
An Experimental Performance Analysis of the Cryptographic
Database ZeroDB

Michael Mitterer
Technical University of Munich

mitterem@in.tum.de

Heiko Niedermayer
Technical University of Munich
niedermayer@net.in.tum.de

Marcel von Maltitz
Technical University of Munich

maltitz@net.in.tum.de

Georg Carle
Technical University of Munich

carle@net.in.tum.de

ABSTRACT
Cryptographic databases aim to protect the user’s data from cloud
servers that hold the data and operate the server-side of the data-
base. They are privacy-by-design solutions. ZeroDB belongs to the
family of cryptographic databases that solves this by off-loading
the main database functionality to the client and many rounds of
communication. We study ZeroDB performance by crafting specific
queries and observing the operation. Furthermore, we compare
ZeroDB to MySQL, SQLite, and MongoDB in TPC-C measurements.
All measurements were performed in a testbed where network pa-
rameters were edited. The results show that the communication
overhead of ZeroDB leads to significant drops in performance com-
pared to the non-cryptographic databases, in particular for write
and update operations. With respect to the trade-off of security
and performance, ZeroDB is only recommendable when security
requirements outweigh the performance impact. The reasoning
shows that performance can be a limiting factor for the usability of
a privacy-by-design solution.

KEYWORDS
Cryptographic Database, ZeroDB, Performance
ACM Reference Format:
Michael Mitterer, Heiko Niedermayer, Marcel von Maltitz, and Georg Carle.
2018. An Experimental Performance Analysis of the Cryptographic Data-
base ZeroDB. InW-P2DS’18: 1st Workshop on Privacy by Design in Distributed
Systems , April 23–26, 2018, Porto, Portugal, Michael Mitterer, Heiko Nieder-
mayer, Marcel von Maltitz, and Georg Carle (Eds.). ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3195258.3195264

1 INTRODUCTION
With the advent of apps and the mobile revolution the ratio of
user data stored in the cloud instead of just the user’s devices
is increasing. This enables many new applications. However, the
cloud knows the user’s data. This can be used for profiling and
information could be sold to 3rd parties with whatever intents. Even

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
W-P2DS’18, April 23–26, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5654-1/18/04. . . $15.00
https://doi.org/10.1145/3195258.3195264

if the company is not in any way acting maliciously, an attack may
leak information to outsiders and all promises of data protection
from the cloud provider become invalidated by this event.

Similar developments are seen in the world of businesses. In
order to focus on the core competence of a company, IT operations
are outsourced to specialized companies. This can still happen on-
site, but the use of Cloud Computing is on the rise for businesses
as well. It helps businesses to reduce their costs and become more
competitive [7]. While this sounds very good at first, one may
wonder about the consequences for company secrets. Privacy of
their users as well as data protection regulation may also raise
concerns.

If we remember the NSA scandal which was made public by
Edward Snowden, outsourcing IT and data to international com-
panies may not be desirable if it should not be leaked. Companies
have to be very careful. Privacy-by-design solutions are needed,
yet it is unclear if they can provide the required functionality with
good-enough user experience.

An interesting solution would be to have these cloud benefits,
but not leak potentially sensitive data to cloud servers. Disk encryp-
tion may seem promising, but it is not sufficient [9]. Encrypting
all data directly solves the privacy problem. The cloud cannot read
the plaintext. Thus, nothing is leaked. However, the cloud can-
not process the data anymore, which is an important part of its
functionality.

Cryptographic databases come in various forms. Some, such
as of ZeroDB, require the client-side to run all operations that
need decrypted data. Others use ciphers or cryptographic schemes
that allow some more processing on server-side. The result is that
neither the server nor a hacker who infiltrated the server will now
be able to see the plaintext of the data. Thus, a certain level of
privacy is achieved and the privacy issue is resolved. Performance
and scalability could be a problem, however.

Our contribution is as follows. We set up a general testbed for
performance measurements. By adding delay, bandwidth limita-
tions, and packet loss to the network of the testbed, we studied the
influence of these parameters on the performance of the analyzed
databases, in particular ZeroDB. We updated pytpcc in order to run
TPC-C benchmark tests in the environment as well.

In the following we will briefly introduce ZeroDB in Section 2,
then discuss related work in Section 3. Our experimental setup and
experiment results are shown in Section 4. Finally, we conclude in
Section 5.

https://doi.org/10.1145/3195258.3195264
https://doi.org/10.1145/3195258.3195264

W-P2DS’18, April 23–26, 2018, Porto, Portugal M. Mitterer, H. Niedermayer, M. von Maltitz, G. Carle

2 ZERODB
ZeroDB [2] encrypts data and indices on client-side. It uses standard
non-deterministic symmetric encryption for this task. The server
will, thus, only see strongly-encrypted ciphertext and queries for
encrypted nodes. This means that the client has to do the work,
since the server cannot decrypt or otherwise process the data. A
lot of data has to be transferred over the network to the client. The
server stores the data in data blocks, and it stores a B-Tree for each
index.

To process a query, the client has to traverse the B-Tree and
request the relevant encrypted nodes of the tree in order to find
the data items of interest. Each of these steps involves the client
requesting a node, the server providing it, the client decrypting
the node, and proceeding according to the information found. This
process is called remote traversal and visualized in Figure 1.

Figure 1: ZeroDB operation

Figure 1 shows the request for all entries where a specific at-
tribute equals 18. It will start at the root and proceed along the red
nodes of the tree. The leaf nodes of the B-Tree have reference to
the data objects, which are also encrypted client-side.

3 RELATEDWORK
First of all, there are cryptographic database proposals other than
ZeroDB. CryptoDB[6] and Arx[4] are examples. Important for
performance-security trade-offs is the concept to use weaker en-
cryption schemes like Order-Preserving Encryption [3]. These allow
the server to do some of the processing, e.g. range queries.

Closer to our work is a large number of work on performance
analysis of databases with benchmarks. Most of the authors test
the influence of parameters on server-side like the configuration
or the hardware setup to different database systems. Popa et al.
[5] analyzed in their paper the performance of the encrypted data-
base CryptDB as well as different encryption schemes. [8] deter-
mined the HTTP throughput of CryptDB, which was only 14.5 %
lower than MySQL. CryptDB is a database using weaker encryption
schemes. Thus, it performs better than ZeroDB, but the security

level is not as high as with the database system evaluated in this
paper. Because of this disadvantage we tested only ZeroDB in this
paper.

Other benchmarking works like [1], Brendel looked at the impact
of server-side factors like I/O and RAID on the database perfor-
mance. In contrast, we consider them as given and modify network
parameters.

Furthermore, Yao et al. [11] compares the performance ofMySQL,
SQLite and Redis, a key-value store [10]. Depending on the query
mix, each system had its benefits.

4 EXPERIMENTS
4.1 Experiment Setup
The experiments are performed in a setup where two computers
form a client-server infrastructure. The machines in the testbed
had the following configuration. They had Intel Xeon CPU E31230
processors at 3.20 GHz with 16 GB memory, 1 TB RAID 1 storage
and an Intel 10 Gbit Ethernet Network Adapter X540-T2 network
card.

Figure 2: ZeroDB operation

Figure 2 shows the details of our setup. PC1 acts as server holding
the database and managing the experiments, PC2 behaves like a
client who is sending requests to the server to query records from
the database and store new entries. Both machines are connected
directly by a copper RJ45 cable providing a bandwidth of 10 Gigabit
per second. The operating system on both machines was Debian
Jessie. All necessary software and libraries were pre-installed on
the machines.

In the subsequent subsections, we will first look at experiments
with ZeroDB. Then, we will compare ZeroDB with other database
systems using a Python implementation of the TPC-C benchmark.

4.2 ZeroDB Experiments
In this section, we present experiments that try to understand
the behavior of ZeroDB given particular types of queries. Table 1
provides an overview of the setup. To evaluate the influence of the
network parameters we simulate a Ethernet link with low latency
and a bandwidth of 1000 Mbps as basic configuration . Initially, the
database is filled with 50000 records representing measurements in
a smart building with the following attributes.

(1) roomID: any random integer between 1111 and 9999
(2) nodeID: any of 900 random integer between 11111 and 99999
(3) value: any random integer between 1 and 9999

An Experimental Performance Analysis of the Cryptographic Database ZeroDB W-P2DS’18, April 23–26, 2018, Porto, Portugal

(4) date: a timestamp calculated from actual time and a running
number (not randomly generated)

(5) desc: the string "door" concatenated with a randomly gen-
erated string of characters of the size which is given in the
recordsize

(6) state: any random integer between 0 and 3 inclusive, where
each number represents a state of the node

We mainly change the query type. Each time 1000 records are
affected with one query.

Latency 10 milliseconds
Bandwidth 1000 Mbps
Database Size 50000 records
Query Size 1000 records
Data Distribution uniform
Record Size 10 Byte
Package Loss 0%

Table 1: Default values of experiment parameters

After each experiment, the server and the client were restarted.
ZeroDB relies heavily on client-server communication. So, the

first aspect we are interested in is the number of roundtrips be-
tween client and server. For comparison, we also include the values
for MySQL given the same data and query. The results of this ex-

Figure 3: ZeroDB roundtrips per query type

periment (Figure 3) show that in line with our description, ZeroDB
client and server communicate a lot in both directions. Insert and
Delete are expensive in ZeroDB and Update is extremely expensive.
The number of roundtrips for the select statement is moderate,
considering that 1,000 data records are to be found and returned.

Figure 4 shows a similar behavior of ZeroDB for the overall
execution time of the queries. Execution time is, of course, more
important than the number of roundtrips. The pattern in the re-
sults remains the same. The Update operation with ZeroDB takes

Figure 4: ZeroDB execution time per query type

209 seconds, while the same operation with MySQL needs 0.1 sec-
onds. The Update is the slowest operation of ZeroDB. Insert took
158 seconds, Delete 78 seconds, and the Select 0.5 seconds. If only
the performance of select statements matter in a given scenario,
ZeroDB might provide a good-enough performance as its perfor-
mance is at least almost in the same order of magnitude as MySQL’s
performance.

Figure 5 shows how ZeroDB reacted to network latency in our
experiments. While the increase seems to be linear, only the select
query remains within a reasonable execution time when the latency
is increased. Operations like Insert and Delete took too long for
reasonable execution time over even a modest delay that could
occur within a country.

Figure 5: ZeroDB latency

Finally, in Figure 6 we show how ZeroDB reacts to packet loss
l in the network. While the impact of the 50 % loss is huge, it is

W-P2DS’18, April 23–26, 2018, Porto, Portugal M. Mitterer, H. Niedermayer, M. von Maltitz, G. Carle

important to note that even the lower loss rates of 5 % or 10 %
increase execution time out of proportion. It can be concluded that
packet loss badly affects ZeroDB.

Figure 6: ZeroDB operation and packet loss

4.3 TPC-C Benchmark
We used pytpcc to run TPC-C benchmarks on ZeroDB and other
databases. We had to write drivers for ZeroDB and MySQL in order
to include them in pytpcc. SQLite is run over an encrypted network
file system where the data resides on the server. We then let the
benchmark run in our testbed with varying network conditions.

Figure 7 shows the average execution time of the TPC-C delivery
query mix for ZeroDB, MySQL, SQLite, and MongoDB. ZeroDB is
orders of magnitude slower than the other database systems. It is
also heavily influenced by the network latency between client and
server. One of the reasons for this slow performance could be that
ZeroDB is slow for inserts and studies with mainly select queries
could be a bit more favorable. For the other database systems there is
only a small increase with latency as data transfer in the beginning
and end of queries takes a bit more time. The query itself is not
influenced by the network latency in these systems.

Table 2 shows the results when we restrict the available band-
width down to the order of a DSL connection. In this operational
state the bandwidth has little impact on MySQL and MongoDB.
The switch from 10Mbps to 1 Mbps showed a 30-40 % increase in
execution time for SQLite running over the network file system as
well as for ZeroDB.

Our experiments with ZeroDB showed that it consumes far more
storage than expected. Table 3 shows the allocated storage space of
the TPC-C database after an initial population run with pytpcc. The
value for ZeroDB is measured after running the garbage collection
which removes all outdated indices and data from the database
file. Without the call of the garbage collection the value would be
significantly larger. Even after this, it is four times the size of the
database size on disc of MongoDB, the worst of the other database
systems with respect to size on disk. According to the ZeroDBwhite

Figure 7: Pytpcc benchmark performance vs latency

1Mbps 10Mbps 1000Mbps
ZeroDB 38.9 29.4 28.7
MySQL 0.96 0.98 0.97
SQLite 0.70 0.51 0.49
MongoDB 0.770 0.761 0.761

Table 2: The influence of bandwidth to the execution time
(in seconds) of the query mix “New Order” to the given
databases

paper [2], this can be led back to the indices created by ZeroDB.
The encrypted database stores an index for each attribute by default
while conventional database systems only calculate indices for the
attributes specified by the TPC-C standard.

ZeroDB MySQL SQLite MongoDB
pytpcc 2,4 GB 526 MB 372 MB 645 MB

Table 3: Database size on disc after the initial database pop-
ulation of pytpcc

5 CONCLUSIONS
ZeroDB provides confidentiality for databases where the data is
stored on cloud servers. It follows an honest but curious model
where the server will provide the data as needed, yet it will not learn
about the details of the data. Compared to traditional databases or
modern NoSQL databases, ZeroDB is remarkable slower. The large
amount of communication makes ZeroDB performance decline
significantly with bad network conditions. Databases with less
communication overhead are less affected by this. ZeroDB performs
better for select operations. However, the performance penalty of
write and update operations is huge.

An Experimental Performance Analysis of the Cryptographic Database ZeroDB W-P2DS’18, April 23–26, 2018, Porto, Portugal

There are solutions like Order-Preserving Encryption where
the server-side can provide more functionality and queries can be
retrieved faster. In this security-performance trade-off ZeroDB is
on the slow yet considerably secure side.

ACKNOWLEDGMENTS
This work was supported by the European Commission through
the project SafeCloud (H2020-653884).

REFERENCES
[1] Jens-Christoph Brendel. 2008. MySQL-Benchmark hilft Konfiguration optimieren.

Linux-Magazin 2008, 12 (2008), 36–38.
[2] Michael Egorov and MacLane Wilkison. 2016. ZeroDB white paper. CoRR

abs/1602.07168 (2016). http://arxiv.org/abs/1602.07168
[3] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. 2002. Executing

SQL over Encrypted Data in the Database-Service-Provider Model. In Proceedings
of the 2002 ACM SIGMOD international conference on Management of data. ACM,
216–227.

[4] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2017. Arx: A DBMS with
Semantically Secure Encryption. (2017).

[5] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
2011. CryptDB: Protecting Confidentiality with Encrypted Query Processing. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles.
ACM, 85–100.

[6] Raluca Ada Popa, Nickolai Zeldovich, and Hari Balakrishnan. 2011. CryptDB: A
Practical Encrypted Rrelational DBMS. (2011).

[7] Gwynne Richards. 2014. Warehouse Management: A complete guide to improving
efficiency and minimizing costs in the modern warehouse. Kogan Page Publishers.

[8] Stoyan Stefanov. 2005. Building Online Communities with phpBB 2. Packt Pub-
lishing Ltd.

[9] Dan Suciu. 2012. SQL on an Encrypted Database: Technical Perspective. Commun.
ACM 55, 9 (2012), 102–102.

[10] Lemmy Marco Tauer. [n. d.]. Key Value Datenspeicher am Beispiel Redis. ([n.
d.]).

[11] Xing Yao, Wei Su, and Shuai Gao. 2017. Performance Analysis of Different Data-
base in New Internet Mapping System. In AIP Conference Proceedings, Vol. 1820.
AIP Publishing, 090017.

http://arxiv.org/abs/1602.07168

	Abstract
	1 Introduction
	2 ZeroDB
	3 Related Work
	4 Experiments
	4.1 Experiment Setup
	4.2 ZeroDB Experiments
	4.3 TPC-C Benchmark

	5 Conclusions
	Acknowledgments
	References

