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Abstract—Trust establishment is a challenge for services in dis-
tributed open environments. Trust Negotiation is a requirements-
driven method for establishing trust between strangers and
parties with limited mutual trust. Protocols for stateless trust
negotiation use messages which contain the whole negotiation
state. Stateless trust negotiation systems are advantageous in
open environments due to their ability to recover from failures by
simply processing the last message again. Furthermore stateless
negotiation reduces resource consumption at the negotiating
parties for long lasting negotiations. A drawback of stateless
negotiation systems is that the complete negotiation state is
prone to forgery by the other party in the negotiation. Stateless
negotiation can not be used if it does not address this vulner-
ability. We propose a security extension to an existing XML
based trust negotiation protocol in order to allow for secure
stateless negotiations. Our novel alternating signature protocol
detects manipulations of the negotiation state and introduces non-
repudiation to agreements. Stateless trust negotiation extended
with the alternating signature protocol can be a viable alternative
to stateful negotiation approaches especially for long lasting
negotiations in unreliable environments.1

I. INTRODUCTION

Research in the area of next generation service platforms is
driven by a need to cope with increasingly dynamic service
relationships. It becomes difficult to derive trust from static
knowledge about identities and services. A growing body
of research targets Trust Negotiation (TN) as a method for
establishing trust on the fly (see [1], [2], [3]). TN systems
use a policy-driven iterative negotiation process to reach an
agreement between two parties that need not have a prior trust
relationship. Trust establishment works through an iterative
exchange of digital credentials. Credentials can act as autho-
rization tokens to obtain access to services or they can contain
verifiable information linked to a negotiating party. Trusted
third parties can certify the correctness of the information
in the credentials. Credentials for frequent flyer programs,
credit card information, or affiliations to organizations are just
a few examples. The main focus of TN research is on the
protection of credentials with sensitive information [4]. Access
control policies define under which conditions credentials can
be released. The TN protocols ensure that only a minimal
set of credentials is exchanged and that all preconditions in
the access control policy are met before releasing a particular

1 c©ESRGroups, (2009). This is the author’s version of the work. It is
posted here by permission of ESRGroups for your personal use. Not for
redistribution.

credential.
Even though several stateful trust negotiation frameworks
emerged, their operation in unreliable environments is still a
research issue [5], [6]. Stateless trust negotiation systems [7]
are beneficial under these circumstances because they allow
for easy recovery in the face of failures. A negotiator which
receives a corrupted message, or which does not receive a reply
at all, can simply resend the last message. If the individual
negotiator shares the load between multiple servers internally,
it profits from easy fail-over and load-balancing on a per-
message basis. Another issue is that trust negotiations can take
a long time if humans are involved in the negotiation process
for making decisions or for issuing credentials. Long lasting
negotiations are costly using stateful negotiation because the
involved parties must preserve the negotiation state until the
negotiation terminates. Stateless negotiation protocols avoid
this state at the currently inactive negotiation systems because
all necessary information for the processing of a negotiation
message is encapsulated within the message itself.The stateless
nature of the negotiators becomes a disadvantage if one party
tries to forge messages. It could remove preconditions, modify
dependencies, and replace credentials to obtain an agreement
that favors the adversary. End-to-end security protocols (e.g.
TLS, IPSEC) protect only against manipulations by malicious
third parties. Only with an effective protection against forgery,
stateless negotiation protocols become feasible. The challenge
is to distinguish legitimate modifications of the negotiation
state that are in accordance with the negotiation protocol,
from forgery of all other portions of the negotiation state. The
preconditions, dependencies and credentials that have been
exchanged in previous rounds must not be modified.
This paper presents the following contributions: We propose a
novel alternating signature protocol for the protection of XML
negotiation messages to detect forgery of negotiation states.
We apply XML Signature [8] to sign portions of the messages
for verifying the integrity of the negotiation. However, XML
Signature alone is not sufficient, because it only protects
the old parts of the negotiation state against changes. It
cannot determine if the new parts of the negotiation state,
that have been appended by the other party, comply with the
specification of the negotiation protocol and are in accordance
with the policies that steer the negotiation. Our algorithm
reverses the last negotiation step of the other party by first
removing all legitimate changes that are in accordance with



the negotiation protocol and by verifying that the remaining
state has not been modified. We introduce a generic model of
XML negotiation states that allows us to formalize the protocol
messages during stateless trust negotiation. By using this
model we demonstrate how the alternating signature protocol
extracts the parts of the negotiation state that should have
been immutable at the current iteration of the negotiation.
Different simulated attacks will show how our implementation
of the alternating signature protocol detects manipulations.
We present experimental results from measurements with the
prototype to argue how a careful choice of cryptographic
algorithms improves the negotiation performance.
The remainder of this paper is structured as follows. Sec. II
gives a brief overview of our negotiation process. Sec. III
describes the formal model of the negotiation and Sec. IV in-
troduces the alternating signature protocol. Different simulated
attacks are presented in Sec. V and performance measurements
are given in Sec. VI. Sec. VII summarizes related work and
we conclude in Sec. VIII.

II. TRUST NEGOTIATION IN FOUR PHASES

The VersaTrust negotiation framework we presented in [7]
has been designed for stateless trust negotiation. The protocol
has four phases: 1.) The negotiation is initiated by a Resource
Request 2.) The objective of the Negotiation Phase is to find
the safe disclosure sequence of credentials. A credential can
only be released after the requirements stated in its access
control policy have been satisfied. Credential requirements
specify type and properties of credentials that the other party
must provide. An iterative exchange of credential requirements
leads to a tree of interdependent requirements. If one path
from the root to a leaf has credentials that can be released
unconditionally and all dependencies on this path can be
satisfied, a potential agreement option has been discovered.
3.) After one agreement option has been selected, the Cre-

dential Exchange Phase starts where the parties commence
a careful exchange of the promised credentials. They always
verify that all preconditions of a particular credential are
satisfied before they release this credential. 4.) The negotiation
either succeeds after all credentials have been successfully
exchanged or it terminates with a failure if some requirements
are not fulfilled.
The Negotiation Phase is dedicated to the requirements ex-
change and the identification of possible solutions and must
complete before the Credential Exchange Phase starts. This
separation has the advantage that the negotiation can fail
during the Negotiation Phase without revealing sensitive in-
formation or critical access-granting tokens. A credential is
only released if all preconditions of this credential are met.
Consider, for example, a negotiator that only releases an access
token for its web service after it received a permission to
withdraw a certain amount of money from the requester.

III. MODEL OF XML NEGOTIATION STATES

The Negotiation algorithm works through an exchange
of XML documents that contain the complete negotiation
state. The endpoints do not need to preserve state across
multiple iterations of the negotiation, instead they can
reestablish all information about a negotiation by parsing
the current negotiation message. These documents grow
at each iteration because the processing party appends
its requirements, dependencies, and commitments to the
document. All elements and data remain in the document
until the negotiation terminates.
There are various ways for describing an XML document
formally. We present our data model and operations in the
context of XML negotiation states. An XML document is
formed by a hierarchy of XML tags and can be represented
by a directed graph GnegState. Adjacency matrices can be
used to represent finite directed graphs. However, common
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definition of adjacency matrices do not allow to preserve
the order of the children of a node, which is important
for XML InfoSets and XML canonicalization. We use a
slightly different definition and map the directed graph
GnegState that has n vertices to a matrix Mn×n

d where an
entry ai,j > 0, ai,j ∈ Q+, ij ∈ N,i ≤ n, j ≤ n denotes
the presence of one edge from the vertex vi to vj . The
child ai,x of vi precedes child ai,y if ai,x < ai,y . The node
labeling function σd : V 7→

∑
provides values from the

alphabet
∑

for entity names, and γd : V 7→
∑

provides a
set of attributes for a vertex and if present the XML data
value. The whole XML Negotiation state is represented by
the tuple d =< rd,Md, σd, γd >, where rd is the root element.

A. Negotiation Phase

The Negotiation Phase is where each party states its re-
quirements. The negotiation starts when a Requester R sends
a resource request to a Service S. The service has various
requirements regarding its credentials that would allow R
to access the service. For example, it could require either
a permanent subscription or the willingness to pay for the
service. By processing these requirements the requester learns
about the terms under which this service is available. The
requester has probably its own requirements concerning the
service usage, for instance, quality of service and privacy.
The requester now appends its requirements to the negotiation
state. The result is a tree structure (see Figure 1) of interde-
pendent requirements. Father-child relationships denote con-
junctive conditions where all requirements must be fulfilled.
A sibling relationship denotes a disjunctive condition where
only one condition must be satisfied.
The negotiation phase can be modeled as a sequence of matrix
additions. We define a matrix addition between matrices with
unequal dimensions An×m, Bx×y, x ≤ n, y ≤ m in our
context as follows:

(An×m+̂Bx×y)i,j =


ai,j + bi,j for

ai,j ∈ A, bi,j ∈ B,
i ≤ x ∧ j ≤ y

ai,j for
ai,j ∈ A, x < i ≤ m
∨y < j ≤ n

(1)
The requester at iteration j appends its requirements Mreq

j

and creates the negotiation state Mj+1 = Mj+̂M
req
j . This

algorithm repeats for all j ∈ {1...n−1}, where n is the number
of iterations during the negotiation phase. Figure 2 shows the
matrix representation of the message MII from Figure 1 step II
and how the message MIII is constructed.
If one party is willing to release all requested credentials on a
path without stating further requirements, it appends a possible
agreement node. This path is a possible solution. There is
another special XML element to indicate if a party is not
willing to release a specific credentials. The path from the
root to this leaf is marked with a failed node then.
The negotiation phase ends either when one possible solution

has been found, or after all paths have been either marked
as failed or possible agreement. The selection of an optimal
path can be arbitrarily complex. As we are mainly concerned
about the negotiation protocol, we refer to the work on agents,
preference based selection or rely on human judgment to make
an intelligent choice.

B. Credential Exchange Phase

The purpose of the Negotiation Phase was to discover
one viable solution for both parties. However, it is still
possible that one party does not deliver the promised
credentials. The Credential Exchange Phase ensures that
one credential is released only after all preconditions stated
in its access control policy have been fulfilled. The order
of the credential requirements in the path from leaf to the
root in the negotiation tree has the property that it is a
safe disclosure sequence. The credentials M cred

j are only
released after all requirements are satisfied. The protocol
marks the chosen path and will iteratively exchange the
credentials by appending them to the negotiation state
Mj+1 = Mj+̂M cred

j . The negotiation was successful after all
requirements have been satisfied by corresponding credentials.

IV. SECURE STATELESS TRUST NEGOTIATION

We first describe the attacker model before we propose a
security extension of the protocol for stateless trust negotiation
to counter these threats.

A. Attacker Model for Stateless Negotiation

There are two types of adversaries for stateless negotiation:
1) A malicious third party that is located on the message
path between two negotiating parties and is able to intercept,
manipulate and replay negotiation messages.
2) The other party is a malicious adversary that tries to cheat
during the negotiation. End-to-end security is no protection
if the other party in the negotiation wants to take unfair
advantage by forging the negotiation state in parts or as a
whole. Each peer wants to protect the negotiation state from
malicious modifications because this document states promises
about the future behavior of the peers and requirements that the
peers must fulfill. If an adversary succeeds in manipulating the
negotiation state, it can generate agreements that favor itself
and are very unfavorable for the victim.

B. Alternating Signatures and Message State Reduction

We devised a novel algorithm with alternating signatures
and message state reduction to verify that previous messages
have not been manipulated. The purpose of the algorithm is to
ensure that the other party did only append to the negotiation
state and did not change any preexisting parts of the message.
Before a message Mi is sent, the current peer will apply
an XML Signature [8] covering the whole negotiation state.
This signature includes the history of all requirements and
tokens exchanged up to that point. The peer will append the
signature to the message and will send it to the other party.



The other party will process the message and send a reply
Mj+1 with an extended negotiation state. When the first peer
receives the answer to its original message, it must first verify
the integrity of message Mj+1, before it can start processing.
The signatures of the two messages do obviously not match
sign(Mj+1) 6= sign(Mj) because the message Mj has been
extended with additional state, by appending requirements or
credentials.
Upon reception of the message, the receiving peer must
remove all nodes from the XML document that the other
party appended. In our model of XML negotiation states, the
dimensions of the matrix have grown to accommodate the new
nodes. In terms of our model, we must reduce the dimension
of the received message M b×b

j+1 to obtain the representation of
the original message M ′a×a

j with b > a. We define the matrix
Im×n as follows:

(Im×n)i,j =

{
1 for i = j

0 for i 6= j
with i ∈ 1, . . . ,m, j ∈ 1, . . . , n

(2)
The matrix multiplication M l×m×Im×n = Rl×n preserves

elements that are within the new dimensions of Rl×n. By using
two matrix multiplications, we obtain the message M ′a×a

j :

Ia×b ·M b×b
j+1 · I

b×a = M ′a×a
j (3)

The implementation of the protocol uses a new nodes list
to indicate which new nodes have been appended to the
document by the other party. One peer must first remove
the new nodes before it can verify the signature. Be aware
that the resulting document might still not fully match
the original document because of different representations
of equivalent documents due to syntactic freedoms of
XML. One XML standard is very helpful in obtaining a
valid signature after the document has been modified two
times: XML Canonicalization from [9] ensures that XML
documents, which can have varying representations, but are
logically equivalent in a given application context, will be
transformed in an unambiguous XML representation. The
digital signature of the reduced document must match the
previous signature of this peer. The digital signatures of both
peers are contained in the messages. The signatures will
only match if the resulting document after the reduction of
Mj+1 is equivalent with the document Mj . Non-matching
signatures indicate that the previous negotiation state has been
tampered with and the negotiation fails. If the new nodes lists
is corrupted the algorithm will remove an incorrect set of
nodes and the signatures will also not match. After successful
signature verification the rest of the message is handled by
the negotiation algorithm as described in [7]. It ensures that
the new parts of the message comply with the semantics of
the negotiation protocol and the access control policies.
The Figure 3 shows how both negotiating parties
apply this algorithm. The Requester includes
sigMI = sign(MI , keyRequester) in its message
MI . When it receives MII it removes the

changes that the Service applied and verifies that
sigMI = sign(reduce(MII , changedNodes), keyRequester).
The Service acts also according to this algorithm. The
algorithm will be applied successively for each message until
the negotiation ends. The complete history of requirements,
promises, commitments and choices is thereby protected. If
the signatures do not match for one message, the negotiation is
terminated and the incident will be logged. A list of previously
processed signatures is used to prevent an excessive replay
of negotiation messages and to avoid Denial of Service attacks.
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Fig. 3. Message Reduction and Verification with Alternating Signatures

C. Different Options for Cryptographic Signatures

Our framework uses XML Signature from [8] to protect
the integrity of the complete negotiation state and includes
two signatures in the document: one for the Requester
and one for the Service. One option is to use RSA [10]
public key cryptography. The use of RSA makes fail-over
and load-balancing easier because other backup servers can
verify the digital signature with the public key of the failed
server. An XML firewall could integrate the logic of the
alternating signature protocol to verify the signatures and drop
manipulated messages. Another important property of using
public key cryptography together with digital certificates
is non-repudiation. Both parties sign the whole agreement
successively by applying this algorithm. A third party can
verify the integrity and the origin of the agreement by
checking the signatures.
An alternative option is to use the keyed-hash message
authentication code (HMAC) from [11]. HMAC uses a
secret key and a cryptographic hash function to calculate the



message authentication code of a negotiation state. The secret
keys in our protocol are exclusive for Service and Requester
each. Only the peer that used a key for its signature must
be able to verify the signature. If one negotiator wants to
use load-balancing between multiple servers internally, the
secret key must be shared with all other servers that can act
as backup.

V. EXPERIMENTAL VERIFICATION OF SECURITY

We assume that a suitable cryptographic protocol for
end-to-end security (e.g. TLS or IPSEC) is in place to ensure
confidentiality and to protect against attacks by malicious
third parties. Hence, our security analysis focuses on the
other party in the negotiation that forges negotiation states.
We augmented one party for each experiment with a software
module to simulate different attacks on the negotiation
depicted in Figure 1. In our experiments the negotiation state
belonging to the Service was manipulated by the Requester
and vice versa. The following list shows the attacks we
simulated and their impact on the agreement:

1) Attack Adversary removes nodes
a) Test Remove Rsubscription and RdebitCard

Impact Agreement to access service without paying or
subscription

b) Test Remove credential CQoS

Impact Agreement without QoS guarantee
2) Attack Adversary modifies node content

Test Modify RdebitCard

Impact Require less money to access service
3) Attack Adversary moves nodes

Test Swap RQoS and RbestEffort

Impact Obtain service with QoS for free
4) Attack Adversary adds nodes

Test Sneak in additional unconditional agreement op-
tion for QoS RfreeQoS

Impact Obtain service with QoS for free
5) Attack Adversary manipulates new nodes list
a) Test Do not state all nodes that were added

Impact Exclude from processing by negotiation algorithm
b) Test Try to hide added RfreeQoS from attack 4)

Impact Cover forgery of negotiation states
The negotiation state forgery of attacks 1),2),3) are detected

by verifying the digital signatures of the document portions
that should have been immutable. The attacks 4) and 5)
cannot be detected by XML Security alone, but require the
message state reduction that obeys the protocol specification.
All nodes that follow the protocol rules will be removed
from the document before the signature is verified. Any XML
node that does not comply with the algorithm [7] will stay in
the test document and will lead to non-matching signatures.
Thwarting the attack 5b) also relies on the negotiation
algorithm that enforces that nodes in the changed nodes
list belong to the remote party and handles these nodes in
accordance with the access control policies.

VI. PERFORMANCE EVALUATION

We conducted performance measurements to determine the
impact of the different cryptographic algorithms. One algo-
rithm we used was the keyed-hash message authentication
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code with a secret key (HMAC) from [11]. We also in-
vestigated the impact of public key cryptography with the
RSA [10] algorithm. The measurements throughout the ex-
periments were performed with two computers with Intel
Pentium 4 2.80GHz CPU, 1GB of RAM, running under
Ubuntu Linux with Kernel 2.6.24. The computers were in-
terconnected via a 100Mbit/s local area network. We used
libxml2 (http://www.xmlsoft.org) for parsing the XML docu-
ment into a DOM representation and for its implementation of
Canonical XML. Requester and Service apply XML Signature
with the XMLSec Library (http://www.aleksey.com/xmlsec/)
which relied on the cryptographic routines from openssl.
We used a more complex scenario than the one presented
in this paper with an iterative exchange of twelve messages
between Requester and Service. That means that each party
receives and sends a negotiation message six times. Figure 4 a)
shows the performance of a complete negotiation, protected
by HMAC. The negotiations terminate for all chosen security
algorithms after approximately 0.15 seconds with small vari-
ance. In contrast, the RSA algorithms lead to much longer
negotiation times and higher variance with a median of about
0.45 seconds for RSA SHA224 (see Figure 4 b).
We performed another experiment to determine the impact of
message sizes on cryptography and scalability. We summed
the size of all messages that were exchanged during the
negotiation and determined the effective negotiation rate. The
symmetric nature of the protocol implies that the computa-
tional effort of Service and Requester is roughly equal. Figure
5 shows that the size of the negotiation messages determines
the processing capacity.
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Future work includes the examination of a hybrid strategy
that uses HMAC for the negotiation and public-key cryp-
tography only for signing the final agreement. Incremental
signatures as presented in [12] are also a promising direction
for improving the negotiation performance, as large parts of
the negotiation message are immutable.

VII. RELATED WORK

Automated Trust Negotiation was introduced in [1] as a
method for establishing trust between strangers through a
careful credential exchange. The objective of trust negotiation
is to disclose only the minimal set of credentials necessary for
the successful termination of the negotiation. The paper in [4]
presents an overview of fundamental concepts and related
work on Trust Negotiation. To the best of our knowledge, our

work in [7] is the only TN protocol that allows for stateless op-
eration of the negotiating systems. Different from our stateless
negotiation protocol, the stateful TN frameworks must protect
their communication against malicious third parties only. The
Traust [13] TN system relies on end-to-end security with SSL.
The approach published in [14] uses WS-Security to secure its
messages.
The Trust-X framework of [3] uses XML for its Trust Ne-
gotiation Language, disclosure policies and credentials. An
extension of Trust-X presented in [5] introduces fault tol-
erance. The recovery strategy works with check points and
persistent state in a local database. The authors of [6] also
use check points to introduce fault tolerance at the protocol
level and to recover from system failures. Both approaches
rely on runtime state at the negotiating systems and require
additional persistent state for the check points which must
be preserved until the negotiation terminates. Stateless trust
negotiation provides fault-tolerance and works well for long-
lasting negotiations. The advantage is that it reduces local
resource consumption and that it facilitates load-balancing.

VIII. CONCLUSION

Stateless trust negotiation is well suited for long-lasting ne-
gotiations and negotiations in unreliable environments. How-
ever, the stateless design of the negotiation systems introduces
additional security challenges. In this paper we presented se-
cure stateless trust negotiation. We introduced a novel method
for protecting the integrity of XML negotiation states with
alternating signatures. We simulated different attacks on this
protocol to demonstrate how the algorithm detects forgery of
negotiation states. Our experimental results showed the per-
formance impact of different XML security algorithms. While
we have only described how alternating signatures protect
stateless trust negotiations, this approach can be extended to
other stateless XML negotiation systems as well.
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