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Abstract

The Extensible Security Adaptation Framework (ESAF) is designed to make configuration more
flexible and avoid protocol-dependent application development. Among its features are the seamless
integration of new protocols, exchangeability of corrupt protocols and utilization of the best protocol
available for communication. This choice is based upon security policies specified by the administra-
tion, the user, and the applications. The security support is end-to-end and layer-independent. It
also includes transport layer and quality of service requirements since the transport layer is trans-
parent for applications using ESAF. High-level policies provide a fine-grained support for defining
requirement levels. Requirements are therefore not binary, but scalar.

Keywords Security Adaptation, Virtualization, Security Context Negotiation, XML Security Poli-
cies, Quality of Protection.

1 Introduction

During the last decades the number of computers drastically increased as well as the demand for com-
munication. This trend raises the issue on how to handle and guarantee security in those systems,
considering their vast complexity. Traditional manual security management approaches reach their lim-
its of applicability. Huge human resources are necessary to setup the systems to communicate securely
and keep them running in the face of a constantly changing network environment. This administrative
overhead makes it difficult to introduce new innovative services into the network and sometimes even
impossible to use them at all.

As more and more computers are introduced into the network the problem gets even worse. Especially
in ubiquitous scenarios where computers and other electronic helpers are embedded everywhere in the
environment, it is not feasible to make a manual configuration for any communication and any device.
The complexity and the unforeseeable number of possible interactions and communication interfaces
require a self-configuration capability for the security and communication functions of the devices. A
solution to this problem is offered by the virtualization of the communication mechanisms.

1.1 Technologies

During the last decade numerous security technologies evolved which are able to guard the user from
attacks and intrusions. Security protocols like IPSec, SSL, TLS, SRTP are thoroughly evaluated but they
require a careful configuration to guarantee security. Users without expert knowledge are often unable
to make the right decisions and introduce severe vulnerabilities. Most large-scale networks that can be
found in companies and universities are insecure due to misconfiguration of a few individual workstations.
We propose a framework that can take the burden of making the right configuration decision away from
the user and still offer experts the flexibility to tune specific configuration details.

1.2 The Configuration Problem

Protocols like IPSec suffer under the configuration complexity as Bruce Schneier[2] already stated in his
survey on this protocol ”Even though the protocol is a disappointment — our primary complaint is with
its complexity — it is the best IP security protocol available at the moment.” Hence, the challenge today
is not to design a secure protocol but to configure a protocol to be secure!



Security configuration today can be done either at system level, for example by managing security poli-
cies or associations for IPSec, or at application level. Configuration at the system level is usually done to
reflect the highest demand for security and therefore must use the protocol and cryptographic algorithm
which offers the best security guarantees. The choice to use the ”best” security protocol reflects only
badly the true security needs at a given time. Which level of security is required depends a lot on what
the user wants to do. During a session only certain data need strong protection. Other data like, for
example, background images require less security. Another example for reduced security requirements is
communication in trusted environments. The security requirements are volatile and change frequently
even during the runtime of an application. It is obvious that security configuration needs to be done at a
finer granularity and must be dynamic in contrast to the state today with static configuration at system
level.

Some applications try to deal with the configuration of security protocols on their own and are there-
fore forced to support the protocol interface. Such applications break if old protocols become unavailable
even if new security protocols are introduced into the system as a replacement. The ESAF deals with this
problem by offering the application virtualization of communication. Virtualization makes it possible to
introduce new communication and security protocols transparently. The application utilizes an abstract
communication interface to hide the particular protocol. However, in case of ESAF the application can
still control the communication context by specifying high level policies.

In contrast to the needs of applications an administrator prefers to have a single control point where a
security policy can be specified and enforced. ESAF can provide this by using obligatory system policies
which define the minimal security level. These system policies defined by the administrator must always
be fulfilled for any communication. Application specific policies can only request higher security levels.
As an option the ESAF framework can keep an audit of the communication contexts and inspect the
applied configurations in detail. This audit helps to detect possible attacks and provides a mean to check
the correctness of the decisions of the ESAF system.

The heterogeneity of today’s network topologies and the vastly differentiating available security pro-
tocols at the end systems introduce additional challenges for protocol configuration. The prime task is
to identify possible security configurations supported at the end systems. In a next step a consensus
must be reached about the configuration that meets the requirements for the hosts best. This exchange
during the security context negotiation must be sufficiently secured and designed with care to reduce the
risk of vulnerabilities.

1.3 Structure of the document

The structure of the document is as follows. First, we present Related Work in Section 2. Then, the
design goals which led to the development of the Extensible Security Adaptation Framework (ESAF) are
discussed in Section 3. In Section 4 we finally introduce ESAF with its architecture and components.
We deal with security considerations in Section 5 and finally summarize our approach in the Section 6.

2 Related Work

Several projects strive to provide flexibility for communication. We take a closer look at some research
endeavors. The terminology of [16] helps us to categorize the systems.

The literature shows two main directions how to solve the adaptivity issue. One is to provide coordi-
nated distributed adaptation functionality inside the networks like Yarvis proposed with the Conductor
framework[23]. Conductor intercepts the communication and redirects it to the framework. Agents in-
side the network adapt the data streams according to a plan made by the Conductor framework at the
data source. Although conductor provides some flexibility by altering the data streams it only provides
rudimentary security services. Unspecified encryption algorithms are used to provide security services.
The other approach is to support the virtualization at the end-systems. The Generic Security Service
Application Program Interface(GSS-API) [10] is standardized by the IETF and aims at providing a
generic interface to use end-to-end security independent of the security mechanism and the communi-



cation protocol. The GSS uses tokens for the establishment of the security context and the protection
of the communication. The application is responsible for the token exchange via a suitable transport
protocol. GSS-API is well-established as an interface for authentication and key exchange. However the
token based approach introduces a GSS dependent overhead for each message. Secure communication
protocols, for instance SSL/TLS, cannot be accessed through this interface due to the peculiar message
protection mechanism. Quality of protection can be achieved at the prize of loss of transparency of the
underlying security mechanism. Furthermore, the API only covers security services and cannot provide
for an abstraction of communication mechanisms. The communication and hence the context negotiation
must be handled by applications itself.

The Common Data Security Architecture (CDSA)[4] is such an end-to-end cryptographic framework for
creating security-enabled applications for client-server environments. The Framework implements its
own security services at application layer to protect data transfers at run time. Hence it is not possible
to use standardized, widely-used security protocols at different protocol layers. Policy based security
configuration is not considered.

The Iceberg project[13] is similar to the Transformation, Aggregation, Caching and Customnization
(TACC) architecture[3]. Thus it is a pure proxy system, specially designed for mobile devices with few
resources. Proxy systems provide their services to legacy applications but fail to adapt to specific re-
quirements of the applications. Secure protocols like IPSec or SSL are not supported and it is difficult
to adapt the project to utilize these protocols.

The Chisel Framework[6] can be described as a reflective, application- and user-aware, end-system-based
architecture. It is possible to specify adaptation policies to influence the adaptation process. Their reflec-
tive approach lets them change technical behavior without modifying their adaptation system. Security
concerns were not in focus of this project and hence the framework fits only badly for the provisioning
of security services.

In [18] Stiller introduced the DaCaPo++ system which uses protocol composition based on module
chains. It is an application-aware system for the use on end-systems. Applications can influence their
Quality of Service by selecting suitable protocols among a set of predefined protocols. This makes ap-
plications dependent on the supported protocols and future changes may cause problems with legacy
applications. Security functionality is provided by proprietary security modules, thus security of the
communication is difficult to proof because non standard protocols are utilized.

The Celestial Project[20] was developed at the North Carolina State University and is an application-
aware and protocol-oriented security policy management system. The core component is the Security
Management Agent(SMA), which performs the security protocols configuration and exchanges configu-
ration messages with other Celestial nodes for connection setup. The SMA is implemented as a kernel
module and offers additionally a simple socket interface for applications. SMNAs also reside at middle-
boxes on the data path and influence the connection setup by adding their own security policies to the
message. Security services can be provided by those middleboxes and are therefore not end-to-end. Thus
a high level of trust is required in the unprotected link with the middleboxes and of course the trust-
worthiness of the middleboxes must be assured. Celestial introduced a proprietary protocol called ISCP
for the exchange of configuration messages and uses undisclosed algorithms and encryption functions for
protecting the message exchange. The management of the security policies is done at the application
level without an option for the administrator to influence or confirm the configuration. Therefor Celestial
lacks the capability to enforce a system wide security policy. If a critical bug of a security protocol is
exposed Celestial cannot easily adapt its policies.

3 Architecture Design Goals

While trying to provide communication and security virtualization it is important to state the require-
ments such a system must fulfill. Two basic principles are always visible in the design: a) be as au-
tonomous as possible during connection establishment b) provide control at all stages and transparency
of the state for the system.

We consider authentication to be out of scope for this document. That it can be provided with other
means, say out-of-band or using a PKI infrastructure.
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Figure 1: Extensible Security Adaptation Framework

Self-Configuration: The communicating entities must find a configuration set that fulfills at least
the minimal security and communication requirements of all participating entities. A consensus
must be reached about which protocols and which configuration fits the requirements best. Self-
configuration must be performed in a secure manner.

Intrusion Handling: Security mechanisms sometimes comprise flaws and if these are disclosed a
responsible administrator must react. Currently, one has to wait till an update becomes available
to fix the flaw. It is usually no option to disable the protocol because a lot of applications would
stop working. The mechanism must be able to disable protocols without harming the functionality
of the system.

Communication Virtualization: Communication interfaces must be abstracted and generalized to
allow the exchangeability of underlying protocols. The abstract interface must provide all function-
alities necessary for communication. It shall be possible to take control over the communication
but must be able to work autonomously with self configuration.

Context Adaptation: A secure perimeter requires maybe less security measures than a hostile en-
vironment. The computational resources that are available determine what kind of protocol is
applicable at all. The context determines the communication requirements.

Large Degree of Control: Different stakeholders take interest in the configuration of the connection.
It must be possible for all participants to express their configuration demands. Administrators want
to enforce a minimum security level whereas users take a large interest in the performance of the
system. Applications can optimize the performance by adapting the security to the actually per-
formed task.

Ease of Control: The control must not only be possible but also be easy to implement. The method
to express the requirements must be straight forward to formulate and to modify. The requirements



must be human understandable to allow administrators to make sure that the security context of-
fers adequate protection. It must be possible to trace the state of the system during configuration
for each message exchange.

e System Enhancement: Systems undergo many changes in the course of their lifetime. Protocols
are added and configuration changes frequently. The installed applications should be able to take
advantage of new system capabilities without being redesigned.

e Security: The architecture itself must be designed with security in mind. Possible weaknesses of
the architecture must be detected to avoid introducing new security holes in the system.

4 Extensible Security Adaptation Framework

The Extensible Security Adaptation Framework (ESAF) was designed to provide applications with a
novel interface that provides virtualization especially for security. Applications can take control over
the security protocols without the need to know anything about the parameters and interfaces of the
protocol at all. The decision which protocol and which configuration should be used has to be derived
directly form the security and communication requirements of the different stakeholders in the system:
user, application, system, communication partners and many other instances determine the configuration
needs.

These requirements are defined in high level policies. These policies describe in an abstract form the
required security and communication parameters. The ESAF can map these high level policies internally
onto system capabilities policies to derive the particular configuration that must be applied to the pro-
tocols.

Virtualization offers a compelling solution to solve two problems at once. The security and communica-
tion requirements must be formulated independently from a particular protocol, but they must still be
expressive enough to state the requirements in necessary depth. The usage of the security protocol must
be generic enough to replace the protocol in the system without the need to reconfigure or rebuilt the
existing applications.

Exchangeability of the protocols only works if the necessary configuration does not introduce hard de-
pendencies to a specific protocol. The socket interface achieves today a certain level of abstraction for
applications. It is not possible to exchange the ”o0ld” protocol with a new innovative and unforeseen
protocol without breaking the application. This is especially true in cases when, for example, security
was formerly provided through SSL, but now IPSec is the only secure communication option. Most often
such an exchange is not possible at all.

Our solution is to introduce a similar interface to the standard socket interface but offer generic config-
uration with high level policies.

ESAF not only acts system local, but can also assist the applications with the establishment of secure
connections. A security context negotiation is performed during connection setup to determine the re-
quirements of the communication partners. High level policies are exchanged and their intersection leads
to a list of supported and required protocols for the connection. A choice can be made then, what the
”best” protocol for this session will be.

In order to proof the concept we already implemented basic mechanism of ESAF for Linux in C++. The
ESAF environment is still under development and misses central functionalities like mechanisms for key
exchange or the use of certification authorities. For the present we made the assumption that the entities
possess means to authenticate their communication partners.

The next subsections will highlight the individual specialties of the different tasks of the ESAF approach.

4.1 Architecture

The layered architecture was designed to achieve communication virtualization and configuration trans-
parency for the application. Consequently the ESAF Virtualization Layer is the core of the framework.
This layer is the generic communication interface for the application. It accepts high level policies as
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Figure 2: ESAF Policy Processing

configuration requests and chooses autonomously appropriate communication setups. The application
utilizes the Generic Socket Interface of the ESAF library to carry out the communication then.

The Virtualization Layer uses internally the generic Protocol Wrapper interface. This wrapper also com-
prises a generic interface and takes system capabilities policies for configuration. The wrapper allows
the ESAF to easily introduce new protocols into the system. The system capabilities policies allow to
configure the protocols in depth while still being able to provide interchangeability of the particular
protocols.

The ESAF Runtime Environment is designed as a daemon running constantly in the system. One func-
tionality of the runtime is to make protocol configurations which require root privileges, for example of
IPSec. Another aim is to keep the ESAF Virtualization Layer comparable lightweight and implement
policy related functionalities here. Retrieval of the high level policies is such a functionality whereas the
daemon can keep track of the currently active security contexts.

The Control Interface is part of the application. The application is responsible for accessible ports from
outside of the system and runs the control interface there. A remote host, willing to connect, initially
negotiates a security context for the communication link, before data exchange can commence. The Con-
trol Interface allows the negotiation of security contexts during connection setup and the modifications
of the context during runtime.

<?xml version="1.0" encoding="UTF-8" 7>
<!DOCTYPE esaf_high_level_policy SYSTEM ” esaf_high_level_policy .dtd”>
<esaf_high_level_policy>
<security_requirements>
<message_authentication>
<minimum>5</minimum>
<ideal>7</ideal>
</message_authentication>
<data_integrity>
<minimum>7</minimum>
<ideal>10</ideal>
</data_integrity>
<confidentiality>

</confidentiality>
<traffic_flow_confidentiality>




</traffic_flow_confidentiality>
<non—repudiation>

</non—repudiation>

</security_-requirements>

<communication_requirements>
<connection_type>connection—oriented</connection_type>
<reliability>reliable</reliability>
<sequencing>yes</sequencing>
<error_control>yes</error_control>
<performance>
<minimum>5</minimum>
<ideal>10</ideal>
</performance>
</communication_requirements>

</esaf_high_level_policy>

Listing 1: High Level Policy

4.2 Requirements Description Language - RDL

We defined the Requirements Description Language RDL to pass configuration requests along. The
public interface of ESAF accepts High Level Policies whereas internally a system capabilities policy is
used to describe the installed protocols.

We decided to use XML as a policy language, because it is easily extensible. Different versions of the
ESAF can choose to ignore sections they do not understand. This is of course only possible if the section
provides information marked as optional.

4.2.1 High Level Policies

It is important that these policies are truly protocol and configuration independent and describe the full
range of requirements in a general manner. For such a policy language it is important to identify a set
of language constructs and keywords that are able to express the full range of communication require-
ments.

The security of a communication link is usually judged based on the degree it provides the following
characteristics: authentication, integrity, confidentiality and non-repudiation. We identified two more
parameters of high importance for secure communication: reliability and performance.

Security protocols are not equally optimized for all identified parameters. The level of security varies
depending on key lengths and utilized encryption algorithms. The performance of the algorithm may also
be an important factor, imagine a resource constrained device like a handheld computer. This tradeoff
between security and perfromance is also termed Quality of Protection(QoP) [5]. These thoughts led
us to the decision to attach a scalar value to each service requirement to express the importance of the
parameter on a scale between 0 and 10. The value 0 would mean "no importance” while 10 would give
the parameter the highest priority. To differentiate even further we introduced the notion of minimum
as a knock out barrier and ideal as the desired configuration value.

The security requirements are kept apart from the communication requirements in the policy. Inside
the security_requirements element each parameter is stated with its minimum and ideal value. This ele-
ment describes the typical security requirements as stated above. The tag communication_requirements
encloses parameters like performance or reliability. Listing 1 depicts an example of such a high level
policy.




High level policies which reside at the same system can be joined by the ESAF. The application
specifies an application dependent high level policy as well as the administrator can specify a system
policy. These policies can easily be unified because they refer to the same system capabilities policy. The
algorithm is straight forward, all minimum elements of the policy are compared and always the higher
value is kept.

<?xml version="1.0" encoding="UTF-8” 7>
<!DOCTYPE esaf_system_ability SYSTEM ” esaf_system_capability.dtd”>

<esaf_system_capability>
<supported_security_protocols>
<security_protocol id="ipsec”>
</security_protocol>

</supported_security_protocols>

<supported_communication_protocols>
<transport_layer>

</transport_layer>
<network_layer>

</network_layer>
</supported_communication_protocols>

</esaf_system_capability>

Listing 2: Excerpt of System Capabilities Policy

4.2.2 System Capabilities Policy

High level policies helped the stakeholders express their requirements. Now the question is how these
high level policies get mapped onto particular protocols providing the desired properties. Our approach
is to use system capabilities policies. These policies describe the available communication and configura-
tion means of the system.

The basic elements of this format are the security protocols and the communication protocols. Here are
the descriptions what a protocol can do and how it must be configured. If critical bugs in a security
protocol are disclosed, the administrator can easily disable the corresponding entries in the system ca-
pabilities policy or degrade the security level. This will allow that the applications to use more secure
protocols for their connections. The user will not even notice the change and the application does not
have to bother.

<supported_security_protocols>
<security_protocol id="ipsec”>
<supported_security_services>
<confidentiality>
<encr_algorithm id="aesl28—cbc”>
<key_length>128</key_-length>
<security_level>9</security_level>
<performance>6</performance>
</encr_algorithm>
<encr_algorithm id="aes256—cbc”>
<key_-length>256</key_length>
<security_level>10</security_level>
<performance>4</performance>
</encr_algorithm>
<encr_algorithm id="twofish128—cbc”>

</encr_algorithm>

</confidentiality>




<message_authentication>

</message_authentication>
<non—repudiation>

</non—repudiation>

</supported_security_services>
<required_communication_protocols>
<!—protocols, which can be used with this security protocol —>
</required_communication_protocols>
</security_protocol>

</supported_security_protocols>

Listing 3: Security Services in the System Capabilities Policy

The system capabilities policy describes in detail the possible configuration options for each security
protocol and a system local security rating. We call policies at this detail low level policies. These
elements correlate directly with the elements of the high level policy. It is now possible to determine all
possible encryption algorithms in the system which can provide a certain security service, for example,
confidentiality.

Listing 3 shows an excerpt of the security section of an example system capabilities policy. Here are some
supported configuration options for IPSec security services defined. This particular part shows some
available encryption algorithms. Note how the key-length of 256bits for the AES algorithm increases the
security level to 10 but decreases the performance level to 4. If implementations get more efficient or
algorithms are considered less secure it is easy to change this policy to reflect the changes. The secu-
rity_protocol tag can contain special information for each algorithm on how to configure the algorithm.
In this example it is the key_length element.

The system must be aware of the dependencies between the different protocols. Each security protocol
contains the section required_communication_protocols which determines in what combinations the pro-
tocol can be used.

4.3 Communication Interface

The communication interface provides abstraction of the actual protocols. Virtualization is accomplished
by using high level policies. The interface itself must be general enough to allow the exchangeability of
the underlying protocols but must must not limit the way a protocol can be used. The level of abstraction
of the BSD socket interface[8] has already proved itself. The Socket++ interface[19], we chose to mimic,
is an evolution of the BSD socket interface and tries to enhance the ease of use for programmers.

We added the method negotiate_policy to the interface for configuration by the means of high level poli-
cies. This method performs internally several steps to establish an agreement about the configuration of
the communication link as described in the next section 4.4. After the agreement is reached it establishes
the communication with these parameters.

class Secure_Connection
{
private:
void negotiate_policy (const std::string &from, const std::string &to,const std::
string &policy);
public:
inline Secure_Connection (const std::string &from,const std::string &to, const std::
string &policy) {

this—>negotiate_policy (from, to, policy);

}

“Secure_Connection () ;




void send (const std::string &data);
std ::string receive();
void disconnect () ;

void renegotiate_policy (std::string* policy);

Listing 4: An Excerpt of the Secure Connection Class

The concept of using high level policies for configuration allows to extend the functionality of the
framework without changing the interface. Applications must not be rebuilt to include these new func-
tionalities. The extensible structure of the XML parameter will allow us to support low level policies
in the future. These policies contain additional configuration options at the detail level of the system
capabilities policy. One interface can be used then to provide loose or close control depending on the
needs of the application.

4.4 Security Context Negotiation

When a connection has to be established it is necessary to perform a security context negotiation. The
participants must agree on a set of possible protocols and a selection must then be made which protocols
to use. At the moment ESAF supports only end-to-end communication for two participants.

Figure 3 shows the sequence of the negotiation. First a connection request must be made in step 1) by
A. For this reason the ESAF at host A joins the high level policy of A with the system capabilities policy
of system A. It tries to determine a set of protocols and configurations meeting the requirements. Only
the entries which possess a security rating of equal or better then the minimum requirement specified by
the high level policy will be included and form a special policy, the Configuration Offer. The generated
Configuration Offer is now sent to host B inside the connection request. As an option the high level
policy can be included to inform B about the utilized security ratings for host A.

After host B received the request, it starts processing it together with its local policies. First, it must
evaluate its own high level policy provided by its server application and join it with its system capabil-
ities policy to get the locally available configuration options. Then, the algorithm starts to determine
the adequate configuration taking the minimum and ideal values into account. If the configuration is
found the connection is prepared and a Context Prepared message is sent to A in step 2), containing the
Session Policy.

In case host B is not able to find a possible intersection it will send an Agreement Failed message back
to A and attach its own high level policy and system capabilities policy. In the failure case host A could
try to adapt its policies to find at least one possible communication link with host B. This modification
should not be done automatically but through human intervention because it could lead to degradation
of the security level.

After host A received the Session Policy, the connection setup of the protocol can start with the ex-
changed configuration information as shown in step 3). Furthermore, the application can always perform
a runtime modification of the communication setup by renegotiating the parameters, as shown in step
4).

Of course, the ESAF middleware on host A must verify that the selected configuration is consistent with
the request it sent in step 1). This must be done to detect manipulation attempts. However, it is a
matter of mutual trust that the two hosts do not misuse their various decision options. Authentication
of messages is very important for the negotiation process to avoid manipulation attempts of the messages.
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Figure 3: Security Context Negotiation Sequence

5 Evaluation

In this section we briefly evaluate the security aspects of the ESAF system. A thorough analysis and
solutions to reduce possible problems are future work.

With respect to the security of the protocols that the system will use, we can state the following.
ESAF does not use self-designed new security protocols, but uses well-known and well-evaluated protocols
like IPSec or SSL and their implementations in current systems. This is not expected to be a weakness
in ESAF.

More important for a future evaluation of ESAF is the analysis of the impact of and threats to ESAF
itself. ESAF could be the point of attack. This could be due to weaknesses in the ESAF implementation.
The control interface could be vulnerable because it accepts connections and could be misused for buffer
overflows or DoS attacks. To limit this threat the control interface is active in the application and not
in the runtime. Configuration weaknesses could be introduced by an attacker when she is able to modify
low-level security policies system locally and propagate an insecure protocol as secure. Other possible
problems could arise from the interaction of ESAF with security protocols.

We will discuss these points in detail and propose possible solutions in the future.

6 Conclusion

This document describes a framework for the virtualization of secure communication configuration called
Extensible Security Adaption Framework. Applications using the framework are unaware of the utilized
security mechanisms and the complex configuration thereof. They must only state their communication
and security requirements and the ESAF will autonomously select and establish the best matching com-
munication setup. Protocols can easily be introduced into the system or disabled if a critical vulnerability
of a certain protocol is discovered. Because the ESAF virtualization hides the protocol stack completely
from the application, it does not matter anymore at which layer security functionalities are provided.
Abstraction is reached by specifying two human-readable policy formats. One high level format describes
the requirements whereas the other format describes particular protocols and configuration options at
the system level. These XML policies are not only used internally but also for the connection setup. The
parties wishing to establish a link exchange security policies and leave the connection setup up to the
ESAF.

Although the implementation is under progress and the concept advances there are still open issues.
First of all a thorough security investigation must be undertaken. Then issues like authentication and
key exchange must be supported by this framework.

Our conclusion is that the ESAF approach can provide security virtualization and allows self-configuration.
Of course, the benefits of ESAF are currently only available to applications which support the framework.
However, the prospect of autonomous and secure self-configuration of communication is tempting.
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