
The Networking Perspective of Security
Performance

- a Measurement Study -

Heiko Niedermayer, Andreas Klenk, and Georg Carle
{Niedermayer, Klenk, Carle}@informatik.uni-tuebingen.de

http://net.informatik.uni-tuebingen.de

Computer Networks and Internet
University of Tuebingen

72076 Tuebingen, Germany

Abstract. The recent term Quality of Security Services leads directly
to the question of the performance impact of security protocols like IPSec
and SSL. The impact depends not only on the situation, but also on the
configuration. We measured the processing delay and the throughput for
implementations of IPSec under Linux with different kernel versions on
current computers. Our focus is to cover the effect of the various para-
meters of IPSec. Most important for the IPSec performance is the choice
of the cryptographic algorithms and hash functions. Our measurements
indicate that the latter are becoming the bottleneck as fast encryption
algorithms like the AES and Blowfish more and more replace the slow
3DES.

1 Introduction

The computational power of computers has been increasing ever since. Today,
small handheld devices are more powerful than computers that are only some
years old. Moreover, cryptographic functions have in many cases become more
efficient, despite the need to persist computationally stronger adversaries. As a
consequence, one might want to secure communication also in cases that are not
highly critical. Another driving factor is the increase in wireless communication
which is a general threat to confidentiality.

Considering the common Internet communication, it is usually insecure. Se-
curity in Internet communication is either managed on a per system basis by
administrators or the applications themselves must deal with security. Espe-
cially applications frequently fall short of the users requirements. Examples are
electronic ballot systems, online banking, confidential details during online trans-
actions in the web, say payment details, etc.

More prevalent are security methods in case of wireless communication. How-
ever, WLAN security has been troublesome and WPA2 is not the default con-
figuration, yet.

As a way of combining quality of service with quality of protection the new
term Quality of Security Services (QoSS) has emerged. The standard assumption



Niedermayer, Klenk, Carle

is that communication may not only have different needs in quality of service,
but also the need for protection differs. Varying the level of protection, however,
makes only sense when there is a significant impact of the protection level on
other parameters of the system. Such parameters can be CPU load, latency, or
throughput.

2 Quality of Security Service

Many applications rely implicitly or explicitly on communication links which
offer a certain quality of service (QoS). The latency of the link might deter-
mine, for instance, if real-time multimedia conferencing is feasible. The quality
of service the end users experience is often limited by the weakest component of
the processing chain of the communication. Either the network connection can-
not hold the required QoS guarantees, middleboxes influence the communication
parameters, or the end system itself cannot handle the load that the data flow
imposes.
If only network characteristics are considered for QoS provisioning one might
end up with a situation where the QoS of the network link might meet its con-
straints, but the applied security services could result in undesirable performance
values for the application. Hence, the performance of the security services is an
important factor for the QoS of the communication. A number of frameworks
have emerged during the last years which can base their choice of the security
services upon performance values and security ratings. The term Quality of Se-
curity Service (QoSS) was coined to emphasize the dependency between security
algorithms and quality of service values.

2.1 Current research about Quality of Security Service

Levine was the first to discuss the effects of Quality of Security Service[6] in depth
and to describe how to adapt the system to defined requirements. Her system
offers security choices to reflect the different behavior of the mechanisms. The
user, the application and the system determine the adequate algorithm jointly.
The decision is derived from security ranges and performance ranges specified
in form of policies. The core argument behind her reasoning is: If a user decides
on a minimum security level for an application, would she ever agree to more
security if that increases her costs?
The GSS-API[12] was developed prior to the QOSS approach to support applica-
tions with generalized security services. The per-message protection mechanism
is enhanced by an option to take a so called Quality of Protection(QoP) para-
meter to select a particular security option based on performance values and
the protection requirements of single messages. However, the use of the option
is limited, because the QoP parameter depends on the implementation of the
underlying algorithm which breaks the encapsulation of the mechanisms.
Ganz introduced the security broker[5] architecture for WLANs. This framework



The Networking Perspective of Security Performance

chooses security services upon security requirements specified by the user, avail-
able network performance and the performance of security routines. There exist
three security classes to choose from, each with a different level of protection
and different performance.
Another contribution to adaptive security in WLANs was published by Saxena
in [16]. The required security level depends mainly on the trust in the environ-
ment, say how hostile one expects the environment to behave. The paper argues
that the spare processing and transmission resources are wasted in mobile envi-
ronments if security is overprovisioned. Hence the tradeoff between security and
performance is essential for the choice of security services.
ESAF[11] is a framework for adaptive security which supports end-to-end, layer
independent and QoSS aware configuration. Security mechanisms are virtualized
and are thus exchangeable. The framework makes use of existing and generally
trusted security protocols, for instance, IPSec and SSL. In the course of a negoti-
ation between the partners mutually acceptable configuration options are chosen.
The protection of the available algorithms and the estimated performance num-
bers determine the selection. Different stakeholders express their security and
performance requirements by the means of scalar values. Policies describe the
requirements in a high level description on the one hand and the available con-
figuration options of the security services at the system level on the other hand.
These policies contain scalar values to express a rating of the performance and
security capabilities of the individual mechanisms. These scalars are required to
make a meaningful selection of the mechanisms to reflect the users requirements.
Hence the performance grading of a security mechanism is an important para-
meter.

All frameworks for the dynamic security adaptation have in common, that
they require a thorough analysis about the performance of the available security
protocols and demand for a quantification of security. The performance charac-
teristics of existing security protocols have not yet been evaluated for the use by
QoSS aware systems. This submission strives to provide a performance overview
of current security protocols and shows how scalar performance ratings can be
derived from the results.

3 Related Work

The performance of individual cryptographic algorithms and their efficient im-
plementation are topic of many special scientific conferences. However, the per-
formance of cryptographic network protocols is not equally well documented.
FreeS/WAN [4] is not only one of the first implementations of IPSec for Linux,
its online documentation for version 1.99 is still a good source for IPSec per-
formance implications. It primarily covers the CPU requirements to saturate a
typical link using ESP with 3DES and AH with SHA-1. Modem, ISDN or DSL
links can be saturated with even older computers (e.g. all i586 computers). For



Niedermayer, Klenk, Carle

standard 10 Mbps Ethernet (only 1 sender) an Intel Pentium with 300 Mhz is
required.

Barbieri et al [2] studied in 2002 the use of IPSec for Voice over IP. Voice
traffic consists of many packets with small payload, e.g. 40 bytes. The introduc-
tion of cryptography leads to an additional delay that can reduce the quality.
Furthermore the bandwidth requirements increase due to the increased header
size. They suggest a so-called compressed IPSec.

Alshamsi and Saito[1] just recently compared the performance of SSL and
IPSec on current computers with Linux kernel 2.4.

4 IPSec

IPSec [10] is the Security Architecture for IP defined by the IETF which extends
IP on the network layer. It strives to provide four security properties: message
authentication, data integrity, replay protection and confidentiality.

4.1 Introduction

Upper layer protocols and IP communication profit from the security features
of IPSec. It operates on top of IPv4 and is part of IPv6. Security can either
be end-to-end or take some intermediate security gateways as end-points of the
secured channel.
IPSec contains two security protocols. The Authentication Header (AH) [8] pro-
tocol protects the data integrity and provides for message authentication. The
Encapsulated Security Payload (ESP)[9] protocol offers confidentiality as well as
message authentication and data integrity. The ESP protocol can be combined
with the AH.
The IPSec possesses two different protocol modes: Tunnel Mode for IP in IPSec
encapsulation and Transport Mode for protection of the payload for host to host
communication. These protocol modes are specified orthogonally to the secu-
rity protocols and hence AH and ESP can each be used equally in Tunnel and
Transport mode.

4.2 Authentication Header

This security protocols provides integrity, data origin authentication, and re-
play protection. Its scope is the whole static part of the IP packet including
non-volatile IP header fields, the payload, but also the AH specific header infor-
mation. The Authentication Header protocol can utilize different authentication
algorithms. Message Authentication Codes (MAC) protect point-to-point con-
nections. One way hash functions (e.g., MD5, SHA-1) or symmetric encryption
algorithms (e.g., 3DES, Blowfish, AES) can be used.

The length of the Authentication header is 12 bytes plus the length of the
authentication data. Usually, the output of the hash function is not included in
full length, but truncated (in case of MD5 and SHA-1 to 12 bytes, in case of
SHA2-256 to 16 bytes).



The Networking Perspective of Security Performance

4.3 Encapsulated Security Payload

ESP offers similar protection for the payload like the AH and provides addi-
tionally for confidentiality. The ESP operates on the payload of the packet and
provides additional protection for ESP header fields. It does not cover static
fields of the IP header.
The ESP header is inserted after the IP header and before upper layer data
(transport layer) or encapsulated IP packets in the Tunnel Mode. Confidential-
ity can be specified alone, whether in this circumstance other means for au-
thentication like the AH protocol are required for secure operation. Traffic flow
confidentiality can be achieved in conjunction with the Tunnel Mode.
The optional authentication uses the same functions for MAC generation as the
AH. The already stated encryption algorithms serve for the confidentiality of
the payload.

The length of the Encapsulated Security Payload header is 10 bytes plus the
length of the padding, optionally the length of the authentication data, and the
length of an Initialization Vector (usually 8 bytes) if required by the encryption
algorithm.

4.4 Security Associations and Security Policies

IP itself is a datagram service. However, IPSec requires a common knowledge of
keys and algorithms for all communication partners. Thus, the security context
has connection semantics to keeps state information for the applied security ser-
vices.
The standard [10] introduces the notion of Security Associations (SA) as ”a sim-
plex ’connection’ that affords security services to the traffic carried by it”. One
SA defines security services for a unidirectional connection either for AH or ESP
but not for both. Multiple SAs can be effective for one connection, for instance,
four SAs: AH, ESP, each inbound and outbound. The standard also defines how
a SA can be identified: ”A security association is uniquely identified by a triple
consisting of a Security Parameter Index (SPI), an IP Destination Address, and
a security protocol (AH or ESP) identifier.” The SPI is used to identify the SA.
The Security Policy Database (SPD) stores policies that define which inbound
and outbound traffic must be protected by which security services. The SPD
defines how SAs must be established and what parameters are necessary. The
administration of the system local SPD is usually managed manually.
The Internet Key Exchange (IKE) is used to establish authenticated keying ma-
terial and maintaining SAs. It runs on top of the ISAKMP [13] framework and
utilizes the Diffie-Hellman algorithm to set up a shared session key. It can use
pre-shared secrets or X.509 certificates to authenticate the entities. The IETF is
currently standardizing the Internet Key Exchange (IKEv2) Protocol [7] which
integrates previously independent standards (e.g., ISAKMP, Internet DOI) and
introduces new functionalities (e.g., NAT traversal, Legacy Authentication, Re-
mote Address Acquisition). However, IKEv2 is not interoperable with IKE.



Niedermayer, Klenk, Carle

5 Latency of IPSec processing

5.1 Measurement Methodology

In this section we present measurements of the processing delay of IPSec. To
be more precise, the delay a packet receives from entering to leaving the IPSec
layer. These measurement points were set using hooks in the Linux IP stack. Un-
less otherwise stated the results presented are from outgoing packets and were
measured from IP Local Out to IP Post Routing hooks. The time measurements
were done using the Pentium CPU time-stamp-counter (TSC) register. All mea-
surements were performed using Intel Pentium 4 2,60 GHz computers with Linux
2.6.9 and its native IPSec and all unnecessary services terminated. For compar-
ison we also used Linux 2.4 with StrongS/WAN[17].

The measurement software stored the results in an array during the evalu-
ation and purged them to disk afterwards. For the measurement, single ICMP
packets with different packet sizes were sent using the command ping. 10.000
samples were taken for each combination of the algorithms and outliers due to
system specific distortions, say interrupts, were manually removed using the sta-
tistics software R [3]. The impact of the outlier removal on the mean is at most
2,7 %, but usually well below. Due to the low variation and the large number of
samples the confidence intervals are narrow.

One limitation of this paper is that we solely look at the latency of sending
a packet. However, there might be small differences for the results of packet
reception caused by different performance of encrypting and decrypting a packet,
impact of caching, etc.

5.2 Authentication Header

The Authentication Header Protocol is the IPSec protocol for message authen-
tication and data integrity, usually achieved using cryptographic hash function
in the HMAC construct. Table 1 presents our measurements with AH using the
native IPSec of Linux 2.6.9. As expected SHA-1 is slower than MD5.

Algorithm Mode Cycles Time

MD5 Transport 23665 9.10 µs

MD5 Tunnel 24591 9.46 µs

SHA-1 Transport 63628 24.5 µs

SHA-1 Tunnel 65916 25.3 µs

Table 1. AH - delay for packet with 1400 B payload between IP Local Out to
IP Post Routing

The processing of AH with HMAC-MD5 needs approximately 23,500 cycles
in Transport Mode. This corresponds to a data rate of 1.2 Gbps (ignoring other



The Networking Perspective of Security Performance

overhead and internal limitations). The processing of SHA-1 takes approximately
64,000 cycles. The corresponding data rate would be 460 Mbps.

5.3 Encryption with Encapsulated Security Payload

The Encapsulated Security Payload is the IPSec protocol for confidentiality,
usually provided by symmetric encryption, e.g. with block ciphers in CBC-mode
as in all our measurements. Table 2 presents our measurements with ESP using
the native IPSec of Linux 2.6.9. The AES is the fastest encryption algorithm in
these measurements. Its delay for processing a segment with 1,400 bytes payload
length is about 65,000 cycles, which corresponds to an assumed data rate of 440
Mbps (ignoring other overhead and internal limitations). The slowest algorithm
is 3DES with a delay of 395,000 cycles and corresponding data rate of 74 Mbps.

Algorithm Mode Cycles Time

AES-128 Transport 65629 25.2 µs

AES-128 Tunnel 66620 25.6 µs

AES-192 Transport 70976 27.3 µs

AES-192 Tunnel 72927 28.0 µs

Blowfish-128 Transport 112603 43.3 µs

Blowfish-128 Tunnel 116292 44.7 µs

3DES Transport 394956 152 µs

3DES Tunnel 398989 153 µs

Table 2. ESP - delay for packet with 1400 B payload between IP Local Out to
IP Post Routing

5.4 Combining ESP and AH

A realistic scenario combines both ESP and AH to achieve a maximum of se-
curity. Table 3 lists some results. A typical combination is ESP with AES-128
and AH with SHA-1. The processing of IPSec in this case takes about 131,000
cycles, which corresponds to a data rate of 222 Mbps (ignoring other overhead).
Using ESP with 3DES in this combination increases the processing overhead to
451,000 cycles (data rate 64.5 Mbps), which is more than factor 3! The Tunnel
Mode that is used for scenarios like Virtual Private Networks. It is approximately
2,000 to 6,000 cycles slower than the Transport Mode.

5.5 Packet Size

All the results presented so far were for large packets that are close to the size
limit imposed by the standard Ethernet. This is one typical packet size, but
smaller packets are also common, e.g. for ACKs or real-time traffic. Table 4



Niedermayer, Klenk, Carle

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500

Payload [Byte]

C
y
c
le

s
AES-128

SHA-1

AES-128 & SHA-1

Fig. 1. IPSec with kernel 2.6.9 in Transport Mode Delay

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500

Payload [Byte]

C
y
c
le

s
p

e
r

B
y
te

AES-128

SHA-1

AES-128 & SHA-1

Fig. 2. IPSec with kernel 2.6.9 in Transport Mode Delay per Byte



The Networking Perspective of Security Performance

ESP AH Tunnel Mode Transport Mode

AES-128 SHA-1 133481 131012

3DES SHA-1 456558 450979

Table 3. ESP+AH - delay in clock cycles for packet with 1400 B payload between
IP Local Out to IP Post Routing

ESP AH Mode 64 B 300 B 700 B 1400 B

AES-128 - Transport 5907 16890 35069 65628

AES-128 - Tunnel 6607 17565 35233 66620

AES-128 SHA-1 Transport 24587 43944 74956 131012

AES-128 SHA-1 Tunnel 25084 44946 76666 133481

- SHA-1 Transport 16037 25365 38773 63627

- SHA-1 Tunnel 18433 25264 41031 65915

Table 4. Native IPSec/Linux 2.6.9, Delay in clock cycles for packets with different
payload size between IP Local Out to IP Post Routing

presents the delay measurements for packets with the sizes 64 B, 300 B, 700 B,
and 1,400 B.

Figure 1 visualizes the delays for different packet sizes for the measurements
with IPSec in Transport Mode. The linear regression is also plotted and shows
that a linear model

Latencyavg(Size) = a ∗ Size + b

is already sufficient. a gives the number of cycles per byte and b the constant
overhead in cycles. For the case with AES-128 and SHA-1 in Transport Mode
linear regression gives a = 79.5 cycles

Byte and b = 19, 700 cycles.
Figure 2 gives another insight on the data. As expected, the overhead per

byte is larger for small packets. For packets with a payload of 300 B and more
the overhead per byte is already close to the overhead per byte for large packets.
Thus, the constant term of the processing delay is mainly important for small
packets, e.g. packets in audio streams with small payload sizes.

5.6 Comparison of Linux 2.6.9 and StrongS/WAN

When we started the measurements the use of Linux 2.4 was still common and
IPSec was not yet part of the kernel. We used StrongS/WAN which is based
on the FreeS/WAN project which stopped their development when a different
IPSec implementation was to be integrated in the 2.6 kernel. Table 5 shows the
results.

Even more interesting is the comparison of these results with the results from
the previous sections where we used the native IPSec implementation of Linux



Niedermayer, Klenk, Carle

ESP AH Mode 64 B 300 B 700 B 1400 B

AES-128 - Transport 20918 26294 37465 49585

AES-128 - Tunnel 25964 31293 39816 54726

AES-128 SHA-1 Transport 44518 58224 75235 114530

AES-128 SHA-1 Tunnel 48847 62353 82495 115117

- SHA-1 Transport 32186 40336 50160 69861

- SHA-1 Tunnel 42665 44470 60486 80080

Table 5. StrongS/WAN/Linux 2.4 - IPSec-related Delay in clock cycles for packets
with different payload size

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500

Payload [Byte]

C
y
c
le

s

Kernel 2.4 &
StrongS/WAN

Kernel 2.6.9

Fig. 3. Comparing the measurements for StrongS/WAN with the measurements with
Linux 2.6.9

with kernel 2.6.9. Figure 3 shows the comparison of the results. StrongS/WAN
performs better for large packets and the native IPSec of Linux 2.6.9 is better
for small packets, e.g. 64 bytes packet size.

One might speculate that while the algorithms are better optimized in StrongS/WAN,
native IPsec is naturally better integrated into the kernel and has less overhead
itself.

6 Throughput

6.1 Measurement Methodology

In this section we present throughput measurements mainly for IPSec with vari-
ous configurations. All measurements were performed using Intel Pentium 4 2,60
GHz computers with Fedora Linux and its native IPSec implementation with all
unnecessary services terminated. The computers were directly connected via Gi-
gabit Ethernet. Iperf was used as a tool to perform throughput measurements.



The Networking Perspective of Security Performance

The values are mean values taken from at least 3 Iperf runs (9 runs for encryp-
tion only and 18 runs for hash function only) with each run having 30 seconds
duration.

At first, we performed the measurements with the same kernel (Fedora Linux
2.6.9) where we performed the latency measurements within the IP stack. Just
recently we repeated the measurements with the new 2.6.13 kernel. The new
version has an improved DES implementation among other improvements in the
kernel. However, the general performance increase was suprising to us, but our
tests with another 2.6.9 kernel variant showed results similar results to our 2.6.9
reference distribution. However, there is a variation between installations with
the different distributions.

Unless otherwise stated we given values are from measurements with the
kernel 2.6.9 in a standard Fedora installation.

6.2 Authentication Header

Table 6 and table 7 provide an overview of the throughput measurements with
AH. AH with MD5 hardly reduced the throughput of IP datagrams. It is inter-
esting that the newer 2.6.9 kernel has a lower IP and MD5 throughput, but all
other IPSec combination profit from its use. The use of SHA-1, the most com-
monly used cryptographic hash function, leads to a throughput of roughly 300
Mbps (kernel 2.6.9) and 350 Mbps (kernel 2.6.13). The use of the most secure
hash function in our measurements, SHA-2-256, reduced the performance of AH
to 186 Mbps.

Algorithm kernel 2.6.9 kernel 2.6.13

IP 825 Mbps 817 Mbps

AH with MD5 610 Mbps 599 Mbps

AH with SHA-1 298 Mbps 349 Mbps

AH with SHA-2-256 186 Mbps 189 Mbps

Table 6. AH performance in Transport Mode

Algorithm kernel 2.6.9 kernel 2.6.13

IP 825 Mbps 817 Mbps

AH with MD5 595 Mbps 580 Mbps

AH with SHA-1 294 Mbps 343 Mbps

AH with SHA-2-256 183 Mbps 186 Mbps

Table 7. AH performance in Tunnel Mode



Niedermayer, Klenk, Carle

6.3 Encryption with Encapsulated Security Payload

The Encapsulated Security Payload is the IPSec protocol for confidentiality, usu-
ally achieved using symmetric encryption, e.g. with block ciphers in CBC-mode.
Tables 8 and 9 present the results. The performance of all the algorithms dramat-
ically increased when switching from kernel 2.6.9 to 2.6.13. The throughput of
ESP with AES-128 increased from 314 Mbps (kernel 2.6.9) to 456 Mbps (kernel
2.6.13).

Blowfish is designed to have a performance independent of the key size. This
can also be seen in the results.

With the 2.6.13 kernel, Fast Ethernet can almost be saturated using ESP
with 3DES.

Algorithm kernel 2.6.9 kernel 2.6.13

IP 825 Mbps 817 Mbps

ESP with AES-128 314 Mbps 456 Mbps

ESP with AES-192 295 Mbps 419 Mbps

ESP with Blowfish-128 192 Mbps 336 Mbps

ESP with Blowfish-192 192 Mbps 337 Mbps

ESP with DES 132 Mbps 212 Mbps

ESP with 3DES 66 Mbps 97 Mbps

Table 8. ESP performance in Transport Mode

Algorithm kernel 2.6.9 kernel 2.6.13

IP 825 Mbps 817 Mbps

ESP with AES-128 306 Mbps 441 Mbps

ESP with AES-192 287 Mbps 404 Mbps

ESP with Blowfish-128 191 Mbps 325 Mbps

ESP with Blowfish-192 189 Mbps 324 Mbps

ESP with DES 127 Mbps 206 Mbps

ESP with 3DES 64 Mbps 95 Mbps

Table 9. ESP performance in Tunnel Mode

6.4 Combining ESP and AH

True security requires both encryption and message authentication. Thus, it is
necessary to combine both. We skip the values of combinations with DES as is
insecure due to its small key size (56 bits relevant, key itself is 64 bit).



The Networking Perspective of Security Performance

MD5 SHA-1 SHA-2-256

AES-128 231 Mbps 166 Mbps 123 Mbps

AES-192 225 Mbps 160 Mbps 120 Mbps

Blowfish-128 164 Mbps 127 Mbps 99 Mbps

Blowfish-192 163 Mbps 127 Mbps 99 Mbps

3DES 60 Mbps 56 Mbps 50 Mbps

Table 10. ESP+AH performance in Transport Mode, kernel 2.6.9

MD5 SHA-1 SHA-2-256

AES-128 309 Mbps 223 Mbps 148 Mbps

AES-192 289 Mbps 213 Mbps 142 Mbps

Blowfish-128 244 Mbps 190 Mbps 129 Mbps

Blowfish-192 244 Mbps 190 Mbps 130 Mbps

3DES 88 Mbps 81 Mbps 69 Mbps

Table 11. ESP+AH performance in Transport Mode, kernel 2.6.13

Tables 10 and 11 present the results. The fastest reasonable IPSec combi-
nation is ESP with AES-128 and AH with SHA-1. Its throughput is 166 Mbps
(kernel 2.6.9) or 223 Mbps (kernel 2.6.13) in Transport Mode. Comparing this
section with the results of the ESP and AH sections we additionally note that
message authentication with the hash functions is increasingly dominating the
performance, especially considering that SHA-2-256 is the only hash function in
this study that is not yet heavily under attack.

6.5 AH vs ESP

With IPSec it is not necessary to use ESP and AH for achieving confidentiality
and message authentication as ESP supports both. Many experts recommend
the use of ESP and AH, because AH also authenticates non-volatile fields of its
IP header.

AH adds 12 B extra overhead and additionally authenticates the outer IP
header. So, the combination of ESP and AH should be slower. However, the
extra 12 bytes AH header are small compared to payloads of more than 1400 B.

Comparing the results presented in Table 12 there is no significant impact on
the performance whether ESP and AH or ESP with authentication is used. Thus,
the recommendation is to use ESP and AH as it provides better authentication
with no or negligible extra-cost. An exception to this recommendation are small
packets and the additional overhead of 12 B for AH might me unacceptable.

6.6 Comparison with SSL-based Tunnels

Finally, we compare IPSec tunnels with tunnels based on SSL. Besides the native
IPSec of Linux 2.6 we use the SSL tools stunnel [14] and OpenVPN [15].



Niedermayer, Klenk, Carle

Algorithms ESP ESP & AH

AES-128/SHA-1 167 Mbps 166 Mbps

AES-128/SHA-2-256 125 Mbps 123 Mbps

Blowfish-128/SHA-1 126 Mbps 127 Mbps

Blowfish-128/SHA-2-256 99 Mbps 99 Mbps

3DES/SHA-1 56 Mbps 56 Mbps

3DES/SHA-2-256 51 Mbps 50 Mbps

Table 12. ESP vs ESP+AH, kernel 2.6.9

Algorithms stunnel OpenVPN

null - 519 Mbps

AES-128 & SHA-1 180 Mbps 117 Mbps

Blowfish-128 & SHA-1 - 149 Mbps

Table 13. Performance of SSL tunnels

The performance values for the SSL-based tunnels are given in Table 13.
IPSec with MD5 achieves a better performance than OpenVPN without encryp-
tion and authentication.

Using OpenVPN with AES is slow compared to Stunnel. However, the Blow-
fish implementation for SSL is rather efficient. Thus, if Blowfish is preferred as
encryption algorithm OpenVPN is an interesting solution.

In general, the SSL tunnel tools partially outperform IPSec of kernel 2.6.9,
but are usually slower than IPSec of kernel 2.6.13.

7 Discussion

In this section, we finally discuss our results and try to put them in a general
context.

7.1 Observations from the measurements

Our results exposed some interesting characteristics of the behavior of IPSec.
The average processing latency increases linearly for the evaluated algorithms
which is not surprising. However, there is a significant overhead for small pack-
ets below 300 bytes. We experienced that the behavior of the security services
depends a lot on the IPSec implementation and also the linux kernel. The tested
encryption algorithms of Linux kernel 2.6.13 showed remarkably better perfor-
mance values than the ones of kernel 2.6.9. There are also differences between the
StrongS/WAN implementation and the IPSec of the kernel 2.6.9. StrongS/WAN
under kernel 2.4 performs better for small packets but cannot keep up with the
current kernel for packets bigger then 700 bytes. These observations indicate that
a careful implementation of the security services and the network stack have a
large impact on the performance.



The Networking Perspective of Security Performance

7.2 Hash functions

Recently, there has been a discussion about the necessity to start a contest for
the standardization of a new and strong hash function. This was mainly initiated
by the fact that MD5 is broken and SHA-1 has been heavily under attack. How-
ever, these attacks are mainly important for the security of digital signatures.
Authentication in Internet communication is still considered secure.
Our results from the IPSec measurements add one more argument to the dis-
cussion about hash functions. ESP-AES performs better than AH-HMAC-SHA1
and ESP-Blowfish better than AH-HMAC-SHA-2-256. Thus, message authenti-
cation has turned into the bigger performance bottleneck than encryption. This
has been different for the last decades and was unanticipated when we started
the evaluation. Thus, the development and deployment a new secure and fast
cryptographic hash function seems to be desireable.

7.3 Performance impact of security services

Security services operate on a rate out of reach for standard computers in the
recent years. The performance of cryptographic algorithms and hash functions
is no obstacle anymore for their wide scale deployment. Even the slowest com-
bination (50 Mbps, 3DES/SHA-2-256) exceeds the connection speed of typical
home users by far (e.g. current DSL in Germany at 6 Mbps).
However, performance remains still an issue. Particularly servers with high band-
width connectivity, say VPN gateways demand for highly efficient algorithms.
Moreover, servers which do not exclusively serve as security gateway but provide
other functionalities must limit the impact of security services. Resource con-
strained devices, on the other hand, do not possess nearly as much resources as
our test systems. Security is only one issue that may influence the performance.
Even when its load is not the dominating bottleneck it is not necessary to do it
inefficiently and waste energy.
The bandwidth of Gigabit Ethernet networks still exceeds the capacity of our
test system to secure traffic. The expected evolution of network technology in
fixed and wireless networks toward higher bandwidths may increase the gap.

7.4 Quality of Security Service

Most QoSS aware systems require a rating of the available security services.
We will show exemplarily for ESAF [11] how the discussed algorithms can be
classified. It is important to keep in mind that such ratings are subjective in
nature and can only represent some usage scenarios. Hence the ESAF considers
only locally available ratings to determine which protocols might be acceptable.
There is no exchange of the ratings during the negotiation of the communication
context for a connection.
Our results from the presented measurement study are useful to derive the per-
formance levels of encryption and authentication services as shown in Table 14.
The other scalar value expresses a rating about the assumed security for each



Niedermayer, Klenk, Carle

Algorithm Confidentiality Performance

AES-128 8 8

AES-192 9 7

DES 2 4

3DES 8 2

Blowfish-128 9 6

Blowfish-192 10 6

Algorithm Authentication Performance

HMAC-MD5 2 9

HMAC-SHA-1 5 6

HMAC-SHA-2-256 8 3

Table 14. Possible values for ESAF policies

algorithm. This rating is subjective in nature as well and can have a large impact
on the choices the framework makes.
Let us consider an example. An application wants to establish a communication
link with some security requirements. One requirement is that the minimal au-
thentication security level is at least 4. The HMAC-SHA-1 would be chosen in
our example, because its security rating is sufficient and it is faster than HMAC-
SHA-2-256. If the HMAC-MD5 would possess a better security rating, say 4, it
would be selected due to the better performance value.

8 Conclusion

We presented a performance study of security protocols and security services.
Our focus was on the measurement of the different configuration options of IPSec.
Reasonable IPSec configurations (e.g. ESP with AES-128 and AH with SHA-1)
on our test systems with 2.6 GHz processors achieved up to 220 Mbps over a
Gigabit Ethernet link. These numbers are promising and demonstrate that the
IPSec security services do not limit the communication bandwidth for typical
usage scenarios, say in home networks, for Internet connectivity or between
workstations in business environments.
The emerging Quality of Security Service research that deals with performance
vs security issues can profit from our results. We gave an example how to quantify
the performance of the configuration options. Adaptive algorithms can use such
ratings as an input to their utility function.

9 Acknowledgements

We would like to thank our students Andreas Rabius and Andreas Korsten
for their programming efforts. Parts of this research were gratefully supported



The Networking Perspective of Security Performance

by the Landesstiftung Baden Wuerttemberg within the SEMOBIS project (Se-
mantically Oriented Software Engineering for Mobile Information Systems in an
Entrepreneurial/Business Context).

References

1. Abdel Nasir Alshamsi and Takamichi Saito. A technical comparison of IPSec and
SSL. In 19th International Conference on Advanced Information Networking and
Applications (AINA 2005), 2005.

2. Roberto Barbieri, Danilo Bruschi, and Emilia Rosti. Voice over IPSec: Analysis and
solutions. In 18th Annual Computer Security Applications Conference (ACSAC
2002), 2002.

3. The R Project for Statistical Computing. http://www.r-project.org.
4. FreeS/WAN. http://www.freeswan.org.
5. Aura Ganz, Se Hyun Park, and Zvi Ganz. Security broker for multimedia wireless

lans: Design, implementation and testbed. 1998.
6. Cynthia Irvine and Timothy Levin. Quality of security service. 2000.
7. Charlie Kaufman. Internet key exchange (ikev2) protocol. Internet Draft (draft-

ietf-ipsec-ikev2-17.txt), 2004.
8. Stephen Kent and Randall Atkinson. Ip authentication header. Internet Draft

(RFC2402), 1998.
9. Stephen Kent and Randall Atkinson. Ip encapsulating security payload (esp).

Internet Draft (RFC2406), 1998.
10. Stephen Kent and Randall Atkinson. Security architecture for the internet proto-

col. IETF, 1998.
11. Andreas Klenk, Marcus Masekwosky, Heiko Niedermayer, and Georg Carle. ESAF

- an extensible security adaptation framework. In NordSec 2005 - The 10th Nordic
Workshop on Secure IT-systems, October 2005.

12. J. Linn. Generic security service application program interface, version 2. IETF,
1997.

13. Douglas Maughan, Mark Schertler, Mark Schneider, and Jeff Turner. Internet
security association and key management protocol (ISAKMP). Internet Draft
(draft-ietf-ipsec-isakmp-08), 1997.

14. Stunnel multiplatform SSL tunneling proxy. http://stunnel.mirt.net.
15. OpenVPN. http://www.openvpn.org.
16. Anshuman B. Saxena. An adaptive security framework for wireless adhoc networks.

Wireless World Research Forum (WWRF), 2004. Euro-Labs.
17. StrongS/WAN. http://www.strongswan.org.


