

The sorry state of X.509

from certification weaknesses to Man-in-the-middle detection

Ralph Holz

Network Architectures and Services Technische Universität München

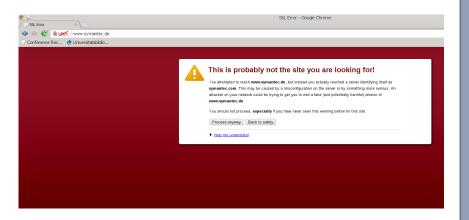
15-16 November 2012

- PhD student at Technische Universität München, Germany
- PKI background measurement and analysis of X.509 and OpenPGP
- Also been involved in protocol design and P2P security

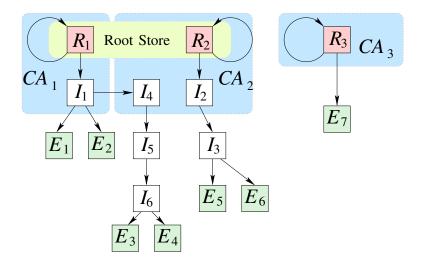
- The SSL Landscape
- Proposals to enhance or replace X.509
- Crossbear: Detecting and Localising the MitM

The SSL Landscape

Significance of SSL/TLS and X.509

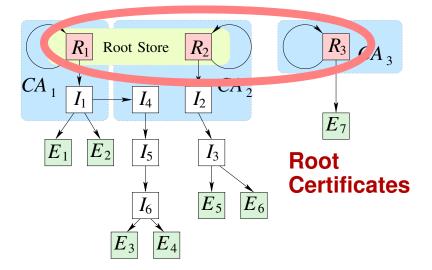

SSL/TLS

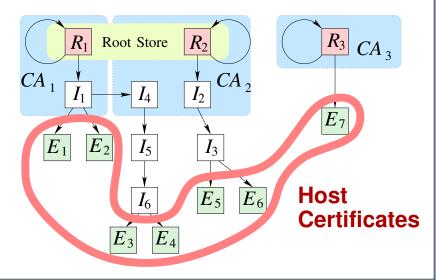
- The backbone protocols for securing the WWW
- Authentication, confidentiality, integrity
- Public-key cryptography

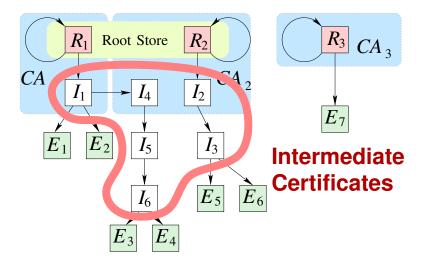

X.509: Public Key Infrastructure standard

- Certification Authorities (CAs) certify Web sites
- Non-forgeable signature on (identity, public key)

Browser Panic (www.symantec.de)

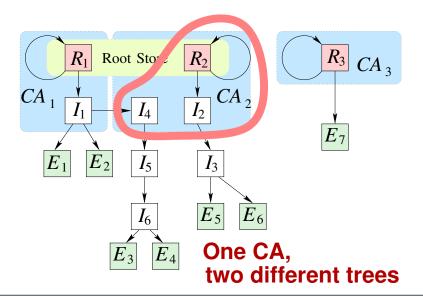


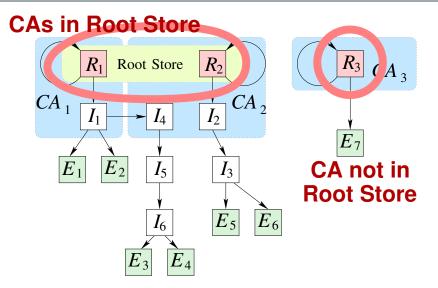

ШП

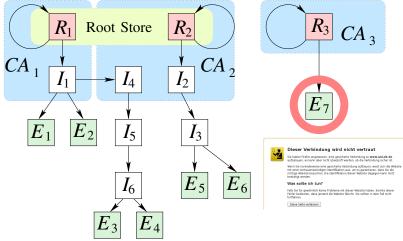


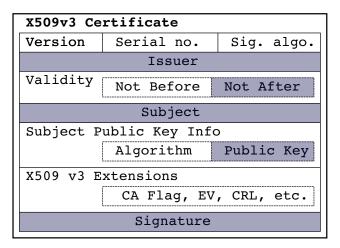
ШП











Root certificate not in Root Store

Early December 2008:

 'Error' in Comodo CA: no identity check
 Whitehack hacks StartSSL CA

 February 2009

 'Easy' attack on MD5: fake CA certificate

 March 2011: Comodo CA hacked

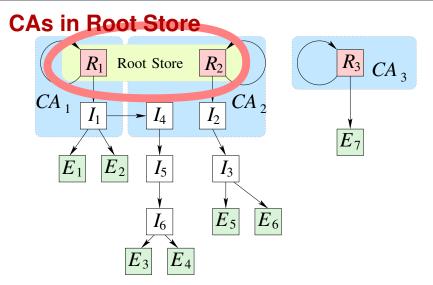
 Blacklisting of ≈ 10 certificates

 July 2011: DigiNotar CA hacked

 531 fake certificates in the wild

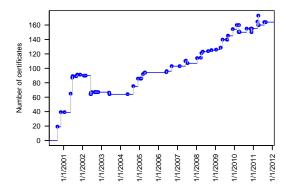
- Early December 2008:
 - 'Error' in Comodo CA: no identity check
 - Whitehack hacks StartSSL CA
- February 2009
 - 'Easy' attack on MD5: fake CA certificate
- March 2011: Comodo CA hacked
 - Blacklisting of \approx 10 certificates
- July 2011: DigiNotar CA hacked
 - 531 fake certificates in the wild

- Early December 2008:
 - 'Error' in Comodo CA: no identity check
 - Whitehack hacks StartSSL CA
- February 2009
 - 'Easy' attack on MD5: fake CA certificate
- March 2011: Comodo CA hacked
 - Blacklisting of \approx 10 certificates
- July 2011: DigiNotar CA hacked
 - 531 fake certificates in the wild


- Early December 2008:
 - 'Error' in Comodo CA: no identity check
 - Whitehack hacks StartSSL CA
- February 2009
 - 'Easy' attack on MD5: fake CA certificate
- March 2011: Comodo CA hacked
 - Blacklisting of \approx 10 certificates
- July 2011: DigiNotar CA hacked
 - 531 fake certificates in the wild

- Early December 2008:
 - 'Error' in Comodo CA: no identity check
 - Whitehack hacks StartSSL CA
- February 2009
 - 'Easy' attack on MD5: fake CA certificate
- March 2011: Comodo CA hacked
 - Blacklisting of ≈ 10 certificates
- July 2011: DigiNotar CA hacked
 - 531 fake certificates in the wild

Root Stores Contain CA Certificates


Your browser chooses the 'trusted CAs'. Not you.

Any CA may issue a certificate for any domain.

This means the weakest CA determines the strength of the whole PKI.

Up to 150 trustworthy Root Certificates

* Number dropping again

Can we Assess the Quality of this PKI?

A good PKI should

- … allow HTTPs on all WWW hosts
- ... contain only valid certificates
- ... offer good cryptographic security
 - Long keys, only strong hash algorithms, ...
- … have a sensible setup
 - Short validity periods (1 year)
 - Short certificate chains (but use intermediate certificates)
 - Number of issuers should be reasonable (weakest link!)

Active scans to measure deployed PKI

- Scan hosts on Alexa Top 1 million Web sites
- Nov 2009 Apr 2011: scanned 8 times from Germany
- March 2011: scans from 8 hosts around the globe

Passive monitoring to measure user-encountered PKI

- Munich Research Network, monitored all SSL/TLS traffic
- Two 2-week runs in Sep 2010 and Apr 2011

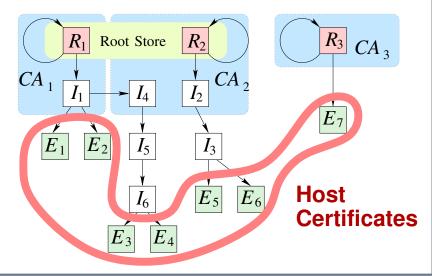
EFF scan of IPv4 space in 2010

Scan of 2-3 months, no *domain* information

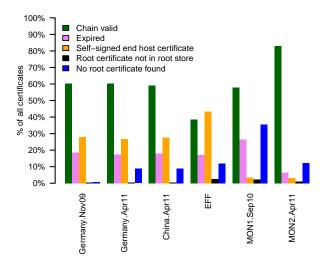
Location	Time (run)	Туре	Certificates
Tuebingen, DE	November 2009	Active scan	833,661
Tuebingen, DE	December 2009	Active scan	819,488
Tuebingen, DE	January 2010	Active scan	816,517
Tuebingen, DE	April 2010	Active scan	816,605
Munich, DE	September 2010	Active scan	829,232
Munich, DE	November 2010	Active scan	827,366
Munich, DE	April 2011	Active scan	829,707
Munich, DE	April 2011	Active scan with SNI	826,098
Shanghai, CN	April 2011	Active scan	798,976
Munich, DE	September 2010	Passive monitoring	183,208
EFF servers	March–June 2010	Active IPv4 scan	11,349,678

Location	Time (run)	Туре	Certificates
Tuebingen, DE	November 2009	Active scan	833,661
Tuebingen, DE	December 2009	Active scan	819,488
Tuebingen, DE	January 2010	Active scan	816,517
Tuebingen, DE	April 2010	Active scan	816,605
Munich, DE	September 2010	Active scan	829,232
Munich, DE	November 2010	Active scan	827,366
Munich, DE	April 2011	Active scan	829,707
Munich, DE	April 2011	Active scan with SNI	826,098
Shanghai, CN	April 2011	Active scan	798,976
Beijing, CN	April 2011	Active scan	797,046
Melbourne, AU	April 2011	Active scan	833,571
İzmir, TR	April 2011	Active scan	825,555
São Paulo, BR	April 2011	Active scan	833,246
Moscow, RU	April 2011	Active scan	830,765
Santa Barbara, US	April 2011	Active scan	834,173
Boston, US	April 2011	Active scan	834,054
Munich, DE	September 2010	Passive monitoring	183,208
EFF servers	March–June 2010	Active IPv4 scan	11,349,678

Location	Time (run)	Туре	Certificates
Tuebingen, DE	November 2009	Active scan	833,661
Tuebingen, DE	December 2009	Active scan	819,488
Tuebingen, DE	January 2010	Active scan	816,517
Tuebingen, DE	April 2010	Active scan	816,605
Munich, DE	September 2010	Active scan	829,232
Munich, DE	November 2010	Active scan	827,366
Munich, DE	April 2011	Active scan	829,707
Munich, DE	April 2011	Active scan with SNI	826,098
Shanghai, CN	April 2011	Active scan	798,976
Beijing, CN	April 2011	Active scan	797,046
Melbourne, AU	April 2011	Active scan	833,571
İzmir, TR	April 2011	Active scan	825,555
São Paulo, BR	April 2011	Active scan	833,246
Moscow, RU	April 2011	Active scan	830,765
Santa Barbara, US	April 2011	Active scan	834,173
Boston, US	April 2011	Active scan	834,054
Munich, DE	September 2010	Passive monitoring	183,208
Munich, DE	April 2011	Passive monitoring	989,040
EFF servers	March–June 2010	Active IPv4 scan	11.349.678



Location	Time (run)	Туре	Certificates
Tuebingen, DE	November 2009	Active scan	833,661
Tuebingen, DE	December 2009	Active scan	819,488
Tuebingen, DE	January 2010	Active scan	816,517
Tuebingen, DE	April 2010	Active scan	816,605
Munich, DE	September 2010	Active scan	829,232
Munich, DE	November 2010	Active scan	827,366
Munich, DE	April 2011	Active scan	829,707
Munich, DE	April 2011	Active scan with SNI	826,098
Shanghai, CN	April 2011	Active scan	798,976
Beijing, CN	April 2011	Active scan	797,046
Melbourne, AU	April 2011	Active scan	833,571
İzmir, TR	April 2011	Active scan	825,555
São Paulo, BR	April 2011	Active scan	833,246
Moscow, RU	April 2011	Active scan	830,765
Santa Barbara, US	April 2011	Active scan	834,173
Boston, US	April 2011	Active scan	834,054
Munich, DE	September 2010	Passive monitoring	183,208
Munich, DE	April 2011	Passive monitoring	989,040
EFF servers	March–June 2010	Active IPv4 scan	11,349,678


Location	Time (run)	Туре	Certificates
Tuebingen, DE	November 2009	Active scan	833,661
Tuebingen, DE	December 2009	Active scan	819,488
Tuebingen, DE	January 2010	Active scan	816,517
Tuebingen, DE	April 2010	Active scan	816,605
Munich, DE	September 2010	Active scan	829,232
Munich, DE	November 2010	Active scan	827,366
Munich, DE	April 2011	Active scan	829,707
Munich, DE	April 2011	Active scan with SNI	826,098
Shanghai, CN	April 2011	Active scan	798,976
Beijing, CN	April 2011	Active scan	797,046
Melbourne, AU	April 2011	Active scan	833,571
İzmir, TR	April 2011	Active scan	825,555
São Paulo, BR	April 2011	Active scan	833,246
Moscow, RU	April 2011	Active scan	830,765
Santa Barbara, US	April 2011	Active scan	834,173
Boston, US	April 2011	Active scan	834,054
Munich, DE	September 2010	Passive monitoring	183,208
Munich, DE	April 2011	Passive monitoring	989,040
EFF servers	March–June 2010	Active IPv4 scan	11,349,678

Validation of Certificate Chains

Just check chains, not host names

Correct Domain Name in Certificate

Now also check host names

- Look in Common Name (CN) and Subject Alternative Name (SAN)
- Munich, April 2011, only valid chains:
 - 12.2% correct CN
 - 5.9% correct SAN

Only 18% of certificates are fully verifiable

- Positive 'trend': from 14.9% in 2009 to 18% in 2011
- Addendum: recent scans show this is increasing (+ 0.5%)

Host Names in Self-signed Certificates

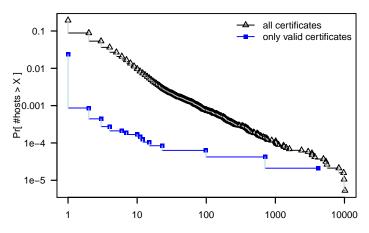
Active scan

- 2.2% correct Common Name (CN)
- 0.5% correct Subject Alternative Name

Top 3 most frequent CNs account for > 50%

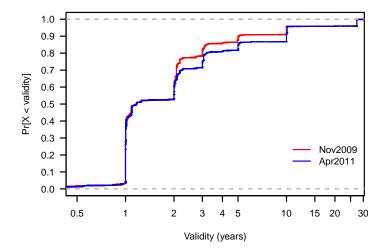
- plesk or similar in 27.3%
- Iocalhost or similar in 25.4% standard installations?

Many certificates valid for more than one domain


- Domains served by same IP
- Some certificates issued for dozens of domains
- Certificate reuse on multiple machines increases options for attacker

Often found on hosters

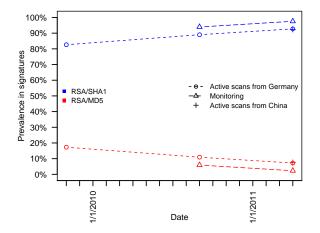
■ E.g. *.blogger.com, *.wordpress.com


How often does a certificate occur on X hosts?

Number of hosts per certificate =: X

CDF of validity periods, active scans

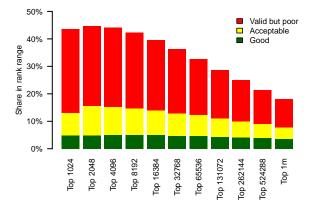
Key types


- RSA: 99.98% (rest is DSA)
- About 50% have length 1,024 bit
- About 45% have length 2,048 bit
- Clear trend from 1,024 to 2,048 bit

Weird encounters

- 1,504 distinct certificates that share another certificate's key
- Many traced to a handful of hosting companies
- Nadiah Henninger's work: Embedded devices, poor entropy!
- www.factorable.net

MD5 is being phased out



We defined 3 categories

- 'Good':
 - Correct chains, correct host name
 - $\blacksquare \ Chain \leq 2$
 - No MD5, strong key of > 1024 bit
 - Validity \leq 13 months
- 'Acceptable'
 - Chain \leq 3, validity \leq 25 months
 - Rest as above
- 'Poor': the remainder

Validity correlates with rank

Share of 'poor' certificates higher among high-ranking sites

Proposals to enhance or replace X.509

What to do about these problems?

No silver bullet known

- Part of the problem: SSL meant to protect stuff like credit card numbers
- But state-scale attacks were not in scope back in the 1990s

Several proposals:

- Extended Validation, Base Line Requirements
- Pinning Information
- Keys in DNSSEC (DANE)
- Perspectives/Convergence
- Public Logs: Sovereign Keys, Certificate Transparency

Extended Validation

- CAs to require state-issued documents before certification
- More expensive
- Rarely bought by customers

Base Line Requirements

- CA/Browser forum standard
- Absolute minimum requirements for validation
- Audit-based, rules for audits

Idea

- Browser stores last-seen public key of a site
- Alternatively: store issuing CA
- Recognise again upon next visit

Discussion

- Does not help against attack on first contact
- False alarms when certificates change (not rare!)
- How many certs to store?

Idea


- DNSSEC already a hierarchical state-level PKI
- Verification from Root Server down to end-host
- New Resource Record in DNSSEC: public key of site

Discussion

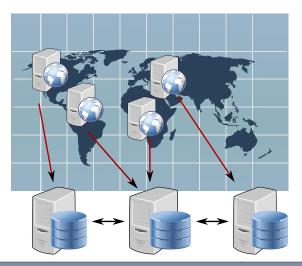
- Straight-forward and strong
- Performance? Caching? DJB says it's poor.
- Countries control their own TLDs. Think bit.ly!
- Defence against country-level attack?

Idea: Notaries

Reconfirm with notaries

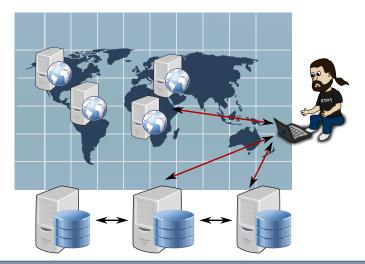
Discussion of Notary System

Advantages


- Works well against MitM in the network
- Reinforcement or replacement of CA system?

Possible problems

- Privacy
- False positives: some sites change certificates frequently
- Content Distribution Networks?



Store information

Retrieve information

Idea: store information publicly and append-only

Sovereign Keys

- Sites stores authoritative key to cross-sign its certificates
- Goal: cross-certification and cross-validation of keys
- Certificate Transparency
 - CAs and others store info about who is certified by whom
 - Goal: detect rogue CA issuing key for a site

Schemes are very new - end of 2011

Sites store information on < 30 timeline servers

timestamp	name	key	protocols	evidence
1322736203	А	0x427E8A	https, smtps	$Sig_{CA}(A, \cdots)$
1323254603	В	0x7389FB	https:8080	$Sig_B(B, \cdots)$
1323657143	С	0x49212A	imaps	$Sig_C(C, \cdots)$
1413787143	A	0x427E8A	https, smtps	$Sig_{CA}(A, \cdots)$
	•••	•••		•••

Work-in-progress (alive)

- Timeline is auditable by clients
- Mirrors proposed
- https://www.eff.org/sovereign-keys

Sovereign Keys: Discussion

Pros

- Does not need CA support
- Evidence can be based on DANE DNSSEC, CAs, ...
- Performance and bandwidth?

Cons

- Continous monitoring of timeline server needed
- Maintain list of timeline servers
- Entries are not space-efficient
- Privacy (suggested remedy: TOR-like proxying)
- Key loss

Certificate Transparency (Google)

Store certification proof on public servers

timestamp	name	cert	evidence
1322736203	A	Cert chain by Verisign	MSig(hashes)
1323254603	В	Self-signed cert	MSig(hashes)
1323657143	С	Cert by CACert	MSig(hashes)
••••			MSig(hashes)

Work-in-progress (alive)

- Timeline consistency can be monitored
- Roles: clients, auditors, monitors (on-behalf)

Certificate Transparency (Google)

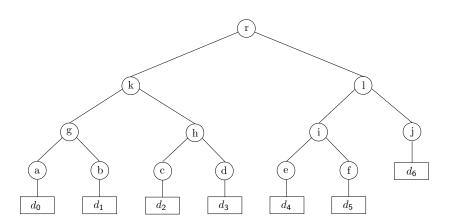


Figure : Log is a Merkle tree, d_i are new certificate chains.

Discussion of Certificate Transparency

Pros

- Protects against rogue/hacked CAs
- Efficient data structure
- Has Google campaigning for it

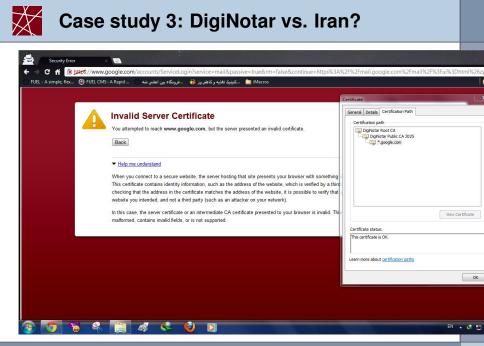
Cons

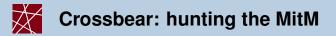
- Requires continous monitoring of logs
- Monitors need full log at all times, act on behalf of others
- Proofs are are $O(\log n)$, but storage is linear

Crossbear: Detecting and Localising the MitM

MAY 5, 2011 | BY PETER ECKERSLEY

A Syrian Man-In-The-Middle Attack against Facebook

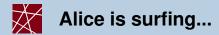

UPDATE: If you are in Syria and your browser shows you this certificate warning on Facebook, *it is not safe to login to Facebook*. You may wish to use <u>Tor</u> to connect to Facebook, or use proxies outside of Syria.

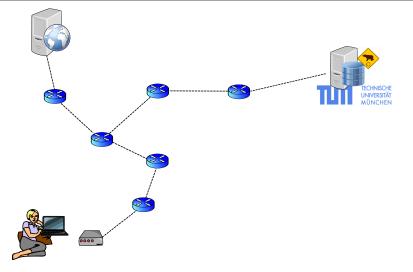

```
Certificate:
Data:
Serial Number: c6:4f:50:11:b3:65:dc:b9
Issuer: C=US, ST=California, L=Alto Palo, O=Facebook, Inc.,
OU=Facebook, CN=s.static.ak.facebook.com
Subject: C=US, ST=California, L=Alto Palo, O=Facebook, Inc.,
OU=Facebook, CN=s.static.ak.facebook.com
```

Case study 2: hotel in in Warsaw?

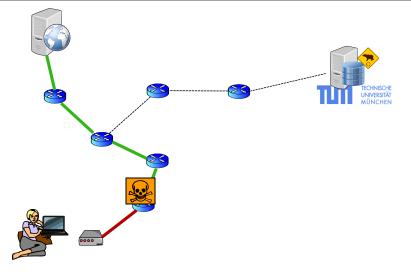
[...] I spent the night in a hotel in Warsaw, Poland. I bought access to the Internet WiFi. [...]

Actually attaches a traceroute.

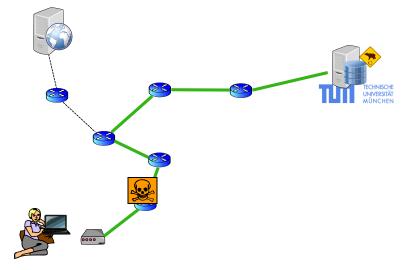


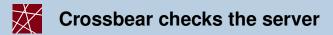

This is *not* a proposal to strengthen X.509.

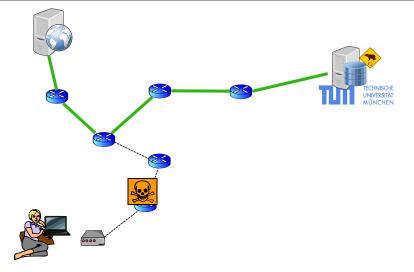
Crossbear: a tool to gather hard data.

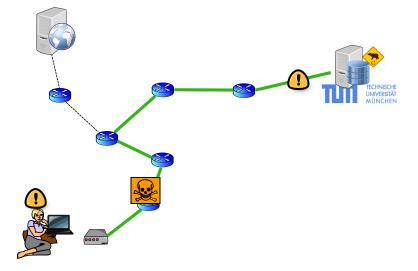

- Raise reliable data about MitM in the wild
- How often do MitM occur?
- Where are the attackers located?
- Who are the attackers?
- Are we jumping at shadows?

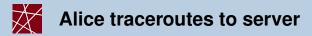
Method: combine notary principle, tracing and centralised reporting and analysis.

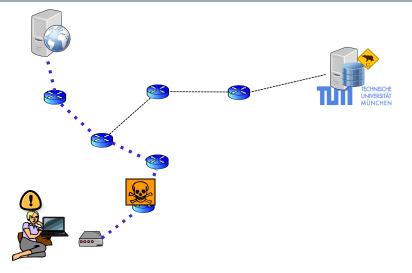


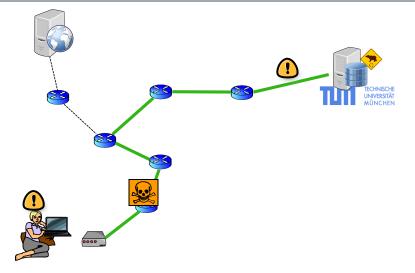


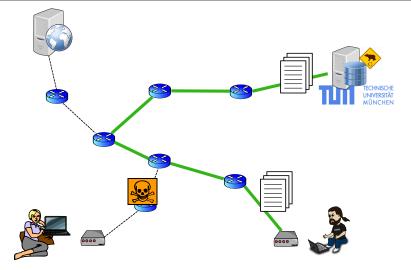


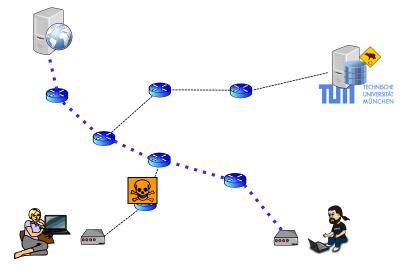


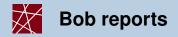


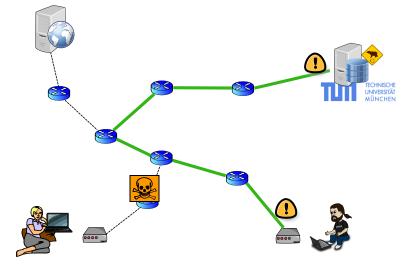


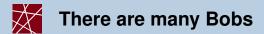


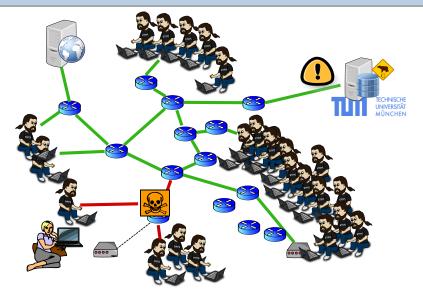


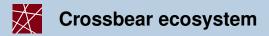


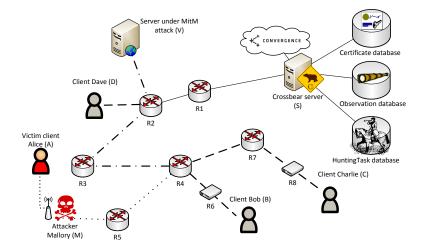




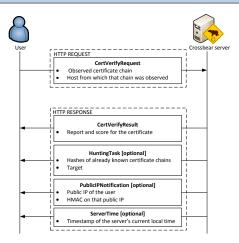






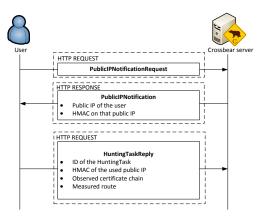


Implemented and running


Server: store and analyse

- Crossbear server at TU München, Germany
- Uses Convergence project's notaries for diversity
- Server cert hard-coded into client!

Detection and localisation


- Clients as Firefox add-on (detection and localisation)
- 150 stand-alone hunters on stand-by on PlanetLab (localisation)

NB: SSL-secured connection, server cert hard-coded

NB: SSL-secured connection, server cert hard-coded

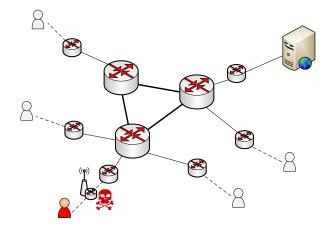
Actually, we also determine on server-side:

- CAs used in certificate chain (→ continuity)
- AS number of hosts in traceroute (→ frequent reports?)
- Geo data: location of hosts in traceroute (→ traversed countries)
- WHOIS info

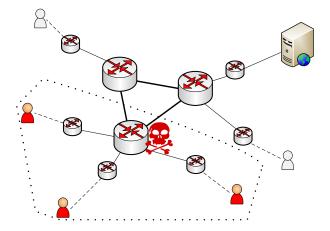
Firefox add-on

- For savvy users
- Score-based, several factors
- $\blacksquare \ UI \rightarrow see \ code \ on \ github$

Chosen based on MitM reports we have


Attacker behaviour

- Non-selective: MitM all attached 'client' systems
- Selective: MitM only some of attached 'client' systems


Attacker position

- Towards periphery, close to victim client
- Towards periphery, close to victim server
- Central location in network (important AS, ...)

Non-selective, close to victim client

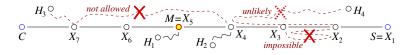
Non-selective, state-level attacker

Analysis: non-selective attacker

Detection

- Attack is detected if ≥ 1 reports
- Attacker can only drop connections to Crossbear server

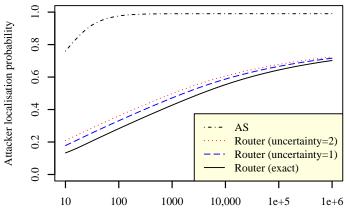

Lends itself well to localisation


- Get ≥ 1 traceroute from victim, ≥ 1 from unpoisoned hunter
- The more, the better
- The closer to intersection point, the better
- Success depends on the number of hunters
- An estimate can be given

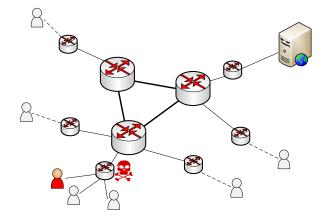
Possible to give a closed-form model, at both router and AS-level.

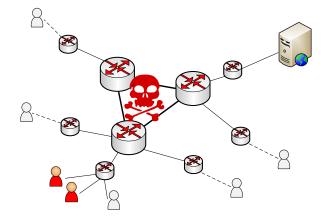
- Non-selective attacker
- Routing symmetric (OK if path lengths not much different)
- Routing based only on destination address (hot-potato routing etc. rare)
- Probability for a node (router, AS) as location for hunter is evenly distributed (*)
- Probability that traffic is forwarded to specific neighbour is evenly distributed (*)

Ideas

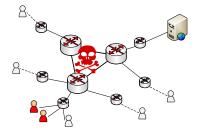

- \blacksquare First, treat path length victim \leftrightarrow server as fixed length
- Probability that randomly placed hunter covers a node is function of node degree
- Probability that one hunter is victim and another just escapes MitM is function of node degree
- Aggregate: sum over all possible path lengths, and all possible locations of attacker on path
- Model only depends on node degrees and path lengths

Router level


- Node degrees: Rocketfuel
- Path lengths: number of IP hops: traceroutes to 30k random hosts
- **AS level**
 - Node degree and path lengths: RouteViews archive



Number of hunters



Selective attackers are a headache

Can be indistinguishable from non-selective attacks

- Every attack report to be checked for plausibility
- But attacker should leave some hints cannot arbitrarily spoof IP addresses

Attack seems to be restricted to few stub AS

- Use BGP data to check traceroutes for plausibility
- Do MitM certificates share properties?
- Which AS in which countries involved? Some 'known' suspect?

MitM reports from just a few companies?

- Check traceroutes for traversed countries and AS
- Might be industrial espionage

All of this is intensive manual work. But only localisation is affected, and it is better than no data all.

Crossbear is an open system

- Malicious injection of data
 - Clients/hunters have no ID, no authentication
 - Attacker can eclipse real hunters in his network, too
 - Should results in clusters of suspicious reports, though
- Denial-of-service attacks
- It is an arms race
- Other detection systems are subject to same attacks

A first step towards gathering better data

- We do not advertise Crossbear as a silver bullet
- Best results can be expected against the non-selective attacker
- These are also the attackers we are most interested in

Crossbear is deployed and ready

- 150 hunters on PlanetLab
- 4,000 certificate reports no MitM

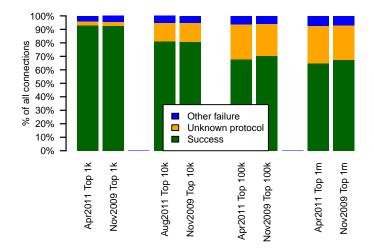
SSH

- We have a PoC for SSH host key verification.
- Patch for OpenSSH
- Want to present (hopefully) as lightning talk at 29C3
- No hunting implemented yet

Open Observatory of Network Interference

- Measurement framework to detect traffic manipulation / censorship
- Won a grant for integrating Crossbear
- Ongoing work

Contact


- Twitter: @crossbearteam
- WWW: https://pki.net.in.tum.de
- https://github.com/crossbear/Crossbear

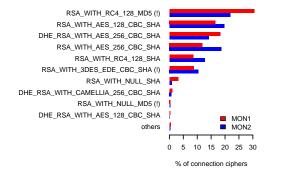
Backup Slides

Scans from Germany, Nov 2009 and Apr 2011

UNKNOWN PROTOCOL

- Rescanned those hosts and manual sampling
- Always plain HTTP...
- ... and always an index.html with HTML 2 ...
- Hypothesis: old servers, old configurations
- More likely to happen in the lower ranks

CN=plesk or similar


- Found in 7.3% of certificates
- Verified: Plesk/Parallels panels

CN=localhost

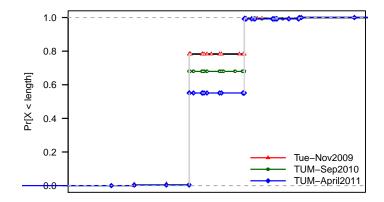
4.7% of certificates

Results from monitoring

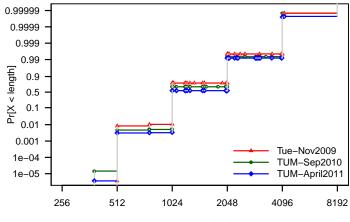


(Mostly) in line with results from 2007 by Lee et al.

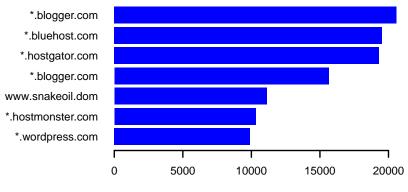
Order of AES and RC4 has shifted, RC4-128 most popular

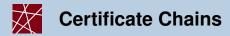

Weak randomness in key generation – serious bug of 2008

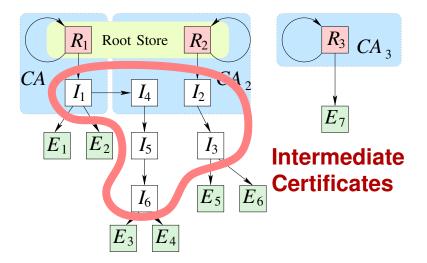
In line with findings of 2009 by Yilek et al.


CDF for RSA key lengths – linear Y axis

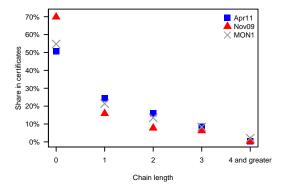
Key length (bits)


CDF for RSA key lengths – double-log Y axis

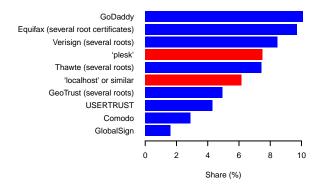

Key length (bits)



Most frequent Common Name occurrences



Number of occurences



Finding more positive than negative:

- Trend to use intermediate certificates more often
- Allows to keep Root Certificates offline
- But chains still reasonably short

Very few CAs account for > 50% of certificates

But there are 150+ Root Certificates in Mozilla.