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Abstract—Recent advances in the state-of-the-art of software
packet processing along with the incarnation of SDN and NFV in
networking brings the utility of software switches in production
to a high level. Accompanied with the wide deployment of
the latter, comes the practical and urgent need of monitoring
networks that are composed of software forwarders/switches.
On the one hand, this may provide new types of very fine-
grain operational data that can be collected, thus bringing the
opportunity for network managers to get a deeper understanding
of the underlying network state and performance. On the other
hand, this massive data availability comes at a cost: software
measurements can highly affect the measured values, thus biasing
the collected data. The intensity of this bias becomes stronger
when measurements are taken close to the data path. We believe
that this trade-off should be explored more in detail, since the
availability of fine-grained data offers new opportunities to apply
machine learning techniques to infer changes in the network
state, to forecast the evolution of some performance metrics or
to automatically respond to event triggers without the human
intervention. While our long-run objective1 is a full framework
for performing automated test on software routing platforms,
in this demonstration we focus on two key points that are
prerequisite for our approach: (i) we showcase the impact of
collecting the desired data within a Virtual Network Function
and (ii) we setup a simple environment for data visualization on
the same physical device.

Index Terms—NFV, High-Speed Software Routers, Perfor-
mance Evaluation, Measurements

I. CONTEXT

Network telemetry refers to a set of technologies devoted to

gathering and transferring information related to a network’s

state. This typically implies measuring values of some vari-

able, logging, detecting anomalies and so on.

Many enablers for telemetry are commonly adopted, but

the choice is still constrained by the protocol used or by

the amount of resource needed. The Simple Network Man-

agement Protocol [3] can be used to collect a pre-defined

set of information useful for network operation. The IPFIX

protocol [4] or NetFlow-based solutions [6] are still heavily

used, at the cost of trading off the amount of resources devoted

to the metering procedure for an extended set of measurable

features. Telemetry data is usually collected out of band, but

other approaches advocate to make data available directly in-

situ, i.e. together with and as part of the live traffic. This can

1http://www.industry-of-the-future.org/ai4perf/demo/
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Fig. 1: Sample of network function and the export capabilities

be achieved by adopting novel protocols such as the In-situ

Operation Administration and management (IOAM) [2], or by

coupling the implementation of both forwarding and telemetry

within a software switch [8].

In the software domain, the cost of measuring and making

this data available (present also for hardware solutions), is

shifted from dedicated/specific hardware to generic computa-

tion resources. Several operations have to be performed on a

per-packet basis, some of them keep state, and some others

export data to external storage. Regular switches and routers

typically perform these operations on specific components

especially designed for the measurement process. Software

switches, instead, implement the measurement process as a

piece of code that needs to be executed on the target device.

Recent approaches of high-speed and low-impact flow mon-

itoring [9] [5] open scenarios where all devices can get some

measurements with low-impact2. This raises a first question:

what is the impact of measuring these items? We provide

in Fig. 1 an example of a simple VNF that performs basic

forwarding (cross-connect, or XC). We observe that the cost,

measured in cycles per packet, for the simple VNF increases

with the complexity of the measurement. If counting packets

does not significantly affect the performance, accessing data

which is off-chip (e.g. RAM memory) or exporting to external

storage has a significant impact, even when sampling is used.

We identify three categories of costs with increasing weight:

2This can also open scenarios where devices spontaneously provides
measurements when needed.
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Fig. 2: Block diagram of the proposed framework

a small cost that occurs whenever accessing or de-referencing

variables in software; a medium-impact cost due to writing

data to the RAM (e.g. saving state to a hash-table); a high-

impact cost occurring when writing data to external storage.

This raises a trade-off to be considered while deploying

a telemetry application: while out-of-band data collection

minimizes the impact of the measurements w.r.t. in-situ solu-

tions, the former requires more resources than the latter. This

trade-off applies also to the processing step, which can be

implemented online or offline: online processing of the data

allows the application to quickly respond to events such as

anomalies, but requires additional complexity and has a higher

impact in the computational resources than offline processing,

which in turn can rely on a bigger time scale and thus perform

more complex processing on a possibly bigger set of data.

II. METHODOLOGY

Our goal is to perform smart tests, measure test data

efficiently, process the measured data, and finally interpret

the observations using machine intelligence, with the goal of

minimizing the impact of this additional processing on the

forwarding performance of the network. Our approach aims

at targeted and reproducible measurements in combination

with proper modeling of the complete system for improving

performance in the relevant metrics such as latency. The

components of our framework are shown in Fig. 2.

We envisage the following use-cases: what-if analysis for

predicting the impact on performance in case of changes such

as increased number of users, deployment of additional or

more powerful devices or virtual machines, modification of

routing, or update of virtualization technology; root-cause
analysis and bottleneck discovery to find where changes

can be made to improve performance in the relevant metrics

(e.g. Quality-of-Service / Quality-of-Experience); detection of
performance anomalies and correlation with misconfigured

or misbehaving devices. The Data collection block refers to

the activity of gathering the required measurements from the

devices under test. Existing software routers have already some

built-in functions to export clock cycles spent on specific

functions, which are being used to do performance evalua-

tion [7]. After the data is collected, we can perform iteratively

processing, apply machine learning algorithms and obtain the

results for our desired use-case. This is represented in the loop

of Data collection, processing, modelisation and inference in

Fig. 2. As a final step, we aim to provide an approach that

can be easily deployed in network devices.

III. TESTBED SETUP AND EXPERIMENTAL EVALUATION

For this demonstration we propose to showcase the costs

and the benefits of software telemetry solutions with in-situ

and out-of-band measurements in combination with online

and offline processing on the measurements. Additional details

about the demo are shown in appendix A to C. Our hardware

setup consists in a COTS server with 2× Intel Xeon Processor

E5-2690, each with 12 physical cores running at 2.60 GHz.

The server is equipped with 2× Intel X520 dual-port 10 Gbps

NICs. The hardware is remotely accessed for both bare-metal

and container experiments (a ssh connection is required). We

use VPP as state-of-the-art software router [1]. The code is

modified to retrieve network measurements (cfr. Fig. 1) and

export the data to external storage.

The demonstration focuses on a virtual network function to

be monitored. We show (i) the cost of running a telemetry

solution and (ii) some possible usage of telemetry data. We

first execute the router with a simple function that receives

and forward some L2 traffic. We then progressively increase

the complexity of the monitoring step, using both in-situ and

out-of-band telemetry. We finally collect the data and inter-

actively visualize the collected measurements. For the sake of

comparison, we also show the process of getting the same mea-

surements on a hardware switch connected to an interactive

dashboard. This scenario can be reproduced for a number of

more complex network functions, including IPv4/IPv6 routing

and mixed L2-L3 scenarios. We then demonstrate how to use

the collected data to adapt the frequency of the CPU running

the VNF to better cope with the incoming input rate. We

show how online and offline solutions (based on decision

trees) deal with the detection of the current behavior of the

network function. The demonstration will be providing data

visualization and interactivity.
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