
ANTS - A Framework for
Knowledge based NAT Traversal

Andreas Müller, Andreas Klenk and Georg Carle
Chair for Network Architectures and Services

Technische Universität München
{mueller, klenk, carle}@net.in.tum.de

http://www.net.in.tum.de

Please note that this is a preprint version of the paper.
The full final paper was published at the IEEE Globecom
2009 Next-Generation Networking and Internet Symposium,
Honolulu, Hawaii, USA, November 2009

Abstract—Today most home networks are connected to the
Internet via Network Address Translation (NAT) devices. NAT
is an obstacle for services that should be accessible from the
public Internet. Especially applications following the peer-to-
peer paradigm suffer from the existence of NAT. Various NAT
Traversal methods emerged in research and standardization,
but none of them can claim to be a general solution working
in the heterogeneous environment of today’s networks. This
paper introduces the Advanced NAT Traversal Service (ANTS), a
framework improving the communication of existing and future
applications across NAT devices. The core idea of ANTS is to use
previously acquired knowledge about NAT behavior and services
for setting up new connections. We introduce the architecture of
the extensible framework and propose a signaling protocol for
the coordination of distributed instances. Finally, we compare the
framework to ICE showing that ANTS is not only more flexible,
but also faster due to the decoupled connectivity checks.

I. INTRODUCTION

When Network Address Translation (NAT) was proposed
in [1], it was only seen as a temporary solution to the
shortage of IPv4 addresses and was therefore not standardized
sufficiently. The purpose of NA(P)T (Network Address and
Port Translation) is to share one public IP address among
a number of private hosts by using ports for multiplexing.
This worked well for years, but with the growing success
of peer-to-peer applications and Voice over IP (VoIP), many
services suffer from the existence of NAT and firewalls. Both
types of middleboxes usually assume asymmetric connection
establishment and only allow inbound packets as an answer to
outbound packets. And although IPv6 provides a large address
space with unique addresses for each host, firewalls will still
be present and enforce asymmetric connection establishment.
Standardization for IPv6 NAT is already underway [2] because
some features of NAT, such as topology hiding and privacy for
local area networks [3], will still be desirable.

According to [4] and [5], we can differentiate between four
NAT Traversal problem domains: Peer-to-Peer Applications
expect to be reachable from the public Internet, an operation
not available without creating a mapping via an outbound
connection first. Protocols, such as SIP, using Realm Specific

IP Addresses in their payload fail because NAT does not
operate above layer 4. Bundled Session Applications, such as
FTP, carry realm specific addresses in their payload, which
are used for establishing an additional connection (control and
data session). The last category covers Unsupported Protocols
where the layer 3 or 4 address is not available for translation
(e.g. due to encryption or new protocols such as SCTP
and DCCP). Consequently, establishing connections through
NAT devices became a field of intensive research [6], [7],
[8]. However, due to the non-standardized behavior of NAT
itself, most of the existing NAT Traversal solutions only work
with certain NAT devices and few protocols. Many solutions
focus on UDP and SIP [9], other solutions target TCP [10]
exclusively.

The Interactive Connectivity Establishment (ICE) [9] is
an IETF draft describing “a protocol for NAT Traversal for
UDP-based multimedia sessions”. ICE exchanges a number
of potential endpoints, which are then tested for connectivity.
Since these tests have to be performed for each new connection
request, ICE creates a large delay during connection setup.
Furthermore, ICE only establishes connections between appli-
cations on two hosts that both execute an instance of ICE.
As a result ICE cannot be seen as a solution for arbitrary
applications.

We propose the Advanced NAT Traversal Service (ANTS)
to address these issues. In this paper we only focus on
NAT and firewall traversal, but ANTS can also be seen as
a general architecture helping to set up connectivity when
multiple options (e.g. for multihomed hosts) are available.
ANTS separates the gathering of applicable NAT Traversal
techniques from the connection establishment and applies its
knowledge whenever connectivity should be established. The
ANTS approach not only considers NAT behavior, but also
the type of connectivity an application wants to obtain. When
choosing a NAT Traversal technique, it makes a big difference
if an application needs to be accessible by arbitrary clients in
the Internet or if one single connection between two given
hosts should be established.

This paper has three main contributions: 1) Knowledge
based NAT Traversal as a method for efficient connectivity
establishment across NAT devices. We give an example how
ANTS establishes connectivity in critical constellations with
symmetric NAT devices. 2) An extensible architecture of the

create mapping
signaling
access mapping
created mapping
access (not)-allowed

Requester

RNT

ANTS
(1)

Service

(2)

(2)(1)

GSP

ANTS

Service

(3)
(1)

(3)

SPPS

Signaling

ANTS (2)

(1)

ANTS

(3)
(1)

(3)

SSP

Signaling

(2)

(1)
ANTS ANTS

Service

Fig. 1. NAT Traversal service categories for applications. The circle represents the allocated mapping and the arrows indicate who is allowed to access it.

ANTS framework for knowledge based NAT Traversal. The
results from our extensive field test show that the imple-
mented NAT Traversal techniques work in almost all cases. 3)
Performance measurements show that knowledge based NAT
Traversal is significantly faster and scales better in comparison
to the traditional ICE approach.

This paper is organized as follows: Sec. II briefly intro-
duces four different NAT Traversal service categories. Sec. III
describes the concept of the ANTS framework. The technical
details are described in Sec. IV and a reference example is
given in Sec. V. In Sec. VI ANTS is evaluated followed by a
survey of related work in Sec. VII and a conclusion in Sec.
VIII.

II. NAT TRAVERSAL SERVICE CATEGORIES

In [5] we introduced four NAT Traversal service categories,
as presented in Fig. 1. Our categorization emphasizes that the
applicability of many NAT Traversal techniques depends on
the support of a combination of requester (the initiator of
the connection), the responder (typically the service), globally
reachable infrastructure nodes and the role of the application.

Our first category Requester side NAT Traversal (RNT)
covers scenarios where only the requester side supports NAT
Traversal (e.g. the application or the NAT itself). RNT helps
applications that actively participate in the connection es-
tablishment and still suffer from the existence of NAT (e.g.
SIP/SDP or FTP). The second category, Global Service Provi-
sioning (GSP), assumes that the host which has NAT Traversal
support wants to make its service globally accessible. This
is done by creating and maintaining a NAT mapping which
then accepts arbitrary connections from previously unknown
clients. GSP is required for running a traditional server behind
NAT. The last two categories assume support at both ends, the
service and the requester, to allow more sophisticated NAT
Traversal techniques such as hole punching with restricted fil-
tering. While Service Provisioning using Pre-Signaling (SPPS)
makes no assumptions about the accessibility of a service at
all, Secure Service Provisioning (SSP) addresses scenarios that
require authorization of the remote party before initiating the
NAT Traversal process. The hereby established channel must
only be accessible by the authorized requester. This restriction
can be enforced at the host, at the NAT device itself, at a data
relay or at a firewall.

III. ADVANCED NAT TRAVERSAL SERVICE

The concept of ANTS is based on the idea of decoupling
the discovery of working NAT Traversal techniques (the
knowledge gathering process) from the utilization of such a

technique. Instead of determining NAT behavior and detect-
ing working endpoints for every application and connection
separately, ANTS establishes knowledge once and re-uses this
knowledge for a fast connection establishment.

Requester R

Private Network A

APP. A APP. B

Public Internet Service S

Private Network B

APP. C APP. D

STUN
Server

Data
Relay

(2) (2)

ANTS
(1)(1)

Signaling
Infrastructure (3)

ANTS

(4)

Fig. 2. Establishing a connection in ANTS depends on the available entities.
If both hosts run the framework: (1) external servers are queried (2) connection
specific information is exchanged (3) the service utilizes a NAT Traversal
technique to create the mapping (4) a direct connection is established.

The framework is only installed once on each host and
supports all applications requiring NAT Traversal support (see
Fig. 2). The connectivity establishment process depends on
the available entities such as STUN [11] servers, data relays
and signaling infrastructure nodes. The modular architecture
consists of three layers and five modules (Fig. 3). Whenever
an application needs support, a privileged user registers it at
the session manager located at the Input Module and assigns
a service category (e.g. a web server needs to be globally
reachable, thus GSP). The framework is then able to establish
connectivity using one of its NAT Traversal techniques located
at the NAT Traversal Module. The selection of a method
depends on many factors such as the behavior of the NAT,
potential requesters (not all requesters run ANTS) and the role
of the application (see Fig. 1 and Fig. 2). To gain knowledge
about these parameters, we implemented a small component,
the NAT Tester, which is described in [12] and can also be
found as a standalone component at http://nattest.net.in.tum.de.
It is located at the Input Module and once ANTS is loaded,
it performs a number of connectivity tests with a public test
server. The Knowledge and Decision Module is then respon-
sible for the selection and parameterization of an appropriate
NAT Traversal technique. For GSP, the framework would
automatically create a public endpoint using an available
technique for GSP (e.g. UPnP), assign a dynamic DNS name
to it and report both back to the user. Other connectivity
scenarios (SPPS and SSP) require a coordination of ANTS
instances on the requester and service. In this case two other
modules are needed: the Signaling Module on both hosts for
exchanging connection specific information before creating

the NAT mapping (we call this process pre-signaling), and
the Application Interface on the requester for connecting
applications to the created public endpoint. Sec. IV-B presents
two possibilities: the ANTS socket API for newly developed
applications and a TUN device for legacy applications.

Knowledge and Decision Module

App. Interface

Input Module

Signaling NAT Traversal
TUN ETH

mapping decision initiate method signaling decision

ETH ETH

NAT-Tester

R+SSR

R+S

Session Manager

RNT
SPPS
SSP

SPPS
SSP

all
cat.

all
cat.

all
cat.

API

S

Fig. 3. Modular architecture of ANTS. R denotes that this module has to be
available at the requester, S at the service and R+S at both. “all cat.” means
that this module is needed by all NAT Traversal service categories.

A. Integration of NAT Traversal Techniques

Since none of today’s existing NAT Traversal techniques
works in every situation, we implemented a number of dif-
ferent techniques to cover a large variety of connectivity
scenarios. This section gives a brief introduction to the NAT
Traversal techniques and includes the success rates that we
observed in a public field test with more than 800 NAT
devices (http://nattest.net.in.tum.de). The techniques described
below are implemented at the NAT Traversal Module and then
invoked by the Knowledge and Decision Module.

1) Universal Plug and Play: Using an UPnP controllable
Internet Gateway Device (IGD) [13] is probably one of the
most reliable methods for UDP and TCP. Unfortunately, UPnP
has such strong security issues that it is often disabled and
cannot be used with many NATs. In our test, UPnP was only
enabled in 36.42% of all NAT devices. The advantage of UPnP
over other techniques is the easy allocation of new mappings.
An UPnP mapping does not need to be aware of the source
of the connection, it is enough to specify which external port
is forwarded to which internal port, thus making it an ideal
candidate for GSP.

2) Hole Punching: Hole punching [14] allows direct con-
nections between two hosts and is based on the fact that a NAT
forwards all incoming packets if a mapping in its table exists.
To create this mapping a packet has to be sent from the port
the service is running at towards the source of the connection.
The actual connection request then looks like a response to this
packet and is forwarded by the NAT. Determining the source
of the connection is not trivial because the source ports for
applications are allocated dynamically for each connection.
Thus, we have to find a way to capture the source port of an
upcoming connection in order to send it to the service which
is then able to create the mapping. But unfortunately this is
not enough. If the requester is also behind a NAT it still needs
to determine the external endpoint of the captured port. This
is only possible when using an independent mapping strategy
or if port prediction is possible. Finally, hole punching works

in most cases for UDP (83.5% in our test), but tends to fail
with stateful protocols such as TCP (51.8%).

3) Data Relay: With TURN [15] (or a relay in general),
a host behind a NAT actively establishes a connection to
request a public endpoint. The relay then forwards all traffic
sent to this endpoint to the internal host by using the already
established connection. Since the connection is always made
towards the public Internet, relaying works as long as outgoing
packets are not blocked by a firewall and thus can be used if no
other technique is available. One of the drawbacks though is
that the reliability and the performance depend on an external
entity which constitutes a single point of failure.

4) Tunneling: UDP tunneling allows TCP or SCTP packets
to travel directly from the source to the destination, encapsu-
lated in UDP packets. Therefore, tunneling for unsupported
protocols should be used if there is no other possibility for
establishing a direct connection. The success rate of tunneling
depends on the success rate of UDP traversal, which was
possible in 88.05% (UPnP or UDP hole punching) in our field
test.

5) Direct Addressable: If both hosts reside behind the same
NAT device (same local NAT or same ISP NAT) or if ANTS
is running on a host directly connected to the Internet, we can
use the local addresses directly. In our test, 3.7% of the tested
hosts were directly connected.

B. Knowledge based NAT Traversal

The main task of the Knowledge and Decision Module is
to decide which NAT Traversal techniques are applicable in
which situations. Knowledge about the NAT is obtained by the
NAT Tester that is ran at boot time and also triggered by new
events such as the detection of a new network interface or an
IP address change. It answers the following relevant questions:
1) which NAT type is present 2) is port prediction possible 3)
which external IP address(es) 4) is UPnP enabled 5) which
protocols are supported by ALGs and 6) what other NAT
Traversal techniques are supported (e.g. UDP or TCP hole
punching). Currently, the Knowledge and Decision Module
uses the following prioritization if the NAT Tester discovered
more than one working technique: Direct Addressable, Hole
Punching, UPnP, Tunneling and a Data Relay. The Knowledge
and Decision Module has rules for each combination of a NAT
Traversal technique and service category (e.g. UPnP is fine for
GSP, but not for SSP). The rules are then needed to transform
the knowledge about working techniques into decisions and
to provide the dynamic input parameters for the chosen NAT
Traversal technique.

• If an application is registered at the session manager with
GSP or RNT, our framework allocates the appropriate
mapping without any further signaling.

• On an incoming signaling message requesting access for
a service on this host ANTS first queries the session
manager if the application is authorized to receive con-
nections. The framework then selects a working NAT
Traversal technique for the registered application, allo-
cates a mapping and reports it back to the requester.

• If a client application makes a connection request, the
framework generates an appropriate signaling message.

A sample of a detailed decision tree can be found in Fig. 5.

IV. IMPLEMENTATION DETAILS OF ANTS

After describing the overall concept focusing on the inte-
grated techniques and the Knowledge and Decision Module
this section explains the Signaling Module, the Application
Interface and the rather technical decisions we made when
implementing ANTS.

A. ANTS Request Response Protocol

The purpose of the Signaling Module is to notify the service
about an upcoming connection. This is important for two
reasons: first it allows hole punching with restricted cone NATs
and second it allows the service to only allocate a mapping
if the requester is authorized to access it. Thus, signaling first
informs the service about the source of the connection, while
in the second step the service reports the created endpoint back
to the requester.

In ANTS each host has a unique URI (e.g. a SIP-URI
[16]) which might be assigned to a DNS name. Whenever
a peer wants to establish a connection to a service it queries
the DNS for the URI and sends the signaling messages to
it. Multiplexing is then done via the service port that has
to be included in the so called Service Request (see Fig.
4). More precisely, an URI identifies a host behind a NAT
according to its layer 3 address. The Service Request asks
for a specific service (port) on this host. The service is then
responsible for allocating an appropriate NAT mapping and
sends the public endpoint back to the requester. The main
advantage of our signaling process is that for SPPS only two
messages are needed. For SSP we use the well known Digest
Access Authentication [17] which increases the number of
signaling messages to four. Instead of exchanging a number
of candidates and finding out which one actually works (ICE),
ANTS uses its knowledge about the NAT, the application and
the requester to allocate a working endpoint resulting in a very
fast connection establishment.

The ANTS signaling protocol is based on XML and can
be easily used with a number of signaling infrastructures
such as SIP and XMPP (Jabber) [18]. The current ANTS
implementation uses SIP messages for signaling. However,
in the future we aim to use the decentralized P2P-SIP
(http://www.p2psip.org/) approach for transporting.

B. ANTS support for applications

When connecting applications to ANTS there are two op-
tions: The ANTS socket API allows newly created programs to
easily use the framework. The requester application issues the
connect function with the URI identifying the service as the
destination. ANTS then opens a real network socket to connect
to the public endpoint created after exchanging information
through signaling and finally translates between the sockets.

However, since legacy applications are not linked against
the API yet, we implemented a TUN-based solution instead.

Service Request
<request prot="tcp" sourceIP=“1.2.3.4“

sourcePort=“-1“ destPort=“80“ />

R
TCP-SYN

to 172.16.1.200:80

Host A
sip:requester@sip.org

S

TCP
SYNACK

SIP Infrastructure

NAT A (1.2.3.4)
(symmetric)

NAT B (134.1.2.3)
Address Restricted

Host B (192.168.1.2)
sip:service@sip.org

TCP-SYN
to 134.1.2.3:52000

TCP-SYNACK
translate

OK
<IP="134.1.2.3" Port="52000" />

ANTS ANTS

TCP-SYN

to 192.168.1.2:80

knowledge
gathering

Application

TUN->SIP

lookup
Session Manager

172.16.1.200:80 ->
134.1.2.3:52000

Translate packet

 new Mapping
172.16.1.200:80 -> ?

create
mapping

F
i r

 e
 f

o
x

w
 e

 b
 s

 e
 r

v
e

r

Fig. 4. Reference example for ANTS SPPS

A TUN device is a virtual network interface that delivers
packets to the user space of a program and is well known
from applications such as OpenVPN. With this approach the
requester application only needs to send the packets to an
IP address that represents the service and is routed to the
TUN device. ANTS gets this packet, initiates signaling and
translates the packet to the allocated public endpoint at the
service. From now on, ANTS maps all packets coming from
the TUN device to the public endpoint and vice versa. The
next section gives an example for one specific connection
establishment using the TUN- based implementation.

V. REFERENCE EXAMPLE FOR ANTS

To get an overall picture Fig. 4 gives an example for how the
modules interact. It shows how an application on a host behind
NAT (e.g. Firefox) is able to connect to a web server behind a
different NAT. We assume that both hosts are registered with a
SIP proxy. The service S also adds the combination of a SIP-
URI and a DNS name (e.g. service.nat) to a DNS server and
registers the local port 80 to its session manager. Furthermore,
we assume that the requester R is behind a symmetric NAT and
cannot predict any global port. Symmetric NATs are known
to be the most challenging, because they use a connection
dependent algorithm for creating new mappings (e.g. a random
port for every connection).

First R launches Firefox and connects to service.nat which
is resolved (by a DNS proxy in ANTS) to S’s SIP-URI
(sip:service@sip.org). ANTS allocates an available IP address
(here 172.16.1.200) from the range that is routed to the TUN
device and reports it back as an answer for service.nat. Please
note that this IP address only needs to be unique on this host
and does not represent the service in general (only the SIP-URI
does). Firefox now sends the first TCP-SYN to this address and
ANTS allocates a new mapping entry with a pending state. The
packet is passed to the Knowledge and Decision Module of R
which knows that it is behind a symmetric NAT and cannot
predict its public port. However, since the NAT has only one
public interface, the global IP address is known. Therefore, R
creates a service request holding the source IP address and the

destination port 80 and sends it to S. S looks up its session
manager and finds an entry for port 80. From the service
request, S knows that the requester is behind a symmetric
NAT where IP prediction is possible (indicated by the -1 in
the sourcePort field according to Fig. 4). Its local NAT test
showed that S is behind an address restricted NAT. According
to Fig. 5 this means S has two options leading to a direct
connection: UPnP and hole punching. Since S also knows that
UPnP is not available but TCP hole punching works, it creates
an appropriate mapping in the NAT. The global mapping for
port 80 (52000) is looked up via STUN and sent in the OK
message. R can now complete the mapping entry by adding
this endpoint to the table and set it to available. The held back
initial TCP-SYN from Firefox is translated and sent out to the
real network interface. Since S’s NAT now has a mapping for
this packet, it forwards it directly to the web server. From now
on every packet in both directions is rewritten according to R’s
mapping table.

Symmetric NAT

requester service

bothService FC Service AR Service PAR

C: IP=-1, Port=-1
S: act like PAR

HP possible

C: Port=-1 IP=IP
S: act like PAR

HP possible

IP Prediction
possible

IP Prediction
Not possible

X

X

Assumption: Port
Prediction is not possible

Requester FC Requester AR Requester PAR

TURN around TURN around
if IP Pred. possible X

X

serviceboth

Service is
Full Cone

Service is
Port-Address

Restricted

IP pred.
impossible

Requester is
Full Cone

Requester is
Address

Restricted

Requester is
Port-Address

Restricted
swap role

IP pred.
possible

IP pred.
impossible

swap role

UPnP

HP
UPnP

UPnP

HP
UPnP

HP
UPnP

UPnP

UPnP

UPnPHP
UPnP

IP pred.
possible

Service is
Address

Restricted

requester

Symmetric NAT

Fig. 5. The decision tree shows how ANTS establishes a direct connection
although a symmetric NAT is involved. The highlighted path referes to the
example given in the text.

In addition to the example given, Fig. 5 shows the decision
tree for ANTS when a symmetric NAT is involved. As
shown, a direct connection is still possible in many cases.
Swap Role means that we simply turn around the connection
establishment, the original service becomes the requester and
establishes the connection. However, this is out of scope for
this paper.

VI. EVALUATION

Our field test (http://nattest.net.in.tum.de) with more than
800 NATs has shown that the success rate for a direct connec-
tion is mainly dependent on the constellation of the involved
NATs. In 43% of the tested NAT devices both endpoints were
of type port address restricted leading to a success rate of
94.1% for a direct TCP connection. When we then looked at
other constellations, we observed that the success rate for a
direct connection is independent of the NAT type as long as
both of them implement an independent mapping strategy. As
soon as a symmetric NAT is involved (6%), the success ratio
dropped to 65.2%. It is important to note that in the remaining
cases ANTS allocates an external data relay which worked for
100% of all tested NAT devices.

We then measured the delay introduced by our framework
and compared it to ICE. For both frameworks, ANTS and ICE,

we used SIP for signaling and STUN to determine the public
transport address. We measured on the requester from the first
candidate gathering until the first byte (e.g. a TCP-SYN) was
sent out. In the initial test run, the RTT to all entities (STUN,
SIP, R to S) was 2ms. Each test run was repeated 50 times
and the largest standard deviation for ANTS was 5.9 and for
ICE 18.8 with normal deviation.

For ANTS the measurement includes the following packets:
the requester queries the STUN server (2 messages) and
sends the service request via SIP (1 message). The service
allocates the mapping using a hole punching message (1
message), queries the STUN server (2 messages) in parallel
and returns the allocated public endpoint via SIP (1 message).
Thus, the overall number of messages for this constellation
is 7. For ICE we used the PJNATH implementation (http://
www.pjsip.org) connected to the same STUN and SIP server.
Here we measured the time from the gathering of candidates
until the end of the pairing process including SIP signaling.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200

Co
nn

ec
tio

n
se

tu
p

tim
e

in
 m

s

Round Trip Time in ms between Host A and B

ANTS
ICE: 1 Candidate

ICE: 2 Candidates
ICE: 3 Candidates

Fig. 6. Comparing the overall connection setup time of ANTS and ICE.

Conn. Frmw. 2ms σ 50ms σ 100ms σ 200ms σ

R - S ANTS 57,2 5,6 57,5 5,5 59,0 5,7 58,5 5,6
ICE 316,2 12,4 381,6 14,1 432,8 11,2 511,9 13,2

R - STUN ANTS 56,8 5,9 95,8 5,8 145,3 5,6 250,1 5,5
ICE 315,4 14,6 534,0 13,4 968,0 14,8 1275,0 18,8

R - SIP ANTS 58,1 4,4 109,6 5,6 157,3 5,4 257,8 4,6
ICE 316,8 11,2 362,0 11,3 422,0 12,5 509,0 13,2

TABLE I
THE CONNECTION SETUP TIME (CST) IN MILLISECONDS DEPENDS ON

THE NETWORK DELAY FOR THE SIGNALING BETWEEN THE HOSTS

Fig. 6 and Table I show the results of our measurements.
Since ANTS signaling process does not include packets trav-
eling from the requester to the service directly (only STUN
and SIP is involved) the connection setup time (CST) is only
dependent on the RTT to the STUN or SIP server (here we
assume that both hosts use the same SIP server). Table I
shows the impact of increasing the RTT on different paths. The
connection setup time of ANTS can be described as follows

where ANTScore (XML processing, creation of mapping,
packet translation) is roughly 50ms according to our test runs:

CSTANTS =ANTScore +RTTR−STUN +RTTS−STUN

+RTTR−SIP +RTTS−SIP +RTTSIPR−SIPS

ICE however performs STUN connectivity checks between the
requester R and the service S for each candidate pair. Thus,
the connection setup time is not only dependent on the RTT
between R and S, but also on the number of candidates that
have to be checked. Since every check consists of two STUN
tests running in parallel, it increases the setup time by one
RTT. Thus we can give the following formula where ICEcore

includes the message processing and the delay to the STUN
server used during the gathering process:

CSTICE =ICEcore+STUN +RTTR−SIP +RTTS−SIP

+RTTSIPR−SIPS
+ candidates2 ∗RTTR−S

The measurements show the advantage of ANTS. The
decoupling of knowledge gathering and connection setup
dramatically decreases the number of messages and therefore
the overall connection setup time while still reaching a success
rate of almost 95 % for a direct connection.

VII. RELATED WORK

Several other frameworks have been proposed to address the
NAT Traversal problem. NATBLASTER [7] and NATTrav [8]
both exchange public endpoints and use TCP hole punching
as the only technique to traverse the NAT. In [6] and [19],
the authors propose a new architecture called NUTSS. They
describe the integration of a TCP NAT Traversal method
called “Simple Traversal of User Datagram Protocol through
NATs and TCP too” (STUNT). NUTSS uses SIP for signaling
and “specially encoded host names” for identifying endpoints,
whereas ANTS supports legacy IP addresses and DNS names
to contact a service behind a NAT. When categorizing NUTSS
into our service categories, it only supports SPPS and SSP.
Furthermore, in our field test we observed a success rate of
52% for STUNT and a success rate of 95% for ANTS for
a direct connection. Thus, NUTSS needs to allocate a data
relay for almost 50% of all connections. The proprietary Skype
(http://www.skype.com) VoIP application has a sophisticated
probing technique [20] for NAT Traversal, which is not avail-
able to any other application. NAT Traversal is done using an
unspecified algorithm that has similarities with the STUN and
TURN protocols. If possible, a Skype node uses hole punching
to establish a direct connection. If not, a super node acts as a
data relay. ICE [9] aims to provide a solution flexible enough
to work with all network topologies and was mainly designed
for VoIP. Whenever a call is established, each phone gathers
all possible transport addresses and exchanges them using SIP.
Both clients then set up a local STUN server and go through
the received candidate list. A client tries to connect to each
candidate address using STUN binding requests and responses,
resulting in working candidate pairs. Finally, ICE requires both
peers to have an ICE implementation running. If one side does
not, ICE cannot help.

VIII. CONCLUSION

This paper introduces the ANTS framework that allows a
broad range of applications to benefit instantly from NAT
Traversal. In contrast to related approaches it can be deployed
at the service only, the requester only, or at both hosts. ANTS
integrates many different NAT Traversal techniques to always
utilize the best available method. Results from an extensive
field test with NAT devices indicate that the implemented NAT
Traversal techniques almost always enable direct connectiv-
ity. Furthermore, the ANTS approach decouples knowledge
gathering about applicable NAT Traversal techniques from the
connection establishment. Our experiments showed that the
speedup for connection establishment in comparison with the
evaluated ICE implementation is significant. Future work is to
evaluate the use of a distributed signaling infrastructure (e.g.
P2P-SIP) to facilitate the discovery of ANTS instances.

REFERENCES

[1] K. Egevang and P. Francis, “The IP Network Address Translator (NAT),”
RFC 1631, IETF, May 1994.

[2] M. Wasserman and F. Baker, “IPv6-to-IPv6 Network Address Transla-
tion (NAT66),” Internet Draft - work in progress, IETF, November 2008.

[3] G. V. de Velde et. al., “Local Network Protection for IPv6,” RFC 4864,
IETF, May 2007.

[4] M. Holdrege and P. Srisuresh, “Protocol Complications with the IP
Network Address Translator,” RFC 3027, IETF, January 2001.

[5] A. Müller, A. Klenk, and G. Carle, “Behavior and Classification of
NAT devices and implications for NAT-Traversal,” IEEE Special issue
on Middleboxes, pp. 14–19, September 2008.

[6] P. Francis, S.Guha, and Y. Takeda, “NUTSS: A SIP-based Approach to
UDP and TCP Network Connectivity,” In Proceedings of SIGCOMM
Workshops, Portland, OR, August 2004.

[7] Andrew Biggadike et.al., “NATBLASTER: Establishing TCP connec-
tions between hosts behind NATs,” in ACM SIGCOMM Asia Workshop,
Beijing, China, 2005.

[8] J. Eppinger, “TCP Connections for P2P Applications,” Carnegie Mellon
University, Tech. Rep., 2005.

[9] J. Rosenberg, “Interactive Connectivity Establishment (ICE),” Internet
Draft - work in progress, IETF, October 2007.

[10] Saikat Guha et. al., “NAT Behavioral Requirements for TCP,” RFC 5382,
IETF, October 2008.

[11] J. Rosenberg and R. Mahy et. al., “Session Traversal Utilities for NAT
(STUN),” RFC 5389, IETF, October 2008.

[12] A. Müller, A. Klenk, and G. Carle, “On the Applicability of knowledge-
based NAT-Traversal for future Home Networks,” In Proceedings of IFIP
Networking 2008, Springer, Singapore, May 2008.

[13] UPnP Forum, “Internet gateway device (IGD) standardized device
control protocol,” November 2001.

[14] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-Peer Communication
Across Network Address Translation,” MIT, Tech. Rep., 2005.

[15] J. Rosenberg, R. Mahy, and P. Matthews, “Traversal Using Relays
around NAT (TURN),” Internet Draft - work in progress, IETF, February
2009.

[16] H. Schulzrinne et. al., “SIP: Session Initiation Protocol,” RFC 3261,
IETF, June 2002.

[17] J. Franks et. al., “HTTP Authentication: Basic and Digest Access
Authentication,” RFC 2617, IETF, June 1999.

[18] E. P. Saint-Andre, “Extensible Messaging and Presence Protocol
(XMPP),” RFC 3920, IETF, October 2004.

[19] S. Guha and P. Francis, “Towards a Secure Internet Architecture Through
Signaling,” Cornell University, Tech. Rep., 2006.

[20] S. A. Baset and H. Schulzrinne, “An Analysis of the Skype P2P Internet
Telephony Protocol,” Columbia University, Tech. Rep., 2004.

