
Indoor Positioning via Three Different RF Technologies
Philipp Vorst, Jürgen Sommer, Christian Hoene, Patrick Schneider, Christian Weiss, Timo Schairer, Wolfgang Rosenstiel,
Andreas Zell, Georg Carle
Computer Science Department, University of Tübingen, Tübingen, Germany

Abstract
The continuous tracking of mobile systems via active or passive RFID is a desirable but difficult to achieve objective.
In this paper, we present our experimental results of positioning techniques using passive UHF RFID, Bluetooth, and
WLAN. We thereby employ three orthogonal measuring techniques: detection rates, signal strength, and round trip time.
The orthogonality of the methods is designed to achieve robustness to noise and unforeseen changes in the surround-
ings. Moreover, due to their different read ranges, the technologies can complement each other at different scales of the
environment.

1 Introduction

In many scenarios of everyday life and especially in ware-
housing and logistics, it is highly desirable to locate objects
or persons quickly and accurately. In clinics and factories,
for example, staff or mobile systems like transport contain-
ers or autonomous vehicles should be located and tracked
rapidly. Locating and tracking objects is especially de-
manding indoors, as the global positioning systems GPS,
GLONASS or Galileo fail there.
In this paper we depict three different positioning tech-
niques, which cost-efficiently exploit existing radio infra-
structure: passive RFID, Bluetooth, and WLAN. They have
in common that the corresponding sensor nodes (RFID tags,
Bluetooth nodes, and wireless network adapters) use radio
waves for identifying themselves. All three RF standards
are used for different purposes, but are usually operated
simultaneously indoors.
In addition, our approaches explicitly make use of the dif-
ferent sensor properties: For RFID, we determine tag de-
tection rates; for Bluetooth, we measure the signal strength
(RSSI) received from Bluetooth nodes; and for WLAN, we
measure the round trip times between WLAN devices in
order to estimate distances between them. The orthogo-
nality of the methods and RF technologies is supposed to
increase the robustness to noise and unforeseen changes in
the environment.
In this publication we assume the following scenario: A
mobile system, which can be a carried laptop, a robot, a
palette, or anything large enough to have a power supply
of its own, has the task to locate itself. RFID, Bluetooth
and WLAN landmarks with known IDs and positions are
placed in the environment. Then, the system uses the land-
marks to locate itself and potentially other nearby objects.
Of course, this scenario can be easily extended, e.g. to
tracking goods via a given sensor infrastructure.
We conducted experiments with the different positioning
methods. Fig. 1 gives an overview of the employed stan-
dards, measurement variables, and localization techniques.
While we are focusing on the operational range and accu-

racy of the three methods, future work will combine these
three technologies in order to further increase accuracy and
robustness.
This paper is organized as follows: First, we elaborate the
three positioning techniques via RFID (Sect. 3), Bluetooth
(Sect. 4), and WLAN (Sect. 5). We compare the results
achieved with the different methods in Sect. 6 and finally
draw conclusions in Sect. 7.

2 Background
2.1 Fields of Application
The notion of context-awareness in ubiquitous computing
systems and the desire to track goods or localize people
has raised the interest in the positioning of mobile systems.
By the latter, we subsume humans carrying some kind of
communicating devices, mobile objects which should be
tracked, and autonomous mobile systems like robots and
autonomous vehicles. Today, a broad spectrum of differ-
ent positioning techniques and technologies for location-
awareness has evolved, of which a comprehensive overview
is given in [1]. In our publication, we focus on advanced
methods which exploit radio frequency (RF) communica-
tion between the participating ubiquitous computing de-
vices, since one can expect a coexistence of different types
of RF technologies, independent of the target domain and
even at the very same spatial location. This applies to a
large number of scenarios, for instance supermarkets and
warehouses as well as logistics, production, health care, or
information services in public areas.
In many of these scenarios, it is desirable to locate systems
accurately, i.e. their positions should be narrowed down
better than only to a coarse area such as a room or an entire
building. For example, a person should be guided to a spe-
cific object in a densely occupied room. Or, a robot may
serve as a shopping guide and inform a customer about
nearby objects in a warehouse. The latter application is
advanced, but realistic, as other studies show [2, 3].
Hence, we go beyond cell-based positioning, in which the



Figure 1 Overview of our approaches: We apply a specific chain of modeling and localization techniques to each RF
technology with its own physical characteristics. The steps are detailed in the corresponding sections of this paper.

location of a mobile system is only determined by the prox-
imity of ambient sensors such as WLAN devices, Blue-
tooth nodes, or RFID tags. We rather aim at locating and
tracking a system in metric coordinates as accurately as
possible. Dependent on what RF technology is provided
in the area of interest, the mobile system can use RFID,
WLAN, and/or Bluetooth for positioning. The three differ-
ent technologies are supposed to complement each other,
since they can be used simultaneously [4], but can be in-
stalled in different densities of coverage. Moreover, they
have different read ranges (passive UHF RFID of up to 7 m,
Bluetooth up to 15 m or more, and WLAN up to 100 m), al-
lowing for localization at different levels of scale. Before
we detail our three RF-based localization approaches, we
will briefly explain particle filtering for the reasons of the
self-containedness of this paper. This method enables us
to pursue the goal of robust, accurate positioning and to
incorporate the employed sensor technologies.

2.2 Particle Filtering
Particle filtering [5] is a widespread Bayesian filtering tech-
nique. The state of a system is represented by a finite set of
samples (also called particles) which approximate an arbi-
trary probability density over the space of potential states
of the system. For positioning purposes, the state of the
system is the location of a mobile system, and each sample
represents a weighted pose hypothesis. Formally, the pose
rt of the system is represented by a set of n particles, where
each particle consists of a pose hypothesis r it = (xit, y

i
t)

and a weighting factor wit. t is a time index referring to the
state of the system at time step t. (xit, y

i
t) are the coordi-

nates of the mobile device in a global frame of reference.
wit states the importance of the i-th particle. If the direction
of motion is provided as in our studies, the current heading
θit of the mobile system can also be added to the state. The
actual pose estimate rt is computed by rt =

∑n
i=1 w

i
tr
i
t.

Motion commands are applied to the particles and change
their positions. This is called the prediction step. It re-
quires a model of the system’s motion, formally given by a
probability density p(rt|ot−1, rt−1), where ot−1 is a vec-
tor which describes the latest movements. Typically, one
will update the particle positions by the motion vector ot−1

(which can be unknown for a human, because it may be
hard to predict) and add some random noise which cap-
tures the uncertainty about the new position.
By incorporating sensor data zt, the weights of the samples

are corrected according to the likelihood that the associated
pose hypothesis explains the current sensor measurements
well. This is the correction step. Again, formally some
likelihood function p(zt|rt) is used to correct the weights
wit via

wit = η · wit−1 · p(zt|r it). (1)

Here, η is a normalizing constant, which ensures that∑n
i=1 w

i
t = 1.

By repeatedly performing prediction and correction over
time, the location of a mobile system can be estimated re-
cursively. This evolution is depicted in Fig. 2. Particles
close to the true pose receive higher weights in the cor-
rection step and therefore contribute more to the pose es-
timate. Because some pose hypotheses turn out to be un-
likely over time, the sample set is resampled after the cor-
rection step. This means that particles with low weights
are removed and replaced by particles near samples with
higher weights. Formally, a new set of n particles with
equal weights 1/n is obtained from the old one by drawing
n times a sample from the old set of particles, where the
probability of choosing particle i corresponds to its weight
wit.
Particle filtering has turned out to be a robust and versatile
technique for estimating system states probabilistically. It
can be adapted to a large number of applications, e.g. to
the positioning problem with different RF technologies as
in this paper. Particle filtering performs even well in pres-
ence of non-Gaussian noise and highly imprecise measure-
ments. These adverse conditions especially hold for RFID
or the WLAN time-of-arrival measurements, for instance.

3 RFID-based Positioning
In our RFID-based positioning approach, a mobile system
is equipped with an RFID reader, while stationary RFID
tags (transponders) serve as uniquely identifiable land-
marks with known positions. This is in contrast to many
other proposed methods of RFID usage: There the RFID
reader is stationary and tagged goods are moved through
a field covered by its antennas. At the entrances of store-
houses, for instance, stationary RFID readers would nor-
mally detect palettes that are labeled with RFID tags and
moved through the antenna gates.
The basic principle of RFID-based positioning is that a
mobile system knows its coarse position if it detects a tag
whose location is known. Our approach, however, goes
beyond this kind of cell-based, qualitative positioning and



(a) (b) (c) (d)

Figure 2 Principle of particle filtering: Each particle is represented by a circle, and its weight is symbolized by the size of
the circle. (a) The particles are located near the previous position estimate and have uniform weights. (b) The estimated
motion is applied, the particles are shifted correspondingly. Due to the uncertainty in the modeled motion, some noise
is added. (c) The particles are weighted according to the likelihood of the arriving sensor data. In this case, we have
depicted the sample case of a range measurement (as provided by our Bluetooth and WLAN approaches), denoted by the
great black circle. (d) Resampling: Particles with higher weights are replicated, those with lower weights diminish.

aims at a more fine-grained position estimation in metric
coordinates, as we will elaborate below.
In this work we use the inexpensive passive UHF (868
MHz) tags of the standard EPC Class 1 Generation 2. Our
research is motivated by the expectation that in the near
future many quasi-stationary objects in warehouses, super-
markets, and logistics will be marked with RFID tags.
What makes passive UHF technology less attractive, how-
ever, is the problem that the detection of a tag highly de-
pends on its orientation and on nearby objects which ab-
sorb or reflect the transmitted electromagnetic waves. Thus,
even tags within the read range (of up to 7 m) are often not
detected. Even worse, if a transponder has successfully
been detected, one only knows that it is close and hence
the mobile system must be within a radius of 7 m around
the detected transponder. In opposition to sensors such as
laser range finders, neither distance nor bearing to the tag
are provided by the RFID reader.
The solutions of other research groups are to use short
range RFID and place transponders in the floor [6], to use
active RFID with signal strength information [7, 8, 9] (see
also Sec. 4), or to fuse RFID with vision [8]. Our solution
to these challenges, however, is two-fold: First, we exploit
the abovementioned fact that tag detection rates – averaged
over a series of measurements – are conditioned by the rel-
ative position (distance, angle, height, orientation) of the
tag to the antenna of the RFID reader. By this, they give a
hint where a detected tag is most likely and – because the
positions of some tags are known – also the mobile system.
Fig. 3 visualizes the dependency of tag detection rates on
the relative position from the robot.
Second, we apply particle filtering as described in Sect. 2.1.
This allows to refine and track the pose of a mobile system
over time, although RFID data arrive quite rarely (at less
than 2 Hz) and are subject to noise. For our studies, we uti-
lized the mobile robot which is depicted in Fig. 6. The use
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Figure 3 Learned RFID sensor model: Tag detection rates
are conditioned on the relative position of a tag to an RFID
antenna. The antenna is located in the origin and scans tags
on the right hand side.

of particle filtering with RFID sensor data and the exploita-
tion of RFID detection rates was first proposed by Hähnel
et al. [10]. What is new in our approach is that we employ
two different observation models, developed in our group,
in order to assign likelihoods to particles: Either we use
a semi-automatically learned model or we apply a finger-
printing technique called RFID snapshots.
For the first model, we learn tag detection rates with an au-
tonomous mobile robot [11]. The robot traverses the envi-
ronment, records RFID measurements for tags with known
positions, and finally estimates the tag detection probabil-
ities. In this training phase, the reference positions of the
robot are determined by an accurate laser-based localiza-
tion system. A resulting model is shown in Fig. 3. It esti-
mates the probability q(rrel) of detecting a tag whose rela-
tive position from the RFID antenna is denoted by rrel. Al-
though in this case the model is confined to the 2-D relative



coordinates of RFID tags and our robot, it can be extended
to other relevant parameters, e.g. the relative height and
orientation. Note that while in this work the gained model
is used for positioning purposes, it could also be utilized
to optimize the placement of RFID readers in plants and
supermarkets as well as to check specified antenna charac-
teristics and transponder performance.
The crucial step for localization is how to reweight the par-
ticles (cf. Sect. 2.1). Here, we assume that for each RFID
antenna, the reader supplies a list zt = (l1, l2, . . .) of tags
which have been detected. Given the learned model, the
solution is straightforward: For any particle i and known
position of a tag l, we compute the relative position r i,lt,rel
between the tag and the RFID antenna mounted on the
robot. Then, the sensor model directly states the likelihood
of detecting the tag: p(zt|r it) = q(r i,lt,rel). Localization re-
sults turned out to be more accurate if likelihoods are only
computed for tags l that have been detected in the current
measurement and the non-detections of known tags are ig-
nored.
The second approach by Schneegans [12] is based on fin-
gerprinting: Short series of RFID measurements, so-called
RFID snapshots, are taken at reference positions in the en-
vironment during a training phase. Series means that not
only one inquiry is initiated but rather N inquiries. Thus,
the result is not a list zt = (l1, l2, . . .) of singly detected
tags but a list of zt = (fl1 , fl2 , . . .) counting how often the
tag lj has been detected. This list of detected tags repre-
sents the signature (fingerprint) of the reference position,
at which it was recorded and is assumed to characterize
that specific position well.
When the mobile system is to be localized later, its posi-
tion is determined by comparing the current snapshot with
the recorded fingerprints. Technically, this comparison is
embedded in the evaluation of a likelihood function again:
The detection probability q̂l(r it) for each tag l can be es-
timated by a linear combination of recorded training snap-
shots, conditioned on the position r it of the i-th particle.
Now taking N inquiries into account, the likelihood can
be computed from the binomial distribution

p(zt|r it) =
∏

l∈zt

(
N

fl

)
q̂(r i,lt,rel)

fl(1− q̂(r i,lt,rel))N−fl .

A similar fingerprinting approach based on passive RFID
was presented by Lim and Zhang [13], but their solution
was non-probabilistic, and they attached transponders to
the ceiling at regular distances.
Both approaches, the semi-automatically learned model
and the fingerprinting technique, use RFID detection rates
for pose estimation and are embedded in particle filters, but
note the difference between them: The model-based ap-
proach requires an explicit sensor model and the positions
of some reference tags to be known. The snapshot-based
approach, on the other hand, does not require an explicit
sensor model and need not know the positions of RFID
tags. However, it has to learn fingerprints and their re-
spected positions before the actual localization phase.
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Figure 4 Received signal strength (in dBm) between a
sender (black cross) and a receiver (colored area).

Computationally, both methods have similar requirements
with respect to positioning on-line. For details, we refer
the reader to [12].

4 Bluetooth Signal Strength-based Po-
sitioning

Various mobile devices and sensor nodes such as the BT-
node by ETH Zürich are equipped with Bluetooth radio
transceivers. Because of the read range of about 15 m, they
are not precise enough to consider just the reachability of
the sensor nodes as in the RFID-based approach. Thus,
for positioning, it is suggested to employ received signal
strength indications (RSSI) [14, 15, 16, 17], because the
RSSI value decreases with distance between sender and re-
ceiver. Fig. 4 demonstrates the relative signal strength be-
tween two Bluetooth sensor nodes placed in our laboratory.
As the distance between sender (black cross) and receiver
increases, also the received signal strength decays. The
RSSI values allow for a fine-grained resolution and there-
fore high accuracy. For region and cell based approaches
the reader is referred to [18, 19, 20] and [21, 22, 23], re-
spectively.
Measuring the RSSI, we still need to estimate the distance.
To calculate the distances dj between sender and receiver,
we apply an attenuation model which takes the sending
power Ptx of the mobile node, the signal measurements
from the anchor nodes Prcvj and the path loss coefficient
α into account:

dj = α

√
C
Ptx
Prcvj

(2)

Path loss α and the constant C must be calibrated prior to
the positioning experiments.
To locate the position of an object, multiple landmarks are
required: In our experiments we used seven landmarks
and conducted RSSI measurements in Bluetooth connec-
tion mode. With the increasing proliferation of RF commu-
nication technologies coexistence issues have to be taken
into consideration. Since the ISM band is license-free,
other wireless standards make use of the spectrum further-
more. In order to coordinate the measurements and trans-
missions of our Bluetooth anchor nodes piconet time-slot
scheduling was applied. Therefore a round robin polling
mechanism is applied, where the node to be located is in
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Figure 5 Probability density functions of distances for dif-
ferent signal strength values within the interval -45 dB to
-65 dB.

master role, sending its downlink packet to each beacon
slave. The beacon is polled to send an up-link packet with
current RSSI measurements. For m beacons each beacon
is polled every 1250/mµs.
The ranging process, where RSSI values are mapped to
distance estimations described above is based upon im-
precise sensor data, which are sensitive to noise and other
isotropic effects like shadowing or attenuation behind ob-
jects or multipath fading. Fig. 5 shows the typical char-
acteristics of several probability density functions (pdf) of
distances for signal strength-based range estimation. For
this illustration the numbers of occurences of distances
were counted for given RSSI values from -45 dB to -65 dB.
In this interval the standard deviation is increasing from
15 cm to 1.5 m. We observed in preliminary experiments
that it is reasonable to estimate the standard deviation σ(d)
by σ̂(d) = 0.4 · d.
In the correction step of the particle filter new weights are
calculated using a Gaussian likelihood function. Thereby,
the distance estimates from the landmarks are integrated.
For range-based positioning, the observations zt are the
distance estimates dt = (d1,t, d2,t, . . . , dm,t) at time t.
After calculating the distance dj,t for each beacon j lo-
cated at bj , using the path attenuation model described by
Eq. 2, the new weights are determined by

p(zt|rit) =
m∏

j=1

1

σ̂(dj,t) ·
√

2π
· e−

1
2

„
||bj−rit||−dj,t

σ̂(dj,t)

«2

. (3)

This likelihood function is used in Eq. 1; the importance
of each particle is weighted according to how well the dis-
tance of that particle from the positions of the Bluetooth
landmarks is explained by the RSSI-based distance esti-
mates. Using RSSI and the particle filter, our solution pro-
vides a robust indoor positioning system for medium range
distances.

5 Wi-Fi TOA-based Positioning
Currently, various commercial active RFID tags use IEEE
802.11 [24] technologies. For example, Aeroscout adopted
standard Wi-Fi wireless networks to accurately locate and

Figure 6 Measuring the distance between source and des-
tination via the DATA/ACK packet sequence.

manage assets and people [25]. Their product line and the
BTnodes described above use RSSI to determine the posi-
tion of WLAN nodes [26]. To enhance RSSI, we follow
an alternative approach based on the time of arrival (TOA)
of transmission signals. Location tracking based on time
of arrival algorithms measures the duration of the propa-
gation of the physical transmission signal, which travels
at the speed of light through free space. As compared to
RSSI measurements, TOA has the benefit that its measure-
ment results scale linearly with the open-air propagation
distances.
If the physical transmission signal is echoed by the tags,
a two-way TOA approach is possible that does not require
precise clocks. In previous work it has been proposed to
use the IEEE 802.11 data transmission for two-way TOA
to estimate the distances between WLAN nodes [27, 28].
Two-way TOA takes advantages of a feature of the IEEE
802.11 protocol. By default, the receiver answers an error-
free decoded IEEE 802.11 DATA packet immediately with
an ACK packet. These DATA and ACK packet sequences
can be applied to range measurements (Fig. 6). The time
of flight (TOF) is then calculated as

ttof =
1

2
(t1 − t0 − tDATA − tSIFS) .

Knowing the speed of light, the distance between two nodes
can be calculated. However, a single TOF measurement
is usually not precise enough. Instead, it is required to
average the measurement results of multiple observations.
Having the distance, trilateration can be used to determine
the relative positions of objects. Unlike triangulation,
which uses angle measurements to calculate the subject’s
location, trilateration uses the known locations of two or
more landmarks, and the measured distance between the
subject and each reference point.
As an extension to enhance the positioning performance,
we invented a four-way TOA measurement algorithm [29],
which utilizes a common feature of IEEE 802.11. Frequent-
ly, IEEE 802.11 does not only send two packets (such as
data and ACK) but multiple packets in a sequence. For
example, if the RTS/CTS mode is switched on, every data
packet is preceded by a RTS and CTS packet. Similar, if
the data packet is slitted, the data fragments are transmitted
in a row. Even the upcoming IEEE 802.11n standards re-
quire to send multiple packets in sequence in order to con-
duct an adaptation to the link layer quality and to tune their



Figure 7 Measuring the distance between source and desti-
nation via four-way TOA using the RTS/CTS/DATA/ACK
packet sequence.

MIMO antennas. Using the RTS/CTS/Data/ACK packet
sequence depicted in Fig. 7, we can calculate the transmis-
sion duration using the following two formulas and then
average the results of all round trip time (RTT) observa-
tions.

ttof =
1

2
(t1S − t0S − tRTS − tSIFS)

ttof =
1

2
(t3S − t2S − tDATA − tSIFS)

Using these round trip time estimates and applying them
to the trilateration, we can easily calculate the position as
described in [29].
We have implemented these algorithms in the open-source
software “Goodtry” [30]. Goodtry is a pure software solu-
tion using common WLAN hardware and does not require
modified WLAN chip sets. However, mature Wi-Fi trilat-
eration will take advantage of slightly enhanced chip sets,
which ease the implementation of round trip time measure-
ments. We are aware of at least one chip set currently in de-
velopment that will support round trip time measurements
with a high temporal precision. Until this chip set becomes
available, we have to stick to off-the-shelf hardware.
Under these circumstances testing the Wi-Fi trilateration
algorithm is difficult because every aspect of the experi-
mental setup must be strictly controlled. In order to judge
the precision of our solution, an elaborate laboratory setup
was required.
We placed six anchors (landmarks) in our laboratory, as de-
picted in Fig. 8. The anchors are actually based on LinkSys
WRT54GL access points, which we reprogrammed with
the Linux operating system OpenWRT. During the experi-
ments, access points were operating in ad-hoc mode using
a constant transmission rate (11 MBps) and a long PLCP
preamble. If all access points (APs) are operated in ad-hoc
mode, we can communicate more easily to them without
the need to switch the channels. Thus, we prefer the ad-
hoc against the “normal” basic service set (BSS). A con-
stant transmission rate and using only the long preamble
causes the packets to have a constant transmission dura-
tion. If the packets do not have a constant transmission
duration, the clock drift of the communication nodes fal-

Figure 8 An example of WLAN trilateration. The black
rectangle represents the dimensions of our laboratory. The
small circles refer to the six access points. The larger col-
ored circles around the APs show the distance estimates
between APs and the robot. The black cross is the esti-
mated position of the robot. This position estimate has an
estimated error displayed by the black circle.

sify the results causing a measurement error that is far too
high to be useful.
On the robot, we installed two WLAN cards. The first one
transmits ICMP pings to the six APs. Pings are control
packets, which are immediately echoed by the receivers at
the IP network protocol layer. The other one listens to the
transmissions. We use an Atheros Communications PCI
card as transmitting WLAN. As a monitor, we use an old
Atheros card with the chip set AR5212. Only a few WLAN
cards can act as monitor because the TOA algorithms re-
quire precise time stamps. The selected chip set (beside
Prism2 and Prism 54 chip sets) is the only currently avail-
able WLAN solution which provides us with a time reso-
lution of 1µs.
Electromagnetic waves (such as light or WLAN packets)
travel within one microsecond about 300 meters in open-
air. For indoor Wi-fi trilateration a measurement resolution
of 300 meters is far too high. Using four-way TOA, we
can reduce the resolution to 75 meters because the packets
have traveled four times the distances. A further improve-
ment is achieved if multiple round trip time measurements
are combined and averaged. Then, an interesting effect
can be noticed that has been described in [28, 31]. Be-
cause the clocks of the WLAN card are slightly drifting,
the measurement results oscillate over time and do not re-
main constant. If using multiple results, the negative effect
of time quantization can be eliminated entirely. For exam-
ple, if we take the mean of 500 to 2000 pings, we achieve
a precision that is far better than 300 meters.
The WLAN cards have to be selected in a way that their
clocks are slightly drifting. During the setup of the ex-
periments we found out that even WLAN card of different



Figure 9 Experimental platform: An RWI B21 mobile
robot with an UHF RFID reader by Alien Technology, two
pairs of RFID antennas (white), and a laser range finder
(blue, mounted in front of the robot) for reference local-
ization. The WLAN and Bluetooth antennas are mounted
on top of the robot.

vendors work at very similar (<10 ppb) frequencies. The
results presented in this paper are based on a WLAN card
that has a clock frequency offset of 15 ppm as compared to
the APs.
Overall, one can say that conducting TOA measurement
with current off-the-shelf hardware is quite cumbersome
and fragile. However, we expect that future chip sets will
provide much better support making WLAN trilateration a
promising technology.
With regard to the particle filter, we use a similar likelihood
function as for Bluetooth (see Eq. 3). Let wj denote the
positions of the m WLAN access points serving as land-
marks and dj,t be the estimated distance to AP j at time t,
then

p(zt|rit) =

m∏

j=1

1

σ ·
√

2π
· e−

1
2

„
||wj−rit||−dj,t

σ

«2

. (4)

The constant σ was determined in preliminary experiments,
in which we observed a standard deviation of the estima-
tion errors of approx. 3 m.

6 Results
We conducted a series of experiments in order to measure
the positioning accuracies of our approaches. The experi-
ments were performed with a robot as a mobile platform,
for which there were two reasons: Firstly, accurate refer-
ence positions are provided by an onboard laser-based lo-
calization system. By this, we can thoroughly measure the
positioning errors of the presented methods. And secondly,
the experiments were embedded in a scenario in which we
use the robot for automatic inventory purposes [32].
Besides the reference positioning system, the robot is equip-
ped with three hardware devices required for our RF-based
positioning methods: an off-the-shelf UHF RFID reader
(868 MHz), a WLAN IEEE 802.11g interface, and two

Bluetooth interfaces. The latter two are mounted on top
of the robot. The RFID antennas span an angle of approx.
90 ◦, which lets them scan for RFID tags both to the front
and the sides.
All experiments were conducted in a laboratory. The lab-
oratory has a size of approx. 90 m2, of which the robot
can visit 50 m2 of free space. We attached 24 passive UHF
RFID tags to desks and walls at distances of 1-2 m. Seven
Bluetooth nodes were installed at an average distance of
approx. 3 m in similar places near the tags. Moreover, we
mounted six WLAN access points close to the ceiling, four
in the corners of the room and two in the middle. The
precise locations of the RFID tags, Bluetooth nodes, and
WLAN access points were measured manually. Addition-
ally to the 24 stationary RFID tags of known positions, we
placed a supermarket shelf with approx. 400 RFID-tagged
product packages in the center of the laboratory. The posi-
tions of these tags were not mapped, but could be memo-
rized by the RFID snapshots technique.
As experimental data, we recorded 15 sets of sample trips
through the laboratory, in which both the laser-based ref-
erence positions and the sensor data from RFID, Bluetooth
(11 sets containing both types of data), and WLAN (the
remaining 4 sets) were saved.
For these studies, we considered particle filter-based track-
ing only, i.e. an approximate guess of the initial pose of
the robot was given. This is justified by our experience
that the non-particle filter-based trilateration methods (e.g.
MMSE, see [14]) can provide suitable coarse initialization.
Moreover, by increasing the number of particles, the ini-
tialization can also be implemented right in the particle
filter, which we tested in earlier studies. In these experi-
ments, however, we wanted to focus on the tracking capa-
bilities of our methods.
The particle filter was comprised of 300 samples for the
model-based methods (RFID detection rates, Bluetooth
RSSI and WLAN TOA). The motion model was the same
for all methods. Only for the WLAN-based positioning ap-
proach, we added zero-mean Gaussian noise with a stan-
dard deviation of 0.1 m between any two measurements.
The reason for this was that due to the noisy nature of TOA
distance measurements, hardly any particle would reflect
the estimated distance; the tracked trajectory would mainly
represent the estimated motion (odometry) of the robot.
On each trajectory, the particle filter was run ten times for
each of the three RF technology-based approaches. Note
that particle filtering is a probabilistic method and has an
inherent random nature, which requires to run the algo-
rithms several times in order to achieve statistical signif-
icance. Moreover, we also incorporated the motion esti-
mates of the robot in the motion model of the particle filter.
This typically increases the accuracy compared to model-
ing the hardly predictable motion of a human being.
The results listed in Tab. 1 show that RFID and Bluetooth
allow for tracking at a mean absolute positioning error of
approx. half a meter, sometimes better. The direct compar-
ison between the two methods is interesting because they



Method Mean± Std.dev. Median 90th percentile
RFID 0.432 ± 0.095 0.435 0.527
Bluetooth 0.494 ± 0.149 0.474 0.678
WLAN 3.315 ± 0.738 3.545 4.274

Table 1 Mean absolute positioning errors (in meters) for
the three technologies. For RFID, the model-based ap-
proach was pursued here.

yield comparable accuracies. This is even though signal
strength information is provided for Bluetooth, whereas
there is distance supplied for a single RFID measurement.
On the other hand, there were more RFID landmarks (24
tags vs. 7 Bluetooth nodes). But this ratio was supposed to
reflect that passive RFID tags can be expected to appear at
a much higher density in RF infrastructures.
The accuracy of our WLAN approach is lower. But recall
that the precision of WLAN hardware clocks in principal
is able to measure multiples of 300 meters only. That is
why the listed tracking results can be regarded surprisingly
accurate. Note that further experiments will follow and the
investigated scenario covers a small area of free space only.
We also performed experiments with RFID snapshots.
They yielded a mean absolute positioning error of 0.264 m
± 0.047 m (median 0.267 m). The caveat here, however,
is that due to fingerprinting, the snapshots also contained
valuable information about dozens of tags in the shelf
which were not used in the model-based approach. That
is why one must not directly compare the results obtained
by the two RFID-based methods. To compensate for the
extra information memorized in the fingerprints, we had
the snapshot technique not only tracked, but also localized
globally, i.e. localized without initial pose estimate. As a
consequence, we had to increase the number of particles
for this method to 2000. Based on the given results for the
snapshots, one can draw the conclusion that quite accurate
positioning (even including global positioning) is possible
with passive RFID by means of fingerprinting. Yet, one
must argue that taking RFID snapshots requires a quite ac-
curate reference positioning system.

7 Conclusion
In this paper, we have presented three different RF-based
techniques which can be used to determine the positions
of persons or mobile objects. They base on the evalu-
ation of tag detection rates of passive UHF RFID tags,
RSSI measurements of Bluetooth nodes, and TOA mea-
surements of WLAN devices. We presented the results ob-
tained from tracking a mobile robot with sensor data from
those three RF technologies and odometry data (motion es-
timates). For RFID and Bluetooth, we obtained tracking
accuracies of half a meter or better, while WLAN TOA
measurements yielded an accuracy of a few meters. All
single techniques reveal their individual strengths with re-
spect to positioning accuracy and read range: While RFID
and Bluetooth seem suitable for rather accurate position-

ing over short distances, WLAN can be used for position-
ing over longer distances at a coarser level of granularity.
A combination of all three technologies promises even im-
proved positioning performance for future work. Forth-
coming experiments will also include larger scenarios and
different densities of the sensor nodes.
Since low-cost and off-the-shelf hardware is used, our ap-
proaches are cost-efficient and exploit existing RFID, Blue-
tooth, and WLAN infrastructures. The accuracies are (still)
inferior to high performance ultra-wide-band or laser-based
positioning methods, but the depicted methods represent a
good compromise between cost and accuracy.
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