
Precise UWB-Based Localization
for Aircraft Sensor Nodes

Cansu Gözde Karadeniz§, Fabien Geyer, Thomas Multerer and Dominic Schupke
Airbus Central Research & Technology

Communication Technologies
D-81663 Munich, Germany

cgozde.karadeniz@tum.de, {fabien.geyer, thomas.t.multerer, dominic.schupke}@airbus.com

Abstract—In this work, an indoor positioning system (IPS) is
introduced to overcome the tedious task of configuration of sensor
nodes in an aircraft. Our positioning system is based on a ultra-
wideband (UWB) commercial off-the-shelf (COTS) system, which
was selected because of its fine resolution in time. In the first part
of the work, time of flight (ToF) and multilateration algorithms
are implemented and evaluated in two and three dimensional sce-
narios. Our measurement results show an accuracy below 10 cm
in line-of-sight (LOS) conditions. However, when experiments are
held inside a cabin mock-up under the presence of non-line-of-
sight (NLOS) condition, the accuracy gets significantly worse.
To overcome this issue, we introduce a artificial neural network
(ANN)-based localization approach in the second part of the work
to enhance the localization accuracy using raw channel impulse
response (CIR) data provided by the localization system. We
first illustrate that our approach is able to distinguish between
LOS/NLOS conditions, with an accuracy of more than 85 %. We
then demonstrate that our ANN can also be trained to directly
predict the localization of an object. Our experiments show
that the localization error is reduced by approximately 70 %
resulting in 12.3 cm on average, in comparison with the time-
based approach which has 43 cm error for the same measurement
setup.

I. INTRODUCTION

Indoor positioning has always attracted interest because of
the lack of an optimal system which is independent of the
environmental conditions and also the high demand for such
a system in a variety of applications. Thorough reviews of the
indoor positioning use cases can be found in [1, 2], where the
examples are ranging from smart cities to social networking.
Comprehensive research has been performed in indoor posi-
tioning using different technologies such as Bluetooth, WiFi,
UWB, each with different algorithms such as trilateration,
triangulation, or fingerprinting [3, 4]. Even though there are
promising centimeter-level accuracy solutions if the line of
sight path is available, it is hard to maintain that accuracy
in harsh indoor conditions with human blockage, obstacles or
reflective materials.

One of the challenging closed areas is the cabin of an
aircraft, where various obstacles are present such as seats,
humans, or luggage. Such positioning techniques and meth-
ods would enable to localize not only wireless sensors that
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measure, e.g., temperature or cabin air pressure once aircraft
operations started, but also other tagged items such as life
vests. In this way, cost and time savings are possible by
avoiding largely manual configuration of sensors in assembly
lines and by supporting cabin crew operations, such as item
checks, before and after flights.

In order to enable the localization of aircraft cabin sensors
and equipment, we assume that a localization system needs to
have an accuracy that allows to distinguish between individual
cabin seats, i.e. approximately 30 cm in 2D. Although various
active indoor localization systems based on radio frequency
(RF) are available on the market, most solutions are not
suitable for the use-cases previously described. This is due
to their poor accuracy in the challenging environment of an
aircraft cabin, mainly due to the presence of obstacles.

In this work, we propose to use the Decawave DW1000-
based active localization COTS system as a basis for our eval-
uation. This solution, based on IEEE802.15.4 UWB, enables
the localization of objects in real-time. Our main contributions
in this paper are a measurement study of this UWB-based
localization system in an aircraft cabin mock-up, as well
as advanced algorithms for improving its accuracy in such
a demanding environment. We show via measurements and
a numerical evaluation that this system is able to reach
decimeter-level accuracy in LOS and NLOS conditions, fulfill-
ing the accuracy requirements in harsh NLOS conditions. Our
localization method is based on ToF distance measurements
combined with multilateration techniques and a neural network
for correcting the ToF in NLOS conditions.

While our LOS results using uncorrected ToF values are
promising, an initial evaluation in an aircraft cabin showed
poor accuracy, failing our industrial requirements. Due to
the presence of objects such as seats, the aircraft cabin
can be seen as a mixed indoor environment, with LOS and
NLOS conditions depending on nodal density and placement
within the cabin. To improve the NLOS performance, we
propose in this work to use additional information provided
by the Decawave positioning system, namely the CIR. Various
analytical methods and heuristics exist to evaluate the CIR
data, but require to be manually calibrated according to the
measurement environment. To avoid this manual calibration,
we propose to use an ANN to enhance the localization
accuracy in NLOS operation. To this end, the CIR data is used



as input for the ANN among with the corresponding ToF data.
The position of the object to be localized is then estimated
through the ANN. Our experiments show that the localization
error is 12.3 cm in average, reducing by approximately 70 %
in average compared with the time-based approach for the
same measurement setup. This improved accuracy fulfills the
initial requirements, enabling us to use such localization for
the automatic configuration of sensors in a cabin environment.

This paper is organized as follows: Section II reviews related
literature. Then Section III presents the applicable use cases
for an aircraft. The time-based and the neural network-based
algorithms are introduced in Section IV by explaining the
required measurement parameter for a particular algorithm.
Section V benchmarks our approach in a cabin environment
before Section VI draws conclusions.

II. RELATED WORK

In this section, we review various related works on active
and passive indoor localization, from both the perspective of
the methodologies and the technologies which were used.

Only a few works investigated positioning on board an
aircraft in the literature. In [5], the identification of the
corresponding seat numbers was investigated using support
vector machine (SVM) for classification based on received
signal strength indicator (RSSI) fingerprints in a static environ-
ment. A 99 % accuracy was achieved. It was also shown that
trilateration worked better for moving objects in a cabin. To the
authors’ best knowledge, this is the first work evaluating the
performance of an UWB and ANN-based localization system
inside the cabin of an aircraft.

A. UWB localization
Various works proposed to use UWB for localizing objects,

since it has proved to have better performance thanks to its
very large bandwidth resulting in precise time of arrival (ToA)
calculations. In [6], an IPS based on UWB was proposed
resulting in a ranging error below 4 cm under LOS conditions.

On the other hand, [7] showed that such centimeter-level
accuracy could be significantly degraded in the presence of
LOS blockage. Experimental results revealed that the range
estimator error could reach 1.21 m in some NLOS cases.
Multiple mitigation methods dealing with NLOS conditions
in UWB were reviewed in [8]. The review mainly focused
on mathematical modeling of the signal propagation as-well-
as hybrid systems using additional information such as signal
strength.

In [9], a method combining ToF and time difference of
arrivals (TDoA) measurements in UWB was proposed in order
to exploit the advantages of both methods and reduce tag-side
power consumption. Experiments showed that even though the
accuracy remained the same in comparison to results of ToF or
TDoA alone, tag-side power consumption could be reduced by
75 % compared to the ToF method due to the reduced number
of messages which are required to calculate a position.

Finally, an UWB-based single-anchor indoor localization
system was proposed in [10] by exploiting multipath compo-
nents. Combined with a floor plan, reflected signal paths were

used in order to map them to virtual anchors. Experimental
results showed a position error of 22 cm for 90 % of the
estimates.

B. Model-based indoor localization

If we consider model-based approaches, many IPS have
been proposed in the literature. In [11], Bluetooth Low Energy
(BLE) was used to retrieve the highest three RSSI values
from the anchors around a given tag and trilateration was
then applied. To find out the corresponding distance for a
particular RSSI value, multiple RSSI samples were collected
at different distances and the relationship between RSSI and
the distance was then mathematically modeled. Similarly, [12]
also used RSSI measurements for localization, but exploited
frequency diversity to reduce the fluctuation in values. RSSI
was measured for different frequencies and the highest value
among them is used for the distance calculation.

In [13], an IPS based on WiFi was proposed using the
multiple-input and multiple-output (MIMO) principle. For es-
timating the position, the angle of arrival (AoA) was computed
at each antenna array and filtering of the multipaths was
performed at the() anchors. In order to improve accuracy, RSSI
values were also taken into consideration. Results showed that
similar positioning accuracy than in [14] or [15] with a median
accuracy of 40 cm but without the addition of hardware. A
similar approach was proposed in [16], where burst messages
were sent to reconstruct the signal at a higher resolution as in
UWB scenarios and aims to calculate the time of arrival more
precisely. The AoA is then computed based on the message
having the closest ToF to the calculated one.

C. Fingerprint-based localization

Recently, IPS based on learning approaches have also
gained in popularity by making use of CIR or channel state
information (CSI) data.

Detection and classification of LOS versus NLOS situations
were already investigated in various works. LiFi was proposed
in [17] as an approach to classify LOS/NLOS scenarios using
a model-based approach. The authors used the CSI of WiFi
with signal processing to build a mathematical model. Experi-
mental results showed that a correct classification of LOS was
achieved with an accuracy of 90.4 %. Similarly, [18] proposed
a real-time LOS/NLOS classification by exploiting phase and
amplitude features of the physical layer and leveraged spatial
diversity provided by MIMO. Variations of the amplitude and
phase were used as an identification criterion and an accuracy
higher than 80 % was achieved in mobile situations. In [19],
an algorithm based on SVM classified was developed using
on CIR data fingerprinting to identify LOS/NLOS conditions.
This classification was then used to mitigate NLOS effects
using a SVM for regression. A similar approach was proposed
in [20], where an ANN model processing CIR data was
used. Results showed that it outperforms SVM with respect
to accuracy.

In [21], DeepFi was introduced, a passive IPS based on
CSI provided by WiFi access points equipped with multiple



Table I: Positioning use cases on board aircraft and assumed requirements (LV = Life Vest, FE = Fire Extinguisher).

Final Assembly Line Aircraft operation Maintenance

Use-case Auto-configuration Checks (LV and FE) Check left items Localize crew dev. Self removing Auto-conf.
Required accuracy < 10 cm < 30 cm < 50 cm < 10 cm < 10 cm < 10 cm

Required resolution < 30 cm < 50 cm (LV), < 3 m (FE) < 10 cm < 10 cm < 50 cm < 30 cm
Localization time < 5 min < 1 min < 1 min Real time < 5 min < 5 min

Presence of people Few Few Many Many Few Few
Base stations Partially installed Installed Installed Installed Installed Installed
Sensor nodes Partially installed Installed Installed Installed Installed Installed

Additional nodes FAL nodes Crew devices Crew devices Crew devices Maintenance devices
Localized item Sensors Passive and sensor tags Passive Sensors Sensors Sensors

antennas. An ANN was trained in different measurement
environments and an average localization accuracy of 0.95 m
and 1.8 m was achieved. The influence of other parameters
on the performance of the system was investigated such as
the number of antennas, the presence of obstacles in the
environment or human blockage between devices for a short
period.

In [22], detection of the presence of humans was inves-
tigated by detecting changes in CIR values. Experimental
measurements showed that an accuracy of 97 % was achieved
for detecting the presence of humans, and a localization
accuracy of 1.22 m and 1.39 m was achieved in two different
environments. Similarly, [23] proposed to use WiFi CSI data
in combination with the acoustic signal from a scene in order
to identify a given person from a group of 2 to 8 persons.
Using a SVM-based classifier, an accuracy higher than 80 %
was achieved depending on the group size.

In addition to localization of nodes and objects, [24] pro-
posed SignFi, a system for sign language recognition based
on the use of WiFi CSI data. Classification of human gestures
was performed using convolutional neural networks, and an
accuracy of 94.8 % for classifying 276 signs was achieved.

III. INDOOR LOCALIZATION FOR AIRCRAFT

An IPS inside an aircraft is highly relevant in order to
assist the optimization and automation of many industrial and
operational processes, from the manufacturing phase till the
end-of-life phase of an aircraft. Such system would avoid
many manual and tedious tasks, leading to large time and
cost savings both at aircraft manufacturing and during aircraft
operation. We review in this section various use cases within
the aircraft scope and the advantages that an IPS would bring.
Table I summarizes those use cases and their corresponding
requirements for the IPS.

A. Final assembly line

It is expected to have hundreds to thousands of wireless
sensors placed inside the aircraft monitoring the environment
and devices status using sensors such as temperature, humidity,
engine status, smoke detection, cabin pressure, seat, or door
status [25]. The position of each sensor must be known in order
to properly correlate the measured data with the corresponding
area of the aircraft. While this position may be manually
defined at installation, a localization system automatically

identifying the positions of sensors can avoid this tedious
task, also avoiding human errors. Another possible application
is to identify the seats. In the current scenario, the position
of each seat and their corresponding seat numbers are hard-
coded based in the cabin configuration, dependent on each
airline preference. However, a localization system may localize
seats and automatically assign seat numbers with sensors and
devices placed around it.

B. Cabin crew operations

An important use case for automation and localization is
cabin crew operations. Various tasks have to be performed by
the cabin crew before each take-off and after landing. Before
aircraft take-off, the presence of safety equipment such as life
vests (LV), fire extinguishers (FE), first aid kits, or portable
oxygen equipment has to be checked. Those tasks are currently
manually performed and may be easily automated using an
IPS. The system can automatically identify the location of
items to be checked and give a warning if a given object is
missing or not at its expected place. Finally, crew devices
and objects such as smartphones or trolleys may also be
automatically located in order to assist cabin operations.

C. Aircraft maintenance

During aircraft maintenance, sensors are checked and in-
spected, and defective ones are repaired or replaced. During
this process, an IPS would provides similar benefits than in the
final assembly line (FAL) use-case. The location of defective
sensors may be easily found since it can already be measured
during the lifetime of the aircraft. After a device or sensor
replacement, the new location may be automatically updated
using an IPS.

Finally, while the cabin configuration and layout is deter-
mined based on the airlines specifications during manufactur-
ing, changes to this layout may occur during the lifetime of the
aircraft to accommodate for changes of business or passenger
needs. In case the layout of a cabin is updated, an IPS could
assist with the reconfiguration of various devices and sensors,
automatically assigning them to a given seat position. The
new cabin layout may be automatically extracted based on
localization data, and adopted for the other applications by
finding the new locations of sensors mounted on the seats, the
floor or in the cabin compartment.



IV. LOCALIZATION USING ULTRA-WIDE BAND

We introduce in this section the IPS which was used
for our evaluation. An UWB-based localization system was
selected as a basis for our IPS mainly because of its high
accuracy, its low latency, and its strong immunity against
multipath conditions compared to other solutions such as WiFi
or Bluetooth-based solutions. Those characteristics were also
recognized by others, making UWB a localization solution in
mass market products such as smartphones.

Our system is based on the Decawave EVB1000 evaluation
boards, a system promising centimer-level accuracy with a
latency of a few milliseconds, which would fulfill the require-
ments illustrated in Table I. The Decawave platform provides
an easy-to-use system for working with UWB and supports
custom software running directly on the nodes.

We consider a typical aircraft environment where Anchors
refers the pre-deployed nodes and Tags indicates the nodes to
be localized. In the scope of this work, anchors are located
at well-known predefined positions as reference points, and
tags refer to sensors or items such as seat or temperature
sensor. In the rest of the paper, we mainly considering the
FAL requirements and boundary conditions mentioned in
Section III and Table I.

A. Positioning using multilateration approach

When there is LOS between anchor and tag, it is possible to
perform ToF measurements accurately thanks to Decawave’s
picosecond-precise timestamps at transmission and reception
of messages. In order to avoid the clock synchronization
challenge between nodes, a two-way ranging (TWR) approach
is selected. To measure the signal propagation time between
two nodes, messages are exchanged between the nodes in
one or double-sided ways [26]. After measuring the ToF, the
distance can be easily estimated by multiplying ToF with the
speed of light.

Based on the ranges between the tag and the different
anchors, the coordinates of the tag (xT , yT , zT ) can be com-
puted using multilateration. While a closed-form solution can
be obtained for 2D and 3D positioning based on circles
or spheres intersections, we selected an optimization-based
approach which proved to be more robust to ranging errors
in our numerical evaluation. Given the n anchors coordinates
(x1, y1, z1), . . . , (xn, yn, zn) and the measured ranges between
the anchors and the tag r1, . . . , rn, the coordinates of the tag
are computed by minimizing the following equation:

n∑
i=1

(√
(xi − xT )2 + (yi − yT )2 + (zi − zT )2 − ri

)2
(1)

The aim of this equation is to minimize the difference between
the measured ranges and the Euclidean distances computed
based on the coordinates. The iterative Gauss-Newton algo-
rithm can be used for solving this minimization problem.

This method is labeled time-based approach in the remain-
ing of this work.

B. Artificial neural-network approach

As illustrated with our measurements later in Section V,
the multilateration approach previously introduced has poor
accuracy in NLOS conditions, i.e. when there are obstacles
between nodes. To overcome this issue and fulfill our re-
quirements, we chose to use a fingerprint-based approach, one
of the most common techniques in indoor localization. An
offline phase is first performed where data acquisition is done
at difference locations of the target environment. During this
phase, CIR and ToF values are recorded in order to gather
more information about a specific location. Then in an online
phase, the estimation is done by considering the best match
between offline data and current retrieved data. We selected to
use an ANN to perform this task and estimate the tag position.

The CIR data contains the information about the measured
environment. It provides additional information about the
propagation of the RF signal such as reflections, allowing to
distinguish the different paths between the sender and receiver.
After each ranging measurement, the Decawave chip stores the
CIR in an internal accumulator with 1016 complex values,
which can easily be programmatically retrieved.

The ANN takes the CIR and ToF values of the anchor-
tag pairs as input, and hence can be viewed as the following
function:

f (CIR1 ||ToF 1 || . . . ||CIRn ||ToFn) (2)

with ·||· corresponding to the concatenation operator. Apart
from a linear normalization step to the interval [0, 1], the ANN
uses raw CIR and ToF values provided by the Decawave chip.

We define two tasks for the neural network: (i) a classi-
fication task predicting LOS or NLOS conditions, (ii) and a
regression task predicting the tag coordinates. Although the
main goal of our work is to determine the position of an
object, we defined the preliminary simpler task of LOS/NLOS
classification in order to assess if a ANN may indeed be trained
for the more complex task of regression.

1) LOS/NLOS Classification: The first task for the ANN
is to determine if there is either LOS or NLOS between two
ranging nodes, which is a binary classification problem. In
this case, we only use the CIR data of the anchor with which
the ranging is performed. We use a standard fully-connected
neural network (FCNN) with two hidden layers as illustrated
Table II.

Table II: Size of the different layers for the classification task.
Indexes represent the weights (w) and biases (b) matrices.

Layer Size

Linear with ReLU6 activ. (1016, 989)w + (989)b
Linear with ReLU6 activ. (989, 989)w + (989)b
Linear (989, 1)w + (1)b

Total: 1 985 913 parameters



In order to train this FCNN, the Adam optimization algo-
rithm is used [27] with the binary cross-entropy loss:

loss =
1

N

N∑
i=1

(yi · log ỹi + (1− yi) · log(1− ỹi)) (3)

with yi = 0 if there is LOS at measurement position i,
and yi = 1 for NLOS, and ỹi the prediction of the neural
network. The layer sizes presented in Table II and other hyper-
parameters such as learning rate or dropout parameter were
automatically found using hyper-parameter optimization.

2) Neural Network based Localization: The second task
aims at predicting the 2D coordinates of the tag, which is
a regression task. Our experiments mainly focused on 2D
localization with 3 anchors, but it may easily be extended to
a 3D localization problem with more anchors.

As illustrated in Equation (2), the ANN takes the concate-
nation of the CIR data and ToF measurements of the different
anchors as input and predicts the xT and yT coordinates. As
for the previous task, we use a standard FCNN with two hidden
layers as illustrated Table III.

Table III: Size of the different layers for the regression task.
Indexes represent the weights (w) and biases (b) matrices.

Layer Size

Linear with ReLU6 activ. (3051, 1764)w + (1764)b
Linear with ReLU6 activ. (1764, 1764)w + (1764)b
Linear (1764, 2)w + (2)b

Total: 8 500 718 parameters

In order to train this FCNN, the Adam optimization algo-
rithm is also used with the L1 loss:

loss =
1

N

N∑
i=1

(|xTi
− x̃Ti

|+ |yTi
− ỹTi

|) (4)

with (xTi , yTi) the correct 2D coordinates at measurement i,
and (x̃Ti

, ỹTi
) the predicted coordinates from the ANN. As

previously, the layer sizes presented in Table III and other
hyper-parameters were also automatically found using hyper-
parameter optimization.

V. NUMERICAL EVALUATION

We numerically evaluate in this section both localization
approaches presented in Section III. We present our measure-
ment environments and illustrate the results obtained from the
implemented time-based localization and the neural network-
based localization respectively.

In order to numerically compare the performance of our
system and the two numerical approaches, we focus here on
the Euclidean distance between the actual coordinates and
estimated ones.

A. Measurement environment and dataset

We performed our measurements in two environments. First,
LOS experiments are conducted in an indoor area where there
is nothing in between the devices as shown in Figure 1 in case

of 2D localization. A similar setup than the one illustrated in
Figure 1 is also used for 3D localization using 4 different
anchors placed at different heights. NLOS experiments are
conducted inside an Airbus A330 aircraft cabin mock-up
which can be seen in Figure 2.

Figure 1: Overview of the LOS measurement setup.

Figure 2: Overview of the cabin mock-up where the measure-
ments were performed.

The training dataset of the classification task is collected
at random positions inside our measurement environment
with corresponding labels, i.e., LOS or NLOS. Similarly, test
data is also collected in different positions to measure the
performance of the network.

For the regression task, CIR and ToF are recorded every
20 cm in a 2 m by 3 m grid inside the mock up with their
x and y positions as training data. Test data is obtained by
placing the tag in different random positions than the training
data set.

B. Time-based localization results

1) Results in LOS conditions: The time-based localization
algorithm introduced in Section IV-A is applied at 31 different
positions in total and the location of the tag is estimated
20 times in each position. 2D and 3D measurements are
performed with respectively 3 and 4 anchors. Results are
presented in Figure 3.

Our measurements show that a maximum localization error
of 6.5 cm for 2D and 13 cm for 3D respectively was achieved



for 80 % of the measurements, which satisfies most of the
system requirements given in Table I.
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Figure 3: 2D/3D LOS error CDF of the time-based approach.

In order to better understand if some specific locations are
better than other regarding accuracy, Figure 4 illustrates the
error at different points of the setup for the 2D measurements.
It is clearly visible that there is a correlation between the tag
location and the measurement error. For instance, the middle
area has the lowest error. The only reason for getting poor
accuracy is because of the wrong measurement of the ToF.
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Figure 4: 2D LOS error heat map of the time-based approach.

In order to better understand this correlation, Figure 5
illustrates the correlation between the measured range and the
actual range, namely:

abs. error = |actual range −measured range| (5)

Figure 5 indicates that measurements where anchors and tags
are separated by 1.5 m to 2 m result in a lower ranging error.
For distances larger than 2 m, there is a linear relationship
between error and true range as the tag is further away from
the anchor. Since this relationship can be seen for all anchors
in our measurements, we conclude that antenna orientation
and antenna delay configuration affect the calculation of the
ToF process. Since the antennas used for measurements are
not perfectly omni-directional, the received signal cannot have
the same power in every direction. This influences the signal-
to-noise ratio and impact the accuracy of the leading-edge
detection used by the Decawave chip for the TWR process.
Therefore, it is possible that the signal is detected later or

before than it should be at the receiver side, which causes
measurement errors.
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Figure 5: Anchor absolute range errors.

2) Results in NLOS conditions: While previous results con-
firm that the Decawave nodes are localizable with decimeter-
level accuracy in LOS conditions, we investigate now the
performance of our system under NLOS condition. The mea-
surements are performed inside an aircraft cabin mock-up as
illustrated in Figure 2.

The results of the time-based approach are illustrated in
Figure 7. In those NLOS conditions, there is a notable degra-
dation in the performance of the system, with an average of
43.2 cm in average, and an error below 60 cm for 80 % of the
measurements. This value makes such a localization system
miss our target requirements presented earlier. The obstacles
between the anchors and the tag cause wrong measurement of
the ToF mainly due to the attenuation of the first path. In that
case, the system may assume a longer multipath as the first
path, also resulting in the wrong estimation.

Figure 6 illustrates the ranging errors of Decawave’s TWR
measurements, namely:

error = actual range −measured range (6)

We note from Figure 6 that 58 % of the ranges are overesti-
mated, while the rest is underestimated. While overestimated
ranges may be explained and corrected by looking for another
local maximum corresponding to the first path in the CIR data,
such heuristic is inapplicable for underestimated ranges. Those
findings and overall poor accuracy in NLOS conditions motive
us to improve those measurements using another approach, as
introduced in Section IV-B.

C. Neural network-based localization results

We evaluate in this section the performance of the ANN
approach presented in Section IV-B and compare its results
with the time-based approach evaluated previously.

1) LOS/NLOS classification results: In this first task, we
evaluate if the ANN is able to correctly classify if there
is LOS or NLOS conditions based on the CIR data at the
anchor. Training and test data sets are obtained at 290 different
positions inside the measurement environment depicted in
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based approach.

Table IV: Confusion matrix for LOS/NLOS classification.

LOS NLOS

LOS 88.56 % 11.44 %
NLOS 14.95 % 85.05 %

Figure 2. Moreover CIR data is obtained for 50 particular
positions.

Results are presented in Table IV. Overall, the ANN is able
to predict the measurement condition with an accuracy for
LOS and respectively NLOS cases of 88.5 % and 85 %. As
reviewed in Section II, those values are in line with similar
studies from the literature. Those results also illustrates that
an ANN-based approach is indeed relevant for processing and
extracting relevant information from raw CIR data.

2) ANN localization results in NLOS conditions: CIR data
for each anchor is obtained at 100 different positions with the
corresponding x and y coordinates in a 2 m by 3 m area. Also,
50 CIR data is obtained for a particular position.

Results of the localization using the ANN are presented in
Figure 7. In average, 12.3 cm error is achieved, showing large
improvement compared to the 43.2 cm average of the time-
based approach. For 80 % of the measurements, a maximum
error of 21.1 cm is accomplished.
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Figure 7: CDF of 2D position error in NLOS conditions.

Overall, those results indicate that the ANN is able to
compensate and correct for the NLOS conditions, making our

UWB-based localization system satisfy most of the accuracy
requirements presented in Table I.

VI. CONCLUSION

We proposed and evaluated in this paper a positioning
system for in-cabin aircraft use-cases. UWB-based localization
was used in order to cope with the challenging accuracy
requirements for our in-cabin use-cases, mainly because of
its promising results in the literature and its upcoming mass
market adoption. The Decawave EVB1000 platform was se-
lected to build our IPS and perform indoor measurement
and in-cabin measurements. We introduced in this paper two
different approaches for performing localization based on
ranging measurement performed by the Decawave nodes.

We first illustrated our multilateration approach using the
ToF and evaluated its performance for both 2D and 3D
scenarios by considering a LOS and an NLOS conditions
respectively. In LOS conditions, a maximum localization
error of 6.5 cm and 13 cm was achieved for 80 % of the
measurements in 2D and 3D respectively. When it comes
to the NLOS condition, the performance degrades drastically
with a maximum localization error of 60 cm for 80 % of the
measurements.

In order to overcome those issues, an ANN-based localiza-
tion was considered to reduce the high localization error for
NLOS conditions. To train the ANN, CIR data was collected
in various LOS and NLOS conditions in a cabin mock-up.
We showed that the ANN can be trained to predict LOS or
NLOS condition with an accuracy of more than 85 %. We then
trained the ANN to directly predict the coordinate of a node.
Our results show that our approach is able to reach an average
localization error of 12.3 cm for the NLOS condition instead
of the original 43.2 cm error in average, resulting in a reduced
error approximately by 70 %.

Our measurements and evaluation makes us conclude that
our ANN approach is able to compensate for the difficult
NLOS conditions of an aircraft cabin. Even though the system
requirement, which states that the localization error should
be below 10 cm, was not fully fulfilled, there are still some
applications for the FAL case where this accuracy is enough.
Seat-level accuracy of 30 cm accuracy is possible with our
approach, enabling the majority of the use-cases investigated
in this paper.
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