
Autonomous NAT Traversal
Andreas Müller Nathan Evans Christian Grothoff

Network Architectures and Services
Technische Universität München

Email: {mueller,evans,grothoff}@net.in.tum.de

Samy Kamkar
Email: samy@samy.pl

Abstract—Traditional NAT traversal methods require the help
of a third party for signalling. This paper investigates a new
autonomous method for establishing connections to peers behind
NAT. The proposed method for autonomous NAT traversal
uses fake ICMP messages to initially contact the NATed peer.
This paper presents how the method is supposed to work in
theory, discusses some possible variations, introduces various
concrete implementations of the proposed approach and evaluates
empirical results of a measurement study designed to evaluate
the efficacy of the idea in practice.

I. INTRODUCTION

A large fraction of the hosts in a typical peer-to-peer net-
work are in home networks. Most home networks use network
address translation (NAT) [1] to facilitate multiple computers
sharing a single global public IP address, to enhance security
or simply because the provider’s hardware often defaults to
this configuration. Recent studies have reported that up to 70%
of users access P2P networks from behind a NAT system [2].
This creates a well-known problem for peer-to-peer networks
since it is not trivial to initiate a connection to a peer behind
NAT. For this paper, we will use the term server to refer to a
peer behind NAT and the term client for any other peer trying
to initiate a connection to the server.

Unless configured otherwise (protocols such as the Internet
Gateway Device Protocol [3] are counted as configuration
in this context), almost all NAT implementations refuse to
forward inbound traffic that does not correspond to a recent
matching outbound request. This is not primarily an implemen-
tation issue: if there are multiple hosts in the private network,
the NAT is likely unable to tell which host is the intended re-
cipient. Configuration of the NAT is not always an alternative;
problems range from end-user convenience and capabilities of
the specific NAT implementation to administrative policies that
may prohibit changes to the NAT configuration (for example,
due to security concerns).

Since NAT systems prohibit inbound requests that do not
match a previous outbound request, all existing NAT traversal
techniques (aside from those changing the configuration of the
NAT system) that we are aware of require some amount of
active facilitation by a third party [4], [5]. The basic approach
in most of these cases is that the server in the private network
behind the NAT is notified by the third party that the client
would like to establish a connection. The server then initiates
the connection to the client. This requires that the server
maintains a connection to a third party, that the client is able

to locate the responsible third party and that the third party
acts according to a specific protocol.

The goal of this paper is autonomous NAT traversal,
meaning NAT traversal without a third party. Using third
parties increases the complexity of the software and potentially
introduces new vulnerabilities. For example, if anonymizing
peer-to-peer networks (such as GNUnet [6] or Tor [7]) used
third parties for NAT traversal, an attacker may be able to
monitor connections or even traffic volumes of peers behind
NATs which in turn might enable deanonymization attacks [8],
[9]. Another problem is that the decrease in available globally
routable IPv4 addresses [10] will in the near future sharply
reduce the fraction of hosts that would be able to facilitate
NAT traversal.

II. TECHNICAL APPROACH

The proposed technique assumes that the client has some-
how learned the current external (globally routable) IP address
of the server’s NAT. This could be due to a previous connection
between the two systems or a third party having provided the
IP address in a previous exchange. Note that we specifically
assume that no third party is available at the time when the
client attempts to connect to the server behind the NAT.

The first goal of the presented NAT traversal method is to
communicate the public IP address of a client that wants to
connect to the server behind the NAT. After the server is aware
of the IP address of the client, it connects to the client (similar
to NAT traversal methods that involve a third party).

The key idea for enabling the server to learn the client’s
IP address is for the server to periodically send a message to
a fixed, known IP address. The simplest approach uses ICMP
ECHO REQUEST messages to an unallocated IP address, such
as 1.2.3.4. Since 1.2.3.4 is not allocated, the ICMP REQUEST
will will not be routed by routers without a default route;
ICMP DESTINATION UNREACHABLE messages that may
be created by those routers can just be ignored by the server.

As a result of the messages sent to 1.2.3.4, the NAT
will enable routing of replies in response to this request.
The connecting client will then fake such a reply. Specifi-
cally, the client will transmit an ICMP message indicating
TTL_EXPIRED (Figure 1). Such a message could legitimately
be transmitted by any Internet router and the sender address
would not be expected to match the server’s target IP.

The server listens for (fake) ICMP replies and upon receipt
initiates a connection to the sender IP specified in the ICMP



1

2

1.2.3.4

NAT Host

Non-NAT Host

Fig. 1. This figure diagrams the process of sending and receiving the fake ICMP messages for the server and client. In step 1, the server sends a fake ICMP
request to 1.2.3.4 and in step 2 the client sends the matching reply. Note that this is a fake reply since the client never receives the ICMP request sent to
1.2.3.4 by the server. The important information contained in the actual packets is displayed for each step. The blue (solid) line shows the ICMP request path
and the dashed (green) line shows the ICMP reply path.

reply. If the client is using a globally routable IP address, this
is entirely unproblematic and both TCP or UDP can be used
to establish a bi-directional connection if the client listens on
a pre-agreed port. In cases where there is no pre-agreed port, a
port number can in most cases be communicated as part of the
payload of the ICMP ECHO RESPONSE, which is typically
not checked against the payload of the corresponding ICMP
ECHO REQUEST by NAT implementations.

A. NAT-to-NAT Communication

Further complications arise if both the client and the server
are behind NAT. In this case, often the client will be unable
to transmit a fake ICMP response to the server due to restric-
tions imposed by the NAT implementation of the client. One
possible idea for circumventing this problem is for the client
to send the same message that the server is sending except
with TTL 1 to its NAT. If the NAT accepts the packet despite
the forged sender IP address it might theoretically generate the
desired ICMP response and forward it to the external network.
However, in practice we did not find NATs where generating
the necessary ICMP message using a TTL of 1 works.

Even if the client is able to transmit the fake ICMP response,
the next step; in which both the client and server are aware
of the others IP address and now intend to establish a TCP or
UDP connection can still be complicated. The reason is that
NAT systems can change the source port numbers of outbound
messages. Without a third party, both client and server would
have to guess matching source and destination port numbers
as chosen (possibly at random) by their respective NAT im-
plementations. Depending on the type of the NAT implemen-
tations (Full cone, restricted cone, port-restricted, symmetric),
finding the correct port may take several messages. Client and

server can reduce the total number of messages required by
transmitting and listening on multiple ports in this phase.

B. Using UDP packets instead of ICMP ECHO REQUESTs

A possible alternative to having the sender transmit ICMP
ECHO REQUESTs to a fixed, known IP address is having
the sender transmit UDP packets to a fixed, known IP ad-
dress and port. In this case, the client would again forge an
ICMP TTL EXPIRED message, only this time using the UDP
format. The main disadvantage of this variation is that the
sender has to guess the external UDP sender port number when
faking the ICMP response. Since some NAT implementations
randomly change those port numbers, the server might have
to send UDP packets using multiple sender ports in order to
give the client a sufficient chance at guessing correctly.

The main advantage of this technique is that the server no
longer needs to send using RAW sockets, which may reduce
the privileges required for the server. Note that the server still
needs to be able to listen for the ICMP reply, which requires
RAW sockets on Linux. In the case of a full-cone NAT, using
UDP packets instead of ICMP ECHO REQUESTs also has
the advantage of establishing a port mapping which can then
be used as an alternative method for contacting the peer.

Another difference between the two approaches is the
possible payload that can be embedded in the response. With
ICMP ECHO REQUESTs, the payload can be as big as the
packet size permits and is hence only limited by the MTU of
the respective physical network. Well-formed ICMP UDP TTL
exceeded replies on the other hand can only contain 32 bits of
payload: the ICMP TTL EXCEEDED response contains the
first 64 bits of the payload of the original IP packet. In those
64 bits, the 16-bit UDP checksum field and the 16-bit UDP



TABLE I
EXPERIMENTAL EVALUATION OF AUTONOMOUS NAT TRAVERSAL. “ECHO-SERVER” LISTS THE NUMBER OF NAT IMPLEMENTATIONS THAT ALLOWS

(FAKED) ICMP TTL EXPIRED REPLIES TO TRAVERSE THE NAT IN RESPONSE TO ICMP ECHO REQUEST MESSAGES. “ECHO-CLIENT” LISTS THE
NUMBER OF NAT IMPLEMENTATIONS THAT ALLOW CLIENTS TO TRANSMIT (FAKED) ICMP TTL EXPIRED MESSAGES. “UDP-SERVER” AND
“ICMP-UDP-CLIENT” GIVE THE SAME NUMBERS WHEN USING UDP PACKETS INSTEAD OF ICMP ECHO REQUESTS. “PRESERVES PORTS”

INDICATES THE NUMBER OF IMPLEMENTATIONS THAT PRESERVE THE SENDER’S LOCAL PORT AS THE EXTERNAL PORT IF POSSIBLE. “ANY SERVER”
LISTS THE NUMBER OF NATS WHERE EITHER THE ECHO-SERVER OR THE UDP-SERVER WORK. FINALLY, “TWO-MESSAGE SUCCESS” LISTS THE

NUMBER OF NATS WHERE AUTONOMOUS NAT TRAVERSAL (AS A SERVER) SUCCEEDS EITHER WITH ECHO-SERVER OR WITH UDP WITH PORT
PRESERVATION AND HENCE ONLY TWO MESSAGES ARE NECESSARY TO REACH THE SERVER.

Echo-Server Echo-Client UDP-Server ICMP-UDP-Client Preserves Ports Any server Two-Message Success
Full cone 0/4 1/4 1/4 1/4 0/4 1/4 0/4

Restricted cone 9/31 5/34 26/40 5/34 16/43 26/40 9/31
Port-restricted 37/56 2/71 82/91 2/71 72/98 83/91 43/56

Symmetric 2/3 2/5 3/5 2/5 6/6 3/5 2/3
Overall 53/103 (51%) 10/123 (8%) 121/149 (81%) 10/123 (9%) 100/162 (62%) 122/149 (82%) 62/103 (60%)

packet length are unverifiable (for NAT’s that do not track
extensive information about outgoing UDP packets) and can
hence be used to transmit 32 bits of information to the server
(in addition to the sender’s IP address). With our approach,
either of these payload sizes is enough as we only transmit a
port number in addition to the IP address.

III. IMPLEMENTATIONS

This section summarizes the three implementations of the
proposed method that we have done so far. All of the presented
implementations are freely available from the web pages of the
respective projects.

A. Implementation in NAT-Tester Framework

Our implementation in the NAT-Tester framework was used
to gather the data for this paper. It transmits the various packet
types (with or without payload) using raw sockets and uses
libpcap to determine which messages were forwarded by
the NAT. The client is currently available for W32 and Linux
and must be run with administrator rights. This implementa-
tion is useful for researchers interested in exploring the various
variations of this and other NAT traversal methods.

B. Implementation in pwnat tool

The pwnat tool1 is a GNU/Linux-only stand-alone imple-
mentation of autonomous NAT traversal. After contacting the
server behind the NAT, it establishes a channel with TCP-
semantics using UDP packets. It supports both client and
server behind NAT (if one of the NATs allows the fake ICMP
messages to be transmitted). This implementation targets end-
users.

C. Implementation in the GNUnet Framework

Finally, we have created a re-usable implementation of
the presented ICMP-based NAT traversal method in GNUnet,
GNU’s framework for secure peer-to-peer networking [6].
Since the use of ICMP requires the use of non-portable and
often privileged system calls, this implementation is split into
three main components:

ICMP server
This component is a small program that provides the
core ICMP-related functionality for the server. The

1http://samy.pl/pwnat/

code periodically generates the ICMP ECHO RE-
QUEST message and also listens for incoming ICMP
TTL EXCEEDED responses. If such a response is
received, it simply prints the IP address of the sender
to stdout. If the ICMP also contains a 16-byte
payload, it is interpreted as a port number and also
printed.

ICMP client
This component is a small binary which simply sends
a single (fake) ICMP message to the IP address spec-
ified at the command line. An additional argument
can be given which will be interpreted as a port
number to be transmitted in the payload of the fake
ICMP response message.

Transport plugin
This component implements a GNUnet transport plu-
gin [11] and is thus specific to the GNUnet peer-
to-peer framework. Depending on how the peer is
configured, it controls ICMP servers or clients and
ultimately establishes connections between peers.

Splitting the implementation into these three components
has the advantage of minimizing the amount of code that
must run with super-user privileges on POSIX systems (by
installing the ICMP server and client with the SUID bit set).
Furthermore, since the ICMP code is platform-specific, this
makes it easier to manage this platform-specific part of the
code. Finally, this split makes it easy to share the platform-
specific but peer-to-peer network agnostic ICMP code so
that it can be used with other peer-to-peer applications. This
implementation is suitable as a starting point for developers
of P2P networks.

IV. EXPERIMENTAL RESULTS

We have evaluated the proposed autonomous NAT traversal
techniques on a large number of NAT implementations using
our NAT-Tester framework [12], [13]. The framework consists
of a public client that volunteers download and execute.
The client then performs various tests against the local NAT
implementation and reports the results back to the NAT-Tester
server. This enables us to evaluate NAT traversal strategies
against a wide range of NAT implementations. Detailed results
are made public on the NAT-Tester web page.2 In this section

2http://nattest.net.in.tum.de/



we will summarize the results based on the data available so
far.

Table I summarizes which fractions of the NAT imple-
mentations evaluated so far support the proposed method for
autonomous NAT traversal. We distinguish between behavior
relevant for using autonomous NAT traversal from the point
of view of both clients and servers behind NAT. We consider
two cases: the case where the server uses ICMP ECHO RE-
QUESTs and the case where the server transmits UDP packets.
We also consider the extend of UDP port randomization which
determines how efficient the second stage in the case of NAT-
to-NAT communication would be. NAT implementations are
categorized into the typical four types (full cone, restricted
cone, port-restricted, symmetric) in cases where NAT-Tester
is able to determine the type. NAT implementations that do
not seem to fall into any of these categories are only included
in the total.

The data shows that in virtually all cases NATs forward
the faked ICMP messages for UDP (UDP-Server), but only
in about half the cases for ICMP ECHO REQUESTs (Echo-
Server). Furthermore, a significant majority of all NATs also
preserve the source port (when possible), so the additional
requirement of guessing the port for faking the ICMP response
for a UDP message does not change the overall cost of
the approach. Finally, NATs virtually always prevent their
clients from transmitting the fake ICMP messages used by
our clients (Echo-Client, ICMP-UDP-Client). Based on what
we have seen from inspecting NAT configurations directly, the
reason seems to be that NAT rules typically only allow ICMP
packets for the states “NEW” and “ESTABLISHED” in the
state machine [14] — and the fake response falls into neither
category.

V. DISCUSSION

The proposed method of autonomous NAT traversal works
well in the case of an unrestricted client attempting to initiate a
connection to a server behind NAT. Here, in virtually all cases
a single ICMP message by the client would be followed by
traditional connection reversal [15] which then reliably creates
a UDP or TCP connection. In other words, there is no need
for third parties to help initiate connections to NATed servers
in this case.

On the other hand, if both systems are behind NAT, the
proposed method rarely works and a third party is required.
Assuming 70% of the peers in a network are behind NAT, this
means that roughly 50% of all possible connections can be
established using autonomous NAT traversal. However, even
in the case where both systems are behind NAT a possible
advantage of the proposed method remains; it is easy to
create a simple, generic and fully stateless service that receives
requests from NATed peers and generates fake ICMP replies to
notify the server behind NAT. In this case, the payload of the
ICMP reply would need to contain the original IP address (and
likely source port number) of the client since the IP header of
the faked ICMP response would now contain the IP address
of the service.

VI. CONCLUSION

Fake replies can enable autonomous NAT traversal in a
number of cases. As with most NAT traversal techniques,
this approach does not work for all installations. What is
unusual about the presented method is that it works extremely
well if only one peer is behind NAT and virtually never
if both peers are behind NAT. Systems that require high
NAT traversal success rates typically implement a number of
traversal techniques and the presented approach extends the
set of available methods by one that, if applicable, is cheaper
and simpler than most of the existing techniques.

ACKNOWLEDGMENT

The authors thank the many volunteers that have down-
loaded and executed the NAT-Tester and helped us gather
data to evaluate the method. This work was funded in part
by the Deutsche Forschungsgemeinschaft (DFG) under ENP
GR 3688/1-1.

REFERENCES

[1] K. Egevang and P. Francis, “Rfc 1631: The ip network address translator
(nat),” 1994.

[2] M. Casado and M. J. Freedman, “Illuminating the shadows:
Opportunistic network and web measurment,” December 2006.
[Online]. Available: http://illuminati.coralcdn.org/stats/

[3] P. Iyer and U. Warrier, InterngetGatewayDevice:1 Device Template Ver-
sion 1.01, UPnP Forum, http://www.upnp.org/standardizeddcps/igd.asp,
November 2001.

[4] J. Rosenberg and R. Mahy et. al., “Session Traversal Utilities for NAT
(STUN),” RFC 5389, IETF, October 2008.

[5] J. Rosenberg, R. Mahy, and P. Matthews, “Traversal using relays around
nat (turn): Relay extensions to session traversal utilities for nat (stun),”
RFC 5766 (Review Copy), IETF, February 2010.

[6] K. Bennett and C. Grothoff, “gap - Practical Anonymous Networking,”
in Designing Privacy Enhancing Technologies. Springer-Verlag, 2003,
pp. 141–160.

[7] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th USENIX Security
Symposium, August 2004. [Online]. Available: citeseer.ist.psu.edu/
dingledine04tor.html

[8] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in SP
’05: Proceedings of the 2005 IEEE Symposium on Security and Privacy.
Washington, DC, USA: IEEE Computer Society, May 2005, pp. 183–
195.

[9] N. S. Evans, R. Dingledine, and C. Grothoff, “A practical congestion
attack on tor using long paths,” in 18th USENIX Security Symposium.
USENIX, 2009, pp. 33–50.

[10] G. Huston, “Ipv4 address report,” March 2010. [Online]. Available:
http://www.potaroo.net/tools/ipv4/

[11] R. A. Ferreira, C. Grothoff, and P. Ruth, “A Transport Layer Abstraction
for Peer-to-Peer Networks,” in Proceedings of the 3rd International
Symposium on Cluster Computing and the Grid (GRID 2003). IEEE
Computer Society, 2003, pp. 398–403.

[12] A. Müller, A. Klenk, and G. Carle, “On the Applicability of knowledge-
based NAT-Traversal for future Home Networks,” in IFIP Networking
2008, Springer, Singapore, May 2008.

[13] A. Müller and A. Klenk and G. Carle, “Behavior and Classification of
NAT devices and implications for NAT-Traversal,” IEEE Special issue
on Middleboxes, pp. 14–19, September 2008.

[14] G. N. Purdy, Linux iptables Pocket Reference. O’Reilly Media, Inc.,
2004.

[15] P. Srisuresh, B. Ford, and D. Kegel, “Rfc 5128: State of peer-to-peer
(p2p) communication across network address translators (nats),” 2008.


