiter),
number of packets impacted for 1 µs of control plane delay

IEEE standard TX Rate Serialization Delay Impacted Packets
[Gbit/s] [ns] [#/µs]

802.3z [13] 1 672.0 2
802.3ae [14] 10 67.2 15

802.3bm [15] 100 6.7 150
802.3bs [16] 400 1.7 589

P802.3df [17] 1600 0.4 2500

B. Case Study: Control Plane Latency

We want to determine a lower bound for the update latency
caused by the control plane. This update process involves the
reception of a P4Runtime message on the control interface of
the control plane, the PCIe transfer from NIC to RAM, the
processing of the message on the CPU itself, and, finally, the
PCIe transfer of the update to the ASIC.

Neugebauer et al. [11] measured a median round trip time of
800 ns for a minimum-sized packet of 64 B across the PCI ex-
press bus. Their measurements do not involve any processing
of the packet data on the CPU, e.g., in the driver. Gallenmüller
et al. [12] measured a median latency of 3.3 µs between the
ingress and egress interface of a simple packet forwarding
application. This latency additionally includes the processing
of data on the CPU (approx. 100 clockcycles) and additional
latency for accessing the data. The underlying hardware (NIC,
x86 CPU) and the procedure (message reception, processing,
and transfer via PCIe) are similar to a typical switch data
plane. Based on these numbers, we expect a control plane
latency in the order of microseconds.

Table I shows the packet serialization delay for minimum-
sized Ethernet packets for bandwidths between 1 Gbit/s to
1.6 Tbit/s. To show the impact of delays, we added the number
of impacted packets over a timespan of 1 µs for each rate. For
illustration purposes, we assume a control plane with a a 1-µs
delay. In such a control plane, two minimum-sized packets
will pass a 1-Gbit/s data plane before a received control
plane update is delivered to the switching ASIC. While a low
number of impacted packets may be considered negligible,
their number grows for higher bandwidths (cf. Table I).

The numbers reported in Table I only consider the best-case
scenario. If we assume the higher control plane delay of 3.3 µs,
the numbers are multiplied by a factor of 3.3. With reported
worst-case latencies of 1 ms and more (cf. Gallenmüller et
al. [12], [18]), the number of impacted packets can grow
into millions. These high, indicative numbers and the high
variance of the previously mentioned delays justify a closer
investigation, which we will present in the following.

III. RELATED WORK

Our paper investigates switches executing P4 programs
managed by software-based control planes. In the following,
we investigate related work from these three areas.

a) Switches: Updating the forwarding rules of running
networks can cause unwanted side effects if partially old and
new configurations are applied to specific packets [4]–[6]. To
avoid these transient states between updates and their impact,
Reitblatt et al. [19] have introduced a set of primitives to
perform consistent updates on programmable switches. Their
architecture guarantees per-packet consistency, i.e., at any
point in time, there is a well-defined ruleset to be applied
to a specific packet. OFLOPS-SUME [20] is a framework
that allows the measurement of OpenFlow data and control
planes. A study on the software-based Open vSwitch and
an Edgecore hardware switch uncovered inconsistent transient
behavior during table modifications and modification delays
of up to several hundred milliseconds. Han et al. [21] present
BlueSwitch, a switching architecture that enforces per-packet
consistency on a single switch. Their architecture solves
the problems of inconsistent behavior on a hardware level,
demonstrated on a NetFPGA-10G-based prototype.

b) P4: P4 [3] is a domain-specific language to program
the data plane, which supports programming different types
of data plane devices, such as switches. P4Runtime [22]
standardizes the management of data planes utilizing a vendor-
independent API. This API allows rule insertions, deletions,
or updates of P4 data plane elements. P4Runtime relies on
gRPC [23], a high-performance framework for remote proce-
dure calls. Adoption of both is growing; e.g., Intel Tofino is a
switching ASIC that supports P4 and P4Runtime natively [7].
Song et al. [24] measure an update performance between
30 000 and 80 000 entries per second for an Intel Tofino
switching ASIC, depending on the insertion batch size and the
utilization of the match-action table. Zeng et al. [25] observed
similar limitations. They attribute the low performance to
the slow control plane CPU, a limited PCIe interconnect
between the CPU and switching ASIC, and the limited amount
of memory on the ASIC, which requires expensive hashing
computation and lookups.

c) Software-based Control Planes: Recalling the preva-
lent switch architecture (cf. Figure 1) on P4 hardware,
P4Runtime messages are typically processed in a software-
based control plane. Therefore, we need to investigate Linux,
the operating system (OS) used for control planes. Linux-based
software packet processing systems are subject to delays in
the millisecond range. Gallenmüller et al. [12], [18] describe
several effects causing that type of delay, such as the OS
network stack or interrupts. Modern ASIC-based (P4) switches
typically rely on a Linux-driven control plane that introduces
the same delays to switches. Linux-based network stacks
have been researched in the high-performance, low-latency
networking community for decades. The Linux network stack
employs a technique called NAPI [26] that allows dynamic
switching between an interrupt-based and a polling-based
packet reception. This adaptive mechanism improves through-
put but introduces jitter and latency compared to a purely
polling-based approach. Unsatisfied with this stack’s perfor-
mance, alternative user-space implementations were proposed,
including DPDK [27]. DPDK relies exclusively on polling

Time

Time of Reception

Receiving Processing
CP/DP

Transfer

Processing

Time of Application

dcontrol

dall

Control Plane (CP)
Data Plane (DP)Sw

itc
h

Figure 2: Switch update delay (d) for forwarding and process-
ing of control plane messages

for packet reception lowering jitter and latency. To make the
benefits of DPDK easily accessible, DPDK features several ex-
amples, including a basic Layer 2 (Ethernet) forwarder called
l2fwd. Other projects also picked up on the idea of increasing
DPDK’s ease of use, e.g., the packet generator MoonGen [28].
The preemptive nature of the Linux kernel allows interrupting
running processes introducing jitter. A study by Reghenzani et
al. [29] investigates real-time patches available for the Linux
kernel that create a more stable and predictable behavior. The
tickless Linux kernel [30] further improves predictability and
low-latency behavior for applications by disabling scheduling
interrupts (also called ticks) on specific CPU cores.

Data plane updates on switches may cause unwanted effects
for packets processed during transient states. When offloading
applications to P4 data plane elements, these effects may
impact a wide range of different applications. In this work,
we want to create a methodology to measure not only the
maximum number of possible updates for a given interval,
but to also investigate individual data plane updates and their
impact. In addition, we consider delays that may be introduced
by the control plane OS.

IV. MEASUREMENT METHODOLOGY

Determining the impact of table updates on the control
plane for packet processing on the data plane requires a
specific measurement approach observing both planes. In this
section, we introduce the challenges of synchronizing and
measuring the test traffic between data and control plane.
To perform experiments with expressive results, we further
present a suitable measurement setup.

A. Challenges

Figure 2 shows the delay of a table update beginning with
the time of reception on the control plane and the actual time
of application for the table update on the data plane. We refer
to the total delay as dall. Initially, a table update message
is received on the control plane, processed, and transferred
to the data plane. We refer to this control plane delay as
dcontrol. During dcontrol, the message is handled in software and,
hence, subjected to the jitter and delay caused by the OS,
i.e., the Linux kernel. After the reception on the data plane,
the message is applied to the switching ASIC. We consider
the entire delay dall from reception on the control plane to

Control Plane
Data PlaneDuT

CtrlGen

DataGen
T

S

Role
1Gbit/s

10Gbit/s

Optical Splitter

Figure 3: Measurement setup overview

application on the data plane as the time of transition between
the old and the new state. The main focus of our investigation
is delay and jitter during this time of transition. Additionally,
we are interested in the events on the data plane during this
timeframe, such as packet drops or partially applied updates.

Typically, data plane and control plane traffic is received
on separate interface ports. Control plane ports are directly
connected to the CPU hosting the control plane software
(cf. Figure 1). The data plane utilizes ports attached to the
switching ASIC. To accurately determine the delay between
the control and data plane ports, we need a method to syn-
chronize the control and data plane traffic. Given the continued
downward trend in serialization times (cf. Table I), a highly
precise and reliable measurement setup is essential.

Jitter introduced by software interrupts, or PCI express
transfers, hamper accurate and precise latency measurements
in software. Therefore, we prefer timestamping hardware that
timestamps received packets early in the processing paths,
completely preempting elements causing jitter-introducing ef-
fects. To avoid additional inaccuracies, introduced by synchro-
nizing different clocks between the control and data plane, we
use the same measurement device, i.e., the same clock, for
both traffic streams.

B. Setup

The setup (cf. Figure 3) used in this work consists of four
roles: two load generators (CtrlGen & DataGen), one device-
under-test (DuT), and one time-stamper (TS). Both load gen-
erators supply the DuT with a constant bitrate traffic, differing
mainly in the targeted component of the DuT. While one load
generator applies the load to the control plane interface of
the DuT (CtrlGen), the second one targets the DuT’s data
plane (DataGen). In our experiments, both load generator roles
are assumed by the same physical host. The TS monitors the
information exchanged between the load generators and DuT
via optical splitters. The splitter-based setup allows the TS to
timestamp events on the control and data plane with the same
shared reference clock. The optical splitters are passive; hence,
the measurement system does not introduce additional jitter.
All used cables have the same length of 3 m between CtrlGen,
DataGen, TS, and the DuT, i.e., the delay is not skewed by
different cable lengths.

Table II: Hardware components of our measurement setup

Device CPU (Intel Xeon) Memory NIC

CtrlGen E5-1650 128 GB Intel X710
DataGen E5-1650 128 GB Intel X710
DuT D-1548 32 GB Intel I350
TS D-1548 32 GB Endace DAG 10X4-S

Both load generators employ MoonGen [28] as packet
generator. They run on an Intel Xeon E5-1650 equipped with
128 GB memory and an Intel X710 NIC. The DuT consists
of a P4-programmable ASIC combined with an Intel Xeon D-
1548 equipped with 32 GB memory and an Intel I350 NIC on
the control plane. We use different applications on the control
plane of the DuT to investigate the impact of techniques,
such as NAPI or DPDK, on latency and jitter. Lastly, to
timestamp packets, we used Endace’s DAG 10X4-S [31] on a
host whose properties match the DuT’s. The quad-port Endace
NIC supports hardware timestamping the entire traffic with the
same clock on all its ports at a line rate of 10 Gbit/s with a
resolution of 4 ns. Table II lists the hardware components of
our setup. While the DuT runs on Ubuntu 20.04 LTS and
the TS relies on Ubuntu 18.04.1 LTS, Debian buster is used
as the load generator’s OS. The different OS distributions
and versions were used due to the different requirements of
the software frameworks for the switching ASIC, the Endace
timestamping framework, and MoonGen.

C. Experiment Description

We expect a significant performance impact of the control
plane, the control plane application, and its host configuration.
Therefore, we discriminate our experiments based on the P4-
Runtime implementation used and the DuT host configuration.
Options for the former are discussed later in this section,
starting with Paragraph b). The latter is either the vendor’s
default configuration or a configuration optimized for low
latency. Here, the low-latency optimized configurations build
on experiences from previous work [12], [18].

Akin to all experiments is their structure. Following an
initial configuration phase, the setup behaves as follows. The
DataGen emits packets with a size of 64 B at a constant bit
rate. Each of these packets is processed by the DuT and
afterward sent back to the DataGen. On the data plane of
the DuT, processing consists of consulting a P4 match-action
table, which specifies how to update the packet’s Ethernet
source address. Throughout the experiment, the value of the
Ethernet source address is modified via the control plane. The
CtrlGen sends a stream of P4Runtime modification messages
at a constant rate. Each of these messages contains a new value
for the Ethernet source address. We use a packet forwarder on
the DuT that receives the P4Runtime modification messages
and applies the modification utilizing one of the respective
P4Runtime implementations. After processing the P4Runtime
messages, the forwarder sends the packets back to the CtrlGen.
Hence, enabling the TS to capture in- and outgoing packets
for both load generators.

Based on this observation of in- and outgoing packets, the
processing delay of the DuT can be determined, i.e., the time
required for a modify instruction received via the control plane
to be visible on the data plane. To evaluate the processing
latency induced by the DuT, during an experiment, the CtrlGen
transmits instructions at a constant rate. Minus the initial
warm-up phase, all observed processing delays are recorded
by the TS for later evaluation.

a) Forwarder Implementation: We expect that the choice
of the packet forwarder handling the modification messages
significantly impacts processing latency. Therefore, we inves-
tigate three different kinds of forwarding applications: (F1) a
Python-based implementation using the Linux network stack;
(F2) a C-based implementation relying on the Linux network
stack; (F3) a C-based DPDK implementation (l2fwd).

Past experience suggests that compiled applications, i.e., Im-
plementations (F2) and (F3), have an advantage compared
to the interpreted Python implementation (F1). We expect
further performance benefits for the DPDK-based Implemen-
tation (F3) that relies on the optimized DPDK stack entirely
bypassing the Linux network stack.

b) P4Runtime Implementation: As mentioned, we dis-
criminate our experiments based on the used P4Runtime
implementation with the goal of measuring the impact of the
different P4Runtime implementations. Therefore, as said, the
DuT’s forwarding application will execute the respective con-
trol plane implementation’s callback for each received packet.
In this work, we consider three different implementations
available on our switch: (I1) a Python-based implementation
supplied by the ASIC’s vendor, targeting the DuT’s ASIC;
(I2) a C++-based gRPC implementation designed to be con-
form with the P4Runtime specification; (I3) a C++-based
implementation, also relying on the vendor-specific, and, thus,
device-specific, interface.

Given that both Implementations (I1) and (I3) were written
with a particular switching ASIC in mind, a performance ben-
efit due to device-specific optimizations is likely. At the same
time, as mentioned before, an advantage of the compiled C++
applications, i.e., Implementations (I2) and (I3), compared to
the interpreted implementation is expected.

c) P4Runtime Table Manipulation Operation: Following
the P4Runtime specification [22], a limited number of opera-
tions can be performed on tables: 1) new entries can be added
via insert; 2) present entries may be removed; 3) alternatively,
modify allows to replace existing entries. Among these, the
modify operation is the most expressive. The modify operation
can be used to implement the add and remove operations.
An exemplary implementation could rely on pre-populated
tables and a noop-action, such as P4’s NoAction. Then,
an add would update the entry to replace the noop-action
with the desired one. Conversely, a delete would modify the
entry to use the noop-action instead. While this modify-only
approach relies on large tables, the availability of content-
addressable memory in modern network devices compensates
for the overhead of an increased table size. Following this
argument, this work focuses on the modify operation.

V. EVALUATION

The center of our investigation is the delay and its jitter
observed between control plane table modification and the
modification’s manifestation on the data plane. This investiga-
tion requires an in-depth analysis of the DuT behavior during
the application of modify operations.

During each experiment, a single 10 Gbit/s port of the DuT’s
data plane was subjected to load traffic with a constant rate
of 6 Gbit/s at a packet size of 64 B (approx. 8.9 Mpkt/s).
Simultaneously, on the control plane, table modifications were
triggered with a rate of 100 Hz by the CtrlGen. The control
plane traffic was sent to the DuT’s 1 Gbit/s NIC port directly
attached to the control plane.

Overwhelming a device with packets fills up buffers, lead-
ing to high latencies. To determine the latency of the non-
overloaded DuT, we want to avoid buffering of any packets
on both the control and data plane. Both planes’ rates are
chosen such that an increase of either results in a degradation
of observed latencies, i.e., preceding analyses indicated a
non-overload state of the DuT for these parameters. For low
data plane rates, we did not observe a correlation between
data plane utilization and processing latency. For higher rates,
however, latency on the data plane increased linearly.

We excluded a warm-up phase of 10 s at the beginning of
each measurement. This was done to avoid measuring latency
caused by ramp-up effects of the control plane application,
such as first-time cache misses. The measurement time for
our presented results lasted for 50 s.

A. Table Modification Delay—Packet Reception

We assume the software-based control plane to contribute
significantly to the overall delay of table modifications. There-
fore, we want to investigate the major steps in the processing
chain of table modification messages. The first step in this
processing chain is the reception of the modify messages
on the control plane. For the reception, we want to investi-
gate relevant aspects that we previously identified as factors
contributing to delay: (a) the programming language of an
application, (b) the software interface used to access packets,
and (c) interrupts introducing jitter to a running application.

To measure the delay of the message reception procedure,
we use a simple Layer 2 forwarding program. To avoid any
impact of the controller application on the message reception,
we only run the forwarder on the control plane system. The
forwarder receives packets on the NIC port of the control
plane and sends them out on the same port without any further
processing. We use this forwarder to measure the latency in our
setup that relies on hardware-timestamped packets. Compared
to the control plane implementation, a forwarder includes
additional tasks, such as sending the packet. Therefore, our
measurements of the forwarder overestimate the latency of
the investigated control plane implementations to some extent.
Assuming symmetric receive and transmit paths, the measured
roundtrip times can effectively be halved to determine the
message reception times.

0 50 90 99 99.9 99.99 99.999
100

101

102

103

Percentiles [%]

L
at

en
cy

[µ
s]

Python C DPDK
Python (NOHZ) C (NOHZ) DPDK (NOHZ)

Figure 4: Baseline measurements for the processing latency of
the control plane

a) Impact of the Programming Language: We have
chosen two forwarders, written in Python and C, to demon-
strate the impact of the programming language on the packet
processing delay. Python is an interpreted scripting language
relying on an automated garbage collector. The interpretation
of the code and the execution of the garbage collector may
introduce unwanted jitter into a controller application that
we expect to run continuously. The C language is compiled
and does not use an automated garbage collector; therefore,
we expect a lower jitter. Figure 4 shows the results of the
Python and C forwarder as dashed lines. We use a percentile
distribution graph to visualize the measured latency [32].
This type of graph highlights the latencies at high percentiles
(>99.x), characterizing not only latency but also the jitter in
a more expressive way. This is a clear benefit over traditional
representations of latencies in histograms or CDFs that hide
high but rare latency events in long, hard-to-read tails. For the
Python forwarder, we observed a median latency of 106 µs that
rises up to 205 µs for the 99.99th percentile. The C forwarder
has a median latency of 61 µs that increased to 94 µs for
the 99.99th percentile. These numbers indicate a significant
advantage for the C language. The latency is significantly
lower for the C forwarder, but also the jitter, as numbers
increase significantly less for the high percentiles of the C
forwarder.

b) Impact of the Packet Reception API: Linux offers a
flexible but complex network stack supporting various pro-
tocols or dynamic mechanisms such as NAPI. Frameworks,
such as DPDK, allow bypassing the Linux network stack and
provide their own simpler stack that offers higher performance.
For this work, we investigated whether DPDK provides lower
latency or jitter for the control plane. To measure the latency
of DPDK, we use the DPDK l2fwd. Its latency is shown
in Figure 4, with a median latency of 5 µs and a latency of
22 µs for the 99.99th percentile. These figures demonstrate that
DPDK can significantly improve latency and jitter compared
to the previously measured C-based forwarder utilizing the
Linux network stack.

c) Impact of the Linux Kernel: The Linux kernel uti-
lizes interrupts for specific tasks such as scheduling. The

execution of these interrupts can therefore introduce jitter to
currently running applications. To mitigate these problems, a
low-latency kernel was developed [30], i.e., with this option
enabled, and relevant DuT tasks pinned to isolated CPUs,
as previously suggested [12], [18]. To utilize the features of
this kernel, we compiled a new Linux kernel with the flag
CONFIG_NO_HZ_FULL enabled. In this paper, we refer to
that kernel as the NOHZ environment. The NOHZ kernel runs
processes with a lower jitter on dedicated cores by disabling
typical OS interrupts, such as the scheduling interrupts. With
scheduling interrupts disabled, these CPU cores cannot be
shared between applications. Therefore, only a single process
can run on a NOHZ core. If two or more processes are exe-
cuted on such a core, interrupts are re-enabled and the kernel
behaves like a regular Linux kernel. By comparing these two
environments with each other, the possible impact of a non-
optimized standard configuration on the DuT’s performance
can be estimated; thus, possibilities to shape the DuT behavior
for high-performance scenarios become apparent. To ensure
comparability, both environments rely on the same Linux
kernel version: 5.4.0-105.119.

We repeated our measurements of the three different for-
warders on a NOHZ kernel, to measure the potential for
improvement. Figure 4 visualizes these latencies using solid
lines. We see significant improvements for all three forwarders.
For the Python (median: 14 µs, 99.99th percentile: 17 µs)
and C (median: 12 µs, 99.99th percentile: 22 µs) forwarders,
latency and jitter were significantly improved. For the DPDK
forwarder we measured the same median latency of 5 µs as for
the regular Linux kernel. At the 99.99th percentile, latency was
reduced to only 11 µs. We observed that the latency increase
for the DPDK forwarder, running on a NOHZ kernel, happens
at a higher percentile, e.g., the 99th percentile.

Looking at the results, we claim to have achieved our
initial goals. We have shown that the latency and jitter can be
significantly improved. The best results were achieved using
a compiled language based on the DPDK framework running
on a NOHZ Linux kernel, improving latency as well as jitter
significantly.

B. Table Modification Delay—Packet Processing

The previous section investigated the impact of the packet
reception process on latency and jitter. In this section, we
quantify the latency and jitter impact of the actual control
application. Based on the previously identified benefits of
DPDK, we adapted the three control applications to use
DPDK. For our investigation, we compare the observed receive
time differences between a forwarded table modify instruction
and the first data plane packet affected by this modification at
the TS. We introduced this timespan as dall. The results of
this comparison are summarized in Figure 5 as a percentile
distribution. The figure depicts the recorded receive time
differences, i.e., the DuT’s processing delay of the three
investigated P4Runtime implementations, emphasizing higher
percentiles.

0 50 90 99 99.9 99.99 99.999
100

101

102

103

104

Percentiles [%]

L
at

en
cy

[µ
s]

Python GRPC Specific
Python (NOHZ) GRPC (NOHZ) Specific (NOHZ)

Figure 5: Percentile distribution of processing latency

a) Python-based Implementation (I1): From the results
shown in Figure 5 follows a median latency of approx. 590 µs
and 557 µs for the generic and NOHZ Python implementation,
respectively. However, starting around the 99.9th percentile,
the NOHZ variant performs worse, i.e., during the exper-
iments, it has a higher tendency for outliers. The highest
processing latencies for generic and NOHZ variants were
approx. 1442 µs and 885 µs, respectively.

Despite profiting from DPDK, the Python implementation
has a comparatively high mean processing latency. We attribute
this to Python being an interpreted language with a garbage
collector and its global interpreter lock preventing concurrent
execution of Python byte-code. While implementations other
than the tested CPython might yield improved performance,
this is not considered in this work.

b) C++-based gRPC Implementation (I2): Similar to the
Python-based implementation, the observed latencies of the
NOHZ variant surpass the generic variant but for about 1 % of
the cases. With 262 µs to 475 µs and 126 µs to 1835 µs, generic
and NOHZ variants offer lower minimum processing delay
than the Python-based implementation. However, outliers with
poor worst-case latency overshadow this benefit.

Arguably, the best-case delay, compared to the Python-
based approach, can partly be attributed to the availability
of compile-time optimizations. Additionally, the benefit of
avoiding interrupts positively influences induced latencies in
the NOHZ case. However, this benefit turns into a disad-
vantage when considering percentiles above 99 %. As low-
latency optimization is a delicate undertaking, an inconvenient
combination of interrupts and modify instruction arrival is
likely the cause of this behavior. Plus, the implementation’s
use of GRPC, a library relying on threading, conflicts with the
need to have at most one runnable process or thread per CPU,
when using NOHZ.

c) C++-based Vendor-Implementation (I3): The third
investigated implementation is the vendor-provided ASIC-
specific implementation. With best-case processing latencies
around 22 µs to 26 µs rising to 237 µs to 2490 µs in the
worst-case, this implementation provides the most promising
processing delay, apart from few outliers. In contrast to the
other implementations, this ASIC-specific implementation no-

ticeably suffers from NOHZ optimization. Given that NOHZ
optimizations shine when processes are pinned to individual
cores and with the architecture of the DuT’s non-ASIC com-
ponent in mind, a probable cause for this negative correla-
tion stems from the inability to pin processes appropriately.
On the other hand, one major benefit of this ASIC-specific
implementation and architecture shows when comparing this
implementation’s performance with the other two: the ASIC-
specific implementation outperforms both.

d) Discussion: Our measurements show a clear differ-
ence between the three implementations. We observed the
highest median latency for the Python-based P4Runtime Im-
plementation (I1) (590 µs) and the lowest latency for the
vendor-specific C++-based Implementation (I3) (22 µs). The
C++-based gRPC Implementation (I2) (262 µs) provides a
middle ground with a latency between the two other im-
plementations. These numbers show that ease of use and
increased flexibility come at a price. In this case, the price
can be up to several hundreds of microseconds. Table I
shows that for data plane bandwidths of 100 Gbit/s up to
150 pkt/µs are impacted. The choice of the control plane
application can therefore affect several ten thousand packets
for just a single modification. For percentiles of >99.9, latency
rises significantly for all three implementations by 200 to
300 µs. This worst-case latency must be respected if we want
to assume that a table modification is applied with a high
probability. Therefore, even more packets may be affected
during the modification period dall. Intuitively, the move to-
ward a tickless kernel is associated with reduced jitter. But,
as discussed, this only partially holds in these experiments.
Results were counter-intuitive; we saw a positive impact on
mean latency; however, jitter is significantly increased when
looking at higher percentiles. We suspect the root cause to be
the complexity of the software architectures used on the DuT;
an effective optimization depends on the well-tuned interplay
of all components.

C. Table Modification Behavior

Moving away from the latency-focused discussion, another
observation is noteworthy. For all investigated implementa-
tions, an intermediate state of the DuT was observed for some
modify instructions. In these cases, neither the match-action
table entry before the modification nor the one after was
applied to processed packets on the data plane. Instead, the
table’s default action was applied to up to three consecutive
packets. In other words, the modify instruction is not applied
atomically. Instead, we assume a table entry modification is
realized as a delete followed by an insert.

Figure 6 compares the observed processing latency and the
number of times the default action was applied to a packet
throughout of an experiment. The upper subfigure shows the
per-second mean number of consecutive packets processed
according to the default table entry of the DuT. Further, the
upper and lower flier in the top subfigure represent the standard
error. The depicted number of packets is obtained by dividing
the difference in receive timestamps by the serialization delay.

2

3

4

Pa
ck

et
s

[#
]

0 5 10 15 20 25 30 35 40 45 50
100

101

102

103

104

Time [s]

L
at

en
cy

[µ
s]

Python GRPC Specific

Figure 6: Per-second mean packet sequence length subjected to
default action (outliers show standard error; top) vs. processing
latency over time (bottom)

For these timestamp differences, we considered the first packet
subjected to the default action as well as the first packet
matched to any other action.

The lower subfigure depicts the observed processing delays
over time, shown as a percentile distribution in Figure 5.
Here, the generic experiments were chosen due to their higher
variations in the processing delay when considering lower
percentiles. The reasoning behind this argument is as follows.
A higher variation in the processing delay allows for increased
uniqueness of the observed latencies over time. Consequently,
making it easier to spot a possible correlation between the two
compared metrics. And, even though the NOHZ cases feature
more pronounced jitter, these events are significantly rarer than
in the generic cases.

The measurements in the figure suggest that no correlation
exists between implementation, processing delay, or experi-
ment time. Instead, the impression arises that this behavior
appertains to the DuT. For each of the performed experiments,
the described intermediate state was observed 9500 times.
The number of consecutive packets processed in this state
varied and amounted to about 1 %, 45 % and 54 % for one to
three packets, respectively. The P4 specification [33] demands
that the P4 program contains a default rule for every table.
If no rule is present in the source code, the compiler sets
NoAction as its default rule. While falling back to the default
action is a sensible course of action to take, seeing it used
when switching between values can be quite surprising. Such
behavior raises security concerns. Active default rules may
leak traffic to unexpected destinations. This behavior needs to
be taken into consideration during updates involving several
switches that may otherwise receive or transmit traffic to or
from unexpected destinations and sources.

Fewer surprises were observed when looking at the control
plane delays (dcontrol in Figure 2) caused by the different
implementations. Therefore, we timestamped the reception

of a P4Runtime message and its acknowledgment sent after
the P4Runtime message was processed. We calculated dcontrol
by subtracting the first from the second timestamp. dcontrol
does not include the time required by the DuT to apply the
modification, i.e., dall−dcontrol in Figure 2. We observe similar
behavior for dcontrol and dall. This similarity is likely rooted in
the fact that each implementation’s underlying function call
blocks until the modify instruction is performed.

VI. REPRODUCIBILITY

We consider reproducibility to be a key element of research,
enabling others to verify and extend our results. Therefore,
we publish our measurement scripts and the results of their
execution. [34] For the measurements, we used pos and its
methodology. [35] Further information on the experiment
execution and evaluation are provided as well.

VII. CONCLUSION

P4-programmable switches tap into the domain of terabit
networks. These higher packet rates on the data plane imply
the rising importance of fast control actions. To unify the
control of P4 devices, P4Runtime was established—a control
plane API with growing popularity. This work looked at
the control plane performance of three implementations on
a P4-programmable ASIC, with a special focus on the Linux
environment hosting the control plane applications.

Results indicate that a conscious implementation choice is
required to minimize overall system delay. To improve latency
and jitter of the control plane, the client implementations were
ported to DPDK. Out of the three investigated applications,
the C++-based vendor-specific API offered significantly lower
latency and jitter. We observed differences of several hundred
microseconds for P4Runtime-enabled data planes. Hoping to
further improve latency and jitter, experiments were repeated
on a low-latency Linux kernel. The results of this implemen-
tation were mixed: simple packet forwarding was rewarded
with reduced jitter, complex packet processing was penalized
with higher jitter. We identified the complex architectures of
the control plane applications and their dependency on thread-
ing as the root cause. We further noticed the reappearance
of default rules during table modifications. From this, we
conclude that the modify implementation on this device is
not implemented in an atomic fashion. The length of default
rule period varies, but in our experiments, it took up to
about 200 ns. This kind of non-atomic behavior during table
modifications must be considered when rolling out updates
across entire networks.

Bottom line is, a fast data plane needs a fast control plane.
We argue that the development of control planes, especially the
P4Runtime implementations, needs closer attention focusing
on crucial latency and jitter performance. Our results show that
control plane performance can be significantly improved by
accelerating the packet reception and choosing an optimized
control plane application. Optimizing the control application
offers further untapped potential for improvement.

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
(grant agreement no. 101008468 and 101079774). Addition-
ally, we received funding by the Bavarian Ministry of Eco-
nomic Affairs, Regional Development and Energy as part of
the project 6G Future Lab Bavaria. Moreover, this work is par-
tially funded by the German Federal Ministry of Education and
Research (BMBF) under the projects 6G-life (16KISK002)
and 6G-ANNA (16KISK107) as well as the German Research
Foundation (HyperNIC, grant no. CA595/13-1).

REFERENCES
[1] X. Ge, F. Yang, and Q. Han, “Distributed networked control systems:

A brief overview,” Inf. Sci., vol. 380, pp. 117–131, 2017. DOI: 10 .
1016/j.ins.2015.07.047.

[2] N. McKeown, T. Anderson, H. Balakrishnan, et al., “OpenFlow: En-
abling innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. DOI: 10.1145/1355734.
1355746.

[3] P. Bosshart, D. Daly, G. Gibb, et al., “P4: Programming protocol-
independent packet processors,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 3, pp. 87–95, Jul. 2014. DOI: 10.1145/2656877.2656890.

[4] S. Raza, Y. Zhu, and C. Chuah, “Graceful network state migrations,”
IEEE/ACM Trans. Netw., vol. 19, no. 4, pp. 1097–1110, 2011. DOI:
10.1109/TNET.2010.2097604.

[5] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. E. Anderson, and
A. Venkataramani, “Consensus routing: The internet as a distributed
system. (best paper),” ser. USENIX NSDI ’08, USENIX Association,
2008, pp. 351–364.

[6] L. Vanbever, S. Vissicchio, C. Pelsser, P. François, and O. Bonaventure,
“Seamless network-wide IGP migrations,” ser. SIGCOMM ’11, ACM,
2011, pp. 314–325. DOI: 10.1145/2018436.2018473.

[7] Intel, Intel® Tofino™ Series Programmable Ethernet Switch ASIC, en,
2022. [Online]. Available: https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-switch/tofino-series.html
(visited on 02/13/2023).

[8] Cisco, Cisco Catalyst 9400 Series Architecture White Paper, Mar.
2022. [Online]. Available: https://www.cisco.com/c/en/us/products/
collateral / switches / catalyst - 9400 - series - switches / nb - 06 - cat9400 -
architecture-cte-en.html (visited on 02/13/2023).

[9] Arista, Arista 7050X Switch Architecture (’A day in the life of a
packet’), 2020. [Online]. Available: https : / /www.arista .com/assets /
data/pdf/Whitepapers/Arista 7050X Switch Architecture.pdf (visited
on 02/13/2023).

[10] G. Kurio, L. Wu, I. Wu, and V. Vijayanath, Open Compute Project
Wedge 400C Design Specification V1.1, Jan. 2022. [Online]. Available:
https : / / www . opencompute . org / documents / wedge400c - ocp -
specification-2-pdf (visited on 02/13/2023).

[11] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,
and A. W. Moore, “Understanding PCIe performance for end host
networking,” ser. SIGCOMM ’18, New York, NY, USA: Association
for Computing Machinery, Aug. 2018, pp. 327–341, ISBN: 978-1-4503-
5567-4. DOI: 10.1145/3230543.3230560.

[12] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, “5G URLLC: A Case
Study on Low-Latency Intrusion Prevention,” IEEE Communications
Magazine, vol. 58, no. 10, pp. 35–41, Oct. 2020, Conference Name:
IEEE Communications Magazine, ISSN: 1558-1896. DOI: 10 . 1109 /
MCOM.001.2000467.

[13] H. Frazier, “The 802.3z Gigabit Ethernet Standard,” IEEE Netw.,
vol. 12, no. 3, pp. 6–7, 1998. DOI: 10.1109/65.690946.

[14] “IEEE Standard for Information technology - Local and metropolitan
area networks - Part 3: CSMA/CD Access Method and Physical Layer
Specifications - Media Access Control (MAC) Parameters, Physical
Layer, and Management Parameters for 10 Gb/s Operation,” IEEE Std
802.3ae-2002 (Amendment to IEEE Std 802.3-2002), pp. 1–544, 2002.
DOI: 10.1109/IEEESTD.2002.94131.

[15] “IEEE Standard for Ethernet - Amendment 3: Physical Layer Specifica-
tions and Management Parameters for 40 Gb/s and 100 Gb/s Operation
over Fiber Optic Cables,” IEEE Std 802.3bm-2015, pp. 1–172, 2015.
DOI: 10.1109/IEEESTD.2015.7069180.

[16] “IEEE Standard for Ethernet - Amendment 10: Media Access Control
Parameters, Physical Layers, and Management Parameters for 200
Gb/s and 400 Gb/s Operation,” IEEE Std 802.3bs-2017 (Amendment to
IEEE 802.3-2015 as amended by IEEE’s 802.3bw-2015, 802.3by-2016,
802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-
2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017),
pp. 1–372, 2017. DOI: 10.1109/IEEESTD.2017.8207825.

[17] IEEE P802.3df 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet
Task Force. Tools and Channel Data Area. [Online]. Available: https://
www.ieee802.org/3/df/public/tools/index.html (visited on 02/13/2023).

[18] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, “How Low
Can You Go? A Limbo Dance for Low-Latency Network Functions,”
Journal of Network and Systems Management, vol. 31, no. 20, Dec.
2022, ISSN: 1573-7705. DOI: 10.1007/s10922-022-09710-3.

[19] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” ser. SIGCOMM ’12, ACM, 2012,
pp. 323–334. DOI: 10.1145/2342356.2342427.

[20] R. Oudin, G. Antichi, C. Rotsos, A. W. Moore, and S. Uhlig,
“OFLOPS-SUME and the art of switch characterization,” IEEE J. Sel.
Areas Commun., vol. 36, no. 12, pp. 2612–2620, 2018. DOI: 10.1109/
JSAC.2018.2871235.

[21] J. H. Han, P. Mundkur, C. Rotsos, et al., “Blueswitch: Enabling
provably consistent configuration of network switches,” ser. ANCS ’15,
IEEE Computer Society, 2015, pp. 17–27. DOI: 10.1109/ANCS.2015.
7110117.

[22] P4runtime specification, P4.org API Working Group, Dec. 2020.
[Online]. Available: https://p4.org/p4runtime/spec/v1.3.0/P4Runtime-
Spec.html.

[23] gRPC Authors, gRPC A high performance, open source universal RPC
framework. [Online]. Available: https://grpc.io (visited on 02/13/2023).

[24] C. H. Song, X. Z. Khooi, D. M. Divakaran, and M. C. Chan, “Revis-
iting Application Offloads on Programmable Switches,” in IFIP Net-
working Conference, IFIP Networking 2022, Catania, Italy, June 13-
16, 2022, IEEE, 2022, pp. 1–9. DOI: 10.23919/IFIPNetworking55013.
2022.9829799.

[25] C. Zeng, L. Luo, T. Zhang, et al., “Tiara: A scalable and efficient
hardware acceleration architecture for stateful layer-4 load balancing,”
ser. USENIX NSDI ’22, USENIX Association, 2022, pp. 1345–1358.

[26] J. Salim, “When NAPI Comes to Town,” in Proceedings of Linux 2005
Conference, UK, 2005.

[27] DPDK Project, Data Plane Development Kit, 2022. [Online]. Avail-
able: https://www.dpdk.org/.

[28] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” ser. IMC ’15,
New York, NY, USA: Association for Computing Machinery, Oct.
2015, pp. 275–287, ISBN: 978-1-4503-3848-6. DOI: 10.1145/2815675.
2815692.

[29] F. Reghenzani, G. Massari, and W. Fornaciari, “The Real-Time Linux
Kernel: A Survey on PREEMPT RT,” ACM Comput. Surv., vol. 52,
no. 1, 18:1–18:36, 2019. DOI: 10.1145/3297714.

[30] n.a., NO HZ: Reducing Scheduling-Clock Ticks. [Online]. Available:
https://www.kernel.org/doc/Documentation/timers/NO%7B%5C %
7DHZ.txt (visited on 02/13/2023).

[31] endace, Datasheet Endace DAG 10X4-S. [Online]. Available: https :
//web.archive.org/web/20180905043442/https://www.endace.com/dag-
10x4-s-datasheet.pdf (visited on 02/13/2023).

[32] G. Tene, HdrHistogram: A High Dynamic Range Histogram. [Online].
Available: http://hdrhistogram.org/ (visited on 02/13/2023).

[33] P4 16 language specification, P4.org API Working Group, Jul. 2022.
[Online]. Available: https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html.

[34] H. Stubbe, S. Gallenmüller, D. Scholz, M. Simon, E. Hauser, and
G. Carle, Measurement artifacts, Zenodo, Jun. 2023. DOI: 10.5281/
zenodo.7871012.

[35] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
framework: A methodology and toolchain for reproducible network
experiments,” ser. CoNEXT ’21, New York, NY, USA: Association
for Computing Machinery, Dec. 2021, pp. 259–266, ISBN: 978-1-4503-
9098-9. DOI: 10.1145/3485983.3494841.

