
EnGINE: Developing a Flexible Research
Infrastructure for Reliable and Scalable

Intra-Vehicular TSN Networks
Filip Rezabek1, Marcin Bosk1, Thomas Paul1, Kilian Holzinger1, Sebastian Gallenmüller1,

Angela Gonzalez2, Abdoul Kane2, Francesc Fons2, Zhang Haigang2, Georg Carle1, and Jörg Ott1

1Department of Informatics, Technical University of Munich, Germany
2Huawei Technologies Düsseldorf GmbH, Germany

1{rezabek | bosk | paulth | holzingk | gallenmu | carle | ott}@in.tum.de,
2{angela.gonzalez.marino | abdoul.aziz.kane | francesc.fons | zhanghaigang}@huawei.com

Abstract—Driver assistance, self-driving, and multimedia sys-
tems have two common implications: increasing demand on
network bandwidth and the need for more powerful computation
nodes. As a result, intra-vehicular networks (IVNs) change their
layout. They are built around central nodes connected to the
rest of the vehicle via Ethernet. The usage of Ethernet presents
a challenge, as it lacks support for deterministic behavior by
design. The solution is found within the IEEE Time-Sensitive
Networking (TSN) standards, introducing real-time, low-latency,
and deterministic communication into the Ethernet ecosystem.

These new networked systems need to be thoroughly evaluated
with IVN requirements in mind. To assess numerous config-
urations of IVN setups, in this work, we introduce a novel
Environment for Generic In-vehicular Networking Experiments
— EnGINE. It allows, among many others, repeatable, repro-
ducible, and replicable TSN experiments with high precision
and flexibility, which is not possible to run using proprietary
solutions. EnGINE is based exclusively on commercial off-the-
shelf components and is orchestrated by a flexible Ansible
framework. This approach allows us to configure various topolo-
gies emulating realistic IVNs behavior, which is challenging
using simulations. Based on available related work, we further
address the challenges found in the IVNs. We derive additional
requirements for experiments in the TSN domain and present our
approach to fulfill them in an experimental setting. We believe
that EnGINE provides the ideal environment for TSN network
experiments.

I. INTRODUCTION

Autonomous driving, new connectivity services, over-the-
air upgrades, shared mobility: These are just a few recent
trends in the automotive industry. A common factor enabling
these technologies is a secure, fast, and reliable intra-vehicular
network (IVN). Indeed, we are now seeing more and more
Ethernet-based solutions aiming to fulfill these requirements.
Although Ethernet does not, by design, offer deterministic
behavior, the Time-Sensitive Networking (TSN) family of
standards provides real-time guarantees to Ethernet [13].

Performance and capabilities of TSN have been a research
subject in recent years with most being conducted in sim-
ulation environments. Simulations have multiple advantages,
such as a fast development cycle, ease to reproduce and

configure, and high flexibility. However, they often show far
from realistic traffic behavior as real deployments artifacts
are omitted, e.g., clock deviation. Therefore, we introduce a
solution that combines simulations’ advantages while deployed
on a physical topology containing machines emulating zonal
gateways (ZGWs) and vehicle control computers (VCCs). This
solution aims to evaluate new generations of IVNs, study the
impact of growing data volume on application and network
performance, and determine suitable network component dis-
tribution and interconnections in an automated manner.

Our solution forms an Environment for Generic In-
vehicular Network Experiments, shortly EnGINE. The frame-
work relies on the Linux networking stack offering vari-
ous configurations for queuing disciplines and TSN capa-
ble commercial off-the-shelf (COTS) network interface cards
(NICs). In EnGINE we initially focus on 802.1Qav [17],
802.1Qbv [16], and 802.1AS [19] standards with potential for
extension and inclusion of higher-layer TSN capabilities.

To manage the infrastructure, we use an orchestration tool
built in Ansible [1]. It brings flexibility to network and data
sources configuration. Moreover, we monitor and record events
for further evaluation or traffic re-play in the network to iden-
tify architecture limits. The experiments run without human
interaction, can be reproduced, and are easily configured. As
reliability is another essential characteristic of the automotive
networks, with EnGINE, we can inject various malfunctions
to test packet loss and link failures.

The metrics we assess and the data traffic patterns follow the
recommendations presented by the AVNU Alliance for the in-
dividual stream reservation (SR) classes. AVNU Alliance aims
to create an ecosystem servicing the precise timing and low
latency requirements for automotive and other diverse appli-
cations using open standards. It introduces stream reservation
classes and their prioritization [27]. The used TSN standards
follow the recommendation of IEEE P802.1DG TSN Profile
for Automotive In-Vehicle Ethernet Communications [28].

This paper presents our approach to building a configurable
and flexible infrastructure that fulfills unique IVN require-

ments. We define requirements for an IVN testbed and describe
the means to achieve them, including the toolchain to execute
network experiments. Furthermore, we present our main tools
and software for conducting various network experiments to
achieve deterministic behavior using Ethernet. Finally, we
introduce use-cases that can be tested and show a sample
configuration of EnGINE.

II. BACKGROUND & RELATED WORK

As introduced in [37, 41], future IVNs have to deal with
larger transferred data volume due to focus on advanced
driver-assistance systems (ADAS) and multi-media functions
in the vehicles. An example of the throughput required for
these systems is shown in [12]. Manufacturers cope with
those challenges by shifting to Ethernet, which is inexpensive
and well understood from classical IT and telecommunication
systems. This brings an advantage during development, as
classical applications can be easily ported to the intra-vehicle
domain. Unfortunately, by design, Ethernet is not suitable for
vehicles as IVNs have strong requirements for real-time per-
formance and guarantees. Therefore, two prominent solutions,
IEEE Audio-Video Bridging (AVB) [18], now known as the
TSN working group [13], and TTEthernet [3], are proposed
introducing deterministic behavior to Ethernet.

In recent years, we see various activities in this domain
focused on the evaluation of individual standards on com-
modity or proprietary hardware [8, 30], modeling of TSN
standards [6, 42, 40, 35, 26], and simulations [20, 22, 11,
25]. Unfortunately, many publications evaluating performance
on physical devices rely on custom hardware [8] or use simple
setups containing only a few nodes [30]. On the other hand,
simulations introduce setups with a large number of nodes
and data flows, as shown in [25], which uses Real-Time at
Work (RTaW) Pegase commercial solution [31]. Similarly,
an open-source simulator OMNeT++ [39] is used in other
works [20, 22, 23] where two significant plugins offering TSN
are considered, Core4Inet [33] and NeSTiNg [7].

Finally, we start to see a paradigm shift in IVNs where
configuration and logic decisions are no longer handled on
individual nodes but rely on a central controller leading
towards Software-Defined Networks [4, 10]. The central con-
troller can be essential for real-time reconfiguration of the
network, offering higher system reliability. To satisfy real-time
guarantees, the system has to reconfigure in less than 100ms
or even 50ms, which might not be possible with traditional
link-layer protocols [21, 38].

A. TSN standards

To achieve the desired latency, we utilize Linux implemen-
tations of synchronous TSN standards. We focus on 802.1Qav
and 802.1Qbv standards as considered in the P802.1DG
TSN Profile for Automotive In-Vehicle Ethernet Communi-
cations [28]. 802.1Qbv is enabled by the Precision Time
Protocol (PTP). In the following, we give an overview of these
standards and introduce their basic functionality.

802.1Qbv [16] Traffic Scheduling, also known as Traffic
Priority (TAPRIO). A part of the 802.1Q-2018 [15] standard as
“Enhancements for scheduled traffic”. It provides support for
synchronized scheduling of multiple traffic classes on a single
interface. The traffic flow is controlled by gates that operate
according to a cycle determined by the system configuration.

802.1Qav [17] Traffic Scheduling. A part of the 802.1Q-
2018 [15] standard as “Credit-based shaper” (CBS) algorithm.
It protects allocated bandwidth for each allocated SR class us-
ing a scheduling system based on credits, where transmission
is allowed only when the collected credit is ≥ 0.

IEEE 1588 [14] standard introduces PTP for precise time
synchronization in any networked system. Clocks are syn-
chronized via PTP instances which are running on each
participating device. The devices are organized in a master-
slave hierarchy. A slave synchronizes its clock with a master
by exchanging messages over the network. At the top of this
hierarchy sits a grandmaster (GM) clock, which determines
the reference time for the whole system.

802.1AS [19] standard uses methods defined in IEEE 1588
and applies these to the concept of Time-Sensitive Networking
in the form of a generic Precision Time Protocol (gPTP). Its
main difference to the PTP protocol is that the messages are
only exchanged at layer 2 (using IEEE 802.1 MAC).

III. ANALYSIS

In many cases, an independent reproduction and verification
of results is not an easy task. Even though ACM Policy con-
siders reproducibility as a three-stage process [2], its adoption
is still in the early stages. Reproducible research in the domain
of computer networking has been a continuous activity [5, 9,
32]. Thus, we decide to continue this approach when building
EnGINE. As currently there is no easy way to verify results
within the scope of IVN, we define EnGINE with a focus
on IVN. Nevertheless, we believe the functionality can be
extended for any real-time sensitive domains.

To achieve this, we identify a set of requirements R which
the framework should fulfill in order to handle various exper-
iments relevant in the TSN domain:
R1 Repeatability – experiments can be easily repeated using

the same setup by our group [2]
R2 Reproducibility – experiments can be easily reproduced

by our group and external parties using the same setup [2]
R3 Replicability – experiments can be easily reproduced

by our group and external parties using different setup
offering same capabilities [2]

R4 Configurability – choice of experiments and their pa-
rameters can be easily configured

R5 Autonomy – experiments run without human interaction
R6 Interpretability – generated artifacts can be analyzed and

explained
R7 Realism – works with real-world traffic patterns
R8 Scalability – the network can handle large amount of

traffic and various number of nodes
R9 Reliability – the system can handle HW malfunctions

R10 Diversity – handles a variety of input data formats

R11 Affordability/Accessibility – the framework does not
rely on proprietary solutions which might be less acces-
sible/affordable to other groups

R12 Openness – framework is built using open-source and
easily accessible solutions

R13 Updateability/Upgradeability – the components of in-
frastructure can be easily updated or upgraded to satisfy
new requirements

Requirements R1-R3 cover the focus on TSN infrastructure.
R4-R6 are relevant from the usability and experiment prepa-
ration perspectives. This covers experiment configuration, de-
scription, and autonomous execution, as well as interpretation
the collected artifacts, such as packet captures or logs.

Based on the overview of IVNs, we derive requirements
R7-R10. R7 focuses on realistic representation of data traffic
patterns present in IVNs due to the large scale of available
data sources. Traffic patterns directly affect the network per-
formance and are crucial for the proper configuration of TSN.
In [12], we can see an overview of such traffic streams and
various data sources which motivates R10. Similarly, R8 aims
to cover the use-cases based on the type of vehicle and man-
ufacturer. The IVN joins several ZGWs, gateway controllers,
and VCCs that are interconnected in various topologies. Also,
the number of sensors varies, resulting in a wide range of data
traffic volumes. In the domain of IVN which offers real-time
guarantees, R9 shall offer capabilities to emulate malfunctions
on various levels in the infrastructure in order to deliver low
Failure In Time rates.

R11 - R13 address the fact, that a lot of research is done
on proprietary solutions. That makes it challenging for other
teams to work with and achieve ACM policy recommenda-
tions [2]. Similarly, proprietary solutions make upgrades to
the latest technologies financially demanding.

We also identify additional requirements which were not
selected as the primary focus. Current IVNs are heterogeneous
as they contain various network technologies, such as CAN,
LIN, MOST, FlexRay, and Ethernet. We did not consider
other technologies and focus purely on Ethernet, which is a
backbone of modern IVNs. Other solutions might be present
in other parts of the network. These solutions may be inter-
connected via a gateway, which can translate to Ethernet [10].

We analyze available HW and SW components, manage-
ment tools, and network control mechanisms considering the
defined requirements. Details on the developed infrastructure
and its design are provided in the following section.

IV. DESIGN

EnGINE aims to provide an all-in-one solution for repro-
ducible experimentation of in-vehicular networks. Based on
the analysis performed in Section III, the final implementation
of the architecture has to fulfill the set of requirements R.

As shown in Fig. 1, an experiment within the EnGINE
framework consists of three elements: the input, which defines
the traffic type and scenario under which the network is tested;
the System Under Test (SUT), including all networked in-
frastructure used in an experiment. The network structure can

Management Host Data Repository

Network
Topology

Network
Protocols

Placement and
Scheduling
Strategies

Test
Scenario

Physical
Sensor

Recorded
Sensor Data

System Under TestInput Output

Physical
Actuators

 or Indicators

Artefacts
Recording

Other devicesZGWs

Switches

VCCs

Network
Nodes

Figure 1: Overview of experiment components

Table I: Hardware used for VCCs and ZGWs with details of
supported TSN standards by NICs.

High Performance VCC Low Performance ZGW

CPU 4C/8T Intel Xeon D-1518 4C/8T Intel Xeon E3-1265L V2
RAM 128 GB of DDR4 Memory 16 GB of DDR3 Memory

6× 1 GbE Intel I210† 4× 1 GbE Intel I210†

NIC 4× 1 GbE Intel I350‡ or
2× 10 GbE Intel X552 1× 2.5 GbE Intel I225†

†802.1Qav, Qbv, AS, ‡802.1AS

be configured for different topologies using various network
protocols and scheduling strategies. Finally, the experiments
result in an output which may be physical actuation or
creation of artifacts recorded within the SUT.

A. Architecture

We base EnGINE on COTS hardware. It comprises twelve
ZGWs and three VCCs. The hardware configuration of each
type is shown in Tab. I. Using this approach, we satisfy
requirements R11 and R12 and to an extent also the R3,
as other teams can replicate similar scenarios using easily
accessible solutions.

We select Intel® I210, I350, and I225 NICs for their support
of various TSN standards, as shown in Tab. I. However, to
cope with the always increasing throughput requirement, we
also use Intel® X552, which is a 10GbE NIC without addi-
tional TSN support. Nevertheless, it can be used to evaluate
the impact of a single non-TSN hop with remaining hops
supporting at least some TSN standards.

The VCCs and ZGWs are interconnected using the network
adapters mentioned in Tab. I. The network is structured in a
way that allows for the testing of various in-vehicular system
configurations. This enables the infrastructure to support vari-
ous network complexities that can be found in different vehicle
classes. As an example, we are able to configure networks
using 3, 4, or 6 machines placed in a ring structure as presented
in Figs. 2a to 2c respectively. With each node being equivalent
to a zonal gateway (ZGW), these correspond to networks
found in low-, mid-, and high-end vehicles [41]. Shown config-
urations can be considered a part of the same vehicle platform
as well. This configuration flexibility and additional availabil-
ity of higher-bandwidth 2.5Gbit/s and 10Gbit/s connections

ZGW 3
41

2 3

ZGW 2
3

412

ZGW 1
2 3

41

ZGW 6
2

4 13

ZGW 5
2 1

3 4

ZGW 4
2

41

3

(a) Low-End with 3 ZGW

ZGW 3
41

2 3

ZGW 2
3

412

ZGW 1
2 3

41

ZGW 6
2

4 13

ZGW 5
2 1

3 4

ZGW 4
2

41

3

(b) Mid-End with 4 ZGW

ZGW 3
41

2 3

ZGW 2
3

412

ZGW 1
2 3

41

ZGW 6
2

4 13

ZGW 5
2 1

3 4

ZGW 4
2

41

3

(c) High-End with 6 ZGW

Figure 2: Sample configurations for various IVN complexities. Red lines show links used in the respective configurations.

Management Host

Node 1 Node 15...

3

1 44

22

5

1

Figure 3: Communication workflow

1.
Install

2.
Setup

3.
Scenario

4.
Process

(a) Campaign phases

1.
Network

2.
Stack

3.
Actions

4.
Start + Stop

5.
Process

6.
Collect

7.
Cleanup

Setup Post-Processing

Experiments

(b) Individual experiment steps

Figure 4: Experiment campaign overview

satisfies requirement R8. Besides, AVNU alliance recommends
for stream reservation classes and their corresponding metrics
various topologies containing up to 7 hops [27], which are
also possible within the infrastructure.

B. Configuration and Management

To manage and configure the infrastructure, we build a
custom tool using Ansible [1], an open-source configuration
management software. Ansible is a descriptive language based
on YAML and Jinja templates and is idempotent. It uses
playbooks written in YAML files to express configurations
and mapping of hosts to a set of roles. The management node
runs individual playbooks, connects over SSH to experiment
nodes, and executes individual playbook tasks. Fig. 3 shows
a typical communication, where 1© the management host
remotely executes commands on a node. Then 2© the node
runs this code and 3© interacts with other nodes. Afterwards,
the nodes 4© store the collected artifacts on the management
host, which 5© processes the collected artifacts.

Each experiment campaign is divided into four phases:
install, setup, scenario, and process as shown in Fig. 4a. In
the install phase, the nodes required for the campaign are allo-

cated and booted with the operating system of preference. For
this step, we utilize the plain orchestration service (pos) [9].

Once the nodes are booted, the execution continues with
setup. During this phase, the required prerequisites and pack-
ages are installed or copied from the management host. With
all dependencies prepared, the nodes are ready to host individ-
ual experiment runs. In case a new version of a dependency
package is released, the changes will be automatically applied
on the test system to satisfy R13.

In the third phase, scenario, the individual experiments are
conducted. Each experiment has to go through seven steps as
described in Fig. 4b. First, the network topology is configured.
The configuration is defined using a path between source
and sink with individual hops and links along the way. An
example of topology can be seen in Fig. 2. The paths are
placed on the network using Open vSwitch [29] and the priority
of individual traffic is determined by the priority tag in the
VLAN header. Each hop is set to forward the data towards
its destination. Similarly, the ports can be configured with a
(TSN) traffic shaper of preference using Linux queuing dis-
ciplines configuration tool called traffic control (tc). To note,
we have granular control over the configuration of the ports
and can configure each individually. Besides, each node has its
own physical hardware clock, which is reflected in the PTP
configuration using linuxptp [34]. Next, so-called stacks are
instantiated on each node. A stack defines applications used
during the individual experiment, such as traffic generator,
packet captures, and others. To introduce dynamic behavior
to the experiment, in step three, we may define additional
actions. These can include, for example, switching off a
link or introducing an additional traffic path and thus satisfy
requirement R9. Finally, the experiment is started and then
stopped after a configured timeout. After each experiment,
the generated artifacts are processed on the individual node,
collected to the management host, and then cleaned up from
the network nodes. To decrease the experiment execution time,
the nodes do not have to be restarted and go through install
and setup before the following experiment is executed.

Finally, after all experiments are successfully finished, the
final post-processing phase starts. Post-processing can be
done either on individual or selected experiments at once to
understand the results better.

With the described approach, we are able to fulfill all goals

set for EnGINE. We enforce a fixed configuration structure,
which enables easy repetition of scenarios, thus satisfy the
requirements R1 and R2. Similarly, we have broad options
of configuration of various network topologies and TSN
parameters, applications stacks, and actions to evaluate the
TSN behavior which satisfies the requirement R4. Besides,
the individual scenarios, once properly configured, can run
fully autonomously and at the end generate figures which
provide insights into the experiment results satisfying both
requirements R5 and R6.

The remaining requirements focus on specifics of IVNs and
traffic present in them. To satisfy requirements R7 and R10

we use freely available datasets used for autonomous driving
applications [12, 24] or synthetic data corresponding to traffic
patterns [43, 31, 21]. With this approach, we can emulate
various traffic patterns present in the vehicular networks
and correspond to data sources available in the market. The
corresponding traffic patterns can be generated using traffic
generators such as Iperf3, send_udp [36], or MoonGen [9]. The
precision of generated traffic is limited by the CPU processing,
as well as the Linux scheduler. We mitigate these limitations
using CPU isolation and affinity. The data generated can be
stored in the form of a packet capture using tcpdump for
evaluation or even future replay. Since the used NICs support
the 802.1AS standard, we can achieve high accuracy and
precision of packet timestamps using HW timestamping.

V. CAPABILITIES & LIMITATIONS

EnGINE supports experiments ranging from small deploy-
ments of just two nodes and a single traffic flow, up to thirteen
nodes and flow scenarios. We introduce a selection of the
use-cases to show the configuration and capabilities of our
framework. These evaluations are performed in a network of
interconnected VCCs and ZGWs as shown in Fig. 5. The
use-case we cover in detail comprises a single data flow, e.g.
LIDAR, with a path over a single hop to a VCC as a sink. To
investigate this use-case, we define an experiment campaign
using a configuration of five individual YAML files (00-nodes,
01-network, 02-stacks, 03-actions, 04-experiments).

Starting with 00-nodes.yml, Lis. 1, we define the nodes and
their mappings used during the campaign. In Fig. 5 we show
how this use-case node configuration maps to the full topology
of the EnGINE. The remaining nodes can be used for other
experiment campaigns in parallel.

Listing 1: 00-nodes.yml sample node mappings

nodes :
− zgw5 # Source as shown in Fig. 5
− zgw4 # Hop as shown in Fig. 5
− vcc1 # Sink as shown in Fig. 5

node_mapping:
node−1: zgw5
node−2: zgw4
node−3: vcc1

The defined nodes are used in the install phase to boot
them with a predefined operating system. Before proceeding

to setup, we need to specify network flows and TSN con-
figuration in 01-network.yml, Lis. 2. We identified a configu-
ration abstraction to have sufficient control over Linux ETF,
TAPRIO, and CBS qdisc setup as well as individual HW
queues of the NIC with corresponding traffic class priorities.
Similarly, we can define on which nodes, or nodes’ specific
ports, a given TSN configuration is applied. In the setup
phase, also PTP is configured on all network ports specified
in the corresponding configuration file. After roughly 180 s
(depending on the HW performance), the nodes are ready to
start with the preparation of individual applications.

Listing 2: 01-network.yml sample network configuration

network:

net−1:
t s n :

tsn−1: ["node-1"]
tsn−2: ["node-2:3"]

f l o w s :
1: ":node-1:4,1:node-2:"
2: ":node-1:4,1:node-2:3,4:node-3:"

t s n c o n f i g s :
tsn−1:

name: ETF S t r i c t and D e a d l i n e mode
t a p r i o : {}
queues :

1: { mode: e t f , p r i o : [3] , d e l t a : 500000 ,
o f f l o a d : yes }

2: { mode: e t f , p r i o : [2] , d e l t a : 500000 ,
o f f l o a d : yes , d e a d l i n e : yes }

3: { mode: be , p r i o : ['*'] }
tsn−2:

. . .

We define the applications used in a given experiment
in 02-stacks.yml, Lis. 3. Dependencies between applications,
e.g., server-client, are incorporated by starting applications
in sequence according to a specified level. The lower level
indicates the earlier start of the application. The configuration
parameters reflect the arguments with which the applications
can be started. We can specify how much data is transmitted
over the network. Traffic volume also determines the run-
time of the experiment. Finally, to know where data shall be
sent, we specify the flow number, which corresponds to the
flow number in 01-network.yml and is internally matched to
a physical port of a respective node. Individual applications
can terminate either after a timeout or upon completion. To
successfully complete an experiment, all applications must
terminate gracefully. For completeness, 03-actions.yml serves
for definition of actions in the system, i.e., network interrupts
but is not part of the given use-case.

Listing 3: 02-stacks.yml sample stack configuration

s t a c k s :

s tack−1:
name: UDP one way measurements BE−BE
s e r v i c e s :

node−1:
− { name: send_udp , l e v e l : 1 , s i g n a l : yes ,

f low: 2 }
node−3:
− { name: tcpdump , l e v e l : 0 , f low: 2 ,

num_packets : 10000 }

ZGW 8
3

24

1

ZGW 9
2

34

1

1Gbit/s

10Gbit/s

2.5Gbit/sZGW 11 1

ZGW 10
1

23

4

ZGW 7
2

41

3

ZGW 3
41

2 3

ZGW 2
3

412

ZGW 1
2 3

41

ZGW 6
2

4 13

ZGW 5
2 1

3 4

ZGW 4
2

41

3

VCC 2

2 31

6

5

4

9

10

7

8

11 12

VCC 3

2 3

5

12

6

11

4

10

7

8

9 1

i350

i210

i225

x552
ZGW 121

VCC 1
1

2
3

5

6 9 1087

12
114

Figure 5: EnGINE network overview with connections for presented use-case marked in red

p r o t o c o l s : {}
s tack−2:

. . .

The main logic is contained in 04-experiments.yml, Lis. 4,
where configuration information from the other files is refer-
enced to describe individual experiments. All entries are exe-
cuted in sequential order. Before a new experiment starts, the
old network configuration is flushed and previous processes
killed to avoid disruptions of the next experiment run.

Listing 4: 04-experiment.yml sample experiment configuration

exper iments :
− { network: 'net-1' , s t a c k : 'stack-1' , a c t i o n :

'action-1' , s i g n a l : yes , t i m e o u t : 120 ,
name: '1-hop_lidar-etf' }

. . .

After an experiment is successfully completed, the post-
processing phase starts with processing results on the node
before it is copied onto the management host. The duration of
this phase can take seconds in case of a low transferred traffic
volume during an experiment or minutes/hours if large data
sets need to be processed. We ensure the precision of collected
data by using the NICs’ hardware timestamping capabilities.

Other use-cases we can investigate using EnGINE are
topologies with more than seven hops, various traffic patterns
matching real data sources, or network reliability. To asses
how the system behaves in case of malfunctions, we use the
03-actions.yml introducing pre-defined failures to the system.

Even though we focus on IVNs, we identified few shortcom-
ings of our approach. EnGINE focuses purely on Ethernet-
based solutions with the support of different bandwidths by
NICs. However, networks in current vehicles are heteroge-
neous and support numerous bus technologies such as CAN,
LIN, and FlexRay. Neverheless, we see a shift to the zonal
architecture in vehicles. All data connected to the backbone
relies on gateways that can translate from various bus systems
to Ethernet. With technologies such as 10Base-T1S, Ethernet
might become the dominant technology in other parts of intra-
vehicular networks. Similarly, we do not use specific auto-

motive software and hardware but rather a Linux distribution
and COTS due to R2 and R11-R13, which would be hard to
fulfill with custom solutions. Besides, Linux with the proper
configuration we use in our approach provides deterministic
behavior and fulfills metrics defined in AVNU SR classes.

Furthermore, there are many TSN standards that our infras-
tructure does not offer. Some are not yet available in Linux
or are not integrated into the infrastructure, i.e., AVTP and
802.1AS-Rev. The first mention might be challenging as the
open-source community might choose a different focus instead
of implementing a specific standard. However, once available,
they are easy to integrate into our infrastructure. Not every
standard is of relevance in our scope of work.

VI. CONCLUSION & FUTURE WORK

We introduce a solution to repeatable, reproducible, and
replicable TSN experiments with a focus on intra-vehicular
networks by using COTS hardware and open-source solutions
called EnGINE. It supports various TSN standards as rec-
ommended by P.802.1DG TSN Profile [28]. The framework
comes with some challenges regarding the open-source nature
of EnGINE. Linux kernel and software artifacts come with in-
herited complexity which we overcome in the implementation
phase to ensure real-time performance.

In the future, we aim to integrate various realistic data
sources into the infrastructure. To the best of our knowledge,
there are currently no available data sources, which focus
on the traffic patterns of intra-vehicular networks. Next, even
though we introduce a set of supported TSN standards, we
want to extend the number of supported standards, e.g.,
with 802.1AS-Rev, or 802.1Qbr. We also want to extend our
experiments and include link failures in order to investigate
system reconfiguration times. Furthermore, the current focus
is mostly on layer two functionality. In the following, we want
to evaluate solutions on layers three and above to see how they
affect performance and can be combined with deterministic
guarantees provided by layer two. Finally, since EnGINE is
still evolving, we aim to perform an in-depth evaluation of
the framework while working on the items mentioned above.

REFERENCES

[1] Ansible is Simple IT Automation. https://www.ansible.com.
[2] Artifact Review and Badging - Current. https://www.acm.org/

publications/policies/artifact-review-and-badging-current.
[3] AS-2D2 Deterministic Ethernet and Unified Networking.

Time-Triggered Ethernet. Warrendale, PA, United States.
[4] M. Böhm et al. “Time-Sensitive Software-Defined Network-

ing: A Unified Control-Plane for TSN and SDN”. In: 2019.
[5] G. Carle. Workshop on Models, Methods and Tools for Re-

producible Network Research - Wrap-up. 2003.
[6] F. Dürr and N. G. Nayak. “No-wait Packet Scheduling for

IEEE Time-sensitive Networks (TSN)”. In: Proceedings of
the 24th International Conference on Real-Time Networks and
Systems. New York, Oct. 2016, pp. 203–212.

[7] J. Falk et al. “NeSTiNg: Simulating IEEE Time-sensitive
Networking (TSN) in OMNeT++”. In: 2019 International
Conference on Networked Systems (NetSys). Mar. 2019.

[8] M. H. Farzaneh and A. Knoll. “Time-sensitive networking
(TSN): An experimental setup”. In: 2017 IEEE Vehicular
Networking Conference. IEEE, 112017, pp. 23–26.

[9] S. Gallenmüller et al. “High-performance packet processing
and measurements”. In: 2018 10th International Conference
on Communication Systems Networks. 2018, pp. 1–8.

[10] M. Haeberle et al. “Softwarization of Automotive E/E Ar-
chitectures: A Software-Defined Networking Approach”. In:
2020 IEEE Vehicular Networking Conference. 2020, pp. 1–8.

[11] D. Hellmanns et al. “On the Performance of Stream-based,
Class-based Time-aware Shaping and Frame Preemption in
TSN”. In: 2020 IEEE International Conference on Industrial
Technology. Piscataway, NJ: IEEE, 2020, pp. 298–303.

[12] X. Huang et al. “The ApolloScape Open Dataset for Au-
tonomous Driving and its Application”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2020),
pp. 2702–2719.

[13] IEEE 802.1 Time-Sensitive Networking Task Group. https://
www.ieee802.org/1/pages/tsn.html.

[14] “IEEE Standard for a Precision Clock Synchronization Pro-
tocol for Networked Measurement and Control Systems”. In:
IEEE Std 1588-2019 (2020), pp. 1–499.

[15] “IEEE Standard for Local and Metropolitan Area Network–
Bridges and Bridged Networks”. In: IEEE Std 802.1Q-2018
(2018), pp. 1–1993.

[16] “IEEE Standard for Local and metropolitan area networks –
Bridges and Bridged Networks - Amendment 25: Enhance-
ments for Scheduled Traffic”. In: (2016), pp. 1–57.

[17] “IEEE Standard for Local and Metropolitan Area Networks
- Virtual Bridged Local Area Networks Amendment 12:
Forwarding and Queuing Enhancements for Time-Sensitive
Streams”. In: (2010), pp. C1–72.

[18] IEEE Standard for Local and metropolitan area networks–
Audio Video Bridging (AVB) Systems. Piscataway, NJ, USA.

[19] “IEEE Standard for Local and Metropolitan Area Networks–
Timing and Synchronization for Time-Sensitive Applica-
tions”. In: IEEE Std 802.1AS-2020 (2020), pp. 1–421.

[20] H.-J. Kim et al. “Development of an Ethernet-Based Heuristic
Time-Sensitive Networking Scheduling Algorithm for Real-
Time In-Vehicle Data Transmission”. In: Electronics (2021).

[21] A. Kostrzewa and R. Ernst. “Fast Failover in Ethernet-Based
Automotive Networks”. In: 2020 IEEE 23rd International
Symposium on Real-Time Distributed Computing (ISORC).
IEEE, 2020, pp. 134–139.

[22] L. Leonardi et al. “Performance assessment of the IEEE
802.1Qch in an automotive scenario”. In: 2020 AEIT Interna-
tional Conference of Electrical and Electronic Technologies
for Automotive. IEEE, 11182020, pp. 1–6.

[23] H.-T. Lim et al. “Performance Analysis of the IEEE 802.1
Ethernet Audio/Video Bridging Standard”. In: Proceedings of
the Fifth International Conference on Simulation Tools and
Techniques. Ed. by G. Riley et al. ACM, 2012.

[24] W. Maddern et al. “1 Year, 1000km: The Oxford RobotCar
Dataset”. In: The International Journal of Robotics Research
(IJRR) (2017), pp. 3–15.

[25] J. Migge et al. “Insights on the Performance and Configuration
of AVB and TSN in Automotive Ethernet Networks”. In: 9th
European Congress on Embedded Real Time Software and
Systems (ERTS 2018). Toulouse, France, Jan. 2018.

[26] S. Mubeen et al. “Holistic Modeling of Time Sensitive Net-
working in Component-Based Vehicular Embedded Systems”.
In: 2019 45th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). 82019, pp. 131–139.

[27] D. Pannell. Automotive Ethernet AVB Functional and Interop-
erability Specification. https://avnu.org/wp-content/uploads/
2014/05/Auto-Ethernet-AVB-Func-Interop-Spec_v1.6.pdf.

[28] D. Pannell et al. Use Cases - IEEE P802.1DG V0.4. https:
/ / www . ieee802 . org / 1 / files / public / docs2019 / dg - pannell -
automotive-use-cases-0919-v04.pdf. Sept. 2019.

[29] B. Pfaff et al. “The Design and Implementation of Open
VSwitch”. In: Proceedings of the 12th USENIX Conference
on Networked Systems Design and Implementation. NSDI’15.
USA: USENIX Association, 2015, pp. 117–130.

[30] J. Pfrommer et al. “Open Source OPC UA PubSub Over
TSN for Realtime Industrial Communication”. In: Proceed-
ings 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation. 2018, pp. 1087–1090.

[31] RTaW-Pegase helps design safe and optimized critical em-
bedded networks – RealTime-at-Work (RTaW). https://www.
realtimeatwork.com/rtaw-pegase/.

[32] Q. Scheitle et al. “Towards an Ecosystem for Reproducible
Research in Computer Networking”. In: Proceedings of the
Reproducibility Workshop. Reproducibility ’17. New York,
NY, USA: Association for Computing Machinery, 2017,
pp. 5–8.

[33] T. Steinbach et al. “An Extension of the OMNeT++ INET
Framework for Simulating Real-time Ethernet with High
Accuracy”. In: Mar. 2011, pp. 375–382.

[34] The Linux PTP Project. http://linuxptp.sourceforge.net/.
[35] D. Thiele et al. “Formal worst-case timing analysis of Ethernet

TSN’s time-aware and peristaltic shapers”. In: 2015 IEEE
Vehicular Networking Conference. IEEE, 2015, pp. 251–258.

[36] [TSN] Scheduled Tx Tools - Examples and Helpers for testing
SO_TXTIME, and the etf and taprio qdiscs Âů GitHub. https:
//gist.github.com/jeez/bd3afeff081ba64a695008dd8215866f.

[37] S. Tuohy et al. “Intra-Vehicle Networks: A Review”. In: IEEE
Transactions on Intelligent Transportation Systems (2015),
pp. 534–545.

[38] N. L. van Adrichem et al. “Fast Recovery in Software-Defined
Networks”. In: 2014 Third European Workshop on Software
Defined Networks. IEEE, 92014, pp. 61–66.

[39] A. Varga. “OMNeT++”. In: Modeling and Tools for Network
Simulation. Ed. by K. Wehrle et al. Heidelberg: Springer,
2010, pp. 35–59.

[40] J. Walrand et al. An Architecture for In-Vehicle Network.
[41] W. Zeng et al. “In-Vehicle Networks Outlook: Achievements

and Challenges”. In: IEEE Communications Surveys & Tuto-
rials (2016), pp. 1552–1571.

[42] L. Zhao et al. “Quantitative Performance Comparison of
Various Traffic Shapers in Time-Sensitive Networking”. In:
(2021).

[43] Z. Zhou et al. “Simulating TSN traffic scheduling and shaping
for future automotive Ethernet”. In: Journal of Communica-
tions and Networks (2021), pp. 53–62.

