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ABSTRACT
Today’s large content providers (CP) are busy building out
their service infrastructures or łpeering edgesž to satisfy the
insatiable demand for content created by an ever-expanding
Internet edge. One component of these serving infrastruc-
tures that features prominently in this build-out is their con-
nectivity fabric; i.e., the set of all Internet interconnections
that content has to traverse en route from the CP’s various
łdeploymentsž or łserving sitesž to end users. However, these
connectivity fabrics have received little attention in the past
and remain largely ill-understood.

In this paper, we describe the results of an in-depth study
of the connectivity fabric of Akamai. Our study reveals that
Akamai’s connectivity fabric consists of some 6,100 different
łexplicitž peerings (i.e., Akamai is one of the two involved
peers) and about 28,500 different łimplicitž peerings (i.e.,
Akamai is neither of the two peers). Our work contributes to
a better understanding of real-world serving infrastructures
by providing an original account of implicit peerings and
demonstrating the performance benefits that Akamai can
reap from leveraging its rich connectivity fabric for serving
its customers’ content to end users.
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1 INTRODUCTION
Today’s large Internet content providers (CP) that include
the large content delivery networks (CDN) are faced with
the problem of having to serve ever-increasing traffic vol-
umes to a growing number of increasingly heterogeneous
end points (e.g., end users, IoT devices) that reside in differ-
ent types of networks, consume diverse types of content and
require ever more stringent performance guarantees. When
trying to solve this challenging problem, the serving infras-
tructures that these large CPs maintain take center stage.
Here, a CP’s serving infrastructure (also referred to as its
ł(Internet) peering edgež or łpeering surfacež) consists of
two main components. The first is its footprint; that is, a
set of łdeploymentsž, where a deployment comprises of one
or more clusters of servers. By this definition, deployments
may or may not contain servers that are directly involved in
serving content to end users. While our focus will be mainly
on deployments with such end user-facing server clusters
(known as łedge nodesž or łserving sitesž), the footprint of
a large CP’s serving infrastructure typically also contains
other types of deployments, and in this paper, we will specify
the deployment type unless it is obvious from the context.
The second component is its connectivity fabric; that is, the
set of Internet interconnections or peerings that the content
served by this CP has to traverse as it travels from the CP’s
deployments where it is ingested or resides to the end users
where it was requested. Aspects of these large CPs’ serving
infrastructures that are of particular interest are the extent
and structure of their footprints, the details of their connec-
tivity fabrics, and their ability to scale in a cost-effective
manner as traffic volumes keep increasing, performance con-
siderations gain in importance, and the required capabilities
(e.g., measurements of the network’s and infrastructure com-
ponents’ state and performance, directing end user clients
to servers) become more demanding.

The serving infrastructures that some of today’s large CPs
have built and rely on differ in size, design, and operations.
For example, in a recent paper [47], Google states that it
has łone of the largest peering surfaces in the worldž and
describes the structure of this łsurfacež as consisting of a
set of edge nodes (i.e., Google-supplied servers known as
Google Global Cache (GGC) that are deployed in third-party
networks) and a set of interconnected edge PoPs in some
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70 metro areas where Google connects to the rest of the
world via peering [23]. Moreover, in support of this struc-
ture, Google operates a private inter-data center backbone
and a separate WAN that connects to external peers and
back to its large data centers [47]. Facebook describes its
serving infrastructure as consisting of łdozens of PoPs in six
continentsž where it has łthousands of peers and serves over
two billion usersž [42].1 While there have been a number of
recent papers that describe various aspects of these and other
CPs’ serving infrastructures (e.g., see [7, 9, 42, 47]), the focus
has been almost exclusively on their footprints and on traf-
fic engineering-related challenges posed by the sheer scale
of these infrastructures. At the same time, the connectivity
fabrics that these CPs utilize to get content from the various
deployments all the way to the end users have received little
or no attention and remain largely ill-understood.

In this paper, we provide a detailed account of the serving
infrastructure of Akamai, especially its connectivity fabric.
Akamai is a large global CDN whose serving infrastructure’s
footprint consists of a large number of deployments of differ-
ent types (including deployments in third-party networks).
Akamai also operates its own multi-service backbone to sup-
port the delivery of its customers’ content to end users. We
note, however, that despite detailing the serving infrastruc-
ture of Akamai, our study is not about which type of serving
infrastructure (e.g., onewith or without deployments in third-
party networks, one with or without a backbone) is better
or worse. Instead, our work uses Akamai’s existing serving
infrastructure as an example to highlight the important but
subtle aspects that need to be considered when examining
this increasingly important part of a large CP’s infrastruc-
ture, especially with respect to determining and establishing
the exact extent and structure of its connectivity fabric.
To this end, we first report in Section 3 on an in-depth

study of the connectivity fabric component of Akamai’s serv-
ing infrastructure. Our study reveals a bifurcation of all of
the interconnections utilized by Akamai into (i) a set of 6.1k
łexplicitž peerings (e.g., traditional peering options where
Akamai is one of the two involved peers) and (ii) a set of 28.5k
łimplicitž peerings (i.e., traditional peering choices where nei-
ther of the involved peers is Akamai). We elaborate on what
information sources are required to fully and conclusively
account for such a rich connectivity fabric and discuss why
relying on publicly available BGP information (and possibly
other information obtained from additional active measure-
ment campaigns) provides only an inadequate picture of this
densely connected fabric. In the process, we explain why

1Searching various online sources produces other relevant details about
Facebook’s serving infrastructure, including (i) the deployment of Facebook-
owned and supplied servers known as Facebook Network Appliances (FNA)
in third-party networks [6] and (ii) the operation of a newly-deployed
private inter-data center backbone network called Express Backbone [20].

these implicit peerings have gone largely unnoticed in the
past (see, however, [13] for an earlier account of implicit
peerings at a large IXP) and have prevented researchers from
appreciating the full extent of the serving infrastructures
of large CPs such as Akamai. In addition, we show that the
contributions of Akamai’s different deployment types to its
sizable connectivity fabric are uneven, with some deploy-
ments contributing only explicit peerings and others only
implicit peerings, and we provide illustrative examples to ex-
plain this observation. Next, in view of Akamai’s objective to
optimize the performance of content delivery as experienced
by the end users, we quantify in Section 4 some performance
benefits that Akamai reaps from leveraging its rich connec-
tivity fabric when choosing from among the different options
it has for serving its content end users.
At first glance, determining the connectivity fabric of a

network A boils down to identifying the number and type of
direct peerings that A utilizes to connect to other networks
within the larger Internet, together with the equipment that
is located in the different deployments and is required to
establish and operate those peerings. These peerings can be
of the following well-known types and are łexplicitž in the
sense that network A is always one of the two parties to such
a peering: transit (dedicated PNI), private peering (via dedi-
cated PNI), public peering in the form of bilateral peering via
an IXP, and public peering in the form of multilateral peering
via an IXP’s route server. However, this simple picture of net-
work A’s connectivity fabric gets significantly more complex
when A is a large CP that operates, for example, deployments
in a third-party network B that happens to have a number
of eyeball networks as downstream customers. Note that
content destined from any of A’s deployments in network B

to any of the end users in any of B’s downstream customers
necessarily contributes to interdomain traffic; that is, such
content has to traverse existing explicit peerings between
network B that houses A’s deployments and B’s downstream
customers where the end users reside. In effect, as a result of
operating deployments in B’s network, the large CP A łinher-
itsž B’s explicit peerings with its downstream customers and
can leverage them to serve its customers’ content to those
networks’ end users. Since none of the two peers involved
in such an inherited peering is the large CP A, we refer to
them in this paper, as łimplicitž peerings to distinguish them
from the above-defined explicit peerings.
Note that in the above example, the large CP A also in-

herits from B any of B’s explicit peerings with its upstream
providers but the łterms-of-usež for these types of inherited
or implicit peerings are typically more restrictive (e.g., use for
cache fill is allowed; use of transit to serve other networks’
end users is restricted or not allowed) than those associ-
ated with B’s downstream-related implicit peerings. In this
paper, we are mainly concerned with downstream-related
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implicit peerings. However, to provide a complete picture of
the full connectivity fabrics of large CPs such as Akamai, we
will include the upstream-related implicit peerings and state
their number separately. Irrespective of the type of implicit
peering, from a practical perspective, the main difference
between explicit and implicit peerings is that the latter give
the large CP A no say in either establishing or operating
them. In fact, while A is by and large in charge of the traffic
that traverses any of its explicit peerings, A is just one of the
many contributors to the traffic carried by implicit peerings.
Nevertheless, since implicit peerings are used by A to carry
its customers’ content, we view them as being as critical a
part of A’s connectivity fabric as A’s explicit peerings, es-
pecially because of the mutual benefits that the large CP A

and network B derive from them. For example, in the case
of B’s downstream-related implicit peerings, their use by A

reduces transit costs for B and the cost for serving content
forA. At the same time, by getting content closest to eyeballs,
the use of these implicit peerings improves the performance
of content delivery as experienced by the end users (i.e., a
metric by which B and its downstreams get evaluated by end
users and A gets evaluated by its customers).

2 OVERVIEW OF AKAMAI’S SERVING
INFRASTRUCTURE

In this section, we describe Akamai’s serving infrastructure
in terms of its footprint, focusing in particular on the diverse
nature of the deployed servers and how Akamai’s servers
are organized into clusters and ultimately into deployments,
and present some typical types of deployments.

2.1 Basic Components: Footprint
As a general rule, Akamai’s servers can be grouped into
end-user facing (EUF) delivery servers, non-end-user facing
(non-EUF) delivery servers, and non-delivery servers. The
first group consists of HTTP and/or HTTPS (referred to as
HTTP/S throughout this paper) servers that are directly in-
volved in serving content to end users and other delivery
servers. In contrast, their non-EUF counterparts are HTTP/S
servers that participate only indirectly in the delivery of con-
tent to end users and other servers (e.g., serving content to
other servers such as storage servers or performing functions
such as transcoding media content). While these non-EUF
delivery servers may not be required for some scenarios
they are essential for the delivery of the type of content that
relies on them. Finally, Akamai also operates non-delivery
servers, and as the name indicates, the servers belonging to
this group do not play any role in the delivery of content
but are used for other purposes. An important example of
such servers are Akamai’s BGP collectors (see below). Our

interest in this paper is in the combination of Akamai’s EUF
delivery servers and Akamai’s BGP collectors.
Akamai’s EUF delivery servers run Akamai’s own soft-

ware stack on custom-built hardware. These servers can be
flexibly configured to serve many different purposes and
have various capabilities. Noteworthy and distinctive server
capabilities include aspects related to delivery, performance,
and caching. The same software is used for servers that serve
different workloads (e.g., cacheable, non-cacheable content),
different customer needs (e.g., origin offload), or different
traffic types (e.g., latency-sensitive traffic). What differs is
which servers and what capabilities of those servers are
used with respect to delivery, performance, or caching and
how they are organized (e.g., flat, hierarchically) in each
use case. To communicate, delivery servers talk HTTP/S to
other Akamai servers and customers’ origin servers as well
as to clients running on end user devices (e.g., browsers,
customers’ download clients or players, set-top boxes). Aka-
mai’s EUF delivery servers are organized into clusters that
are located in a total of about 3.3k deployments within more
than 1,600 networks around the world.

2.2 Typical Deployment Types
Although the 3.3k deployments that contain EUF delivery
servers vary in size, design, role, and capabilities, Table 1
summarizes the characteristics of four generic deployment
types and provides the main differences and similarities in
how they are architected and used. The listed Type 1, Type
2, Type 3, and Type 4 deployments are representative of
Akamai’s present-day serving infrastructure and account for
more than 85% of all deployments. We will describe aspects
of their external connectivity in Section 2.3.1 and mention
further relevant details about these four deployment types
when describing and explaining some of the main results of
our empirical analysis in Section 3 and Section 4.

For the purpose of this paper, it is important to note that
by virtue of operating an Akamai-owned border router (on
Akamai’s peering AS) that participates in BGP, Type 3 and
Type 4 deployments contribute only explicit but no implicit

peerings to Akamai’s connectivity fabric. In contrast, the
absence of an Akamai-owned router and reliance on a host-
ing network-owned border router for Type 1 and Type 2
deployments implies that they contribute only implicit but

no explicit peerings to Akamai’s connectivity fabric.

2.3 An Infrastructure for Measurement
Irrespective of whether or not they contain EUF delivery
servers, Akamai’s deployments also play an important role
as a set of vantage points of a global-scale measurement
platform that this CDN has developed over time and keeps
changing and improving in the face of ever-changing needs
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Table 1: Characteristics of Akamai’s typical deployments with least one EUF delivery server group.

Deployments without an Akamai router Deployments with an Akamai-owned router

Type 1 Type 2 Type 3 Type 4

Typical size Small/Medium Medium/Large Large Large
IP address space used Host network Host network Akamai Akamai
AS used Host network Host network Akamai Akamai
Akamai transit link No Yes Yes Yes
Use of transit link Cache fill Cache fill/Serve Mainly cache fill Mainly cache fill
Can serve all end users No Yes Yes Yes
Target end users/networks Host/Downstreams All Small/Medium Medium/Large
Proximity to end users High/Very High Low/Medium Medium/High High
Example of typical setting Eyeball network Transit network IXP PNIs w. eyeball networks
Example of atypical setting Wholesale network N/A N/A PNIs w. backbone providers

and requirements. As resources-rich vantage points, Aka-
mai’s server clusters also act as łmeasurersž that produce a
range of measurement data. While most of the server clus-
ters specialize in producing data that provides important
information about the overall state of Akamai’s serving in-
frastructure, others are exclusively focused on collecting
BGP information that is pertinent for maintaining an up-to-
date view of Akamai’s connectivity fabric and central to its
role of delivering content from where it is ingested or resides
to where it is consumed in a performance-optimal manner.
Since the information collected by the different server clus-
ters about network health, performance, and routing can (and
does) change over time as a result of the dynamic nature
of the Internet in general and its routing system in particu-
lar, the measurements are typically obtained at regular time
intervals (e.g., quarter-hourly, hourly, daily).
To illustrate, Akamai’s server clusters maintain an over-

all view of the state of Akamai’s infrastructure by keeping
track of and reporting, among other quantities, their cluster-
specific bandwidth usage and system load. They also actively
measure network conditions (e.g., loss, latency) and connec-
tivity (e.g., route) between them across different deployments
ś criss-cross measurements leveraging server clusters as van-
tage points. In addition to measuring network conditions
and connectivity to other server clusters, these measurers
also actively measure network conditions and connectivity
to popular name server/resolvers and other targets, in part
for evaluating their own capabilities to communicate with
those targets. In effect, the measurements to these targets
let the individual server clusters assess their capabilities to
communicate with end user clients or other servers that are
in the same network segments as those targets.

2.3.1 Non-Delivery Servers as BGP Collectors. Akamai op-
erates 80 BGP collectors across the globe. Akamai’s BGP
collectors are non-delivery servers. They receive routing in-
formation from Akamai and non-Akamai routers inside the

mapping

system

BGP collectors...
...

BGP

BGP

Type 1 or 2

Type 3 or 4

Figure 1: Akamai and non-Akamai routers send BGP
information over the Internet to the BGP collectors,
which in turn send it to Akamai’s mapping system.

various deployments over the Internet and provide that in-
formation as input to Akamai’s mapping system (see Figure 1
for a high-level overview of the BGP information flow) in a
form that the mapping system can process and consume. For
instance, an important capability of Akamai’s BGP collectors
is to translate third-party network-specific BGP communi-
ties into a common set of Akamai-specific BGP communities.
Because of the critical role they play as components of Aka-
mai’s measurement platform and as producers of input data
for Akamai’s mapping system (see Section 2.3.2), deploy-
ments that host BGP collectors have to be always available
and conform to specific rules.

The routing information received by these BGP collectors
from Akamai’s various deployments is deployment depen-
dent. In particular, it is the deployment type that determines
what BGP information is obtained via what BGP sessions
with which networks. For example, for Type 1 and Type 2
deployments that do not operate an Akamai-owned router
and instead rely on a router in the hosting network, that
hosting network’s router has BGP sessions to nearby (in
terms of network distance) BGP collectors and sends them
the BGP information that the hosting network provides, in-
cluding routes for end user and name server/resolver prefixes
and BGP communities. Here, the prefixes can be the host-
ing network’s own prefixes, the prefixes of its downstream
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customers and even prefixes of networks for which there is
a special agreement for Akamai’s traffic. BGP communities
are particularly informative because by setting BGP com-
munities, the hosting network can signal to Akamai how
to serve the network’s own prefixes and the prefixes of its
downstream (or other) networks.

For a Type 3 deployment, the BGP information originates
in part from the BGP sessions that the Akamai-owned router
has with each IXPmember that peers bilaterally with Akamai
and in part from the BGP sessions that that router may have
with the IXP’s route server(s). The deployment’s Akamai-
owned router also has BGP sessions to more than one BGP
collector for redundancy. However, in the case of a Type
3 deployment, it is the routing table and not the router’s
BGP table (i.e., all the BGP information it obtains over time)
that is sent to the BGP collectors. The routing table contains
only the łbestž (also referred to as łactivež) routes from all
the routes received from the various direct (i.e., bilateral)
or indirect (i.e., route server) sessions with the IXP’s peers.
Moreover, information that is not sent includes routes that
are filtered at the router-level and routes that are received
from the deployment’s transit link. In view of what informa-
tion Akamai’s BGP collectors receive, Type 3 deployments
are similar to Type 4 deployments. In the latter case, the
Akamai-owned router has a BGP session for each PNI and
sends BGP information about the best paths it receives from
the various PNIs to Akamai’s BGP collectors. Thus, in case
the Akamai-owned router has a PNI with an eyeball network
that also hosts one or more Type 1 deployments, the BGP
information that the BGP collectors receive from the PNI
may not be as fine-grained as the information it obtains from
the Type 1 deployment(s).

2.3.2 Measurement Platform vs. Mapping System. A key
element of Akamai’s service delivery platform is its mapping
system. At its core, Akamai’s mapping system relies on DNS
to route each end user client to a deployment with at least
one EUF delivery server that ultimately serves the requested
content. As a DNS-based system, this mapping system has
evolved over time, and we refer the interested reader to [14]
for more details. However, what matters for the purpose of
this paper is that Akamai’s mapping system is a consumer
of a myriad of data (including the data from Akamai’s BGP
collectors) that originates from Akamai’s global-scale mea-
surement platform.
Akamai’s mapping system ingests a large number of dif-

ferent measurement data and combines them to ultimately
return for each end user request a rank-ordered list of de-
ployments with EUF delivery servers (and corresponding IP
addresses). In particular, even though the mapping system
takes BGP collector data as one of its many inputs, it is not
a system that makes decisions solely based on BGP. At the

same time, the mapping system is also a consumer on non-
measurement data (i.e., data that is neither produced nor
collected by Akamai’s measurement platform). Examples of
such non-measurement data include cost-related informa-
tion about peering links and detailed topological informa-
tion about a hosting eyeball network. In short, to achieve
Akamai’s main objective of optimizing the performance of
service delivery, its mapping system relies on inputs of vari-
ous kinds (e.g., measurement and non-measurement data),
is highly flexible as there are numerous ways to tune it to
affect traffic flow to overcome issues or meet special needs,
and is constantly evolving as new functionalities get added
to satisfy an ever more diverse customer base, an increasing
selection of service offerings, and rapid innovations in key
Internet technologies.

3 AKAMAI’S CONNECTIVITY FABRIC
After describing the available datasets, we provide a detailed
assessment of the reach and structure of Akamai’s connectiv-
ity fabric and pay particular attention to what type of BGP
information sheds light on what aspects of this fabric.

3.1 Available Datasets
3.1.1 Proprietary BGP information śViewA. For our study,

we obtain the portion of the Internet control-plane informa-
tion that is used by Akamai as one of the inputs to its map-
ping system. To this end, we rely on Akamai’s BGP collectors
that dump on an hourly basis the information in their BGP
tables in MRT format. Our dataset consists of the BGP table
dumps from all the BGP collectors and will be referred to in
the following as ViewA. The data contains both IPv4 and IPv6
information. We analyzed six hourly snapshots of ViewA,
and Table 2 lists a few key metrics for the six snapshots and
shows how these metrics vary over an eight-month period.

Note that the type of hourly snapshots of ViewA shown in
Table 2 represent exactly the BGP information that Akamai
used as routing data input for its mapping system at those
particular times. Since our work in this paper concerns the
hourly inputs as obtained by Akamai’s mapping system and
not their evolution over time, and given the rather modest
variations in the metrics shown in Table 2, due to limited
space, in the rest of this section, we report on results that
concern our analysis of the 2017-09-17 snapshot of ViewA.
This snapshot was collected from some 4.5k BGP sessions be-
tween Akamai’s BGP collectors and non-Akamai and Akamai
routers and consists of more than 3.65M AS paths and about
1.85M IPv4 and IPv6 prefixes. However, as an illustration that
our reported results are consistent with and representative
of those obtained for the other snapshots listed in Table 2,
we discuss in Section 4 additional results for our most recent
2018-05-17 snapshot.
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Table 2: Overview of Akamai’s BGP data ś ViewA.

Sep 17 Oct 10 Nov 10 Dec 5 Jan 10 May 17
2017 2017 2017 2017 2018 2018

ASes 61.3k 60.2k 59.9k 60.4k 63.2k 61.5k
Prefixes 1.85M 1.80M 1.83M 1.85M 1.92M 1.88M
Paths 3.65M 3.53M 3.53M 3.49M 3.56M 3.36M

3.1.2 Publicly available BGP information ś ViewP. To put
ViewA in perspective, we use and combine data from three
well-known public data sources; i.e., Route-Views (RV) [32],
RIPE NCC RIS (RIPE) [31], and the daily routing snapshots
collected by Packet Clearing House (PCH) [24]. We obtain
the BGP table data from all the available collectors from
these data sources for 2017-09-17, the same day as the data
for our 2017-09-17 snapshot of ViewA data was obtained.
The RV and PCH data contains IPv4 and IPv6 information
whereas the RIPE data provides only IPv4 information. The
RV and RIPE data is stored in MRT format whereas the PCH
data is available as compressed text files that contain the
output of running the show ip bgp command on the PCH
route collectors. We combined the three public datasets into
one dataset and refer to it below as ViewP. Table 3 provides
details about each of the three public datasets for 2017-09-17
and also about their combined ViewPwhich consists of more
than 21M different AS paths.

3.1.3 ViewA vs. ViewP. Note that for the purpose of our
study, there is no need for examining multiple snapshots
of ViewP. In fact, in contrast to prior studies that typically
required multiple snapshots of BGP data, such as ViewP, to
examine questions about the observed AS-level Internet such
as its structure, completeness, or its evolution over time (e.g.,
see [12, 17, 34] and references therein), our use of ViewP
is rather restrictive; that is, we use ViewP mainly for com-
paring inherent properties of ViewP-like datasets against
their counterparts in data such as ViewA. For example, one
such property is that ViewP consists of BGP table data while
ViewA is based on routing table data that Akamai’s BGP
collectors receive from their BGP sessions with non-Akamai
and Akamai routers (see Section 2.3.1). This means that for
a given prefix, ViewP typically has information about many
different AS paths to that prefix while ViewA (i.e., BGP tables
from Akamai’s BGP collectors) only provides one path per
deployment ś the best path. Another distinguishing qualita-
tive feature concerns what routes are filtered and thus are
not part of ViewP and ViewA, respectively. ViewA does not
include routes that are received from the links of Akamai
with its transit providers, but ViewP will in general include
those transit provider’s BGP data. We discuss implications
of these and other such features in this section.

Table 3: Overview of the public BGP data ś ViewP.

Dataset Collectors ASes Prefixes Paths

RV 19 58.4k 872k 12.5M
RIPE 18 57.9k 737k 11.4M
PCH 140 58.0k 733k 0.4M

ViewP 177 58.6k 900k 21.1M

3.2 On the Reach of Akamai
3.2.1 Serving the World: ASes and Prefixes. We first per-

form an AS-level analysis of ViewA and find a total of 61.3k
unique routeable ASes for Akamai; that is, Akamai sees at
least one originating prefix from 61.3k ASes. This compares
to 58.6k unique routeable ASes seen in ViewP. For compari-
son, Hurricane Electric, a large backbone provider, reports
seeing some 60.7k routeable ASes [18], an indication that
global-scale providers such as Akamai andHurricane Electric
tend to see more routeable ASes than ViewP.
Next, a closer look at the originating prefixes reveals a

total of 1.75M unique IPv4 prefixes in ViewA and only 0.85M
in ViewP. Hurricane Electric reports a very similar result for
the number of prefixes it observes (see [18]). Table 4 (left half)
provides details about the unique IPv4 and IPv6 prefixes that
are only seen in ViewA, only in ViewP, and in both ViewA

and ViewP, respectively. We observe, for example, that the
number of prefixes that are only present in ViewP (i.e., ViewP
\ViewA) is comparatively small ś only 99.5k IPv4 prefixes are
exclusively seen in ViewP. To explain why Akamai receives
almost twice as many prefixes as ViewP, Figure 2a shows a
breakdown by prefix length of the number of unique IPv4
prefixes in ViewA and their overlap with those in ViewP. The
plot shows that of the 1M unique prefixes that only Akamai
receives (i.e., ViewA \ ViewP), around 75% of them are of
length /25 or longer.
When analyzing this data further, we notice that almost

all the IPv4 prefixes that are present in ViewA but absent
from ViewP originate from ASes that are seen in ViewP.
Thus, although at the AS-level, ViewA and ViewP are similar,
at the level of originating IPv4 prefixes, Akamai receives
information in a much more fine-grained manner compared
to what can be discerned from ViewP.2 The fact that of the
almost 1M unique IPv4 prefixes that are only seen in ViewA,
75% are of length /25 or longer suggests that they play a key
role for Akamai’s content delivery service (see below for
details), and this observation will be qualitatively the same
for different instantiations of ViewA and ViewP.

3.2.2 Serving the World: AS Paths. To demonstrate the
above-mentioned qualitative differences between ViewA and
2A well known practice by network operators is to filter prefixes longer
than /24 to limit the growth of their Internet routing tables. Note however
that ViewP still sees some 60k IPv4 prefixes of length /25 or longer.
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Figure 2: IPv4 prefixes and paths in ViewA.

Table 4: Num. of unique prefixes and paths in ViewA.

Prefixes Paths
Dataset IPv4 IPv6 Both IPv4 IPv6 Both

ViewA 1.75M 97k 1.85M 3.0M 863k 3.7M
ViewP 0.85M 48k 0.90M 20.8M 526k 21.1M
ViewA ∩ ViewP 0.75M 47k 0.80M 1.1M 165k 1.2M
ViewA \ ViewP 1.00M 50k 1.05M 1.9M 698k 2.5M
ViewP \ ViewA 0.10M 1k 0.10M 19.7M 428k 19.9M

ViewP, we find 21.1M unique AS paths in ViewP to reach
the 0.9M observed prefixes seen in that dataset, but for the
1.85M encountered unique originating prefixes in ViewA, we
only observe 3.7M unique AS paths in ViewA.

Zooming in on these observed 3.7M unique AS paths seen
in ViewA, we find that 2.5M or 68% of them are not present in
ViewP. Moreover, as summarized in Table 4 (right half), the
overlap in observed AS paths between ViewA and ViewP is
small and uneven ś the 1.1M AS paths seen in both datasets
make up 30% of the AS paths seen in ViewA, but only 5% of
the AS paths seen in ViewP. Together, these results show that
not only does Akamai’s mapping system ingest less than 15%
of the unique AS paths encountered in ViewP but that given
the relative stability of the number of AS paths in ViewA

over time, a significant number of the AS paths in ViewP are
largely irrelevant for the operation of Akamai.
Next, Figure 2b shows a barplot of the number of unique

IPv4 prefixes for which there exist exactlyk AS paths (k ≤ 30)
from which Akamai can choose from. Here, each bar shows
the number of prefixes separate for short (i.e., /0 -/24) and
long (/25 - /32) IPv4 prefixes. We observe that about 55% of
the IPv4 prefixes seen in ViewA have only a single AS path
(not shown here: this number jumps to 93% if we consider
instead the IPv4 prefixes seen exclusively in ViewA) and that
prefixes of length /25 or longer are typically only reachable
via a single AS path. To contrast, for ViewP, we find 10 or
more different paths for 81% of its IPv4 prefixes.
Figure 2c depicts the distribution of AS path lengths for

ViewA and shows a median path length of three AS hops
and a maximum path length of 15 AS hops (not shown here:
ViewP results in a similar plot, though with a maximum

path length of 22 AS hops).3 Note that the bar at path length
zero corresponds to the cases where Akamai’s deployment
is in the same AS as the prefix associated with the path. As
expected, in most such cases, Akamai’s deployments know
about only a single path to those prefixes.

3.3 Akamai’s Connectivity Fabric
Our focus in this section is on identifying the set of Internet
interconnections or peerings that Akamai uses to deliver
content from its EUF delivery clusters to the prefixes that
requested that content and were observed in ViewA.

3.3.1 Explicit Peerings. As defined in Section 1, the łex-
plicitž peerings of a network A can be identified by parsing
the AS path information that is maintained, collected and
transmitted by BGP. Also recall that explicit peerings involv-
ing Akamai can only be established in its Type 3 and Type 4
deployments where Akamai operates its own border routers
that participate in BGP and represent the Akamai-side of
any of its explicit peerings.
We search ViewA for the next hop ASNs of each Type 3

and Type 4 deployment and count the number of unique
next hop ASNs of Akamai. Note that this count represents
the ground truth for the set of Akamai’s explicit peerings
because the Akamai-owned routers supply Akamai’s BGP
collectors with the best routes they receive from the BGP
sessions they have with all their peers. In total, we find 6,111
such unique neighbor ASes or explicit peerings for Akamai
(some 10% of all routeable ASes seen in ViewA). More than
6,000 of the neighbor ASes are learned from IXPs (i.e., from
Type 3 deployments) and the remaining 200 or so from Type
4 deployments; see Table 5 (left half) for a breakdown by
deployment type and IP version.
Knowing the total number of explicit peerings does not

provide the full picture of this set of interconnections. To
provide more details, Figure 3 (right half) uses a box plot
to show the number of explicit peerings per deployment
for Type 3 and Type 4 deployments, respectively. Analyzing
those explicit peerings even further, we find that the number
of peering locations per explicit peering is highly skewed:
3We observe that the longest AS paths are inflated by routing loops.
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Table 5: Number of peerings in ViewA.

Deployment Explicit peerings Implicit peerings
Type IPv4 IPv6 Both IPv4 IPv6 Both

Type 1 - - - 26,216 3,965 26,429
Type 2 - - - 7,275 2,127 7,322
Type 3 6,013 2,746 6,075 - - -
Type 4 204 185 227 - - -

Total 6,050 2,794 6,111 28,152 5,309 28,353

out of all the 6,111 explicit peerings, Akamai sees 50 of them
at 25 or more deployments, 290 at 10 or more deployments,
and 859 of them at 5 or more deployments.
To illustrate how the established ground truth for Aka-

mai’s set of 6,111 explicit peerings stacks up against what is
typically visible in publicly available BGP data, we examine
ViewP for explicit peerings that involve Akamai. We search
ViewP’s AS paths, count the number of unique ASNs preced-
ing or following Akamai’s peering ASN, and find a total of
450 such ASNs or explicit peerings. On the one hand, seeing
Akamai’s peering AS in ViewP is fully expected since as an
active participant in BGP, Akamai must advertise some of
its own prefixes to receive traffic, for example in the form of
content from its customers. At the same time, encountering
only such a small number of explicit peerings is a reminder
that based on control-plane information alone, it is impos-
sible for a third-party observer to see another network’s
bilateral (explicit) peerings in a given location [40]. Even if
two networks peer multilaterally at the same location, they
may not receive the same BGP information.

3.3.2 Implicit Peerings. As defined in Section 1, Akamai’s
łimplicitž peerings can neither be identified nor associated
with Akamai by parsing the AS path information available in
collected BGP data. In particular, since the presence of Aka-
mai inside a hosting network is hidden from BGP, its implicit
peerings cannot be studied using ViewP. Also recall (see Ta-
ble 5) that while Akamai’s Type 1 and Type 2 deployments
do not contribute to Akamai’s explicit peerings, as integrated
parts of a given hosting network, they are pertinent for de-
termining the implicit peerings that Akamai łinheritsž from
this hosting network. Specifically, Type 1 deployments can
serve the host AS as well as the host’s downstream customers
(assuming the downstream customers permit it) and Type
2 deployments can serve the hosting (transit) network and
its downstreams. Finally, for reasons also mentioned in Sec-
tion 1, we further divide Akamai’s implicit peerings into
downstream- and upstream-related implicit peerings and
quantify in the following their contributions to Akamai’s
connectivity fabric separately.
First, checking ViewA for downstream-related implicit

peerings, we find that Akamai utilizes a total of 28,353 unique
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Figure 3: Implicit peerings by hosting AS (Type 1 and
2) and explicit peerings by deployment (Type 3 and 4).

such interconnections; that is, almost half of all routeable
ASes seen in ViewA are within one AS-hop from Akamai.
Table 5 (right half) gives a breakdown of the observed im-
plicit peerings by deployment type and IP version and shows
an uneven distribution, with almost four times as many im-
plicit peerings for Type 1 deployments (26,429) compared to
Type 2 deployments (7,322). Note, however, that Type 1 de-
ployments are hosted in orders of magnitude more different
host ASes compared to Type 2 deployments. Figure 3 (left
half) shows that the median number of implicit peerings that
Akamai inherits from Type 1 deployments is 10; for Type 2
deployments, the median is close to 1,000, which is consis-
tent with the fact that transit providers (Internet core, Type
2 deployments) are typically well-connected while eyeball
ISPs (Internet edge, Type 1 deployments) only forward (a
subset of) their downstreams to Akamai.
Next, to show that the number of Akamai’s upstream-

related implicit peerings pales in comparison to the observed
28,353 downstream-related implicit peerings, we note that in
general, ViewA does not provide the information needed to
obtain the precise upstream connectivity of those networks
that host Type 1 deployments.4 Instead, we leverage a combi-
nation of ViewA information (e.g., the Type 1 deployment’s
hosting ASes) and ViewP AS path information (e.g., hosting
ASes’ upstream providers) and infer a total of 1,506 unique
upstream-related implicit peerings that Akamai can utilize to
get traffic in or out of its Type 1 and Type 2 deployments (i.e.,
incoming traffic resulting from cache fill requests for Type
1 and Type 2 deployments and outgoing traffic for serving
content for Type 2 deployments).

3.4 Illustrative Examples
3.4.1 Routerless deployments ś Types 1 and 2. A Type 1

deployment provides Akamai with control-plane informa-
tion about the hosting network. In fact, it is generally in
the interest of the operators of that network to share with
Akamai detailed information about the prefixes of its end

4For Type 2 deployments, ViewA provides ground truth with respect to
Akamai’s upstream-related implicit peerings; similar arguments as in the
case of Akamai’s explicit peerings for Type 3 or Type 4 deployments apply.
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users and the corresponding name servers/resolvers and to
set and share BGP communities to tell Akamai how to serve
those prefixes. Consider an actual example of a large eyeball
network that has no downstream customers and hosts 18
different Type 1 deployments. We observe that more than
99% of the prefixes that this network shares with Akamai
are /32 prefixes tagged with either of two different BGP com-
munity attributes. The few remaining prefixes ś including
aggregations of /32 prefixes ś can be found in ViewP. The
rationale for this eyeball network to share such fine-grained
information with Akamai is twofold. For one, this network
leverages end-user mapping. Moreover, by means of the BGP
communities, it signals Akamai a preference over which de-
ployment should serve which end users. While the lack of
downstream customers results in no downstream-related
implicit peerings from these 18 deployments for Akamai,
examining this network’s upstream connectivity, we find
more than 45 upstream-related implicit peerings (that are
leveraged for cache fill but not for serving content to end
users on other eyeball networks).
The operators of the networks that host Type 2 deploy-

ments typically do not provide any private information but
tend to share with Akamai information that they also provide
to other networks/customers. However, Type 2 deployments
located in selected networks can contribute a large number of
unique downstream-related implicit peerings. For example,
when examining an actual Type 2 deployment on the net-
work of a large global backbone provider, we find that it sends
Akamai more than 668k different IPv4 prefixes and more
than 43k different IPv6 prefixes (i.e., the complete routing
table [1]). Those prefixes are served through more than 1,500
different ASes, resulting in more than 1,500 downstream-
related implicit peerings for Akamai. At the same time, as
a Tier 1 network, this hosting AS contributes no upstream-
related implicit peerings.

3.4.2 Deployments with a router ś Types 3 and 4. On the
one hand, Type 3 deployments are the main contributors to
the number of Akamai’s explicit peerings. For example, a
single Type 3 deployment at one of the large European IXPs
contributes more than 600 explicit peerings.
On the other hand, since Type 4 deployments tend to be

used to connect Akamai with bigger networks in terms of
bandwidth (not necessarily footprint) than the majority of
networks with which Akamai peers at IXPs, they typically
contribute fewer explicit peerings than Type 3 deployments.
For example, in the case of an actual Type 4 deployment that
is located in the same metro area as the Type 3 deployment
we just considered, we find that it connects to only seven
different networks that include two big cloud providers,
two large eyeball and transit providers, two smaller eye-
ball providers, and one global provider from which Akamai

buys transit. As a result, this deployment only contributes
seven explicit peerings to Akamai’s connectivity fabric.

Summary: The footprint of Akamai’s serving infrastructure

consists of EUF delivery clusters in some 3.3k deployments

across the globe that are used to serve a total of 1.75M unique

IPv4 originating prefixes (plus 97k unique IPv6 originating

prefixes) in 61.3k ASes. These observed prefixes can be served

via a total of 3M unique AS paths, where prefixes of length

/25 or longer are typically only reachable via a single path.

The connectivity fabric of Akamai’s serving infrastructure is

made up of 6,111 explicit and 28,655 implicit peerings where the

latter consist of 28,353 downstream-related and 1,506 upstream-

related implicit peerings. Importantly, while some of the ob-

served explicit peerings can be recognized in ViewP, none of

the implicit peerings are visible in ViewP.

4 THE SERVING INFRASTRUCTURE OF
AKAMAI: PERFORMANCE

We show in this section how Akamai utilizes its connectivity
fabric to serve content to end users worldwide and examine
the performance (e.g., RTT, throughput) that this content
experiences as it traverses Akamai’s edge.

4.1 Available Datasets
To study performance-related aspects, we rely on server logs
of the HTTP/S sessions between all EUF delivery servers
and request-generating clients. These logs contain transport-
layer information for a sample of all the HTTP/S sessions.
Each server uses a sampling rate of 5% (i.e., 1-in-20 HTTP/S
sessions) and for each sampled HTTP/S session, the server
logs a record. Among the fields in each record are the IP
address of the client, the IP address of the server, the total
number of bytes sent to the client, the corresponding transfer
time, and a smoothed round-trip time (RTT) value. This value
is an estimate of the RTT between the server and the client.
Transferring larger objects allows for better estimations of
the RTT (more round trip samples). For the purpose of this
study, we only consider HTTP/S sessions for objects larger
than 300KB. Using the total bytes sent and the corresponding
transfer time, we compute the session’s mean throughput
and use that value and the smoothed RTT as our metrics-
of-choice for quantifying the performance of a session. We
obtain one day’s worth of logs for 2017-09-17 and 2018-05-
17, the days corresponding to our first and last snapshot
of ViewA, respectively. Each of these two logs contains a
total of more than 11 billion records. We rule out possible
sampling bias in this data by leveraging its substantial size;
that is, when examining various randomly chosen subsets,
we find that all of Akamai’s deployments with at least one
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EUF delivery server cluster and more than 90% of the full
dataset’s prefixes are present in all the subsets.
Since our analysis of the two log datasets corresponding

to the 2017-09-17 and 2018-05-17 snapshots of ViewA pro-
duced very similar results, our focus below is on describing
the observed findings for 2017-09-17. However, we will also
include sample plots (see Figure 7) that explicitly compare
the results for the two eight months-apart snapshots and
quantify the observed similarity.

4.2 Akamai’s Peering Edge łin Usež
Our analysis in Section 3 of the 2017-09-17 snapshot ofViewA
revealed a vast and complex connectivity fabric that Akamai
can leverage for serving content. This analysis was strictly
control plane-oriented and relied exclusively on BGP in-
formation. In the process, we showed that out of the ap-
proximately 21M paths that could be easily discerned from
ViewP-like datasets around the time of our analysis, Akamai
ignores some 85% of them and only presents the 3.7M or
so best paths to its mapping system. In the following, we
leverage Akamai’s 2017-09-17 server log measurements to
provide an Akamai-focused data plane perspective of these
3.7M paths. That is, we are interested in understanding how
the large number of identified implicit peerings and smaller
number of explicit peerings are used to enable and facilitate
Akamai’s content delivery service.

To quantify Akamai’s use of its implicit and explicit peer-
ings, we proceed as follows. For each of the log records, we
use the IP address of the server to associate servers with
their corresponding deployment. Likewise, we use the IP
address of the client to group together records by client AS.
Next, we rely on information about the deployments (i.e.,
deployment type, link information where applicable) and the
ViewA data to determine for each record the AS path from
the deployment to the client AS. Subsequently, we group all
the log records into the following four categories: (i) Onnet
(all HTTP/S sessions served from Type 1 deployments), (ii)
Transit (all HTTP/S sessions served from Type 2 or via the
transit links of Type 3 or Type 4 deployments), (iii) IXP (all
HTTP/S sessions served via the IXP links of Type 3 deploy-
ments), and (iv) PNI (all HTTP/S sessions served via the PNI
links of Type 4 deployments).
This way, we end up with records that are all annotated

with attributes indicating deployment, client AS, AS path,
and link type or category (i.e., onnet, transit, IXP, and PNI).
By examining the AS path of each such annotated record,
we can thus identify AS paths that we only see from Type 1
and/or Type 2 deployments (i.e., using an implicit peering),
or only from Type 3 and/or Type 4 deployments (i.e., using
an explicit peering), or from a combination of Type 1/Type 2
and Type 3/Type 4 deployments (i.e., using both an implicit
and explicit peering). In fact, using this information provides

an opportunity to infer the likely type of client AS via the
expected demand that this client AS generates for Akamai,
at least for client ASes that operate in marketplaces with a
well-developed Internet infrastructure. For example, seeing
an AS path from both implicit and explicit peerings usually
indicates that the traffic demand is medium to high in which
case the client AS typically represents either a medium eye-
ball network that hosts Type 1 deployments and participates
in public peering (i.e., peers with Akamai at one or more
IXPs) or a large network with many eyeballs that hosts Type
1 deployments and peers privately with Akamai (Type 4 de-
ployments). In a similar fashion, inferences can be drawn
when seeing an AS path from implicit peerings only or from
explicit peerings only.
Figure 4 summarizes our findings and shows three bars

whose height (y-axis) represent the percentage of unique
paths seen exclusively from implicit peerings only, from
explicit peerings only, and from both implicit and explicit
peerings, respectively. By using the width of the bars to en-
code traffic volume, we observe that the paths that are seen
from both implicit and explicit peerings are the fewest in
numbers but are responsible for about half of all the traffic
served. This result confirms our intuition that the big net-
works that generate strong demand which translates into
large amounts of traffic being served by Akamai are well con-
nected to Akamai. At the same time, the largest number of
paths is seen by explicit-only peerings, but these paths gener-
ate the least amount of traffic. In this case, the explanation is
that from peerings at IXPs, Akamai can reach many destina-
tions but the aggregate demand/traffic is typically low. The
paths seen exclusively by implicit peerings occupy a middle
ground, both in terms of number of paths and volume of
traffic generated. Note that this middle ground appeals to
small to medium-sized (eyeball) networks, hosting Type 1 de-
ployments while receiving some types of content from their
upstream provider(s) or being served by Type 2 deployments
exclusively, that generate limited demand/traffic volume.

Finally, Figure 5 shows an extreme case of skewness with
respect to the demand generated by the various client ASes
or, equivalently, the traffic Akamai is serving to those client
ASes.5 For one, we observe that when considering all paths,
some 90% of the overall demand is coming from about 1% of
the paths. Similar findings apply when considering all paths
seen from implicit-only or explicit-only peerings. Moreover,
when looking at only those paths that are seen from both im-
plicit and explicit peerings, we see a slightly less pronounced
skewed demand distribution but recall that the percentage
of such paths is small compared to implicit-only or explicit-
only (see Figure 4). The skewness of Internet path usage is
not new and has been observed in the past [37].
5Filtering out all requests for objects smaller than 300KB and working with
sampled data may impact our findings quantitatively but not qualitatively.
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Figure 4: Paths by peering type.

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

Percentage of unique paths

C
u
m

s
u
m

 p
e
rc

. 
o
f 
tr

a
ff
ic

All

Implicit and explicit

Implicit only

Explicit only

Figure 5: Traffic by unique paths.

Onn. PNI IXP Tra. Onn. PNI IXP Tra.
0.0

0.2

0.4

0.6

0.8

1.0

● ● ● ●

F
ra

c
ti
o
n
 o

f 
tr

a
ff
ic

<5Mbps 5−20Mbps >20Mbps<5Mbps 5−20Mbps >20Mbps

● Off−Peak Peak
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4.3 Illustrative Examples
We next illustrate with three real-world scenarios how Aka-
mai’s content delivery service performs łin the wildž. To this
end, we examine the performance (e.g., RTT, throughput)
that content experiences as it traverses Akamai’s edge in
different regions around the world; that is, between the EUF
delivery server that Akamai’s mapping system identified as
being best suited to serve a given content and the end user
client that requested that content.

4.3.1 Serving a large ISP in a single country. We consider
a large eyeball ISP in a European country. Both the country’s
population and Akamai’s deployments are concentrated in
one largemetro area and a fewmedium-sized cities. Akamai’s
deployments serve more than 1Tbps at peak on a normal day
to that ISP, and the vast majority of requests from this large
ISP’s end users is served from Akamai’s deployments within
the country, specifically from Type 1 deployments and the
PNI links of Type 4 deployments. A very small fraction is
served from Akamai’s transit links (Type 2/Type 3/Type 4
deployments) and an even smaller piece from Type 3 deploy-
ments, even though this country is served by a large IXP in
the metro area where the large eyeball ISP is present and
Akamai has deployments.

Performance-wise, analyzing the requests that originate
from the clients on this ISP’s network, we find that Akamai
serves more than 99% of all the requests from deployments
that are either zero (i.e., Type 1 deployments) or one AS-hop
away. Moreover, we find that the median RTT values are all
around 25ms, irrespective of the four link types. However, as
expected and shown in Figure 6, when examining throughput
stratified into łless than 5Mbpsž, łbetween 5-20 Mbpsž, and
łmore than 20Mbpsž and comparing between off-peak and
peak hours, we observe a decrease in performance for all four
link types at peak vs. off-peak, with IXP links showing the
biggest performance hit, mainly because they are more likely
to experience congestion during peak hours. Note, however,
that in this real-world example, Akamai’s mapping system
directs only a negligible number of request-generating clients
to Type 3 deployments.

4.3.2 Serving a country with multiple ISPs. This scenario
is concerned with a different country where the five largest
ISPs combined serve more than 80% of the country’s end
users. In this case, both the end user population and Aka-
mai’s deployments are more uniformly distributed across
the country. The country has a large IXP and a few smaller
geo-dispersed IXPs, and Akamai has deployments at all of
them. In contrast, the five big ISPs have by and large no
presence at those IXPs and severely limit their use of public
peering. In total, Akamai’s deployments serve more than
4Tbps at peak on a typical day to the five ISPs. We use this
scenario to illustrate the similarities between the results of
our analysis of the 2017-09-17 and 2018-05-17 snapshots of
ViewA and their corresponding log datasets.

Figure 7a shows for the two different snapshots perfor-
mance in terms of RTT by link type. The plots use the width
of the boxes to encode the traffic volume served by Akamai,
and where discernible, gray and black boxplots correspond
to the 2017-09-17 and 2018-05-17 snapshots of ViewA, re-
spectively. While, as expected, the IXP option is hardly used,
these large providers and Akamai have good reasons to pre-
fer onnet and PNI over transit. For one, to avoid transit cost
and exert better control over the large volume of traffic that
Akamai sends to those providers, PNI is preferable over tran-
sit. At the same time, to achieve best performance, onnet is a
practical choice since it gets Akamai closest to the end users.
Next, Figure 7b shows the same plot as in Figure 7a but dif-
ferentiates by ISPs. To understand the patent differences in
performance among these large providers, we first note that
while all five ISPs operate a fixed-line network, ISPs A, C, and
E also operate a cellular network, and it is well-known that
mobile users experience in general higher RTTs. Another rel-
evant factor that explains the differences in performance (not
only with respect to RTT but also for throughput as shown
in Figure 7c where for each ISP, the left and right stacked
bar plots are for the 2017-09-17 and 2018-05-17 snapshots,
respectively) is the different arrangements Akamai has with
these large ISPs. In short, different providers serving end
users in one and the same country make their own (different)
decision about choosing from among the available link- and
deployment options, and Figure 7 shows that those decisions
matter when it comes to performance.
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(a) RTT by link type.
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(b) RTT by ISP.
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Figure 7: Serving a country with multiple ISPs.
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Figure 8: RTT by link type and metro.

4.3.3 Serving the world from different metros. For this ex-
ample, we consider all of Akamai’s deployments in six metro
areas around the world and show again only results for the
2017-09-17 snapshot of ViewA. EU-1 and EU-2 are two metro
areas in Europe that are considered to be major Internet hubs
and have large IXPs; US-1 and US-2 are major metros on the
east- and west-coast of the US, respectively, with substantial
Internet infrastructure; and AS-1 and AS-2 are major com-
mercial centers and Internet hubs in Asia. In all six metro
areas, all four link- and deployment options are used, but as
Figure 8 shows, to a varying degree. As in the previous figure,
the different widths of the boxes encode the traffic volume
and show that in all metro areas, onnet and PNI combined
serve most of the traffic. Except for US-2, there are noticeable
differences in traffic volumes between onnet and PNI, and
they can be explained partly by differences in population size,
partly by differences in availability, access, and cost of PNIs,
and partly by how large ISPs in the different metros view
Akamai or other large CPs as peering partners. For example,
even though EU-1 and US-1 are Internet hubs with a high
density of data centers, their population compared either to
EU-2 and US-2, respectively, or to the total population in the
two respective countries is not that large to justify a large
number of Type 1 deployments.
Overall, onnet and PNI achieve the best performance (in

terms of RTT), except for AS-1 where performance-wise,

transit has a slight edge. Although transit is across the board
a very small fraction of the traffic, its relative performance
differs markedly for the three continents. In the US with its
remaining Tier-1 ASes, transit performs similar to PNI, and
in Asia, it performs good due to a strong reliance in transit
providers in that region. To explain the wide ranges in RTT
for IXP in EU-1 and EU-2 note that Akamai’s deployments
at European IXPs serve both local end users and end users
in remote locations i.e., networks from other countries that
connect to the IXPs (e.g., see [13]).

Summary:When examining how traffic associated with ac-

tual user requests traverses Akamai’s dense connectivity fabric,

we find that some 90% of the overall traffic is coming from

just 1% of the paths. This extreme skewness also holds for all

those paths seen from explicit-only, implicit-only, and com-

bined explicit-implicit peerings. Considering different scenarios

around the world, we observe that different providers make

different decisions about how to connect with Akamai and that

these decision matter for performance.

5 RELATED WORK
Two recent papers [42, 47] have contributed to a renewed
interest in the actual structure and operations of the serving
infrastructures of large CPs such as Facebook and Google and
have demonstrated that the principles of SDN are applicable
to public-facing networks. Complementing these systems-
focused studies that offer only a few details about the actual
connectivity fabric component of Facebook’s or Google’s
serving infrastructures, our work provides a first-of-its kind
in-depth account of this very connectivity fabric of Akamai,
a large, global-scale CDN.
Our work is also related to prior research efforts on (i)

mapping the footprints of different large CP infrastructures
(e.g., see [3, 5, 25, 43, 45] and also [2, 7, 9]); (ii) providing new
insights into the structure and evolution of the AS-level Inter-
net (e.g., see [17, 33, 35, 41] and references therein), including
intricate interconnectivity fabrics at the large IXPs across the
world (e.g., see [4, 8, 11, 13, 40]); (iii) studying the flattening
of the Internet (e.g., see [15, 16, 22, 30, 48]); (iv) exploring
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CDN-ISP collaborations (e.g., see [21, 26, 38, 39]); and (v)
optimizing content delivery to end users in a rapidly chang-
ing Internet (e.g., see [10, 29, 36, 44, 46, 49] and references
therein). Our study is complementary to these and similar ef-
forts; it provides a detailed account of the connectivity fabric
of Akamai’s serving infrastructure and illustrates how this
large CP leverages this fabric to optimize the performance
of content delivery as experienced by the end users.

6 DISCUSSION
Realizing that the serving infrastructures of today’s large
CPs come in different shapes and sizes and change in re-
sponse to emerging technologies, new business models, and
a constantly evolving Internet edge, we consider our detailed
account of Akamai’s current serving infrastructure and the
breakdown of its connectivity fabric into its various compo-
nents as a valuable reference point for examining its own
evolution in time. For example, as part of our future work, we
plan to study the evolution of this large CDN’s serving infras-
tructure as a whole and of its connectivity fabric in particular
as it leverages and expands its own multi-service backbone
to transport its traffic between its own server clusters in a
performance-aware and cost-effective manner [27, 28] and
at the same time expands its business model to include more
service offerings.
We also view our work to be an important step towards

future efforts on understanding the serving infrastructures of
other large CPs in general and on quantifying the advantages
or disadvantages of one serving infrastructure design over
another in particular. For example, there is some resemblance
between the designs of Akamai’s, Google’s and Facebook’s
current serving infrastructures in the sense that they all uti-
lize, in one form or another, highly-distributed collections
of deployments (including deployments in third-party net-
works) that are organized in some hierarchical fashion on
top of some specialized private backbone network. This ob-
servation begs the question about the optimality properties
of this particular design choice over alternative designs (no
deployments in third-party networks, no private backbone)
when the all-important underlying objective of these large
CPs is the delivery of content to end users in a cost-effective,
performance-optimal, reliable and scalable manner. What
makes studying this problem especially challenging is that it
requires examining largely opaque and at times fast moving
targets. That is, the large CPs view details about their serving
infrastructures (including factors such as types of customers,
services, and workload) as proprietary information, and even
if publicly available, these details change over time.
Finally, by piecing together some of the interconnection

options that are available in today’s Internet to the large
CPs and are utilized by them in practice (e.g., see Section
3.4), the following scenario describes an all-to-realistic use

case. Take a large content owner/producer that utilizes the
services of a large cloud provider to store/process its content.
In turn, this cloud-based content is accessed by a large CDN
that transports it across its private backbone for delivery
to end users serviced by a large ISP. This content will typi-
cally traverse different PNIs all the way from the where it
is produced to the large ISP’s network and thus none of the
associated voluminous traffic will be visible in the public
Internet. This shift of traffic from the łpublicž Internet as
we know it to the łprivatež Internet is real and massive and
well-known among network operators (e.g., see [19]). How-
ever, by their very nature, the publicly available datasets that
network researchers commonly use to study the evolution
of the Internet’s interconnection fabric and its traffic pat-
terns say little if anything about the portion of the private
Internet that can be expected to see (or already sees) most
of the łactionž. The development of new methodologies that
allow third parties to study different facets of the Internet’s
evolution looms as an important open problem for closing
the gap between what network operators know based on
empirical evidence and what network researchers can study
and quantify based on relevant measurements.

7 CONCLUSIONS
Complementing recent studies that focus largely on the de-
sign of new SDN-based Internet peering edge architectures
that enable today’s large CPs to route their traffic at scale
and in a performance-aware manner, our work provides the
first account of the actual scale of the peering edge of such a
large CP. By examining the actual connectivity fabric of the
serving infrastructure of a large global-scale CDN, we show
that it consists of about 6,100 explicit peerings and some
28,500 implicit peerings. The latter refer to existing intercon-
nections between a third-party network and its downstreams
that this CDN has access to and can utilize for its content
delivery service simply by virtue of operating deployments
in such third-party networks. We further illustrate how this
CDN leverages this dense connectivity fabric for serving its
content łto the ISPs of the world.ž
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