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Abstract—QUIC is a new network protocol standardized in
2021. It was designed to replace the TCP / TLS stack and is
based on UDP. The most current web standard HTTP / 3 is
specifically designed to use QUIC as transport protocol. QUIC
claims to provide secure and fast transport with low-latency
connection establishment, flow and congestion control, reliable
delivery, and stream multiplexing. To achieve the security goals,
QUIC enforces the usage of TLS 1.3. It uses authenticated
encryption with additional data (AEAD) algorithms to not only
protect the payload but also parts of the header. The handshake
relies on asymmetric cryptography, which will be broken with
the introduction of powerful quantum computers, making the
use of post-quantum cryptography inevitable.

This paper presents a detailed evaluation of the impact of cryp-
tography on QUIC performance. The high-performance QUIC
implementations LSQUIC, quiche, and MsQuic are evaluated
under different aspects. We break symmetric cryptography down
to the different security features. To be able to isolate the impact
of cryptography, we implemented a NOOP AEAD algorithm which
leaves plaintext unaltered. We show that QUIC performance
increases by 10 to 20 % when removing packet protection. The
header protection has negligible impact on performance, espe-
cially for AES ciphers. We integrate post-quantum cryptographic
algorithms into QUIC, demonstrating its feasibility without
major changes to the QUIC libraries by using a TLS library
that implements post-quantum algorithms. Kyber, Dilithium, and
FALCON are promising candidates for post-quantum secure
QUIC, as they have a low impact on the handshake duration.
Algorithms like SPHINCS+ with larger key sizes or more complex
calculations significantly impact the handshake duration and
cause additional issues in our measurements.

Index Terms—QUIC, Cryptography, Performance Evaluation,
Post-Quantum, Secure Transport Protocols

I. INTRODUCTION

QUIC is a new transport protocol designed to improve on
the widely used TCP / TLS stack, standardized by the Internet
Engineering Task Force (IETF) in 2021 [1]. It is the basis
for new protocols like HTTP / 3 and MASQUE, which powers
Apple’s private relay service. Like TCP, it is connection-
oriented, reliable, and features flow and congestion control.
Additionally, QUIC has numerous advantages over TCP, e.g.,
support for connection migration, stream multiplexing, and
always-on encryption. To achieve the latter, TLS 1.3 is strictly
integrated into QUIC [2]. The QUIC handshake combines both
the transport and TLS handshake, which allows fast connection
establishment. Furthermore, it encrypts all following payload
and adds additional header protection.

These properties are desirable in many use cases. However,
always requiring TLS is often criticized for inducing addi-
tional overhead in scenarios where those properties are not
required [3, 4]. Jaeger et al. [5] have shown that crypto is the
second most expensive component of QUIC besides packet
I/O.

Besides the effect of symmetric cryptography on perfor-
mance during the connection, the integration and perfor-
mance evaluation of quantum-safe algorithms in QUIC has not
been evaluated in detail. Traditional asymmetric cryptography,
which is used during the QUIC handshake, will be broken with
the introduction of powerful quantum computers. The National
Institute of Standards and Technology (NIST) has been work-
ing on selecting quantum-safe cryptographic algorithms for
standardization since 2017 [6].

In this work, we perform a detailed evaluation of the impact
of cryptography on QUIC performance. We analyze the impact
of symmetric cryptography in form of packet and header
protection during a connection. Different post-quantum key
exchange and signature algorithms are integrated into two
QUIC implementations to evaluate the performance impact on
the handshake.

Our key contributions in this work are:
(i) We evaluate the impact of cryptography on QUIC perfor-

mance for different libraries in detail. We differentiate between
the impact of payload encryption and header protection in a
controlled environment.

(ii) We analyze if larger Maximum Transmission Units
(MTUs) can mitigate the impact of encryption and improve the
performance of QUIC. This is especially relevant in controlled
environments, e.g., in-datacenter networks.

(iii) We integrate quantum-safe cryptographic algorithms
into two of the chosen QUIC implementations to evaluate the
performance impact. We dissect the handshake to precisely
locate performance bottlenecks and limitations.

(iv) We publish versions of BoringSSL and OpenSSL with
NOOP ciphers following the required interface. These can be
used to evaluate the impact of cryptography within other QUIC
libraries or to remove the impact of cryptography for other
evaluations.

We explain relevant background regarding cryptography in
QUIC in Section II and cover related work in Section III. In
Section IV, we introduce our approach and the measurement
setup. Our evaluations are presented in Section V. Finally, the
main findings are concluded in Section VI.ISBN 978-3-903176-63-8© 2024 IFIP
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Fig. 1: Simplified illustration of a QUIC 1-RTT handshake.

II. BACKGROUND

This section introduces relevant background about cryptog-
raphy in QUIC, followed by an overview of post-quantum
cryptography (PQC) and how QUIC is affected when inte-
grating PQC.

A. QUIC Cryptography

QUIC includes always-on encryption with TLS 1.3. While
asymmetric cryptography is used during the handshake, sym-
metric cryptography is used during the connection. In Figure 1,
a simplified illustration of a QUIC handshake is shown. Asym-
metric cryptography is only happening in the orange parts. It
is important to note that all shown handshake components
may be spread over multiple QUIC packets. This happens
especially with PQC, where the certificate is too large to fit
into a single packet.

For performance and security considerations, TLS 1.3 limits
the amount of available ciphers to only authenticated encryp-
tion with additional data (AEAD) algorithms [7]. They are
designed to encrypt data while applying integrity protection
to the data itself and also additional metadata in one single
pass. During the connection, the packet payload is encrypted,
and the header is integrity-protected along with the payload.
All non-AEAD algorithms have been pruned from the stan-
dard and only five are available for TLS 1.3. QUIC fur-
ther limits this set to four: AES_128_GCM, AES_128_CCM,
AES_256_GCM, and CHACHA20_POLY1305 [2]. The Ad-
vanced Encryption Standard (AES) algorithms are block ci-
phers which profit from hardware acceleration on modern x86
CPUs [8], while ChaCha20 [9] is a stream cipher performing
well when hardware acceleration is lacking.

Besides protecting the payload, parts of the header are also
encrypted. To prevent network ossification and ensure header
authenticity, all fields not required for decryption are protected
during the connection. This includes the packet number and
several bits in the header. Figure 2 shows the way a QUIC
packet is protected and which keys are involved. First, the
packet protection is applied by encrypting the payload, using
the AEAD cipher. The header serves as additional data and
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Fig. 2: Packet and header protection in QUIC using the ini-
tialization vector (iv), the header protection key (hp), and the
QUIC key (key). All three are derived from the connection’s
TLS secrets.

is not encrypted but authenticated. The nonce is derived by
XORing the packet number with the initialization vector,
ensuring that the nonce is unique for every packet. From the
resulting ciphertext of the AEAD encryption, a 128 bit sample
is taken and used as input to a cipher. The AEAD algorithm
for the packet protection determines the respective cipher. If an
AES cipher suite is used, the respective AES cipher is applied
in Electronic Code Book (ECB) mode. For the ChaCha20
cipher suite, the raw ChaCha20 function is used. From the
ciphertext of this single encryption call, 8 B are used to mask
the fields to be protected in the header [2].

B. Quantum-Safe Cryptography

Traditional asymmetric cryptography in TLS is based on
prime factorization or the (elliptic-curve) discrete logarithm
problem. Both can be solved with powerful quantum comput-
ers using Shor’s algorithm [10]. Using Grover’s algorithm [11],
symmetric keys can be brute-forced more efficiently, halving
the security level in bit. However, symmetric cryptography is
not as vulnerable, as larger keys can mitigate this problem.
Hence, PQC introducing new quantum-secure cryptographic
systems is needed as a replacement. In light of this, the NIST
launched the Post-Quantum Cryptography Standardization
program in 2017 to standardize quantum-secure cryptographic
primitives [6].

In this work, we focus on the following post-quantum
key exchange and signature algorithms: Kyber, BIKE, HQC,
Dilithium, Falcon, and SPHINCS+. Detailed information about
these algorithms can be found in the liboqs documentation
from Open Quantum Safe (OQS) [12]. For the ones selected
for standardization, the NIST has assigned new names, e.g.,
ML-KEM for Kyber [13]. In this paper, we use the old
names for the algorithms, as they are more commonly known.
The algorithms are grouped into hash-, code-, and lattice-
based algorithms, each coming with unique advantages and
limitations [14].



NIST also established different quantum security strength
categories to compare various algorithms regarding their se-
curity. Relevant to our work are the so-called NIST levels I, III,
and V. Algorithms in NIST level I are at least as hard to break
as AES-128 through exhaustive key search. The NIST levels
III and V correspond to the strength of AES-192, respective
AES-256.

III. RELATED WORK

Jaeger et al. [5] performed a broad and comprehensive
performance evaluation of QUIC libraries. Among other im-
plementations, they evaluated LSQUIC [15] and quiche [16] as
well as TCP over TLS. In their comparison of the goodput they
revealed that the performance of hardware accelerated AES is
superior to ChaCha20. In their CPU utilization measurements,
they found that cryptographic operations contribute between
10 % and 20 % to the total CPU utilization. We further extend
the evaluation with MsQuic [17] and focus on the goodput for
the different cipher suites rather than on the effect of hardware
acceleration. We also provide a fine-grained analysis of the
different components of the symmetric cryptography, i.e., the
header and packet protection, and the impact of the MTU
on the performance of QUIC and cryptography. Lastly, we
integrate quantum-safe cryptographic algorithms to evaluate
the performance impact on the handshake and identify possible
problems when integrating PQC into QUIC.

Yang et al. [18] analyzed different QUIC implementations
in the context of Network Interface Card (NIC) offloading,
aiming to define a set of primitives that a NIC should offer
to efficiently offload QUIC. They looked at the following
implementations of QUIC: Quant [19], Quicly [20], pico-
quic [21], and mvfst [22]. Like Jaeger et al., they showed
that high costs are associated with crypto: up to 40 % of the
CPU usage is attributed to cryptographic operations (Quant).
More specifically, they discovered that around 75 %–80 %
of the crypto-related CPU usage is associated with AEAD
function calls. We analyze the cryptographic operations more
thoroughly and break them down in more detail to show the
impact of QUIC’s security features, i.e., the header and packet
protection.

Apart from the works previously presented, various papers
deal with the analysis of QUIC itself without focusing specif-
ically on cryptography [23, 24]. They performed comparative
studies on the performance of TCP and QUIC, e.g., Yu and
Benson [24] ran their tests under different network conditions
and workloads against production endpoints from Google,
Cloudflare, and Facebook.

Marx et al. [25] researched QUIC features in 15 HTTP/3
implementations, e.g., flow and congestion control, stream
multiplexing, and the 0-RTT handshake. They summarize
that there are significant differences regarding the quality of
the QUIC implementations and that most of them are not
completely optimized, wasting potential performance gains.
However, in this work, the focus is on the cost of cryptography.

While some studies evaluated path MTU discovery in gen-
eral or whether it is implemented (e.g., Marx et al. [25]), to the

best of our knowledge, no study evaluated the impact of larger
MTUs on QUIC performance and its relation to cryptography.

Sosnowski et al. [26] investigated the performance implica-
tions of using post-quantum algorithms in TLS 1.3 handshakes
over TCP. Their results reveal that PQ algorithms (including
hybrids) can be faster than the state-of-the-art in ideal net-
work conditions. However, in low-bandwidth environments,
the increased data usage becomes a bottleneck. Moreover,
they found that the large key sizes can cause unwanted side
effects, e.g., additional RTTs due to the slow start phase of
the TCP congestion control. We use QUIC instead of TCP
and also evaluate the integration into QUIC libraries and the
corresponding issues.

Raavi et al. [27] analyzed the impact of PQC on the
QUIC handshake. They found that the handshake takes longer
with increasing security levels or worse network conditions.
They only looked at the two lattice-based signature algorithms
Dilithium and FALCON and did not analyze key encapsulation
mechanisms, what we do in this work.

IV. APPROACH

In this section, we present our approach to conduct mea-
surements and evaluate collected metrics. After introducing
the selected QUIC libraries, we present the adjustments made
to the TLS libraries to allow for measurements without cryp-
tography.

A. Measurement Framework

To execute our measurements in a reproducible manner,
we extended the adapted QUIC Interop Runner presented by
Jaeger et al. [5]. This framework was built to orchestrate
measurements on bare-metal servers and to provide a repro-
ducible environment for QUIC measurements with extensible
configuration and logging capabilities. It is based on the QUIC
Interop Runner presented by Seemann and Iyengar [28], which
was initially designed to perform interoperability tests between
different QUIC implementations. We added features to change
the path MTU and modified the build process to include our
custom TLS libraries presented in Section IV-D.

B. Hardware Configuration

All machines used for the measurements are equipped with
an AMD EPYC 7543 32-Core CPU, 512 GB memory, and
a 10GBASE-T Broadcom BCM57416 NIC. We use Debian
Bullseye on 5.10.0-8-amd64 as the operating system without
additional configurations.

C. Implementations

For our evaluation, we consider LSQUIC [15], quiche [16],
and MsQuic [17], as those implementations are widely used
for production QUIC servers [29]. Related work also showed
that these implementations perform better than the majority of
other tested QUIC implementations [5, 30]. We use the exam-
ple server and client applications provided by the respective
libraries for interop testing. While we configured LSQUIC and
quiche to use HTTP/3, MsQuic provides only an HTTP/0.9



implementation. For the MsQuic measurements, we used
the QUIC_PARAM_CONN_DISABLE_1RTT_ENCRYPTION
connection parameter to disable the 1-RTT encryption com-
pletely. We refer to this configuration as NOENC in the
following. As this feature is only for testing and performance
evaluation, a constant must be defined to enable the so called
”insecure features”. Additionally, we use a TCP / TLS stack
consisting of a server using nginx and a client using curl for
comparison.

D. Adjustments to BoringSSL and OpenSSL

QUIC is strongly coupled with TLS encryption and is gen-
erally not designed to operate without it. Completely removing
cryptography from a QUIC implementation requires major ad-
justments to the library. Therefore, we opted for implementing
a NOOP cipher for BoringSSL [31] and OpenSSL [32] which
just returns the plain text as cipher text and thus does not
perform any cryptographic operations. This approach allows
us to easily perform measurements with other QUIC libraries
using BoringSSL or OpenSSL as the TLS library.

Our cipher suite TLS_NOOP_SHA256 uses SHA-256 for
hashing and the custom NOOP algorithm for encryption and
decryption. The asymmetric part during the handshake remains
unchanged. As the algorithm for header protection depends on
the selected AEAD algorithm [2, Section 5.4.1], we decoupled
it from the AEAD algorithm in the used QUIC libraries
and thus are able to choose the header protection algorithm.
This approach allows for easy integration and evaluation of
other QUIC libraries with our custom TLS libraries. The
patched BoringSSL and OpenSSL libraries are available on
GitHub [33]. To be able to also perform measurements with
quantum-resistant cryptographic algorithms, we also integrated
our changes into the BoringSSL fork of the OQS project [34].
The quantum-safe key exchange and signature algorithms are
included via the liboqs library, which also originates from the
OQS project.

V. EVALUATION

With the previously presented measurement framework and
the modified QUIC implementations and TLS libraries, we
evaluate the cost of cryptography in QUIC.

Besides evaluating the different AEAD algorithms and com-
paring them with our NOOP implementation, we also evaluate
the impact of QUIC’s header protection on the goodput. The
cost of the different cryptographic operations is evaluated in
detail with profiling output.

After analyzing symmetric cryptography, we benchmark
post-quantum key exchange and signature algorithms inte-
grated into LSQUIC and quiche. Also looking at hybrid
approaches, the impact on the handshake latency is evaluated.

In every measurement, the client downloads an 8 GiB file
over HTTP. To ensure a large enough sample, every measure-
ment was repeated 25 times and the average was taken. We
also set the UDP receive buffer size to 6656 KiB which is 32
times the default size of 208 KiB. Jaeger et al. [5] have shown
that the default buffer size is too small for high-rate links.

The congestion control algorithm was fixed to cubic for all
measurements. If not stated otherwise, no header protection is
applied in the measurements with the NOOP cipher. All shown
boxplots use a horizontal line for the median and an icon such
as ▲ for the mean. The boxes are drawn from quartile Q1 to
Q3.

A. AEAD Algorithms
Comparing TLS over TCP with QUIC highlights how

QUIC’s use of UDP affects performance. Figure 3
shows the goodput achieved with different AEAD ci-
phers AEAD_AES_128_GCM, AEAD_AES_256_GCM, and
AEAD_CHACHA20_POLY1305 as well as our NOOP imple-
mentation. TLS over TCP consistently outperforms all tested
QUIC implementations across all AEAD algorithms, likely
due to TCP’s mature optimizations.

There are no noticeable differences in performance between
the 128-bit and the 256-bit AES cipher. The AEAD algorithm
AEAD_CHACHA20_POLY1305 using the ChaCha20 stream
cipher is about 9 % to 16 % slower than AES-based algorithms
in combination with hardware acceleration. As it was shown
by Jaeger et al., ChaCha20 shows a significant performance
improvement over AES when hardware acceleration is not
available and is therefore a valuable alternative for endpoints
with hardware constraints [5]. With the NOOP cipher, the
achieved goodput increases between 10 % and 20 % for the
tested QUIC implementations and 12 % for TLS over TCP.

We also measured the goodput of the MsQuic implemen-
tation with NOENC. This configuration completely disables
the 1-RTT encryption and thus the cryptographic operations.
In comparison to the NOOP cipher, the goodput increases by
13.6 % to 4782 Mbit/s. The main difference between the two is
that NOENC does not even call OpenSSL for the protection of
1-RTT packets, while NOOP still calls OpenSSL performing
operations like memcpy(). This performance impact is also
analyzed in Section V-C, where we take a closer look at the
CPU utilization of the different cryptographic operations.

B. Header Protection
With a combination of the options to select the AEAD

algorithm and the header protection algorithm, we can evaluate
the impact of header protection on the goodput.

Figure 4 shows the goodput achieved with different AEAD
algorithms, with and without header protection. As it can be
seen, the AES header protection has a negligible impact on the
goodput. While it has less than 1 % impact for LSQUIC and
MsQuic, the goodput of quiche is slightly increased by 2 %.
The header protection with ChaCha20 has a higher impact
on the goodput, increasing it by 4 % to 6 %. As ChaCha20
showed slightly lower goodput than AES in Figure 3 already,
this observation is not surprising. It can be concluded that the
header protection, especially for AES, is virtually free and
does not have a significant impact on the goodput.

C. CPU Time Consumption for Packet and Header Protection
To understand what limits the goodput and where bottle-

necks are, we take a closer look at the CPU utilization of
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Fig. 4: Impact of header protection for different AEAD algo-
rithms and QUIC implementations on the goodput.

client and server. We use perf in combination with a custom
mapping to retrieve the number of perf samples for packet and
header protection.

Table I shows the distribution of samples for the packet and
header protection mechanisms in relation to the total number
of samples belonging to the respective QUIC implementation.
Each implementation was tested with AEAD_AES_128_GCM,
AEAD_CHACHA20_POLY1305, and our NOOP cipher for a
better comparison. AES and ChaCha20 use their respective
header protection algorithm. For MsQuic, we also included
results from measurements with NOENC. As AES-256 again
shows similar performance to AES-128, it is not included in
the table.

The results show that the packet protection is the primary
contributor to the CPU time consumption on both endpoints.
As expected, the results with an AES cipher show a lower
percentage of samples for packet and header protection than
those with a ChaCha20 cipher. The fact that ChaCha20 does
not profit from hardware acceleration is reflected in the higher
percentage of samples for packet and header protection and a

TABLE I: Distribution of perf samples for the packet protec-
tion (PP) and header protection (HP) mechanisms in relation
to the total number of samples belonging to the respective
QUIC implementation.

Client Server
Cipher Impl. PP [%] HP [%] PP [%] HP [%]

AES
LSQUIC 16.83 0.31 14.83 0.08
quiche 15.30 2.45 14.75 0.92
MsQuic 16.79 0.68 27.25 0.66

ChaCha20
LSQUIC 21.68 3.29 20.40 2.71
quiche 21.02 4.49 20.37 3.32
MsQuic 29.12 3.69 43.32 5.23

NOOP
LSQUIC 3.11 0.03 2.96 0.01
quiche 1.91 2.07 1.35 0.07
MsQuic 1.94 0.59 2.54 0.01

NOENC MsQuic 0.37 0.52 0.05 0.01

lower goodput, as it was shown in Figure 3.
It is also noticeable that the percentage of samples for

header protection is higher for quiche, also with the NOOP
cipher. This is caused by the fact that quiche performs opera-
tions for header parsing in the same function where the header
protection is removed. After a closer look at the quiche source
code, the operations with zero-copy mutable byte buffers and
the used return type are the main contributors to the higher
cost for header protection.

When analyzing the results with the NOOP cipher, it can be
seen that these operations contribute around 2 % on the quiche
client. After subtracting the 2 % for header protection, from
the other values for quiche clients, we receive similar values
as for the other clients.

Comparing the results for MsQuic with NOENC to the results
with the NOOP cipher, we can see a further reduction of the
collected samples for packet protection. This computational
difference is the cost of the NOOP cipher, which still calls
OpenSSL then executing memcpy().

As we have already shown in Section V-B, the header
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protection for AES ciphers does not have a significant impact
on the performance, contributing less than 1 % to the total
CPU time consumption on both endpoints.

D. MTU Impact

Even though transmitting IP packets of larger than 1500 B
through the Internet is unrealistic, it is attractive for datacenter
and local company networks. As with TCP, the MTU has
a significant impact on the performance of QUIC. With
larger MTUs, the amount of packets to be sent is reduced,
resulting in fewer per-packet overheads. To elaborate on the
advantages of larger MTUs in combination with QUIC’s
always-on encryption, we performed measurements with MTU
values of 1500 B, 3000 B, and 6000 B. For each MTU, we
measured with LSQUIC, MsQuic and the TCP / TLS stack for
comparison, each one with AES and NOOP cipher. It has to
be noted that TCP / TLS stack is limited by the link rate of
10 Gbit/s and therefore does not benefit from larger MTUs
here. The base MTU was set to 1500 B for measurements
with a MTU over 1500 B. The implementations perform MTU
discovery and adjust the MTU accordingly. We do not include
results with quiche here, as quiche does not support changing
the MTU without introducing major changes to the library.

In Figure 5, the results of the measurements are shown. As
expected, the goodput increases with larger MTUs for every
tested implementation. Both LSQUIC and MsQuic show an
increase in goodput of almost 40 % when the MTU is increased
from 1500 B to 3000 B.

When looking at packets sent from server to client, both
QUIC implementations reach an average packet size of at
least 1498 B when the MTU is set to 1500 B. TCP / TLS only
reaches such values with our NOOP cipher, sending packets
with a slightly lower average size of 1489 B with encryption
enabled. For the increased MTU of 3000 B, MsQuic and
TCP / TLS reach an average frame size between 2953 B and
2999 B. LSQUIC does not use the larger MTU and only
reaches an average frame size of around 2350 B, leaving more

TABLE II: Median TTFB and QUIC handshake packet count
for different QUIC implementations and post-quantum KEMs
at different NIST levels. In the packet count columns, the
first/second number represents the amount of packets sent by
the client/server. All instantiations were measured with an
RSA-2048 certificate and AEAD_AES_128_GCM as AEAD
algorithm. Bold algorithms are not quantum-safe.

KEM
TTFB [ms] Packets [C / S]

LSQUIC quiche LSQUIC quiche

I X25519 3.91 3.57 3 / 3 3 / 3
Kyber512 4.08 3.39 3 / 3 3 / 3
BIKE-L1 6.59 5.86 4 / 4 4 / 5
HQC-128 5.57 4.21 5 / 6 5 / 8
P-256 3.90 3.49 3 / 3 3 / 3
P-256 + Kyber512 4.43 3.74 3 / 3 3 / 3
P-256 + BIKE-L1 6.95 6.27 4 / 4 4 / 5
P-256 + HQC-128 5.99 4.52 5 / 6 5 / 8

III Kyber768 4.23 3.78 4 / 3 4 / 5
BIKE-L3 11.75 10.49 5 / 5 5 / 6
HQC-192 7.57 4.81 6 / 10 7 / 12
P-384 7.36 6.76 3 / 3 3 / 3
P-384 + Kyber768 8.99 8.67 4 / 4 4 / 5
P-384 + BIKE-L3 16.69 15.14 5 / 5 6 / 7
P-384 + HQC-192 12.42 9.44 7 / 10 7 / 12

V Kyber1024 4.43 3.81 4 / 4 4 / 5
BIKE-L5 22.27 20.08 7 / 7 7 / 8
HQC-256 10.15 6.04 9 / 15 10 / 17
P-521 12.24 11.86 3 / 3 3 / 3
P-521 + Kyber1024 15.98 15.12 4 / 4 4 / 5
P-521 + BIKE-L5 33.67 31.99 7 / 7 7 / 8
P-521 + HQC-256 22.11 17.78 9 / 15 10 / 17

than 600 B per packet unused. With the MTU set to 6000 B,
this behavior is even more pronounced. The LSQUIC server
sends packets of an average size of 3510 B, while the MsQuic
makes use of the larger MTU and sends packets of an average
size of more than 5960 B. However, for none of the tested
QUIC implementations, the relative gain in goodput when
switching to the NOOP cipher increases with larger MTUs.

As the goodput gap between QUIC and TCP / TLS de-
creases with larger MTUs, the performance of QUIC is more
competitive with TCP / TLS on 10 Gbit/s links. In controlled
environments with high bandwidth scenarios like datacenters,
increasing the MTU makes QUIC a viable alternative to
TCP / TLS.

E. Post-Quantum Cryptography
With the BoringSSL fork from OQS introduced in Sec-

tion IV-D, we measured the additional costs by using PQC
during the QUIC handshake. MsQuic was not included in
these measurements, as it uses OpenSSL . Since only the
handshake is affected in these measurements the goodput is
not a suitable metric. The filesize of the requested file was
reduced to 1 B and the time between the different steps of
the handshake was measured. We define the metric TTFB
as the time between the client sending its ClientHello
and being able to send its HTTP/3 request to the server. The
amount of RTTs needed for the handshake can be neglected
here, as the RTT in our measurement setup is below 0.1 ms.
Additionally, the difference in RTTs until the client is able



to start sending the HTTP/3 request is not greater than 1
RTT between LSQUIC and quiche for most of the performed
measurements.

First, we take a look at the KEMs Kyber, BIKE, and HQC.
Kyber was chosen for standardization by the NIST [35] while
BIKE and HQC were selected for the fourth round of the NIST
PQC standardization process [36].

As a baseline, the traditional key exchange method ECDHE
was tested with Curve25519 (X25519), P-256, P-384, and P-
521. Additionally, hybrid KEM algorithms were measured,
which combine the respective post-quantum KEM with pre-
quantum ECDHE using P-256, P-384 or P-521. By using
multiple key exchange algorithms simultaneously and com-
bining the results, security is provided even if one of the
two used algorithms turns out to be broken [37]. This might
happen if either the new quantum-safe algorithms turn out to
be insecure or if the traditional algorithms are broken by a
quantum computer.

In Table II, the results of the measurements are shown.
The tested KEMs are grouped by their respective NIST levels.
In all NIST levels, Kyber shows the fastest handshake from
the tested post-quantum KEMs. As Kyber is the only KEM
that is lattice-based, it profits from smaller key sizes. The
public key sent as key share in the ClientHello and
the ciphertext sent as a key share in the ServerHello
influence the number of packets each endpoint sends during
the handshake. The different sizes of the public keys and
ciphertexts for the benchmarked PQC KEM algorithms are
visualized in Figure 6. For all tested ECDHE algorithms,
the size of the public keys and ciphertexts is between 32 B
and 133 B and therefore negligible small. Kyber provides
pleasantly small public keys and ciphertexts of under 2 kB,
even with Kyber1024 on NIST level V. While a 800 B public
key is sent in the ClientHello with Kyber512, HQC-128
needs to send 2249 B. The TTFB measured with Kyber as
KEM is only slightly increased compared to X25519, even on
NIST level V.

We noticed a slightly higher TTFB with LSQUIC than
with quiche. After taking a closer look, it was noticeable
that the LSQUIC client needs more time to process the
ServerHello message. With HQC-256, this difference is
most pronounced, with the LSQUIC client needing around
5 ms instead of the around 1.5 ms quiche needs.

In our measurements, BIKE is the slowest KEM on all
NIST levels. With BIKE-L5, the TTFB extends five times
that of Kyber1024 and more than twice that of the likewise
code-based HQC-256. Although HQC-256 has nearly triple
the ciphertext size of BIKE-L5 and a bigger public key, it still
has an over 50 % lower TTFB.

As the hybrid KEMs concatenate the public keys and
ciphertexts of the post-quantum KEM and the pre-quantum
ECDHE algorithm, the sizes for the hybrid KEMs are the sum
of the sizes of the KEMs being hybridized. With P-384 and
P-521, the TTFB is approximately the sum of the TTFB for
P-384, respectively, P-521 and the post-quantum KEM. Due
to the high cost of ECDHE in these cases, the hybrid KEMs
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Fig. 6: Public key and ciphertext sizes of the benchmarked
post-quantum KEMs grouped by NIST level.

are more expensive than the respective post-quantum KEMs.
The hybrid KEMs with P-256 are only slightly slower than
the used post-quantum KEMs and therefore a good choice for
a hybrid approach.

To summarize, the major bottleneck of post-quantum key
exchange algorithms in our measurements is the larger amount
of data that needs to be transferred during the handshake. This
increases the latency and TTFB. Since the sizes for hybrid
schemes are only marginally larger and, with an efficient
elliptic curve such as P-256, only marginally slower, it is
best to use them if post-quantum security is desired as they
guarantee security even if the post-quantum KEM turns out to
be insecure.

For post-quantum signature schemes, we selected FALCON,
Dilithium, and SPHINCS+, which are all chosen for standard-
ization by NIST [36]. We fixed the key exchange algorithm to
X25519 ECDHE for our measurements. The traditional pre-
quantum signature scheme RSA is used as a baseline with
1024 bit, 2048 bit, and 4096 bit keys.

The results of the measurements are shown in Table III, list-
ing the aforementioned signature algorithms grouped by their
respective NIST levels. With increasing sizes of the public
key and the signature, the certificate grows bigger. Due to the
increasing signature size, the TLS CertificateVerify
also expands in size. This leads to more packets being sent by
the server, which can be observed with Dilithium, FALCON,
and SPHINCS+, where the server must send up to 92 packets
in the handshake. The client must also send extra packets to
acknowledge the additional packets from the server. FALCON-
512 is the post-quantum scheme with the slightest increase in
latency: The TTFB for client and server is only about 0.6 ms
higher compared to RSA-1024. FALCON-512 even performed
better, in terms of latency, than RSA-2048.

For the RSA-4096, the TTFB for the client and server
rises to an extreme 14 ms, making it the slowest of the
tested pre-quantum schemes. It was slower than all the post-
quantum schemes we looked at, except for SPHINCS+. The
SPHINCS+ variants reach by far the highest TTFB of all
evaluated signature schemes, caused by the huge signature



TABLE III: Median TTFB, QUIC handshake packet count, public key, signature, and certificate sizes for different QUIC
implementations and post-quantum signature algorithms at different NIST levels. In the packet count columns, the first/second
number represents the amount of packets sent by the client/server. All instantiations were measured with X25519 as KEM and
AEAD_AES_128_GCM as AEAD algorithm. Bold algorithms are not quantum-safe.

Signature algorithm
TTFB [ms] Packets [C / S] Sizes [B]

LSQUIC quiche LSQUIC quiche Public key Signature Certificate

RSA-1024 2.11 1.88 3 / 2 3 / 2 128 128 528
RSA-2048 (default) 3.91 3.57 3 / 3 3 / 3 256 256 789

I RSA-4096 14.02 13.46 3 / 3 3 / 3 512 512 1301
FALCON-512 2.78 2.05 3 / 4 3 / 4 897 666 1793
SPHINCS+-SHA2-128s 198.46 195.00 4 / 16 5 / 17 32 7856 8131
SPHINCS+-SHA2-128f 28.54 20.89 4 / 32 5 / 33 32 17088 17363
SPHINCS+-SHAKE-128s 385.60 367.45 5 / 16 5 / 17 32 7856 8131
SPHINCS+-SHAKE-128f 50.95 41.89 4 / 32 5 / 33 32 17088 17363

III Dilithium3 4.26 2.14 4 / 10 4 / 10 1952 3293 5508
SPHINCS+-SHA2-192s 325.46 325.37 5 / 31 5 / 32 48 16224 16516
SPHINCS+-SHA2-192f - 35.31 - / - 6 / 67 48 35664 35956
SPHINCS+-SHAKE-192s 590.73 601.04 6 / 31 5 / 32 48 16224 16516
SPHINCS+-SHAKE-192f - 67.51 - / - 6 / 66 48 35664 35955

V Dilithium5 5.15 2.30 4 / 13 4 / 12 2592 4595 7449
FALCON-1024 4.25 3.02 4 / 7 4 / 6 1793 1280 3299
SPHINCS+-SHA2-256s - 297.50 - / - 6 / 56 64 29792 30100
SPHINCS+-SHA2-256f - 68.21 - / - 7 / 91 64 49856 50164
SPHINCS+-SHAKE-256s - 536.84 - / - 6 / 56 64 29792 30100
SPHINCS+-SHAKE-256f - 106.11 - / - 7 / 92 64 49856 50164

sizes. The fast variants (denoted by an f suffix) are still slower
than any other signature scheme measured. The more compact
signatures of the small variants (denoted by an s suffix) come
at the expense of calculation time: The TTFB of SPHINCS+-
SHAKE-192s is over 142 times higher than Dilithium3’s. The
versions of SPHINCS+ that used SHAKE were about twice
as slow as those using SHA-2, even though they produced
signatures of the same size.

In conclusion, post-quantum signature schemes come with
larger public key and signature sizes than the RSA variants.
FALCON is the quantum-safe signature scheme with the
smallest signature and certificate size. Dilithium is larger
while still having an acceptable signature and certificate size
compared to the hash-based SPHINCS+ with huge signatures
of up to 49 kB. Moreover, we saw that increasing the RSA
key size is insufficient to improve security while keeping
the performance impact minimal. Instead, a performant post-
quantum signature scheme like FALCON should be employed
if quantum security is desired.

As can be seen from the missing values for LSQUIC in
Table III, the measurements with certificates larger than 30 kB
have failed. LSQUIC’s server had problems sending out the
ServerHello. For the handshake, LSQUIC uses so-called
mini connections, which allocate less memory to protect the
server from DoS attacks. Those mini connections use bitmasks
to keep track of packet numbers.1 Due to the variable length
of the bitmasks, only up to 64 packets are supported. This
limit is exceeded with the huge signature and certificate sizes
of SPHINCS+, as it can be seen for the quiche measurements.

1https://lsquic.readthedocs.io/en/v4.0.0/internals.html#mini-ietf-connection

This indicates that LSQUIC is not ready for post-quantum
signature schemes with huge certificate and signature sizes like
some parameter sets of SPHINCS+, even if its use in QUIC
is of questionable value because of the poor performance.

Another issue arises with large certificate sizes in combina-
tion with QUIC’s address validation. The server is not allowed
to send more than three times as many bytes as the number
of received bytes if the client address is not yet validated [1,
Section 8.1]. To validate the client’s address before completing
the TLS handshake, the server can send a Retry packet.
However, this causes an additional RTT and therefore increases
the TTFB. By using larger MTU values, the ClientHello
can be padded to larger sizes, which can mitigate this issue.

VI. CONCLUSION

In this work, we evaluate the impact of cryptography
on QUIC performance. The cost of symmetric cryptography
during the connection, consisting of packet and header pro-
tection, is analyzed. We additionally evaluate the asymmetric
cryptography happening during the handshake with precise
measurements. We integrate quantum-safe cryptographic al-
gorithms into the chosen QUIC implementations to evaluate
the performance impact and identify possible problems when
integrating PQC into QUIC.

Our analysis of cipher suites shows that hardware-
accelerated AEAD_AES_128_GCM is the most efficient
AEAD algorithm for header and packet protection. Compared
to packet protection, header protection has little impact on
CPU time consumption and goodput. Especially for AES
ciphers, the header protection is virtually free. We reveal
that increasing the MTU does not mitigate the impact of

https://lsquic.readthedocs.io/en/v4.0.0/internals.html#mini-ietf-connection


encryption, as using the NOOP cipher shows performance
improvements also for larger MTUs.

The integration of quantum-safe cryptographic algorithms
into QUIC is feasible without major changes to the QUIC
libraries using BoringSSL . While algorithms with larger key
sizes or more complex calculations have a significant im-
pact on the handshake duration, algorithms like Kyber and
Dilithium are promising candidates for post-quantum secure
QUIC, as they have a low impact on the handshake duration.
Large certificate sizes lead to different problems in our mea-
surements, as the packet number space for Handshake pack-
ets might be limited or QUIC’s address validation mechanism
can cause an extra RTTs.

To allow for evaluations of other QUIC implementations, we
publish the modified BoringSSL and OpenSSL libraries [33].

ACKNOWLEDGMENT

The European Union’s Horizon 2020 research and inno-
vation programme funded this work under grant agreements
No 101008468 and 101079774. Additionally, we received
funding by the Bavarian Ministry of Economic Affairs, Re-
gional Development and Energy as part of the project 6G
Future Lab Bavaria. This work is partially funded by Ger-
many Federal Ministry of Education and Research (BMBF)
under the projects 6G-life (16KISK001K) and 6G-ANNA
(16KISK107) and the German Research Foundation under the
project HyperNIC (CA595/13-1).

REFERENCES
[1] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed

and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://rfc-editor.org/rfc/rfc9000.txt

[2] M. Thomson and S. Turner, “Using TLS to Secure QUIC,” RFC 9001,
May 2021. [Online]. Available: https://rfc-editor.org/rfc/rfc9001.txt

[3] QUIC IETF Mailinglist. (2020) A non-TLS standard is needed.
Accessed: 2024-02-29. [Online]. Available: https://mailarchive.ietf.org/
arch/msg/quic/SBetxLwCq5I7un2tkzFb7tXhJMU/

[4] ——. (2024) Historic TLS Discussion. Accessed: 2024-03-
08. [Online]. Available: https://mailarchive.ietf.org/arch/msg/quic/
rDUtUDVqz95JspgptALSNYcnn5c/

[5] B. Jaeger, J. Zirngibl, M. Kempf, K. Ploch, and G. Carle, “QUIC
on the Highway: Evaluating Performance on High-Rate Links,” in
International Federation for Information Processing (IFIP) Networking
2023 Conference (IFIP Networking 2023), Barcelona, Spain, Jun. 2023.

[6] United States National Institute of Standards and Tech-
nology, “Post-Quantum Cryptography Standardization,” 2023,
accessed: 2024-02-29. [Online]. Available: https://csrc.nist.gov/projects/
post-quantum-cryptography

[7] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://www.rfc-editor.
org/info/rfc8446

[8] S. Gueron. (2010) Intel® Advanced Encryption Standard
(AES) New Instructions Set. Accessed: 2024-02-29. [On-
line]. Available: https://www.intel.com/content/dam/doc/white-paper/
advanced-encryption-standard-new-instructions-set-paper.pdf

[9] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF
Protocols,” RFC 7539, May 2015. [Online]. Available: https:
//www.rfc-editor.org/info/rfc7539

[10] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer,” SIAM review, 1999.

[11] L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database
Search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, 1996.

[12] Open Quantum Safe project, “Algorithms in liboqs,” 2024, accessed:
2024-02-29. [Online]. Available: https://openquantumsafe.org/liboqs/
algorithms/

[13] Bas Westerbaan, “The state of the post-quantum Internet,” March 5,
2024, accessed: 2024-03-08. [Online]. Available: https://blog.cloudflare.
com/pq-2024

[14] D. J. Bernstein, J. Buchmann, and E. Dahmen, Post Quantum Cryptog-
raphy, 1st ed. Springer Publishing Company, Incorporated, 2008.

[15] LiteSpeed Tech. (2024) lsquic. Accessed: 2024-02-13. [Online].
Available: https://github.com/litespeedtech/lsquic

[16] Cloudflare. (2024) quiche. Accessed: 2024-02-13. [Online]. Available:
https://github.com/cloudflare/quiche

[17] Microsoft. (2024) MsQuic. Accessed: 2024-02-13. [Online]. Available:
https://github.com/microsoft/msquic

[18] X. Yang, L. Eggert, J. Ott, S. Uhlig, Z. Sun, and G. Antichi, “Making
QUIC Quicker With NIC Offload,” in Proceedings of the Workshop
on the Evolution, Performance, and Interoperability of QUIC, 2020.
[Online]. Available: https://doi.org/10.1145/3405796.3405827

[19] NetApp. (2024) Quant. Accessed: 2024-02-13. [Online]. Available:
https://github.com/NTAP/quant

[20] H2O Project. (2024) Quicly. Accessed: 2024-02-13. [Online]. Available:
https://github.com/h2o/quicly

[21] Private Octopus. (2024) picoquic. Accessed: 2024-02-13. [Online].
Available: https://github.com/private-octopus/picoquic

[22] Facebook. (2024) mvfst. Accessed: 2024-02-13. [Online]. Available:
https://github.com/facebookincubator/mvfst

[23] S. Bauer, P. Sattler, J. Zirngibl, C. Schwarzenberg, and G. Carle, “Eval-
uating the Benefits: Quantifying the Effects of TCP Options, QUIC,
and CDNs on Throughput,” in Proceedings of the Applied Networking
Research Workshop, 2023.

[24] A. Yu and T. A. Benson, “Dissecting Performance of Production QUIC,”
in Proceedings of the Web Conference 2021, 2021.

[25] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same Standards, Differ-
ent Decisions: A Study of QUIC and HTTP/3 Implementation Diversity,”
in Proceedings of the Workshop on the Evolution, Performance, and
Interoperability of QUIC, 2020.

[26] M. Sosnowski, F. Wiedner, E. Hauser, L. Steger, D. Schoinianakis,
S. Gallenmüller, and G. Carle, “The Performance of Post-Quantum TLS
1.3,” in Companion of the 19th International Conference on emerging
Networking EXperiments and Technologies, 2023.

[27] M. Raavi, S. Wuthier, P. Chandramouli, X. Zhou, and S.-Y. Chang,
“QUIC Protocol with Post-quantum Authentication,” in Information
Security, 2022.

[28] M. Seemann and J. Iyengar, “Automating QUIC Interoperability Test-
ing,” in Proceedings of the Workshop on the Evolution, Performance,
and Interoperability of QUIC, 2020.

[29] J. Zirngibl, F. Gebauer, P. Sattler, M. Sosnowski, and G. Carle, “QUIC
Hunter: Finding QUIC Deployments and Identifying Server Libraries
Across the Internet,” in Proc. Passive and Active Measurement (PAM),
2024.

[30] M. König, O. P. Waldhorst, and M. Zitterbart, “QUIC(k) Enough in the
Long Run? Sustained Throughput Performance of QUIC Implementa-
tions,” in 2023 IEEE 48th Conference on Local Computer Networks
(LCN), 2023.

[31] Google, “BoringSSL,” 2024, accessed: 2024-02-29. [Online]. Available:
https://boringssl.googlesource.com/boringssl

[32] OpenSSL Project Authors, “OpenSSL,” 2024, accessed: 2024-02-29.
[Online]. Available: https://www.openssl.org/

[33] M. Kempf, N. Gauder, B. Jaeger, J. Zirngibl, and G. Carle.
(2024) Publication of modified TLS Libraries. [Online]. Available:
https://github.com/tumi8/quic-crypto-paper

[34] Open Quantum Safe project, “BoringSSL,” 2024, accessed: 2024-02-29.
[Online]. Available: https://github.com/open-quantum-safe/boringssl

[35] National Institute of Standards and Technology, “FIPS 203, Module-
Lattice-Based Key-Encapsulation Mechanism Standard,” 2024, accessed:
2024-02-29. [Online]. Available: https://doi.org/10.6028/NIST.FIPS.203.
ipd

[36] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey,
J. Lichtinger, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner,
A. Robinson, and D. Smith-Tone, “Status Report on the Third
Round of the NIST Post-Quantum Cryptography Standardization
Process,” 2022, accessed: 2024-02-29. [Online]. Available: https:
//doi.org/10.6028/NIST.IR.8413-upd1

[37] D. Stebila, S. Fluhrer, and S. Gueron, “Hybrid key exchange in
TLS 1.3,” Internet Engineering Task Force, Internet-Draft draft-ietf-
tls-hybrid-design-09, Sep. 2023, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/09/

https://rfc-editor.org/rfc/rfc9000.txt
https://rfc-editor.org/rfc/rfc9001.txt
https://mailarchive.ietf.org/arch/msg/quic/SBetxLwCq5I7un2tkzFb7tXhJMU/
https://mailarchive.ietf.org/arch/msg/quic/SBetxLwCq5I7un2tkzFb7tXhJMU/
https://mailarchive.ietf.org/arch/msg/quic/rDUtUDVqz95JspgptALSNYcnn5c/
https://mailarchive.ietf.org/arch/msg/quic/rDUtUDVqz95JspgptALSNYcnn5c/
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.rfc-editor.org/info/rfc7539
https://www.rfc-editor.org/info/rfc7539
https://openquantumsafe.org/liboqs/algorithms/
https://openquantumsafe.org/liboqs/algorithms/
https://blog.cloudflare.com/pq-2024
https://blog.cloudflare.com/pq-2024
https://github.com/litespeedtech/lsquic
https://github.com/cloudflare/quiche
https://github.com/microsoft/msquic
https://doi.org/10.1145/3405796.3405827
https://github.com/NTAP/quant
https://github.com/h2o/quicly
https://github.com/private-octopus/picoquic
https://github.com/facebookincubator/mvfst
https://boringssl.googlesource.com/boringssl
https://www.openssl.org/
https://github.com/tumi8/quic-crypto-paper
https://github.com/open-quantum-safe/boringssl
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/09/

	Introduction
	Background
	QUIC Cryptography
	Quantum-Safe Cryptography

	Related Work
	Approach
	Measurement Framework
	Hardware Configuration
	Implementations
	Adjustments to BoringSSL and OpenSSL

	Evaluation
	AEAD Algorithms
	Header Protection
	CPU Time Consumption for Packet and Header Protection
	MTU Impact
	Post-Quantum Cryptography

	Conclusion

