
TSN Experiments Using COTS Hardware and
Open-Source Solutions: Lessons Learned

Filip Rezabek∗, Marcin Bosk†, Georg Carle‡ and Jörg Ott§
Department of Computer Engineering, TUM School of CIT, Technical University of Munich, Germany

Email: ∗rezabek@net.in.tum.de, †bosk@in.tum.de, ‡carle@net.in.tum.de, §ott@in.tum.de

Abstract—Time-Sensitive Networking (TSN) brings determin-
istic behavior to Ethernet-based systems, resulting in hardware
and software supporting various TSN standards. Using TSN-
capable Commercial off-the-Shelf (COTS) hardware and open-
source software brings several challenges. These are especially
visible while performing performance evaluation of various TSN
standards. In this work, we present the most significant challenges
we faced using such deployments. Starting with the Precision
Time Protocol, we observe its implementation being incompatible
with that of the Time-Aware Priority Shaper. We present several
solutions on how to overcome the identified behavior and compare
them proposing best fitting solution for any setup.

Next, we focus on the Network Interface Cards (NICs) and
their behavior in presence of various TSN standards. We observe
that the hardware offload features aiming to improve perfor-
mance sometimes introduce performance artifacts worthwhile
of investigation. Further, even though the Credit-Based Shaper
configuration parameters can theoretically be computed for
various NICs, due to the internal optimization of some, the
calculated parameters may not hold.

Our findings are intended to help the community improve ob-
served results and solve challenges in using the COTS hardware
and open-source software. We believe additional documentation
detailing the implementation aspects of TSN standards in hard-
ware would be beneficial in explanation of observed behavior.

Index Terms—TSN, COTS, Open-Source, PTP, Experiments

I. INTRODUCTION

The increasing scale, complexity, and data throughput of
today’s networks [1] prompt their operators to look for new so-
lutions. Even for specialized domain-specific networks, some
of them shift towards Ethernet [2]. For certain applications,
Ethernet by itself may not be sufficient as, by default, it does
not offer deterministic bounds on latency, jitter, packet loss,
and reliability. To overcome these shortcomings, the Time
Sensitive Networking (TSN) standards1 can be applied to Eth-
ernet, enabling the missing real-time functionality. Nowadays,
those solutions are more widely adopted in areas such as Intra-
Vehicular Networks (IVNs), aerospace, smart manufacturing,
or professional audio and video solutions.

The TSN standards are widely worked on, with their per-
formance being evaluated in simulation, emulation, and using
proprietary hardware solutions. Each of these approaches has
its advantages and drawbacks. With simulation, experiments
can be easily configured and reproduced in a rapid develop-
ment cycle which does not require any dedicated hardware.

Filip Rezabek and Marcin Bosk contributed equally to this paper.
1https://www.ieee802.org/1/pages/tsn.html, Access 25.01.23

Yet, simulations often differ from real-world deployments as
they omit certain artifacts such as operating system interactions
or Network Interface Card (NIC) behavior specifics. These
drawbacks can be overcome using hardware deployments
with dedicated or generic components realizing the required
functionality. Undoubtedly, in this approach, the hardware and
software components must be carefully considered to achieve
desired real-time requirements. The system’s performance
needs to be thoroughly evaluated and its deficiencies must
be well understood to achieve a well-performing experimental
environment. Finally, proprietary hardware yields the most
accurate results in the real-world. However, such experimen-
tation may not be available to researchers when vendor-locked
solutions are used.

To enable replicable experiments with TSN systems, Com-
mercial off-the-Shelf (COTS) Hardware (HW) and open-
source Software (SW) can be used. Such an approach, e.g.,
introduced in [3] and [4], naturally faces multiple challenges
concerning hardware-software interactions. In this work, we
want to share our lessons learned during the use and devel-
opment of experimental COTS and open-source based TSN
systems. We introduce the challenge of coexistence between
the IEEE 802.1Qbv Time Aware Priority Shaper (TAPRIO)
queuing discipline (qdisc) on Linux and linuxptp. Pre-
cision Time Protocol (PTP) is a crucial building block for
synchronous TSN standards that require precise clock syn-
chronization. Similarly, for the COTS HW we focus on the
features offered by NICs such as the HW offloading of the
Earliest Time First (ETF) qdisc. Lastly, we assess the usage of
Credit-Based Shaper (CBS) on 1GbE and 10GbE NICs. Based
on the evaluation we identified that the CBS parameters cannot
be easily ported to higher throughput NICs. The lessons we
present in the paper are summarized as follows:

L1 Usage of TAPRIO and PTP in Linux
L2 Evaluation of NIC hardware offloading capabilities
L3 Assessment of CBS standard on various NICs
The identified lessons should help researchers and engineers

aiming to build their TSN systems platform using COTS HW
and open-source SW.

II. BACKGROUND

To support TSN experiments with COTS HW and open
source solutions, in previous work, we introduced the EnGINE
framework [3], enhanced by a methodology [4] for such
experiments. We focus on achieving the requirements outlined

https://www.ieee802.org/1/pages/tsn.html


by [5] and [6] for IVNs, also applicable to other TSN capable
systems. We utilize Linux with qdisc implementations for
TAPRIO and ETF, as well as CBS. On top of that we
consider PTP to synchronize the time within the network.
In the following sections, we give a brief overview of these
technologies, focusing on their relevant configuration features.

A. Precision Time Protocol

The time in a TSN system can be synchronized using PTP
described in IEEE 1588 [7] standard. The individual clocks are
synchronized via PTP instances running on each participating
device structured in a master-slave hierarchy. Master and slave
exchange messages over the network and the slave clock is
synchronized to the master clock. The reference time for the
whole system is determined by the Grandmaster Clock (GM)
clock, which is placed on the top of the hierarchy.

The PTP clock synchronization requires timing information
exchange between nodes. The timing information is used to
compute the clock offset and path delay between them.

The PTP defines three clock device types - Ordinary Clock
(OC), Boundary Clock (BC), and Transparent Clock (TRCL).
The simplest PTP device is the OC. It has one port in either
a master or slave state. A BC has two or more ports and
is used to link parts of a PTP topology. All but one of the
ports is in the master state. The remaining port is in the slave
state and is used to synchronize the internal clock of the BC,
which is in turn propagated via the master ports. The BC also
acts as a full-featured PTP node and its synchronized internal
clock can be used by applications that need it. On the other
hand, TRCL, does not synchronize itself to the time reference.
Instead, it forwards the PTP messages and adjusts the PTP
message according to the residence time in the TRCL. Using
TRCLs improves the synchronization accuracy over a purely
BC-based network [8].

PTP is further applied to TSN with the IEEE 802.1AS [9]
standard as a generic Precision Time Protocol (gPTP). The
protocol only allows message exchange at Layer 2 with IEEE
802.1 MAC. It also constrains the packet exchange to gPTP
instances, as the clocks need to use the same frequency.

In Linux-based systems, the linuxptp project [10] en-
ables time synchronization with PTP. The clock synchro-
nization across the network is achieved with ptp4l, and
between clocks of one machine with phc2sys. ptp4l is
configured using a gPTP.cfg profile file, specifying gPTP
profile parameters for each PTP interface on the machine.

B. Time-Aware Priority Shaper

To ensure deterministic packet delivery as well as low
latencies and jitter, IEEE 802.1Qbv [11], [12] amendment
known as Time-Aware Shaper (TAS), or TAPRIO qdisc [13]
in Linux, can be used. The qdisc supports synchronized packet
scheduling between multiple traffic classes (TCLs) and queues
of a single NIC, similarly as in a Time Division Multiple Ac-
cess (TDMA) system. Synchronization is achieved using gates
operating according to a user-specified cycle, with frames only
being sent when a gate is open. Each TCL can get a dedicated

window within the cycle when the transmission is allowed.
Within a window, the packets are passed to a child qdisc that
may additionally police and shape traffic. These child qdiscs
could, e.g., include ETF of CBS, and can further influence the
system behavior. Furthermore, in Linux, the TAPRIO qdisc
uses packet priorities to map the TCLs to queues and cycle
windows. The functionality of the qdisc can be influenced by
the following configuration parameters:

• base-time enables alignment of schedules across the
network

• sched-entry S $MASK $DURATION enables con-
figuration of the gate window opening schedule

• flags with support for option 0x1 indicating TxTime
mode, which can be used to specify sending time of a
packet for an application not supporting such function-
ality natively. Further, it supports 0x2 option enabling
offload of TAPRIO functionality to the NIC

• txtime-delay to account for the system delay
Generally, the TAPRIO qdisc utilizes features of the ETF

qdisc configured alongside it. Therefore, the TAPRIO config-
uration needs to consider the interplay with ETF, which is
especially relevant for the txtime-delay and associated
ETF delay parameters.

C. Earliest-TxTime First

The ETF qdisc offers control over the transmission time
(TxTime) of individual frames. It is generally configured on
each HW queue of the relevant NIC. The TxTime can be
specified via the socket SO TXTIME option.

ETF supports two transmission modes, strict and deadline.
With strict mode, the packets are transmitted exactly at Tx-
Time, while in deadline mode, the frame can be dequeued
anytime before TxTime. For some NICs, e.g., Intel® I210, the
ETF functionality can be hardware offloaded.

D. Credit-Based Shaper

The algorithm for CBS was first defined with the IEEE
802.1Qav amendment, now part of the IEEE 802.1Q-2018 [14]
family of standards. CBS enables bandwidth allocation and
guarantees to pre-defined Stream Reservation (SR) classes.
To achieve that, the algorithm defines the next frame to be
transmitted on an interface from a set of SR classes and their
associated queues. The bandwidth allocation for every class is
ensured by a scheduling system based on credits. With that,
CBS also offers some bounds on delay, jitter, and packet loss.

Using CBS, a frame can only be transmitted when the
class’s collected credit is ≥ 0 and the NIC does not transmit
any other frames simultaneously. Credit is only accumulated
when at least one packet is present in the class’s queue and
is spent during frame transmission. With no packets in the
queue of a given class, the credit level does not change. Four
parameters govern the credit level over time for a class X:

• hiCreditX - maximum credit level
• loCreditX - minimum, negative, credit level
• idleSlopeX - credit replenish rate when idle
• sendSlopeX - credit spend rate during transmission



The proper parameter setting for class X can be calculated
using Equations (1) to (5) and the following information:

• BX - class X bandwidth fraction
• MFSX - class X maximum frame size, including Phys-

ical Layer (PHY) overhead
• PTR - NIC transmission rate
• MFS0 - maximum frame size supported by the NIC,

including PHY overhead
• Class Y denotes any other SR class using the NIC
For Linux implementation of CBS, these parameters are

defined using B and kbit/s, but the IEEE 802.1Qav [14]
standard uses bit or bit/s respectively.

idleSlopeX = BX · PTR (1)

sendSlopeX = idleSlopeX − PTR (2)

loCreditX = MFSX · sendSlopeX
PTR

(3)

hiCreditX = idleSlopeX · (MFS0

PTR
+ IFX) (4)

IFX =

Y <X∑
Y

(
hiCreditY

−sendSlopeY
+

MFSY

PTR
) (5)

The CBS qdisc in Linux is usually used in conjunction with
the Multiqueue Priority Qdisc (MQPRIO) qdisc. MQPRIO
enables packets of various SR classes to be mapped to pre-
determined priorities and queues of the NIC. CBS is config-
ured as a child qdisc of MQPRIO, enabling packets to be
handled by the proper CBS qdisc. Of note, ETF can also be
configured with MQPRIO.

III. PRECISION TIME PROTOCOL SYNCHRONIZATION AND
CO-EXISTENCE WITH TAPRIO

PTP plays an important role for synchronous TSN stan-
dards, such as the IEEE 802.1Qbv, TAPRIO Linux qdisc. The
synchronization of the clocks in the system plays a key role in
ensuring the window alignment on each hop. Unfortunately,
we identified a co-existence challenge of the ptp4l daemon
and TAPRIO while configured on the same NIC. These results
are confirmed using the Linux kernel versions 5.4 and 5.15
with Ubuntu 20 Focal and 22 Jammy Jellyfish, respectively.
The linuxptp version is 3.1.1. We verified this behavior
using several NICs, namely the Intel® I210, I350, I225, and
X552. Importantly, all of the NICs we used for our experi-
ments support the IEEE 802.1AS standard, which limits the
variety of selections in the market. In case IEEE 802.1AS is
not supported the required precision in nanoseconds cannot be
achieved. We use BCs for our experiments as the nodes inter-
nally also require the clock information. In these experiments
we do not police the PTP traffic, but in a presence of more
network flows, policing of PTP messages would benefit the
precision of the synchronization.

Figure 1 indicates the expected behavior of TAPRIO and
linuxptp, where each interface runs the ptp4l daemon
and sends the synchronization messages on the link. Depend-
ing on the number of hops we want to evaluate, each hop

Source Sink

IfaceTraffic port + PTP port

ptp4l & 
TAPRIO  ptp4l   

Fig. 1. Setup of ptp4l daemon with TAPRIO on a source and sink

must have synchronized clocks. Based on our findings, this
approach works as expected for other qdiscs (e.g., CBS and
ETF with MQPRIO). We observe time synchronization failures
only when TAPRIO is configured alongside PTP. To note,
similar issues were observed by others as can be seen from
the discussions in the open issues2,3.

We were able to identify a single configuration allowing
for PTP to work alongside TAPRIO where txtime-assist
mode is unused. However, better solutions are needed as
the aforementioned mode is essential to specify the TxTime
of a packet without the usage of custom traffic-generating
applications. Further, based on our testing, this approach only
works in one-hop configurations. With more hops, the PTP
needs to function properly on the further hops and synchronize
all clocks in the networks to the GM.

To overcome this challenge, we identified three possible
solutions shown in Figure 2. Figure 2a shows Solution I and
relies on two nodes (servers) that have a large number of ports
that allow for multi-hop experiments. The nodes are connected
with a dedicated link running the ptp4l daemon that ensures
the time synchronization between them. Locally each node
runs phc2sys to synchronize the individual PTP Hardware
Clocks (PHCs). With this approach, as expected, we can use
the TAPRIO on the other available ports of the machines and
ensure the window alignment across the different hops.

Figure 2b introduces Solution II, enabling use of multiple
nodes to build a TSN system. However, this approach requires
using additional, redundant paths in the system. The solution
uses at least the same number of nodes we evaluate in a given
experiment. The exact amount depends on the node wiring. We
call this approach a PTP ’overlay’ network where additional
dedicated ports are used to synchronize the time across all
nodes and rely on the phc2sys to synchronize all PHCs.
The additionally used ports must be at least in active state if
PTP on the link layer is used.

Lastly, Solution III shown in Figure 2c uses a dedicated
PTP master node connecting to each node via a dedicated link.
Such solution is fitting if a server with a sufficient amount of
ports is available, bringing additional advantages concerning
clock precision. As shown in [8], generally, a higher number
of hops results in a larger clock deviation.

Table I compares the advantages and disadvantages of the
Solutions I, II, and III. Depending on the scenario type

2https://github.com/Avnu/tsn-doc/issues/24, Access 28.11.22
3https://github.com/nxp-archive/openil linuxptp/issues/19, Access 28.11.22

https://github.com/Avnu/tsn-doc/issues/24
https://github.com/nxp-archive/openil_linuxptp/issues/19


N1
    

 
 

 
 

 

Iface

N2
  

 
 

 
 

 

  
PTP Port

Traffic port

(a) Solution I

N4
  

  
N5 

 

 

N6
 

 

N1
 

 

 

 
N2

  

  Iface

PTP Port

Traffic port

 

N3
  

 

(b) Solution II

PTP  
Node Master 

 

  

  N3
 

 

 

 

Iface

PTP Port

Traffic port

 

N4
  

 

N1
 

 

 
N2

  

  

N5
 

 

 

 

N6
 

 

 

 

(c) Solution III

Fig. 2. Solutions I, II, and III showcasing how to overcome the coexistence challenge of PTP and TAPRIO

TABLE I
SOLUTIONS I, II, AND III COMPARISON, ✓- PREFERABLE SOLUTION,◦- FEASIBLE APPROACH WITH SIDE EFFECTS

Solution PTP Precision Number of Connections Processing Overhead

I ✓ ✓ ◦
II ◦ ◦ ✓
III ✓ ◦ ✓

and available hardware, different scenarios are suitable. If the
generated traffic can overload the system, Solution I is not
feasible as both machines are limited by their CPU and RAM
resources. The processing overhead in such a system could
result in artifacts affecting the performance, e.g., increased
delay, jitter, and packet loss. In contrast, the first approach
requires the least wiring and achieves good clock precision
thanks to the single PTP hop. Also, Solution I is less realistic
as various types of topologies are used in real deployments.
Instead, the realism is supported by Solutions II and III. These
allow for load distribution among many nodes for the price of
additional connections, enabling clock synchronization among
multiple nodes. Solution II might be impacted by clock
precision if too many hops are used [8]. Finally, Solution
III improves the synchronization precision by introducing a
central node into the TSN system. Nevertheless, not every
deployment may desire or even can support a dedicated PTP
clock master, more links, and NICs.

For our experiments [3], [4], we used Solution II as it
allows for flexible wiring among the nodes. Further, with the
number of hops we use, this approach is not impacted by the
clock deviation. An alternative solution, absent in detail within
this work, could include dedicated NICs supporting GPS
e.g., Cisco Nexus GM. Nevertheless, this approach requires
additional HW, which is only feasible in some cases.

Based on our analysis, the observed coexistence challenge
between PTP and TAPRIO is most likely caused by the
software component. We make such an assumption since we
investigated the behavior on various aforementioned NICs
with the same outcome. Further, additional investigation using
various kernel versions (5.4 and 5.15 in normal and low-
latency variants) did not yield better results.

IV. EARLIEST-TXTIME FIRST CONFIGURATION

The Intel® I210 NIC used in the EnGINE [4] setup supports
the so-called Launch Time Feature (also called ETF), which
enables packet dequeuing at a TxTime. As a part of the
experiment setup evaluation, we investigated the impact of the
ETF behavior in SW and using the HW offload. For that, we
performed a parameter study of the delta values between
25-300 µs, Figure 3. For the evaluation, a direct connection
between two nodes was used, similar to the Figure 1, with the
configuration of ETF as a child and MQPRIO as a parent
qdisc. The application generating the packets is based on
the udp tai.c4 which can specify the packet’s TxTime. The
experiment ran with Ubuntu 20.04 LTS and kernel version
5.4. The figures show mean values along with 1st and 99th
percentiles for delay and jitter. With the software version of
the qdisc, the delay and jitter behave similarly with minimal
fluctuations caused by the changing delta parameter, as
shown in Figure 3a and Figure 3b respectively. However, using
the offload feature of the NIC shows a constant increase of the
delay with rising delta parameter value. The same holds for
the jitter values, which fluctuate between −10 to 10 µs, being
higher than for the case with no offload.

In contrast, the expected outcome of the HW offload would
be a performance improvement, as the logic and decisions
happen directly on the NIC. However, our results show the
opposite. Therefore, even if the NIC supports such a feature,
it is required to consider its evaluation to see its impact on
the system’s performance. Unfortunately, it is challenging to
find proper documentation that could better explain why we
are observing such behavior. Currently, we assume that the
observed delay increase is caused by how the measurements
are performed. With the software version of the qdisc, the
timestamp is taken after traffic shaping is complete, while
with HW offload, the shaping takes place at the NIC, after
the recording of the timestamp.

V. CREDIT-BASED SHAPER CONFIGURATION

We perform experiments with CBS using a 3-hop line
topology consisting of 4 nodes interconnected using 1Gbit/s

4https://gist.github.com/jeez/bd3afeff081ba64a695008dd8215866f#
file-udp tai-c, Access 25.01.23

https://gist.github.com/jeez/bd3afeff081ba64a695008dd8215866f#file-udp_tai-c
https://gist.github.com/jeez/bd3afeff081ba64a695008dd8215866f#file-udp_tai-c


(a) Delay (b) Jitter
Fig. 3. ETF delta values with and without offload, delay and jitter mean with 1th and 99th-percentiles for various delta values, and packet received and
droprates. Colored area represents the range between 1st and 99th percentiles values. Cf. [4]

N3 N4 
sink

1 Gbit/s 10 Gbit/s

Traffic Direction
EXC1

EXC2

N1 
src N2

I210 X552

Fig. 4. Network topology used in EXC1 and EXC2

(via Intel® I210 NIC) and 10Gbit/s (via Intel® X552 NIC)
links, as shown in Figure 4. Using this topology, we propose
two types of experiments: EXC1 where all three used links
are 1Gbit/s, and EXC2 where links connected to source
and sink are 1Gbit/s and the remaining link between N2
and N3 is 10Gbit/s. On each of the interfaces used in those
experiments, we apply a CBS qdisc appropriately configured
for the expected traffic pattern and link bitrate. Each UDP
flow is assigned a different priority, with traffic going from the
source node N1 to the sink node N4. We consider two of those
flows, F1 and F2, to be time-sensitive and place those on the
highest priorities 3 and 2. Of note, a higher number indicates
higher priority. Both F1 and F2 transmit 1250B packets every
100 µs, resulting in a bitrate of 100Mbit/s. The remaining
flows F3 and F4 are considered best-effort, use priorities 1
and 0, and transmit UDP packets saturating the 1Gbit/s link.

For both types of experiments, we apply the CBS qdisc
for F1 and F2 with the configuration being derived using
Equations (1) to (5). For EXC1, this results in the following
CBS configuration parameters on the 1Gbit/s links with a
guaranteed bitrate of 100Mbit/s for flows F1 and F2.
F1 idleSlopeF1 = 100000, sendSlopeF1 = −900000,

hiCreditF1 = 155, loCreditF1 = −1125
F2 idleSlopeF2 = 100000, sendSlopeF2 = −900000,

hiCreditF2 = 297, loCreditF2 = −1125

Consequently, we derive the configuration for CBS applied
on the 10Gbit/s link used in EXC2. Here, we consider
the actual bitrate supported by the Intel® X552, based on
the pacing settings of the NIC [15]. The CBS configuration
defined for EXC1 is applied on the 1Gbit/s links in EXC2.
F1 idleSlopeF1 = 100000, sendSlopeF1 = −9194196,

hiCreditF1 = 17, loCreditF1 = −1237
F2 idleSlopeF2 = 100000, sendSlopeF2 = −9194196,

hiCreditF2 = 31, loCreditF2 = −1237

Fig. 5. Boxplot of the end-to-end delay observed in EXC1 and EXC2

We then measure the end-to-end delay for each flow in
EXC1 and EXC2. We run the experiments for 2 s with all four
flows being simultaneously active. Figure 5 shows the boxplot
of the end-to-end delay for each flow in both experiments. Of
note, the Y-axis shows end-to-end delay in logarithmic scale,
and the red dashed line indicates the end-to-end target delay of
2ms for high-priority flow F1. In EXC1 we see that the delay
of flows F1 and F2 is consistent throughout the experiment and
does not exceed the target 2ms. Best-effort flows F3 and F4
also observe a similarly low delay, with increased jitter. In
contrast, in experiment EXC2 which uses the 10Gbit/s link
with appropriate CBS configuration, we observe an increased
end-to-end delay for the policed flows, exceeding the target
2ms for flow F1. The delay of best-effort flows is similar to
that observed in EXC1. Such increase in latency for flows
F1 and F2 indicates incorrect cooperation of the CBS qdisc
with the 10Gbit/s NIC, when appropriate CBS configuration
derived based on Equations (1) to (5) is used.

To further assess the CBS configuration on the 10Gbit/s
NICs, we perform a small parameter study, increasing the
guaranteed bitrate for flows F1 and F2 to 101Mbit/s,
102Mbit/s, and 103Mbit/s. The 1Mbit/s increase aims to
show the general trend of the discrepancy between theory
and actual behavior. This change resulted in an increased
idleSlope and consequently decreased sendSlope for the
flows. Similarly to Figure 5, Figure 6 shows a boxplot of
the delay of flows F1 and F2 in EXC2 with the modified
parameters. We observe that with increasing guarantee, the
observed end-to-end delay is decreasing. Furthermore, in the
experiment with the idleSlope set for 103Mbit/s, the latency
for both flows is below the target 2ms.

While we are still determining the exact reason for the



Fig. 6. Boxplot of the end-to-end delay observed in EXC2 parameter study

increased delay observed in EXC2, we consider it to be a
result of a misconfiguration due to missing information on
the X552 NIC. With the increasing guarantees, we observe
that the delay decreases, indicating a disparity between the
expected bitrate and the actual PHY layer bitrate observed at
the NIC. This could be a result of missing information on the
interaction between the PHY layer and Linux CBS qdisc. One
of the possible reasons for this mismatch could be the system
configuration of the NIC considered in this work. The X552
NIC utilized in this work uses packet pacing to operate at a
slightly lower speed than the 10Gbit/s. Pacing is achieved
by padding packets with additional bytes. It is unclear how
much changing of the packet size influences the operation of
the CBS qdisc and its interaction with the NIC.

VI. DISCUSSION

Using COTS HW and open-source SW comes with certain
challenges. As identified in this work, we focused on the
results of TSN standards on the Linux and NIC that support
TSN. The L1 covered the aspect of PTP and TAPRIO co-
existence challenge, for which we presented possible solutions
and their pros and cons. Next, we assessed the HW offloading
capabilities that, to our surprise, impacted the performance
as a part of the L2. Finally, even though the CBS standard
defines how to compute its configuration parameters, certain
NICs come with their own features for which the computation
does not hold. As a part of the L3, we outlined the possible
impact on the performance and how to assess such behavior.
Nevertheless, finding a suitable countermeasure is challenging,
even though it is easy to spot.

TSN standards require precise configuration and rely on
other solutions to offer certain behavior, e.g., PTP. Unfortu-
nately, as shown in this work, the system and hardware do not
always bring the expected outcomes. Using our findings, we
want to motivate the proper testing and investigation of various
TSN deployments with respect to latency, jitter, and packet
loss. The ETF and TAPRIO have strictly system-dependent
parameters that must be tested, e.g., txtime-delay and
delta values. Similarly, the CBS requires taking all NIC
features into consideration when configuring the parameters.
Additional testing and a larger community could help with
evaluating various NICs and creating performance profiles
based on the observed behavior.

Another approach to enhance the understanding of
hardware-software interactions could involve a digital twin of
the system to obtain a better baseline of expected results. This

baseline could enable the identification of artifacts induced by
the system itself or the TSN specification. Such a tool could be
implemented using a simulation environment. Results modeled
in this way, with all drawbacks of simulations, could help bet-
ter understand the complex interactions between components
of a TSN system. The digital twin could also further support
the thorough benchmarking required with the increasingly
complex specifications observed in these networks.

ACKNOWLEDGMENT

This work has been supported by the Algorand Cen-
tres of Excellence (ACE) Programme (https://www.algorand.
foundation/ace) and Federal Ministry of Education and Re-
search of Germany (BMBF) project 6G-Life (16KISK002).
We thank the reviewers and colleagues for their comments.

REFERENCES

[1] W. Zeng, M. A. S. Khalid, and S. Chowdhury, “In-Vehicle Networks
Outlook: Achievements and Challenges,” IEEE Communications Surveys
& Tutorials, vol. 18, no. 3, pp. 1552–1571, 2016.

[2] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin,
“Intra-Vehicle Networks: A Review,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 2, pp. 534–545, 2015.

[3] F. Rezabek, M. Bosk, T. Paul, K. Holzinger, S. Gallenmüller, A. Gon-
zalez, A. Kane, F. Fons, Z. Haigang, G. Carle, and J. Ott, “Engine:
Flexible research infrastructure for reliable and scalable time sensitive
networks,” Journal of Network and Systems Management, vol. 30, no. 4,
p. 74, 2022.

[4] M. Bosk, F. Rezabek, K. Holzinger, A. G. Marino, A. A. Kane, F. Fons,
J. Ott, and G. Carle, “Methodology and infrastructure for tsn-based
reproducible network experiments,” IEEE Access, vol. 10, pp. 109 203–
109 239, 2022.

[5] “ISO/IEC/IEEE International Standard - Information technology –
Telecommunications and Information Exchange between Systems –
Local and Metropolitan Area Networks – Specific Requirements – Part
1BA: Audio video bridging (AVB) Systems,” ISO/IEC/IEEE 8802-1BA
First edition 2016-10-15, pp. 1–52, 2016.

[6] “IEEE Standard for a Transport Protocol for Time-Sensitive Applications
in Bridged Local Area Networks,” IEEE Std 1722-2016 (Revision of
IEEE Std 1722-2011), pp. 1–233, 2016.

[7] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-2019,
pp. 1–499, 2020.

[8] F. Rezabek, M. Helm, T. Leonhardt, and G. Carle, “PTP Security
Measures and their Impact on Synchronization Accuracy,” in 18th
International Conference on Network and Service Management (CNSM
2022), Thessaloniki, Greece, Nov. 2022.

[9] “IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications,” IEEE Std 802.1AS-
2020, pp. 1–421, 2020.

[10] R. Cochran, “linuxptp,” Last accessed on 2022-11-26. [Online].
Available: https://sourceforge.net/projects/linuxptp/

[11] “IEEE Standard for Local and Metropolitan Area Networks – Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” pp. 1–57, 2016.

[12] I. S. Association et al., “IEEE Standard for Local and Metropolitan Area
Networks—Bridges and Bridged Networks—Amendment 25: Enhance-
ments for Scheduled Traffic,” Amendment to IEEE Std, vol. 802, pp.
1–57, 2016.

[13] “TAPRIO(8),” Last accessed on 2022-11-26. [Online]. Available:
https://man7.org/linux/man-pages/man8/tc-taprio.8.html

[14] “IEEE Standard for Local and Metropolitan Area Network–Bridges and
Bridged Networks,” IEEE Std 802.1Q-2018, pp. 1–1993, 2018.

[15] “Datasheet - Volume 4 of 4: Intel Xeon Processor D-1500
Product Family LAN Controller,” Intel Xeon Processor D-
1500 Product Family, Nov. 2018, Last accessed on 2022-11-26.
[Online]. Available: https://www.intel.com/content/dam/www/public/us/
en/documents/datasheets/xeon-d-1500-datasheet-vol-4.pdf

https://www.algorand.foundation/ace
https://www.algorand.foundation/ace
https://sourceforge.net/projects/linuxptp/
https://man7.org/linux/man-pages/man8/tc-taprio.8.html
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-d-1500-datasheet-vol-4.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-d-1500-datasheet-vol-4.pdf

	Introduction
	Background
	Precision Time Protocol
	Time-Aware Priority Shaper
	Earliest-TxTime First
	Credit-Based Shaper

	Precision Time Protocol Synchronization and Co-existence with TAPRIO
	Earliest-TxTime First Configuration
	Credit-Based Shaper Configuration
	Discussion
	References

