
The SOCRATES SON-Function Coordination

Concept

Tobias Bandh

2011-11-06

Abstract

The SOCRATES FP7 research project provided fundamental research
in the area of Self-Organizing Networks (SONs), including a concept on
SON-Function coordination. The presented coordination concept con-
tained a detailed description of a coordination architecture, required com-
ponents and their functionalities. This document combines the informa-
tion from multiple sources as for example publications and deliverables in
order to provide a detailed and holistic overview followed by an analysis
of the SOCRATES SON-Function coordination concept.

1 Introduction

SOCRATES (Self-Optimisation and self-ConfiguRATion in wirelEss net-
workS) [3] was a research projects with multinational partners from in-
dustry and academia funded by the European Union under the 7th Frame-
work Program over the course of 3 years (2008-2010). The project aimed
to enhance the operation of wireless access networks through the intro-
duction of self-organization methods into network planning, configuration
and optimization. The project presented its results in a number of sci-
entific publications and project deliverables which are available from the
project website. The project covered a broad range of topics but with a
clear focus on the integration of all self-organization methods into a single
framework. This holistic view on SON and the is the most important
contribution.

Although targeting radio access networks in general the 3GPP LTE
radio interface was chosen as a reference radio interface to serve as a basis
for all studies that were performed within the project.

For us, the work done within SOCRATES is of special interest as it,
for the first time, identified the need for a coordination of SON-Function
execution in order to prevent conflicting behavior between SON-Function
instances with negative effects on the network operation. Based on this
finding the project developed a coordination concept including an archi-
tecture consisting of multiple building blocks.

An overview over the SOCRATES coordination concept and the func-
tional entities that are envisaged to provide the functionality for a suc-
cessful coordination is provided within the next sections.

After a first overview of the coordination concept in Section 2, de-
tailed information about the SON-Functions within SOCRATES in Sec-
tion 2.1, the usage and definition of the term policy (Section 2.2) and the

1



key components of the coordination architecture in Section 2.3 is given.
Section 2.4 shows the coordination process. A final assessment of the
SOCRATES SON-Function coordination concept is given in Section 2.5.

2 SOCRATES Coordination Concept

Ensuring a joint operation of individual SON-Function towards a common
goal has been identified as the main challenge for a SON Coordinator
Framework. In SOCRATES the common goal which determines the SON-
Function operation is specified via the operators’ high-level objectives for
the network operation.

To achieve the operation of individual SON-Functions towards a com-
mon goal, the coordination framework is used to harmonize the operation
of the SON-Function instances and detect and avoid undesirable behavior
caused by the performed configuration changes.

SOCRATES introduces two types of harmonization that are used to
enforce behavior according to high-level objectives.

• Heading Harmonization: Is described as a way to avoid conflicts.
It is comparable to a design-time SON-Function co-design, therefore
it is limited in the same way as the co-design as soon as the number
of deployed SON-Function increases.

• Tailing Harmonization: Is a run-time conflict resolution method
for all conflicts that could not be prevented through heading har-
monization. It evaluates any configuration change request of the
SON-Function instances with respect to the operator objectives.

The interesting part of the SOCRATES coordination concept for us, is
the tailing harmonization which is performed through a set of functional
entities which are described in detail in Section 2.3. The decisions that are
taken are influenced through operator guidelines which are represented in
so called policies which are introduced an analyzed in Section 2.2.

2.1 SON-Functions in SOCRATES

A small set of examples from the NGMN listing of SON usecases [2] has
been selected as a basis for the SON-Functions within SOCRATES. Over-
all nine use cases have been selected and serve as representative SON-
Functions on which the SOCRATES cases studies are based on [4]. In
the project deliverables detailed information is given about those par-
ticular SON-Functions their implementation and their behavior, but a
generic conceptual description of SON-Functions and SON-Function be-
havior within SOCRATES is missing. Since it is not available there is
also no description of a common way of SON-Function operation which
limits the functionality of the SON Coordinator to a coordination of the
configuration changes requested by the function instances.

2.2 Policies in SOCRATES

Within the SOCRATES project the term policy is used somehow differ-
ently to an often used technical understanding of policies, although at a
first glance there are many similarities to the policy concept introduced
in [5]. Especially the specialization of high level policies into more specific
policies has a strong similarity to the definition of the policy continuum

2



introduced in [5]. A good overview on the SOCRATES understanding of
policies is given in [1].

A detailed analysis of the policies reveals the differences between the
SOCRATES policies and the common understanding of policies in the area
of network management. It especially brings up the question whether ei-
ther using the term policy does not cover the semantics of the SOCRATES
concepts sufficiently or if the refinement of the policies just stopped at a
very high level and the lower levels of policy refinement are not treated
within SOCRATES.

SOCRATES uses four different types of policies:

• Operator Policy: This policy introduced as the most generic pol-
icy and refers to high level network performance objectives or op-
erational guideline or requirements. Operators use this type of pol-
icy to specify the expected behavior of the network and the SON-
Functions. The Operator Policy could also be called a general guide-
line for the network operation, including high-level specifications of
performance goals.

• Cell specific Policy: is a specialization of some aspects of the
Operator Policy which specifies the expected results for a set of
performance metrics of a cell. For example the average cell edge
throughput.

• SON-Function specific Policy: According to [1] a SON-Function
specific Policy is derived from a Cell Specific Policy to govern to
decision logic within a SON-Function. Looking at the functionality
that should be achieved, the function specific policy can be seen as
a configuration or parameterization of the SON-Function algorithm
of a specific SON-Function instance. Such a parameterization is
done according to current state and the expected performance of
the targeted cell.

• SON-Coordinator specific Policy: The behavior of the conflict
resolution process within the SON-Coordinator is determined by this
type of policies. Coordinator specific policies are used to repre-
sent the decision logic that should be applied whenever a conflict is
treated. In particular it is introduced as a method to enforce op-
erator specific limitations on the configurations performed by the
SON-Function instances. In comparison to the other policy types,
some of the SON-Coordinator specific Policies are the only policies
within SOCRATES that show typical characteristics of high-level
policies. Some of the functionality that is subsumed under the term
SON-Coordinator specific Policy does not show the characteristic of
a policy but resembles more the configurations of policies.

As shown above, SOCRATES uses a very wide definition of a policy,
which is mostly not aligned with the common understanding of what a
technical policy is. In a very wide context the SOCRATES policies could
be seen as some kind of abstract high-level non-technical policies that have
to undergo a detailed refinement until they can be applied in an actual
system. The analysis of the policies used within the SOCRATES coordi-
nation concept showed that for the further analysis and understanding of
the coordination concept it is important to take the special semantics of
the term policy into account.

3



2.3 Key Components of the SOCRATES Coordi-
nation Architecture

The SOCRATES coordination concept is realized through a set of func-
tional entities, which are called roles within the SOCRATES Coordination
Framework. In order to avoid the ambiguity with the term role known
from for example the area of policy based network management where a
role denotes a way of grouping subjects for policies, the term functional
entity will be used instead. The combination of these functional entities
is used to contribute to both heading and tailing harmonization. The en-
tities and their functionality are introduced in detail within the following
sections.

2.3.1 Policy Function

The Policy function is used to realize the SOCRATES specific refinement
of the generic Operator into the SON-Function, Cell and SON Coordinator
specific policies.

It takes the high level operator policies and transforms them into a
configuration for the SON-Functions, cell specific versions of the perfor-
mance targets, and configurations respectively coordination logic to guide
the coordination decisions for the change requests of the SON-Function
instances.

With the refinement of the Operator policies into SON-Function spe-
cific policies the configuration of the SON-Functions is adapted in a way
that their behavior is aligned towards the common goal. Operator poli-
cies limited for example parameter ranges or maximum step sizes that are
allowed for configuration requests.

In addition to the SON-Functions, the Policy function configures also
all other functional entities that contribute to the tailing harmonization,
by providing Cell and SON Coordinator specific policies. By supplying
all functional entities with specific input the Policy function contributes
to heading and tailing harmonization.

Due to the overall conceptual character of the SOCRATES SON Co-
ordination framework, no detailed information on the realization of the
Policy Function is given. [1] refers only to the required detailed under-
standing of the network and operational experience and an initially high
degree of manual intervention.

The somehow diffuse or unusual usage of the term policy together with
a very abstract specification of the Policy Function for the policy refine-
ment leaves a lot of open questions and thus doubts about the applicability
within a highly automated SON environment. For a further assessment
of the practicability of such a functional entity a proof of concept imple-
mentation would be required which would bring a clear definition of the
policies.

2.3.2 Alignment Function

For the coordination of SON-Functions the versatile Alignment Function
plays a central role. The tasks performed by the Alignment Function are
distributed between its two sub-functions called activation and arbitra-
tion.

Arbitration Conflict resolution an detection is performed by arbitra-
tion. It decides whether configuration change requests of SON-Functions

4



contribute to the same goal or are contradicting. This result evaluation is
either done with predictions provided by the SON-Functions or performed
by arbitration itself. The results of the predictions are then compared to
the Cell-level policies. In addition to reject or acknowledge configuration
changes arbitration has the possibility to adapt change requests to resolve
the conflicts.

Arbitration can also be used for conflict prevention. Firstly, it imple-
ments a locking mechanism, that can be used by SON-Functions to lock
parameters or performance measurements so that they are not changed
or affected by other SON-Function instances. If measurement values are
locked, arbitration function needs to know which measurements are af-
fected by which configuration parameters to enforce the requested locks.
If the SON-Functions locks configuration parameters to be able to monitor
the effects of performed changes the SON-Function that requests the locks
needs to know which other parameters can have effects on the monitored
performance measurement.

The second way to prevent conflicts like oscillating reconfiguration is
provided through a subscription mechanism. SON-Functions can sub-
scribe to to-be-enforced configuration changes. When a configuration pa-
rameter change request for a subscribed parameter is received the sub-
scriber is informed about the pending change. In case any SON-Function
considers this change to be conflicting it will notify the arbitration func-
tion about the conflict, which will then resolve the issue.

Activation Activation, the second module, also has two responsibil-
ities. On the one hand the activation of required SON-Functions. For
example configuration and optimization functions whenever they are re-
quired. On the other hand it is responsible to react to undesirable behavior
that has been detected by the guard function. Activation uses the knowl-
edge about previously acknowledged configuration changes to track down
the root cause for the detected undesired behavior. This is done either
by triggering respective SON-Functions or by influencing the behavior of
the system. It has the ability to either influence the changes that are
performed by reconfiguring the the behavior of arbitration or directly the
SON-Functions.

Assessment of the Alignment Function When looking at the
functionality provided by the Alignment Function it becomes obvious that
it performs most of the tasks required for a successful coordination. But
it becomes also obvious that the tasks that are performed are very com-
plex and require a lot of knowledge and understanding of the network.
Especially the estimation of the expected effects of a configuration change
is very complex. This is usually done within the SON-Functions in order
to determine appropriate changes but in this setup this functionality has
also to be present within the Alignment-function. Root cause analysis
and prevention of similar problems in the future itself is a very complex
task, which is added as part of the Alignment function. To be able to
perform this step a very good knowledge about the explicit and implicit
interactions between function instances is required. If this information is
available already at design-time it would be smarter to use it for co-design
and designing the decision logic. Being able to detect root causes without
this knowledge is almost impossible. There are more parts where func-
tionality is potentially replicated for example in the locking mechanism,
for some functions the arbitration function needs to know the targeted

5



performance measurements. The other possibility is to include knowledge
about all configuration parameters that could affect the targeted perfor-
mance measurements into a SON-Function even if it does not operate on
them.

This replication of knowledge and functionality strongly increases the
complexity with the introduction of any new SON-Function. It is hard to
asses if the alignment-function will still be maintainable and scalable in
the presence of potentially thousands of SON-Functions deployed in the
network.

2.3.3 Guard Function

Based on the assumption that with a large number of deployed SON-
Functions undesired behavior cannot be avoided the guard function is used
to detect such behavior. It operates independently from other parts of the
coordination framework and performs the detection based on input from
the operator policies. It bases its analyses purely on performance measure-
ments and has no further information about running SON-Functions or
performed changes. If undesired network behavior is detected the guard
function will notify the alignment function, providing information that
simplifies the root cause analysis, as for example affected metrics and the
characteristic of the detected behavior.

To be able to perform its tasks, the guard function needs access to
a large amounts of performance measurement data which needs to be
mapped to the operator policies in general respectively the cell specific
policies in particular. Within the published documents of the SOCRATES
project there is no information on the mode of operation of the guard
function, whether there are particular monitoring areas or if constantly
performance data from the complete network is analyzed. In case of a
constant complete monitoring of the available performance data it might
be hard to provide a scalable approach with a very fast detection of unde-
sired behavior due to the vast amount of data that needs to be analyzed
and put into context.

2.3.4 Autognostic Function

The data required by all functional entities of the coordination frame-
work and the SON-Functions is provided through the Autognostic func-
tion. Functions can request data, which is then collected, preprocessed
and provided in the requested format. The Autognostic function accesses
different data sources and can perform complex aggregation and process-
ing steps.

Serving all data requests from a single source is seen as a way to
ensure data consistency and a common view on the network by all active
entities. The operational overhead of simultaneously providing data to a
potentially very large number of entities however is not discussed within
the available documentation. Therefore no statement on the practicability
and scalability of this approach can be given, but with a large number of
deployed SON-Functions with specific information requirements a very
high number of individual data requests that need to be served must be
expected.

6



2.3.5 Assessment Architecture of the SOCRATES Coor-
dination Framework

The SOCRATES Coordination Framework consists of several building
blocks which jointly contribute to coordinate the execution of SON-Functions
and to prevent and resolve conflicting behavior. The tasks that are per-
formed by the building blocks and also the SON-Functions are not always
clearly separated. This results in an unnecessary replication of function-
ality which increases the complexity and requires an alignment of the
functionality of multiple functional entities, as shown for the Alignment
Function.

The alignment should be partly reached through a common configu-
ration via the so called policies but partly also has to be done separately
for each functional entity. Especially the result estimation has to be im-
plemented in both the SON-Functions and the Alignment function sepa-
rately. With each SON-Function that is newly introduced or changed at
run-time due to newly detected dependencies, the Alignment function has
to be adapted which seems hardly practicable.

Although the Autognostic function makes sense from a conceptual
point of view, it is unproven that it is scalable with potentially thousands
of SON-Functions requesting an even larger number of data. SOCRATES
neither provided an implementation of the Autognostic function nor did
a simulation on the load caused when serving many requests.

2.4 Coordination Process

From the published documents it is very hard to derive an actual coordi-
nation process which shows which tasks are performed in which functional
entity of the SON Coordination framework when a SON-Function requests
a configuration change. The case studies which are for example shown
in [1] give an example of the coordination of two conflicting functions.
But due to simplicity reasons the Guard function is not implemented at
all and the functionality of the Autognostic function is integrated directly
into the SON-Functions. The same applies to the required policies for
the Alignment function. Therefore the policy function is also not needed
and not provided. It seems as if the only part of the coordination frame-
work that has been implemented is a small fraction of the functionality of
the Alignment function, which evaluates the historical load data of a cell
before allowing configuration changes.

From the description of the Coordination framework and its compo-
nents the following can be derived:

• A SON-Function is executed and requests a configuration parameter
change

• The alignment function evaluates the request towards potential con-
flicts with operator settings like step sizes.

• The alignment function evaluates the request with respect to the an-
ticipated effects, based on the cell specific policies. If the estimated
effects do not contribute the operator defined goals the request is
rejected.

• The last step to detect potential conflicts is to inform all SON-
Functions that are subscribed to the targeted configuration param-
eters. If any of the functions objects the intended configuration
change a notification is sent to the arbitration function, which can

7



also contain a new proposal for a configuration change. All con-
figuration change request are then aligned and harmonized by the
arbitration function.

• Feedback about the coordination decision is sent to the SON-Functions.

• Undesired behavior due to erroneous effect assessment is detected
by the guard function.

• The activation part of the alignment function is used to track down
the root cause of the observed behavior and trigger countermea-
sures. Either directly via arbitration or through additionally acti-
vated SON-Functions.

• Supporting SON-Functions as for example configuration and opti-
mization functions can be triggered whenever required by the acti-
vation part of the alignment function.

Since the coordination process above is not described explicitly in any
of the SOCRATES deliverables or publications but derived from the avail-
able information there are still some open questions.

In the same way as functionality an information is replicated among
the functional building blocks of the Coordination Framework the same
tasks are performed multiple times within the coordination process. For
example the assessment of effects of the requested changes. A SON-
Function instance needs to perform such an assessment for the compu-
tation of the parameter change request. Which is subsequently done a
second time within the Alignment function. Only for the detection of po-
tential conflicts with the cell specific policies. Conflicts with other SON-
Functions are treated via the subscriptions of other SON-Functions to
changes of the respective control parameters. In case of conflicts with the
requirements of other SON-Functions it is done a third time in order to
harmonize the change requests of all SON-Functions.

The evaluation of the coordination process raised the question how
SON-Function instances are actually triggered within SOCRATES. Pub-
lications and deliverables do not touch this topic directly, but the combina-
tion of Guard and Alignment function might be responsible for triggering
SON-Function execution. Although the guard function is only introduced
as the functional entity that detects undesired behavior caused by exe-
cuted SON-Functions, seen in the context of the coordination framework
it provides a larger functionality. As described in Section 2.3.3 it com-
pares performance data to cell specific policies. Those cell specific poli-
cies contain target values for performance measurements for specific cells.
The guard function will detect deviations from these values independently
from the root cause. These deviations are then provided to the alignment
function in order to detect their root cause. Activation (cf. Section 2.3.2)
will respond to these notifications by triggering the appropriate healing or
configuration SON-Functions. Apart from this mechanism no additional
method of triggering SON-Function execution seems to be available.

2.5 Assessment of the SOCRATES Coordination
Concept

The SOCRATES Project identified the potential dangers of conflicting
behavior of independent individually operating SON-Functions within a
network. As a consequence a conceptual coordination framework was

8



provided, which aims to provide all functionality required to prevent and
resolve conflicting behavior.

Even though the positive effects of function coordination are eval-
uated and presented [1] most of the described functionality stays at a
very abstract conceptual level and neither an implementation nor simula-
tions have been performed. The available experimental results are reached
through the implementation of a single specific coordination algorithm for
only two SON-Functions. Which shows good results for this special sce-
nario but can not be generalized. Especially as the function instances
intereact directly and no coordination framework is used.

At least a prototypical implementation would be required to strongly
support the introduced SOCRATES coordination approach. Otherwise it
is unclear if it is a feasible and scalable approach that can handle a high
number coordination of configuration requests.

The named redundancies and replications of information an function-
ality potentially hide a large complexity which can have major negative
effects on the scalability and the usability of the approach. Especially
if, each time a new SON-Function is introduced multiple other SON-
Functions have to be changed in addition to the required updates of the
alignment function. Updates of the alignment function are required in
order to support the prediction of the effects of the configuration request
requested by instances of the newly introduced SON-Function.

SOCRATES uses a history of performed changes for the root cause
analysis of detected undesired behavior. The Alignment function undoes
previous changes to resolve the undesired behavior. The project docu-
mentation provides no detailed information about how errors that have
complex implicit relations as a root cause can be solved by using this
approach. For example, if within a close vicinity, both a Handover Op-
timization and a reconfiguration of Physical Cell IDs (PCIs) has been
performed, the handover failure rate could increase strongly even if the
Handover Optimization actually optimized the network but the root cause
is an accidentally introduced PCI confusion. For a successful resolution
of undesired behavior a lot of operational knowledge and a possibility to
correlate and assess the effects of different configuration changes that have
been performed are required.

The SOCRATES coordination framework seems to have no mechanism
to prevent SON-Function execution that is based on erroneous input val-
ues. Erroneous input values are typically performance measurements that
do not or not yet fully reflect previous configuration changes. The severity
of this issue depends on the way the Autognostic function can access and
process performance measurements. The alignment function therefore has
to have the ability to assess the effects for either any SON-Function in the
network or for each thinkable combination of configuration parameters,
which strongly increases the computational complexity of the tasks per-
formed by the Alignment function.

Overall there are many open questions and thus doubts that an im-
plementation of the SOCRATES Coordination Framework concept would
be able to perform the anticipated conflict prevention and resolution in a
network with a large number of SON-Functions. A feasibility study for
some of the central parts of the concept would have been required, as
for example for the Policy Function as already stated in Section 2.2 since
it is the most central part of the concept. Also the functionality pro-
vided by the Alignment function should be re-evaluated and, if necessary,
reorganized or put into other modules.

9



References

[1] Mehdi Amirijoo, Andreas Eisenblaetter, Litjensm Remco, Michaela
Neuland, Lars-Christoph Schmelz, and John Turk. A Coordination
Framework for Self-Organisation in LTE Networks. In IM 2011, 2011.
submitted for publication.

[2] Frank Lehser. Next Generation Mobile Networks - Informative List of
SON Use Cases. Technical report, NGMN Alliance, 2007.

[3] Christoph Schmelz. Socrates - FP7 - http://www.fp7-socrates.org.
Website, 12 2008. 02.12.2008.

[4] Neil Scully, Kristina Zetterberg, Szymon Stefanski, and
Lars Christoph Schmelz. Socrates deliverable 5.10 measurements,
architecture and interfaces for self-organising networks. Technical
report, Socrates FP7 Project, 2010.

[5] John C. Strassner. Policy-Based Network Management: Solutions for
the Next Generation. Morgan Kaufmann Publishers, San Francisco,
CA, USA, 2003.

10


