
Context Matters: Lessons Learned from Emulated
and Simulated TSN Environments
Filip Rezabek∗, Marcin Bosk†, Leander Seidlitz‡, Jörg Ott§ and Georg Carle¶

Department of Computer Engineering, TUM School of CIT, Technical University of Munich, Germany
Email: ∗rezabek@net.in.tum.de, †bosk@in.tum.de, ‡seidlitz@net.in.tum.de, §ott@in.tum.de

¶carle@net.in.tum.de

Abstract—Security and precise clock synchronization are cru-
cial in modern Time Sensitive Networking (TSN) systems. How-
ever, deployment validation is challenging due to many different,
incompatible, and inaccessible implementations of TSN and
related standards and the complexity of involved system artifacts.
This aspect makes ensuring proper functionality and performance
difficult and requires thorough evaluation and validation to
ensure a system’s robustness. In this work, we analyze various
platforms, using hardware and simulations as an evaluation tool.

We present the lessons learned during real-world deployments
of the Precision Time Protocol (PTP) and MACsec. We identify
the challenges of combining numerous sensors and propose how
to possibly overcome the former using open-source solutions.
To protect sensitive PTP traffic and other TSN protocols, we
evaluate MACsec as a solution and determine its performance
implications. Our findings clarify requirements for future deploy-
ments of TSN systems. Simulation as a supporting tool for TSN
experimentation is discussed, and its limitations are explored.
Lastly, we highlight how different evaluation approaches can
provide an overall view of the system under test.

Index Terms—COTS, Open-Source, TSN, MACsec, Simulation

I. INTRODUCTION

The growing complexity, scale, and throughput require-
ments in current real-time systems demand the exploration of
new innovative architectures [1]. Nowadays, even specialized
domain-specific networks are shifting toward Ethernet [2].
The technology alone might prove insufficient for specific
applications, lacking deterministic bounds on latency, jitter,
packet loss, and reliability. To overcome these limitations, the
application of Time Sensitive Networking (TSN) standards1

to Ethernet enables the missing real-time functionality. These
solutions are widely adopted across diverse sectors, including
Intra-Vehicular Networks (IVNs), aerospace, smart manufac-
turing, and professional audio and video solutions.

The TSN standards undergo extensive development and
performance evaluation through simulation, emulation, and
proprietary Hardware (HW) solutions. Each approach has its
strengths and weaknesses. Simulation allows for easily con-
figurable and reproducible experiments in a rapid development
cycle without needing dedicated HW. However, it may deviate
from real-world deployments by omitting certain artifacts such

Filip Rezabek and Marcin Bosk contributed equally to this paper.
All links are valid as of 30 January 2024.
1https://www.ieee802.org/1/pages/tsn.html

as operating system interactions or specific Network Interface
Card (NIC) behaviors.

HW deployments, whether with dedicated or generic com-
ponents, offer a more realistic representation of real-world
scenarios. However, they must carefully consider both HW
and Software (SW) aspects to meet desired real-time require-
ments. Although proprietary HW provides the most accurate
results, researchers may encounter limitations due to vendor-
locked solutions. Nevertheless, it is crucial to focus on the
fundamental properties of the system to avoid only measuring
a specific HW or SW implementation.

Building on previous work focusing on Commercial off-the-
Shelf (COTS) HW and open-source SW [3], in this work, we
explore the combination of specialized HW for the automotive
industry, as introduced in [4]. We consider security extensions
offered by the Media Access Control Security (MACsec)
standard in combination with TSN standards. We also compare
simulation and emulation of TSN, identifying their possible
limitations and challenges. To facilitate replicable experiments
with TSN systems, leveraging COTS HW and open-source
SW, we use the Environment for Generic In-vehicular Net-
working Experiments (EnGINE) [5] and its latest extension,
enabling usage of the Objective Modular Network Testbed in
C++ (OMNeT++) discrete event simulator [6].

We start with Precision Time Protocol (PTP), which is
a backbone of TSN, offering nanosecond-accurate [7] time
synchronization. Such accuracy can be achieved if the net-
work devices or sensors completely implement the IEEE
802.1AS [8] standard. To ensure the integrity and confidential-
ity of the PTP messages, we consider the MACsec standard [9].
MACsec protects Ethernet traffic exchanged among the peers.
In this context, we evaluate the impact of MACsec on the
TSN traffic. Additionally, we use simulation to enhance our
understanding of TSN systems and evaluate their performance
and capabilities. This approach lets us assess scenarios without
the HW limitations and artifacts caused by SW or HW found in
regular systems. Finally, based on [6], we rely on OMNeT++
and compare the results to HW deployments.

In this paper, we present the following lessons we learned
from the aforementioned evaluation methods:

L1 Challenges regarding PTP on proprietary hardware
L2 The impact of MACsec on TSN when using COTS HW
L3 Assessment of OMNeT++ for the evaluation of TSN



These lessons highlight possible challenges of using various
HW in time-critical systems, their possible implementation
limitations, and optimistic simulation results in some scenar-
ios. These should help researchers and engineers build their
own TSN platforms using heterogeneous HW deployments and
open-source SW or simulations.

II. BACKGROUND

To support TSN experiments with COTS HW and open
source solutions, we introduced the EnGINE framework [5].
We enhanced it by a methodology [10] for TSN experiments
and enabled its integration with the OMNeT++ simulator [6].
Our experiments focus on achieving the latency, jitter, and
packet loss requirements outlined by [11] and [12] for IVNs,
also applicable to other TSN capable systems, as well as the
security goals covered in [13], [14]. In our approaches, we
utilize Linux queuing discipline (qdisc) implementations for
Time Aware Priority Shaper (TAPRIO) and Earliest Time First
(ETF), as well as Credit-Based Shaper (CBS). Accurate time
synchronization in the network is achieved by PTP.

In this section, we give an overview of the leveraged
technologies, focusing on their relevant configuration features.

A. Precision Time Protocol

In a TSN system, precise time synchronization can be
achieved through the use of the PTP, defined by the IEEE
1588 [15] standard. System clocks are individually synchro-
nized via PTP instances, organized in a master-slave hierarchy.
The exchange of messages between the master and slave
occurs over the network (either at the Link Layer or Transport
Layer), resulting in the synchronization of the slave clock to
the master clock. The Grandmaster Clock (GM) establishes the
reference time for the entire system clock, situated at the top
of the hierarchy. The process of PTP clock synchronization
involves the exchange of timing information between nodes.
This information is then used to calculate the clock offset and
path delay between the nodes.

Within the PTP network, three types of clock devices are
defined: Ordinary Clock (OC), Boundary Clock (BC), and
Transparent Clock (TRCL). The OC is the simplest PTP
device, possessing exactly one port in either a master or
slave state. A BC has two or more ports and serves to link
different segments of a PTP topology. All but one port is in
the master state, while the remaining slave port synchronizes
the internal clock of the BC. The state of the internal clock is
then propagated via the master ports. The BC also functions
as a fully-featured PTP node, making its synchronized internal
clock available to applications. In contrast, the TRCL does
not synchronize itself to the time reference but forwards
PTP messages and adjusts them according to their residence
time. The use of TRCLs enhances synchronization accuracy
compared to a network solely based on BCs [7].

In the context of TSN, PTP is defined by the IEEE 802.1AS
standard [8], referred to as generic Precision Time Protocol
(gPTP). This protocol restricts message exchange to Layer

encrypted

Receiver
MAC address

Receiver
MAC address

ETH
Type Payload ICVMACsec

Header

encrypted

Receiver
MAC address

Receiver
MAC address

ETH
Type Payload

16 B

encrypted

Receiver
MAC address

Receiver
MAC address

ETH
Type Payload ICV802.1Q

802.1Q

16 B

MACsec
Header

16 B

MACsec
Header

16 B

ETH
Type Payload ICV802.1Q

16 B

16 B

Fig. 1: MACsec header placement in the 802.3 frame. The
802.1Q header can be either encrypted (VLAN-encrypt) or
placed outside (VLAN-plain) of the MACsec payload.

2 with IEEE 802.3 MAC and confines packet exchange to
instances of gPTP, ensuring that clocks use the same fre-
quency. For Linux-based systems, the linuxptp project [16]
facilitates time synchronization with PTP. Network-wide clock
synchronization is achieved using ptp4l, while synchro-
nization between clocks of a single machine is handled by
phc2sys. Configuration of ptp4l involves deploying a
gPTP.cfg profile file, specifying gPTP profile parameters
for each PTP interface on the machine.

B. Credit-Based Shaper

CBS, as defined in the IEEE 802.1Q-2018 [17] family of
standards, allows for bandwidth allocation to Stream Reser-
vation (SR) classes. Such functionality is achieved with a
scheduler defining which frames are to be dequeued next using
a credit system. The credit level of a given class increases
when one or more packets are present in its queue. The
class may transmit only when its accumulated credit exceeds
zero and the interface is otherwise idle. With an addition of
priority enforcement mechanisms, and proper configuration,
CBS offers soft guarantees for delay, jitter, and packet loss.

The credit level over time for a given class is governed
by four parameters: hiCredit, loCredit, idleSlope, and
sendSlope. The first two parameters limit the maximum and
minimum credit. The latter two parameters define the credit
change rates applied when the class is transmitting or idling.

C. MACsec

MACsec (defined by the 802.1AE standard [18]) enables
connectionless data integrity, data confidentiality, data origin
authentication as well as replay protection. A flow consists
of two unidirectional streams of data, each of which MACsec
secures separately by enclosing them as Secure Channel (SC).
MACsec represents the security parameters of an SC with an
Security Association (SA).

The encryption and decryption of the frame payload is
handled either by the operating system or by the HW directly.
Hardware support depends on driver support — and to our
knowledge, HW support is very limited to non-existent. While,
e. g., Intel network cards selectively have hardware support for
MACsec, and driver support is absent on Linux. Therefore,
significant overhead is introduced as the operating system has
to handle all MACsec operations in software.



Figure 1 shows the MACsec header placement in the
802.3 Ethernet frame. An additional 802.1Q VLAN and QoS
header can be placed inside (VLAN-encrypt mode) or out-
side (VLAN-plain mode) of the encrypted MACsec payload.
MACsec builds its security guarantees around AES-GCM
as a cipher. Key establishment is done statically or via the
MACsec Key Agreement (MKA), which derives keys through
the 802.1x Extensible Authentication Protocol (EAP), enabling
node authentication. The secure channels are unidirectional,
with two establishments securing traffic in both directions.

D. OMNeT++

OMNeT++ [19] is a discrete-event simulator that can be
used to simulate any network type. It is open-source and easily
extensible. Its simulation libraries are written in C++. The
simulator is comprised of modules, each implementing specific
functionality of the networked system, interconnected using
gates and channels. OMNeT++ simulations are defined using
two types of files, the NED files describing the network, and
INI configuration files for each scenario.

Various frameworks implement distinct features, which ex-
pand the generic OMNeT++ network model. Relevant in the
scope of this work is the INET Framework [20] enabling the
simulation of computer networks. INET implements protocols
of all layers of the ISO/OSI stack. Starting with version 4.4.0,
it also includes numerous TSN standards. Most notably, it
provides an implementation of the PTP and CBS, which is
used in Section V of this work.

III. PRECISION TIME PROTOCOL DEPLOYMENTS

PTP plays a fundamental role in synchronous TSN standards
like Time-Aware Shapers (TASs) [21], [22]. Beyond TSN,
precisely timestamped data is essential for data fusion in
applications like autonomous driving [4]. In such setups,
sensors, e. g., cameras, LIDARs, or RADARs, need to support
PTP to add precise timestamps to the message payload.

Figure 2 shows the PTP implementation architecture in the
Excellent Driving GARching (EDGAR) project. Figure 2a
illustrates the ideal scenario where 1⃝ serves as the PTP GM to
which all devices synchronize. For local deployments, the GM
does not need to sync to a wall clock but provides precise time
to the vehicle’s devices. However, for global communication,
synchronization to a global source like GPS is relevant. PTP
messages are distributed among devices supporting PTP via
the PTP switch 2⃝ that is a TRCL. The High Performance
Computer (HPC) 3⃝ collects data from sensor families. De-
vices use their internal PTP clocks and should operate as OC.

While the ideal scenario has one hop between GM and
devices, thereby minimizing clock deviation, challenges arose
in the actual implementation due to configuration limitations,
network-based inter-sensor interference, and only partial PTP
protocol support in some cases. Our final deployment neces-
sitates separation using dedicated physical or virtual links,
as depicted in Figure 2b. We separate the sensor classes
into different VLANs. The HPC 3⃝ runs a dedicated ptp4l

PTP Switch

PTP
Grandmaster

HPC Sensor
Class 1

Sensor
Class 2

Sensor
Class N

Other
Devices

1

2

3

(a) Envisioned Implementation

Sensor
Class 1

Sensor
Class 2

Sensor
Class N

Other
Devices

2

PTP
Grandmaster
1

PTP Switch

HPC
3

(b) Actual Implementation

Fig. 2: Envisioned implementation versus the actual imple-
mentation, showcasing the implementation Challenges.

instance for each VLAN. Each specific instance is tailored
towards the compatibility of the respective sensor class, e. g.
by distributing messages in PTP Layer 2 or Layer 4 modes.
Splitting sensors into different networks was a necessary step
to reduce the network noise each sensor class receives.

As a result, the HPC runs as a BC, ensuring synchronicity
among other interfaces. The multiple PTP Hardware Clocks
(PHCs) are synchronized using phc2sys. The separated net-
work approach allows for easy system extension by additional
device classes. Despite the additional hop, clock precision is
still expected to be in the range of nanoseconds [7]. However,
due to closed-source devices with limited documentation,
external validation using, for example, an oscilloscope or other
means would be necessary.

IV. MACSEC INTEGRATION WITH TSN

PTP requires message protection in order to provide reliable,
unmodified information. MACsec helps to achieve such protec-
tion while encrypting the PTP traffic and any other traffic. This
is not necessarily a problem, as additional applications, e.g.,
the automotive industry, require data security. Nevertheless,
this must adhere to strict latency and jitter bounds [10] while
ensuring data confidentiality and integrity requirements [13],
[14]. MACsec provides both and thereby contributes to pro-
tection of the PTP and other traffic. This section discusses
whether MACsec can provide security guarantees without
violating the tight timing constraints.

In a series of experiments, we integrate MACsec into a TSN
environment. We measure latency, jitter, and throughput for
emulated high-priority, time-sensitive traffic. Our experiment
setup consists of eight nodes in a line topology of seven hops,
as shown in Figure 4. All links use 1GbE Intel i210 NICs
supporting TSN features. The HPC used as a source has an
Intel Xeon D-1518 CPU with 128GB of RAM. The remaining
nodes (Low Performance Computers (LPCs)) feature a Xeon
E3-1265L CPU and 16GB RAM. Each intermediate forward-
ing node applies traffic shaping based on the 802.1Q header.
In our evaluation, we focus on CBS.

We analyze the impact of MACsec using three scenarios:



LPC 4

LPC 5 LPC 6

HPC

LPC 7

LPC 3 LPC 2 LPC 1

Re-encrypt Re-encrypt

Re-encryptRe-encrypt Re-encrypt

Re-encrypt

Decrypt
on Sink

Encrypt
on Source

Forward ForwardForward

Fig. 3: EnGINE MACsec test architecture

1) Forward-only (FWD): Forwarding nodes do traffic shap-
ing, but no MACsec is employed.

2) MACsec re-encrypt (MRE): The 802.1Q header is en-
crypted. Nodes shape traffic classes appropriately at
ingress and egress interfaces. Each node decrypts, shapes,
and then re-encrypts the traffic.

3) MACsec forward (MFW): The 802.1Q header is unen-
crypted. The traffic is encrypted by MACsec at the source
node. The forwarding nodes only do traffic shaping,
without handling any MACsec. Only the destination node
decrypts. This mode reduces encryption and decryption
operations to one each.

The outlined scenarios do not regard any test case in which
the 801.1Q header remains encrypted on the nodes without its
re-encryption. In this case, forwarding nodes cannot properly
do traffic shaping since the priority classes stored in the VLAN
header are not readable by them. An overview of the header
structures is shown in Figure 1.

Figure 3 illustrates the corresponding scenarios, depicting
in red the MACsec re-encrypt (MRE) and in green the MAC-
sec forward (MFW) and Forward-only (FWD) scenarios. For
FWD, the source does not perform encryption. The traffic is
shaped using CBS on each interface. We configure it to account
for the 32B increase of the header size while maintaining the
same throughput of the flows.

Figure 4 illustrates the impact of MACsec on throughput
over seven hops. The overhead is already introduced on the
node that generates the traffic. When MACsec is inactive, the
network achieves its maximum 1Gbit/s bandwidth capacity,
aligning with expectations. In contrast, when employing MAC-
sec we see a decrease in throughput to around 450Mbit/s,
with slightly superior performance in the MFW scenario. This
reduction, exceeding 50% for both modes, underscores the
drastic impact of MACsec on the link performance. Figure 5
illustrates the end-to-end delay and jitter experienced in the
three scenarios. We measure these metrics based on two flows,
respectively assigned TSN SR Classes A and B and observe
whether they can satisfy their respective requirements of 2ms
and 10ms for delay and 125 µs and 1000 µs for jitter.

Due to the significant computational overhead introduced by
MACsec we experience a saturation of available CPU capacity
even at lower data rates. We therefore limit ourselves to the
data rates of 7.5Mbit/s and 15Mbit/s for our experiments,
in the expectation that the testbed can handle such low rates
without violating timing constraints.

We observe that in the FWD scenario, we can satisfy these
requirements. In the other two scenarios, due to the expected

400

600

800

1000

Th
ro
ug

hp
ut

[M
bp

s]

FWD, Mean: 976.23
MRE, Mean: 410.59
MFW , Mean: 456.16

0 2 4 6 8 10
Experiment Time [s]

0

1Fig. 4: Throughput achieved by Iperf3 over seven hops in the
test cases FWD, MRE, and MFW

FW
D
M
RE

M
FWFW

D
M
RE

M
FWFW

D
M
RE

M
FWFW

D
M
RE

M
FW

0.2

0.5

1.0

4.0

D
el
ay

[m
s]

7.5Mbit/s 15Mbit/s
Mean
Max
Min

1(a) CBS - Delay, 2 Flows SR Class A and B (grey background)

FW
D
M
RE

M
FWFW

D
M
RE

M
FWFW

D
M
RE

M
FWFW

D
M
RE

M
FW

−104
−103
−102
−101
−100

0
100
101
102
103
104

Jit
te
r[

us
]

7.5Mbit/s 15Mbit/s
Mean
Max
Min

1(b) CBS - Jitter, 2 Flows SR Class A and B (grey background)

Fig. 5: Comparison of CBS Delay and Jitter for two Flows
with SR Class A and B with 7.5 and 15Mbit/s throughput,
for the scenarios FWD, MRE, and MFW.

MACsec overhead, we observe an increase in latency and jitter
for both, SR class A and B. The means for both scenarios
satisfy the latency requirements, but maximum values violate
the requirements. For jitter, only the requirements of SR class
B are satisfied. Overall, we observe a significant delay increase
for both flows for the higher throughput of 15Mbit/s. Our
results point towards the overhead introduced by encrypting
data in software as the source of the overhead. We conclude
that there are significant challenges regarding the integration
of MACsec together with TSN on hardware, as even low data
rates already violate the timing constraints posed.

V. SIMULATION TO THE RESCUE?

Using HW-based setups for experimentation is quite com-
plex and usually requires up-front investment and extensive
setup. Researchers often rely on COTS HW and open-source
SW to perform TSN experiments. In such setups, the com-
patibility of selected components and functionality of the
associated drivers and SW needs to be thoroughly evaluated.



LPC 1

LPC 2

LPC 6

LPC 3

LPC 5 LPC 4

HPC

1

2

3

4 5

Fig. 6: Network with indicated packet flows used for the
comparison of HW-based and simulated experiments

While the EnGINE simplifies experiment setup, configura-
tion, and execution, it still needs access to HW. A possible
solution with easier access to TSN experimentation, can be
simulation. Thus, in recent work [6], we introduce a hybrid
experimentation scheme, extending the HW-based experimen-
tation capabilities via simulation using OMNeT++. While the
simulator still requires quite complex configuration, EnGINE
provides an abstraction that utilizes the same configuration
scheme for simulated and HW-based experiments.

In our initial validation of the solution presented in [6], we
investigated synthetic test cases consisting of a single traffic
flow along a line network topology of seven hops. In those
experiments, we observed quite significant discrepancies in
the results of simulated and emulated runs. To gain additional
insights into the performance of OMNeT++ TSN simulation
compared to HW-based experimentation, in this work, we
devise a more realistic scenario based on experiment EXUCC

from [10]. The experiment consists of three classes of policed
flows along paths 1, 2, and 3, as indicated in Figure 6. These
flows follow different routes along the network. We further
place interfering flows along paths 1, 2, and 3, with additional
ones on paths 4 and 5, containing best-effort traffic.

Along path 1, we place flows corresponding to command
& control, and Advanced Driver Assistance Systems (ADAS)
traffic, belonging to SR class A with F1C&C and F1ADAS .
Similarly, along path 2, we place SR class A traffic flows
F2LID for LIDAR- and F2RAD for radar-generated traf-
fic. Path 3 contains flows belonging to SR class B, en-
compassing radar - F3RAD, ultrasound sensor - F3US , and
GPS-related - F3GPS traffic.

The aforementioned flows are policed on each interface
along their paths using properly configured CBS qdisc. Flows
belonging to SR class A have the highest priority, with those of
class B being configured as the second highest. The best-effort
traffic belongs to the lowest priority and is not policed.

We then perform two runs of the same scenario using a HW-
based setup and simulation in OMNeT++. Figure 7 compares
the results of the emulated and simulated experiments. We do
not investigate the results of interfering, best-effort, flows.

Figure 7a shows the delay recorded in both experiment
types. We observe a general correlation in both runs, with
the delay being strongly dependent on the length of each path.
However, the HW-based experiments show an order of mag-
nitude higher delay when compared to simulated counterparts.
The highest delay is observed along path 2 with an average

F1
C&C

F1
C&C

F1
ADAS

F1
ADAS

F2
LID

F2
LID

F2
RAD

F2
RAD

F3
RAD

F3
RAD

F3
US

F3
US

F3
GPS

F3
GPS

0.01

0.1

1.0

De
la

y 
[m

s]

Mean
Max
Min

(a) Delay. Simulated results highlighted in grey.

F1
C&C

F1
C&C

F1
ADAS

F1
ADAS

F2
LID

F2
LID

F2
RAD

F2
RAD

F3
RAD

F3
RAD

F3
US

F3
US

F3
GPS

F3
GPS

103
102
101
1000100
101
102
103

Jit
te

r [
us

]

Mean
Max
Min

(b) Jitter. Simulated results highlighted in grey.

Fig. 7: Comparison of HW-based and simulated experiments.

for both flows in HW-based experiment being 0.59ms, while
simulation measures an average of only 0.05ms and 0.06ms
for F2LID and F2RAD, respectively. We observe a similar
discrepancy in the jitter measurement shown in Figure 7b.
The maximal absolute value for HW-based experiments is
2819.243 µs for flow F3GPS . In contrast, we observe maximal
jitter of only 45 µs for flow F1C&C .

The perfect nature of the simulation causes this significant
discrepancy between the two types of results. It does not
model many of the real-world aspects of the system, such as
CPU/memory usage, memory access, communication access
times via the PCI bus, or vendor-specific standard imple-
mentation. However, it includes a realistic clock model2 with
potential for, e.g., clock drift. Even with proper clocks and
timing synchronization, as indicated in the results shown in
Figures 7a and 7b, across the flows following the three paths,
the discrepancy between results is not linear per each hop
traversed by a packet. Therefore, the delay and jitter difference
between the two experiment types cannot be modeled via, e.g.,
a processing offset added on each node.

Further, our HW-based experimentation approach presents
a worst-case outcome, especially when using open-source SW
and COTS HW. In contrast, the simulation shows a perfect
best-case scenario that is hard to achieve in the real world.
With dedicated TSN HW, the results should lay somewhere
in between. Despite its shortcomings, the simulation can
still give valuable insights into network performance and its
configuration. However, its results should always be verified
in hardware, before any solution is deployed, especially when
system-dependent parameters are needed for configuration.

VI. DISCUSSION

COTS and proprietary HW combined with open-source SW
come with particular challenges. In this work, we focused on
the deployment of PTP and performance MACsec standards

2https://inet.omnetpp.org/docs/users-guide/ch-tsn.html



on Linux, with a further look at the use of OMNeT++ for
support. The L1 covered PTP deployments in an industrial
setting with a variety of sensors that support the PTP standard.
Considering the importance of PTP in the TSN, we evaluated
the performance impact of MACsec as a solution for PTP
and other data traffic security. The findings show a significant
performance penalty to the system as a part of the L2. Lastly,
considering the limitations of HW deployments, we considered
using OMNeT++ simulator to provide a relevant evaluation
platform for TSN standard behavior and bring scalable ex-
periment capabilities. Certain findings cannot be easily ported
to the physical devices. However, L3 outlines the possible
discrepancies between the performance of the simulator and
the implementation in HW. Finding a suitable function to close
the gap between the simulation and emulation infrastructure is
challenging and requires further work.

Various industrial applications, e.g., data fusion or TSN
standards, require precise configuration and rely on solutions
such as PTP to bring such precision. However, due to the
complexity and variety of HW on the market, the system
configuration may be complex. Fortunately, the open-source
solutions’ versatility can also help mitigate certain challenges,
as we can see in the case of PTP implementations. Using our
findings, we want to motivate that TSN deployments with a
heterogeneous set of HW components bring new challenges.
When ensuring traffic security in transit, we must observe
its impact on latency, jitter, and packet loss. MACsec, even
though considered a standard for industrial applications, is
currently supported only on a very limited number of HW
devices along with possible TSN capabilities. Our findings
show that an acceleration in HW is crucial to achieve a suitable
performance. Otherwise, the system will struggle to keep up
with higher loads. A few current NICs support MACsec offload
capabilities using frameworks like the Data Plane Development
Kit (DPDK), but the use of the latter would require a custom
re-implementation of the Linux TSN capabilities.

A simulated digital twin of the system should enhance our
understanding of hardware-software interactions and enable a
better baseline for expected results in HW-based experimen-
tation. However, as we identified in our work, this brings its
own challenges and requires further investigation. For instance,
extensions to the simulator could minimize the discrepancy
observed between the two approaches and contribute models
for various experimentation types. Such modeled results with a
proper translation function to map to the real system’s behavior
could help better understand the complex interactions between
components of a TSN system. Further enhancements of the
simulation could enable an accurate evaluation of various TSN
specifications at scale until more capable HW is available.

ACKNOWLEDGMENT

This work is partially funded by the German Federal Min-
istry of Education and Research (BMBF) under the projects
6G-life (16KISK001K) and 6G-ANNA (16KISK107). We also
received funding by the Bavarian Ministry of Economic Af-

fairs, Regional Development, and Energy as part of the project
6G Future Lab Bavaria, and by the EDGAR project, DFG grant
approval according to Art. 91b GG with DFG-number INST
95/1653-1 FUGG. We thank the reviewers and colleagues for
their comments. Last, we thank Davide Alessi for his support
with integrating MACsec into the EnGINE framework.

REFERENCES

[1] W. Zeng, M. A. S. Khalid, and S. Chowdhury, “In-Vehicle Networks
Outlook: Achievements and Challenges,” IEEE Communications Sur-
veys & Tutorials, vol. 18, no. 3, pp. 1552–1571, 2016.

[2] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L.
Kilmartin, “Intra-Vehicle Networks: A Review,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2, 2015.

[3] F. Rezabek, M. Bosk, G. Carle, and J. Ott, “TSN Experiments Using
COTS Hardware and Open-Source Solutions: Lessons Learned,” in
2nd International Workshop on Negative Results in Pervasive Com-
puting (PerFail 2023), Atlanta, USA, Mar. 2023.

[4] P. Karle et al., Edgar: An autonomous driving research platform
– from feature development to real-world application, 2023. arXiv:
2309.15492 [cs.RO].

[5] F. Rezabek et al., “Engine: Flexible research infrastructure for reliable
and scalable time sensitive networks,” Journal of Network and Systems
Management, vol. 30, no. 4, p. 74, 2022.

[6] M. Bosk et al., “Simulation and Practice: A Hybrid Experimentation
Platform for TSN,” in 22nd International Federation for Information
Processing (IFIP) Networking Conference, Spain, Jun. 2023.

[7] F. Rezabek, M. Helm, T. Leonhardt, and G. Carle, “PTP Security
Measures and their Impact on Synchronization Accuracy,” in 18th In-
ternational Conference on Network and Service Management (CNSM
2022), Thessaloniki, Greece, Nov. 2022.

[8] “IEEE Standard for Local and Metropolitan Area Networks–Timing
and Synchronization for Time-Sensitive Applications,” IEEE Std
802.1AS-2020, pp. 1–421, 2020.

[9] IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, IEEE, Jun. 2020.

[10] M. Bosk et al., “Methodology and infrastructure for tsn-based repro-
ducible network experiments,” IEEE Access, 2022.

[11] “ISO/IEC/IEEE International Standard - Information technology –
Telecommunications and Information Exchange between Systems –
Local and Metropolitan Area Networks – Specific Requirements – Part
1BA: Audio video bridging (AVB) Systems,” ISO/IEC/IEEE 8802-
1BA First edition 2016-10-15, pp. 1–52, 2016.

[12] “IEEE Standard for a Transport Protocol for Time-Sensitive Ap-
plications in Bridged Local Area Networks,” IEEE Std 1722-2016
(Revision of IEEE Std 1722-2011), pp. 1–233, 2016.

[13] “ISO/SAE 21434:2021: Road Vehicles - Cybersecurity Engineering,”
Vehicle Cybersecurity Systems Engineering Committee, 2021.

[14] “UN Regulation No. 155 - Cyber security and cyber security man-
agement system,” UN Regulation No. 155, Mar. 2021.

[15] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-2019,

[16] R. Cochran, linuxptp, Last accessed on 2022-11-26. [Online]. Avail-
able: https://sourceforge.net/projects/linuxptp/.

[17] “IEEE Standard for Local and Metropolitan Area Network–Bridges
and Bridged Networks,” IEEE Std 802.1Q-2018, pp. 1–1993, 2018.

[18] “IEEE Standard for Local and metropolitan area networks-Media
Access Control (MAC) Security,” IEEE Std 802.1AE-2018 (Revision
of IEEE Std 802.1AE-2006), pp. 1–239, 2018.

[19] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simula-
tion, K. Wehrle, M. Güneş, and J. Gross, Eds., Heidelberg: Springer,
2010, pp. 35–59.

[20] L. Mészáros, A. Varga, and M. Kirsche, “Inet framework,” A. Virdis
and M. Kirsche, Eds., pp. 55–106, 2019.

[21] “IEEE Standard for Local and Metropolitan Area Networks – Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” pp. 1–57, 2016.

[22] I. S. Association et al., “IEEE Standard for Local and Metropoli-
tan Area Networks—Bridges and Bridged Networks—Amendment
25: Enhancements for Scheduled Traffic,” Amendment to IEEE Std,
vol. 802, pp. 1–57, 2016.


