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ABSTRACT 

The perceptual quality of VoIP conversations depends tightly on the pattern of packet losses, i.e., the 

distribution and duration of packet loss runs. The wider (resp. smaller) the inter-loss gap (resp. loss gap) 

duration, the lower is the quality degradation. Moreover, a set of speech sequences impaired using an identical 

packet loss pattern results in a different degree of perceptual quality degradation because dropped voice 

packets have unequal impact on the perceived quality. Therefore, we consider the voicing feature of speech 

wave included in lost packets in addition to packet loss pattern to estimate speech quality scores. We 

distinguish between voiced, unvoiced, and silence packets. This enables to achieve better correlation and 

accuracy between human-based subjective and machine-calculated objective scores.  

This paper proposes novel no-reference parametric speech quality estimate models which account for the 

voicing feature of signal wave included in missing packets. Precisely, we develop separate speech quality 

estimate models, which capture the perceptual effect of removed voiced or unvoiced packets, using elaborated 

simple and multiple regression analyses. A new speech quality estimate model, which mixes voiced and 

unvoiced quality scores to compute the overall speech quality score at the end of an assessment interval, is 

developed following a rigorous multiple linear regression analysis. The input parameters of proposed voicing-

aware speech quality estimate models, namely Packet Loss Ratio (PLR) and Effective Burstiness Probability 

(EBP), are extracted based on a novel Markov model of voicing-aware packet loss which captures properly the 

feature of packet loss process as well as the voicing property of speech wave included in lost packets. The 

conceived voicing-aware packet loss model is calibrated at run time using an efficient packet loss event driven 

algorithm. The performance evaluation study shows that our voicing-aware speech quality estimate models 

outperform voicing-unaware speech quality estimate models, especially in terms of accuracy over a wide range 
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of conditions. Moreover, it validates the accuracy of the developed parametric no-reference speech quality 

models. In fact, we found that predicted scores using our speech quality models achieve an excellent 

correlation with measured scores (>0.95) and a small mean absolute deviation (<0.25) for ITU-T G.729 and 

G.711 speech CODECs.  

Keywords: VoIP, perceptual evaluation of voice quality, voicing feature importance, packet loss modeling. 

1. Introduction 

Over the last few years, VoIP (Voice over IP) service has reached large popularity because of its 

attractive features for consumers and Telecom service providers. For consumers, the cheap and even free 

billing, the good perceptual quality, the mobility support, and the enriched vocal service capability constitute 

highly attractive features. For telecom operators, the management flexibility and handy service personalization 

and upgrading are highly desirable properties [1]. In fact, packetized VoIP service increasingly replaces and 

extends ordinary vocal telephone service in homes and enterprises [2]. To successfully integrate telephone 

service over IP infrastructure, customers should experience a good perceptual quality. However, ordinary 

unmanaged multi-service IP networks impair the flow of voice packets, which are often carried using the 

unreliable UDP transport protocol, by introducing delay, delay jitter, and packet loss, disorder, and duplication 

[3]. Several remedies have been reported in the literature to deal with such sources of impairments [3, 4]. 

Basically, there are two schools of thought to improve the perceptual quality of VoIP telephony, reactive and 

predictive strategies: 

− Reactive approaches: They try to reduce introduced IP impairments through the well-engineering of 

adaptive applications at sender and receiver sides to account for service sensitivity to network delay and 

packet loss. This enables to smartly hide perceptual annoying effects caused by time-varying end-to-end 

bandwidth, packet loss, and one-way network delay, without the requirement to upgrade/alter the 

operational mode of existing network infrastructure. Actually, Skype and GoogleTalk represent two well-

known distributed adaptive applications widely-used in the Internet to achieve multimedia and vocal 

telephony over IP and hybrid IP/PSTN networks, respectively [5]. The adaptive behavior of Skype and 

GoogleTalk at sender and receiver sides has been extensively studied and compared at perceptual level by 

B. Sat et al. [5].  
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− Predictive approaches: They reduce network IP impairments by smartly managing network resources to 

accommodate services according to their specific requirements. The telecom operators can define their 

proprietary management policy and network architecture to improve the quality of delivered delay-

sensitive services. The intermediate nodes are equipped with suitable QoS mechanisms such as call 

admission, packet classification and scheduling, as well as preferential treatment of crossing streams [6, 

7]. This requires upgrading the operational mode of intermediate nodes, which may be difficult in large, 

heterogeneous environments. 

In practice, to perform VoIP conversations, application layer reactive approaches are usually used by 

default. If a predictive approach is presented in the transport network, then the intensity of network 

impairments will be significantly reduced or even removed, which greatly helps end-to-end reactive 

approaches to achieve a better perceptual quality. Notice the existence of some recent proposals which aim at 

improving the perceptual quality of VoIPoW (VoIP over wireless) using cross-layer optimisation strategy [4, 

8, 9]. For instance, the source can dynamically adapt the packet duration according to the channel state, 

number of wireless hops, and prevailing access network delay [8]. Moreover, it can dynamically adjust the 

number of retransmission attempts and backoff delay at link-layer according to the perceptual importance of 

the outgoing voice packet [9]. 

In recent years, the performance of proposed adaptive behavior of VoIP application and network 

management policy is judged according to their achievable perceptual quality [3, 4, 5, 8, 9, 10]. Typically, the 

perceptual quality of an audio processing system is quantified in terms of MOS (Mean Opinion Score), which 

is a real number between 1 (bad quality) and 5 (excellent quality) [11]. Normally, the value of MOS score for 

a given configuration (application and network) is obtained using subjective trials [12]. Precisely, a set of 

human subjects, placed in a lab environment, are asked to vote either a set of heard impaired speech 

sequences, which is referred to as listing quality and termed as MOS-LQS, or a conversational task experience, 

which is referred to as conversational quality and termed as MOS-CQS. The ITU-T P.800 specification of 

subjective trials aims primarily at evaluating the perceptual effect of potential sources of impairments during 

vocal conversations over circuit-switched telephone systems such as loudness, side-tone, noise, echo, signal 

attenuation, acoustic features of edge devices, and one-way transit delay [12]. They have been subsequently 

adapted and extended by the research community to evaluate new sources of impairments experienced over 
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VoIP systems such as packet loss, low bitrate CODECs, and delay jitter [4, 13, 14]. Notice that the subjective 

approach, especially for large scale testing, is usually judged as time-consuming, expensive, and cumbersome 

[13, 14]. Moreover, it is unable to rate at run-time packet-based voice conversations in order to adapt the 

application and network behavior, accordingly. That is why, objective approaches, which estimate 

automatically the perceptual quality using machine-executable speech quality measurement (SQM) 

algorithms, are preferred and widely-used by telecom operators [11]. Extensive research effort within 

standardization bodies, academic institutions, and industry companies has improved the correlation and 

accuracy between objective and subjective scores to a satisfactory degree [11]. Machine-executable SQM 

algorithms can be classified into two categories: 

− Black box signal strategies: They estimate the perceptual quality by analyzing speech waves without 

any knowledge about the features of transport systems. They can be classified as full-reference (or 

intrusive) approaches, which have as input the reference and degraded speech sequences, and no-

reference (non-intrusive or single-ended) approaches, which only have as input the degraded speech 

sequence. 

− Glass box system parameter strategies: They estimate the perceptual quality using a set of statistical 

measurements gathered from the network such as delay, delay jitter, echo, and packet loss ratio and 

features of edge-devices such as coding scheme, packet loss concealment algorithm, and de-jittering 

buffer strategy. 

In practice, the glass box system parameter approaches are more preferable for VoIP conversations 

because they are able to efficiently predict at run-time speech quality scores using packet-layer statistical 

measurements. However, glass box system parameter approaches are relatively less accurate than black box 

signal approaches in the estimation of the perceptual quality scores. The development of a glass box system 

parameter assessment approach needs the development of suitable parametric quality models, which transform 

objective network and edge measurements to MOS domain. Normally, speech quality estimate models are 

derived following a regression analysis using a wide range of subjective speech quality empirical 

measurements [11]. However, the large number of conditions makes large scale subjective testing 

unreasonable in terms of cost and time. That is why, full-reference signal-layer objective approaches, which 

give a tight estimation of subjective scores, are used to measure the perceptual quality [13, 14, 15, 16]. 
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Generally, the standard full-reference signal-layer ITU-T SQM algorithm, described in Rec. P.862 and denoted 

as PESQ (Perceptual Evaluation Speech Quality), is used to gather required SQM for parametric model 

development [17]. The produced score is termed as MOS-LQO (Mean Opinion Score – Listening Quality 

Objective). 

A well-known glass box parametric speech quality model, denoted as E-Model, has been defined in the 

ITU-T G.107. E-Model has been conceived to predict speech quality over telephone systems [18]. The goal of 

E-Model was to give a general picture about the degree of satisfaction of a set of users for a given network 

configuration. The system characterization parameters are stratified into simultaneous, delay, and equipment 

impairment factors. For the sake of simplicity, the perceptual effect of impairment factors is assumed additive 

on psychological scale [18]. Notice that recent subjective experiences indicate that additive property of 

impairment factors can lead to inaccurate prediction of the conversational perceptual quality under several 

circumstances [19]. This constitutes the major reason of confining the utilisation of ITU-T E-Model for 

planning purposes only [19]. The values of parameters of E-Model are measured from the planned/existing 

configuration, then combined using a set of models to produce a rating factor, denoted as R and ranging from 

0 to 100. Notice that the rating factor R can be transformed to MOS scale using standard functions [4]. As 

such, E-Model is unable to accurately evaluate at run-time the perceptual quality on call-by-call basis. 

Moreover, it is unable to evaluate a VoIP conversation given that input parameters over IP networks are time-

varying. That is why the E-Model has been adapted and upgraded by several researchers to be able to predict 

on call-by-call basis the perceptual quality of VoIP conversations [15, 16, 19, 20, 21, 22]. Accordingly, 

extended E-Model can act as a single-ended packet-layer parametric SQM tool of VoIP conversations. To do 

that, impairment characterization parameters which are independent from transport network, such as room and 

circuit noises, and the acoustic features of edge devices are set to their default values. Moreover, several delay 

impairment models, which accept as input the experienced mean end-to-end delay, have been rigorously 

developed and extensively evaluated in the literature [20, 21, 22]. Furthermore, new equipment impairment 

models specific for VoIP conversations, which quantify the perceptual effect of packet loss and coding 

scheme, have been reported in the literature [14, 20, 21, 22]. Notice that equipment impairment factor, denoted 

as Ie, can be transformed to a MOS-LQO score using suitable functions [22]. Actually, new extensions of E-

Model are in progress to consider new configurations and scenarios experienced by customers over next 
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generation networks such as vertical and horizontal handover over last-hop wireless data networks, route 

changes over multi-hop wireless networks (MANETs), wideband and multiple description speech CODEC 

schemes, on-line switching of coding scheme and rate, features of loss process, etc. 

It is well-recognized that packet loss over wide area IP networks is bursty and time-varying [21]. Thus, 

using mean packet loss ratio alone as a characterization parameter for quality prediction can lead to an 

inaccurate estimation of experienced quality. Recently, research work has been reported in the literature to 

accurately quantify the perceptual effect of time-varying bursty packet loss behavior. In [21], author estimates 

separately the perceptual quality at high and low packet loss periods and subsume the perceptual artefacts at 

transition between high and low loss periods as well as the temporal location of high loss period in the 

calculation of the overall equipment impairment factor. The parameters of developed equipment impairment 

model such as mean packet loss densities and durations for high and low loss periods are extracted from a four 

state packet loss Markov model which efficiently and finely captures the global features of packet loss process. 

The conversational speech quality is calculated using the additive effect of impairment factors adopted by 

ITU-T E-Model. In [23], the author describes a SQM tool which calculates a set of “base” parameters at the 

reception of each new voice packet such as packet loss ratio, packet delay variation, mean burst duration, 

maximal burst duration, etc. Each “base” parameter is transformed by a non-linear function to subsume 

network impairment factor that influences the perceptual quality in a non-linear way. The transformation 

functions and weighting coefficients are adapted for each edge-device and CODEC used. The calibration of 

speech quality estimation models is performed through a large scale training process, which covers a wide 

range of conditions evaluated using ITU-T PESQ algorithm. In [14], authors proposed new speech quality 

estimation models that account for the bursty nature of packet loss process over IP networks. To do that, 

speech quality regression models, which accept as parameters inter-loss and loss durations, are developed and 

validated for several CODECs. At run-time, the perceptual quality is estimated for each (inter-loss, loss) pairs, 

then linearly combined at the end of an assessment period to produce the overall perceptual quality. 

The goal of the previously described single-ended packet-layer SQM algorithm was to accurately evaluate 

the speech quality by properly capturing the bursty nature of packet loss process over IP networks. They solely 

rely on information included in the standard header content of received packet stream and do not account for 

the features of payload content. As such, they assume that conveyed voice packets have an equal impact on 
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perceptual quality. However, it has been clearly shown in the literature that voice packets have different effect 

on the perceptual quality according to their temporal location and the content features [4, 24]. This can result 

in an inaccurate estimation of listening perceptual quality, especially when the evaluation process is performed 

on a sequence-by-sequence basis. Hence, for the sake of accuracy improvement, new speech quality models 

that account for the features of lost packets in the calculation of the perceptual quality are needed. Notice that 

the payload content itself is not needed, but its features or characterization information (metadata) are crucial 

for the evaluation of the perceptual effect of missing packets. 

By considering the voicing feature of wave signal included in lost packets during the assessment of live 

VoIP conversations, this paper proposes the following contributions:  

(1) The development of new parametric voicing-aware speech quality estimate models, using a sophisticated 

assessment framework and multiple regression analysis, which account for both the packet loss location 

pattern and the voicing feature of signal waves included in dropped voice fragments. The receiver is 

notified about the voicing feature of dropped voice packets by the sender. 

(2) The design of a new combination rule, calibrated using a large number of speech samples and conditions, 

in order to quantify in a non-intrusive way the perceptual effect of dropped voiced and unvoiced speech 

wave fragments simultaneously. 

(3) The design of a novel Markov model, which properly accounts for voicing feature of speech wave included 

in lost packets. The conceived loss model, which is calibrated at run-time using a computationally efficient 

algorithm, is employed to extract pertinent characterization parameters of packet loss process such as the 

mean loss durations for voiced and unvoiced packets, mean loss ratios for voiced and unvoiced packets. 

(4) The proposal of a new efficient sender-based notification strategy used in order to inform the receiver about 

the voicing feature of sent packets. An analytical study is conducted to accurately quantify the additional 

bandwidth overhead and a practical configuration is recommended. 

The performance evaluation study shows that our voicing-aware speech quality estimate models 

outperform voicing-unaware speech quality estimate models in terms of correlation and accuracy over a wide 

range of conditions. Indeed, we found that our parametric models achieve an excellent correlation above 0.95 
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and a mean absolute deviation in the order of 0.2 for ITU-T G.729 and G.711, equipped with a standard 

receiver-based Packet Loss Concealment algorithm, speech CODECs. 

The remainder of this paper is organized as follows. Section 2 illustrates the importance of voicing feature 

in speech quality modeling and evaluation. Section 3 describes the voice quality assessment framework used 

to develop and validate voicing-aware speech quality models. Section 4 presents how speech sounds are 

stratified according to their voicing property and describe the methodology used to develop voicing-aware 

speech models. In Section 5, we introduce a new voicing-aware packet loss model and present an efficient 

algorithm used to extract pertinent parameters. In Section 6, we compare the performance of voicing aware 

and unaware speech quality models against the intrusive ITU-T PESQ algorithm. We conclude in Section 7. 

2. Importance of voicing feature on speech quality evaluation   

Basically, speech waves can be divided into voiced sounds such as ‘a’ and ‘o’, unvoiced sounds such as 

‘h’ and ‘sh’ or silence, which is referred to as voicing feature [4]. Several studies reported in the literature have 

shown that the voicing feature of missing packets greatly influences the perceptual quality of delivered packet 

stream [4, 24, 25]. In accordance, besides the pattern of missing voice segments, a single-ended packet-layer 

SQM algorithm should account for the voicing features of lost packets. In [21], A. Clark indicates in the 

description of his widely employed SQM tool the existence of some outliers which can likely be removed by 

the consideration of the voicing feature of lost packets. Often, the sender checks the vocal source activity using 

a Voice Activity Detection (VAD) algorithm and ceases temporarily the transmission process upon the 

detection of a silence [3, 4]. In such a case, packet loss process can only affect voiced or unvoiced voice 

segments. Obviously, if the VAD mechanism is disabled then perceptual effect of lost packets, which occur 

during silences, are negligible [4].   

For the sake of illustration, we plotted in Figure 1 the MOS-LQO calculated using sixteen standard 8s-

speech sequences impaired by dropping either voiced or unvoiced 20ms-speech segments. The patterns of 

dropped packets are obtained using a voicing-aware bursty packet loss generator, which signifies that speech 

frames are dropped selectively according to their voicing feature. The listening quality scores are 

automatically estimated using the full-reference ITU-T SQM PESQ algorithm. Two standard speech 

CODECs, which are often used as reference, have been considered: G.729 (model-based coding scheme) and 



 
Figure 1 : Importance of the voicing feature of dropped 20ms-speech segments on 

perceived quality for speech CODEC G.729 and G.711iPLC. 

G.711iPLC (sample-based coding scheme), which refers to the ITU-T speech CODEC G.711 equipped with 

the standard receiver-based Packet Loss Concealment (PLC) algorithm described in ITU-T Rec. G.711 

Appendix I [26, 27]. The data rate generated by G.729 and G.711iPLC are respectively equal to 8 kbps and 64 

kbps. Further details about performed empirical trials will be given later in Section 4. As we can see from 

Figure 1, the voicing feature of dropped voice frames significantly influences the quality scores regardless of 

the speech CODEC in use. Moreover, we clearly observe that dropped unvoiced 20ms-speech segments impair 

much softly the perceptual quality than dropped voiced 20ms-speech segments. Notice that the packet loss 

occur more frequently during voiced segments than unvoiced segments because they are statistically more 

frequent than unvoiced ones. 

Besides the influence of voicing feature, the duration and location of loss runs effect notably the 

perceptual speech quality. Typically, the larger the duration of loss runs is, the bigger is the quality 

degradation. Moreover, it has been observed for certain model-based CODECs such as G.729 that dropping a 

single voiced frame located at the start rather than the middle or the end of a voiced sound entails much more 

perceptual quality degradation [4, 24, 25]. In fact, model-based coding schemes find major difficulty to 

recover such a missing voiced packet because the lack of suitable information to reconstruct the original voice 

frame. In addition, such CODECs entail lengthy error propagation period, which can lead sometimes to impair 

the whole subsequent voiced sound [25]. That is why, Speech Property-Based (SPB) priority marking and 

recovering schemes of speech fragments have been reported in the literature to improve the perceptual quality 

[4, 25, 28, 29]. This likely avoids losing perceptually important voice packets and hence improves the overall 

perceptual quality. 
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Figure 2 : Devation of perceptual quality for a given mean PLR among sixteen 

voice samples using G.711iPLC speech CODEC. 

Recently, L. Ding et al. conceived new single-ended packet-layer SQM models that account for the 

voicing feature of signal wave included in missing voice packets [30]. Their voicing-aware SQM models were 

derived following a third-order regression polynomial model. The sole input parameter of the proposed voiced 

(resp. unvoiced) SQM model, which captures the effect of missing voiced (resp. unvoiced) packets, is the 

mean ratio of lost voiced (resp. unvoiced) packets. As such, their SQM models are unable to accurately 

capture the effect of bursty packet loss behavior. In such a case, the pattern of missing packets, i.e., duration 

and distribution of loss instances should be properly considered to accurately estimate the perceptual quality. 

This feature is supported by Figure 2, which represents the measured average of MOS-LQO scores and 

standard mean deviation for a given mean voiced-packet loss ratio using G.711iPLC. The SQM are performed 

using sixteen 8s-speech sequences and a voicing-aware bursty packet loss generator. This curve indicates that 

per-sequence speech quality scores can significantly deviate from the average score for a given mean packet 

loss ratio. Hence, the building of speech quality prediction models, which only use the mean packet loss ratio 

as predictor, leads likely to an inaccurate estimation of experienced listening speech quality. To reduce 

inaccuracy, speech quality prediction models should consider the location and duration of missing voice parts. 

Notice that the input parameter and polynomial degree have been selected intuitively, i.e., without a thorough 

statistical analysis investigation. In our opinion, the predictors and regressive model should be rigorously 

selected through an elaborated statistical analysis. Moreover, L. Ding et al. estimated the overall speech 

quality score of a packet loss impaired-speech sequence is calculated through a linear combination of the two 

scores produced by developed voiced and unvoiced speech quality models. In our opinion, the linear 

combination model can be greatly improved to tightly mimic the behavior rating of users by accounting for 



11 

 

eventual interaction between voiced and unvoiced speech quality scores. Further, the receiver-based 

methodology adopted by authors to detect the voicing feature of lost packets introduces additional processing 

overhead with a high risk of wrong decisions, especially over a burst of packet loss. However, even with an 

additional consumed bandwidth, we believe that a sender-based strategy is more suitable and efficient. 

3. Framework for speech quality modeling 

The development of parametric speech quality models needs to set-up suitable speech quality assessment 

(SQA) frameworks. There are several approaches to develop a SQA framework, which is dependent on 

intended goals, e.g., evaluation of adaptive behavior of application or transport network policy, calibration and 

tuning of speech quality models, measurements of voice quality over existing voice transport systems, etc [11]. 

Particularly, for speech quality modeling, software-based SQA frameworks, rather than emulation-based test-

beds or existing voice transport systems, are more suitable because of their price- and time-effectiveness and 

their ability to generate speech quality measurements under specific and controlled scenarios. It has been 

widely used in the recent few years to evaluate and develop parametric speech quality models over a wide 

range of packet-based network impairments [4, 14, 15, 16, 22, 23, 24]. 

Figure 3 gives the basic components of a software-based SQA framework which aims at modeling of the 

listening speech quality according to a set of signal- and packet- layer measurements. Basically, a set of 

standard reference speech sequences, that have specific properties such as sampling rate, sample precision, 

content, and duration, are encoded, packetized, then delivered through a system under test and that involves 

several sources of impairments such as packet loss, bit error, delay, echoes, and noises. Notice that for a 

software-based framework, the system under test can be a generic network simulator such as Network 

Simulator (NS2), a dedicated voice transport system simulator such as Message Automation and Protocol 

Simulation (MAPS) tool, or analytical network impairment models [31, 32, 33]. The system output is used to 

generate impaired versions of reference speech sequences. In our case, the corresponding relevant packet-layer 

parameters of delivered packet stream are properly measured and recorded. The quality of degraded speech 

sequences is either evaluated by human subjects or an accurate signal-layer full-reference vocal quality 

assessment algorithm such as ITU-T P.862 [17]. As mentioned previously, impractical subjective trials over a 

large scale testing are circumvented by using machine-executable speech quality assessment algorithms, which 

accurately mimic users’ behavior rating [4]. 
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Figure 3: Vocal assessment framework for no-reference speech quality model developement. 

In this work, we assume that the system under test, which is imitated based on a widely-used analytical 

Markovian model, only introduces bursty packet loss to the flow of sent packet stream. As illustrated in Figure 

3, the potential set of parameters, that likely affects the perceived quality, is directly measured from the system 

under test such as mean loss ratios for voiced and unvoiced packets, maximal voiced and unvoiced burst 

durations, and the set of inter-loss gap and loss durations. Often, “base” measurements require to be 

transformed to precisely reflect human perception of experienced distortions. This helps to precisely account 

for the sensitivity of the overall listening perceptual quality score to each single base parameter variation. The 

developed framework enables monitoring and recording all characteristic parameters of packet loss process. 

For certain parameters a single value is returned, e.g., PLR (Packet Loss Ratio), CLP (Conditional Loss 

Probability), and maximal burst duration (MaxBD). For other parameters several values are recorded, e.g., 

inter-loss gap and burst loss durations. For each parameter, we determine, using regression, the degree and 

fitting coefficients of the polynomial that maximizes the correlation between the measured parameter values 

and MOS-LQO scores. For multi-value monitored parameters, we compute at the first stage the Lp-norm as 

follows: 
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where, X(k) is the kth measure of the parameter X and M is the total number of measured samples over an 

examined sequence. Notice that Lp-norm has been classically used to model the non-linearity behavior of 

human hearing system [4, 17]. In fact, Lp-norm highlights the effect of parameter variation on perceived 

quality. In this work, the value of p is varied in the set {1/10, 1/9... 1/2, 1, 2 … 8, 9}. The correlation factor is 
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where, R is the correlation coefficient between two cardinal-equal sets, xi  is known value of the measured 

quality score, yi represents a value of the examined parameter,x andy  represent, respectively, the mean value 

of the two examined sets, and N corresponds to the cardinality of each set. Algorithm 1 summarizes the 

transformation process applied to analyzed parameters and included in the developed framework. 

Algorithm 1: Determination of optimal polynomial regression models for each 
potential characterization parameters 

OV: matrix which contains the original values of analyzed parameters 

LPV: matrix which contains Lp-norm values of analyzed parameters 

MOS: array which contains the MOS value of each (speech sequence, condition) pair 

RC: matrix which contains polynomial regression coefficients of analyzed parameters 

RCO: matrix which contains optimal regression coefficients of analyzed parameters 

OP: matrix which contains for each parameters optimal polynomial degree and p-norm 

CM: matrix which stores correlation for each analyzed parameters 

1: for each par belongs to the set of potential parameters do 

   /*  Vary the polynomial degree from 1 to 6 */ 

2:   for mi from 1 to 6 do 

   /* Vary the norm */ 

3:    for each pj belongs to {1/10, 1/9... 1/2, 1, 2 … 8, 9} do 

   /* Compute and record Lp-norm of each analyzed parameter */ 

4:      LPV[par]  = Lp-norm (OV[par], pj) 

   /* Apply regression process of degree mi */ 

5:      RC[par] = polynomial-regression (LPV[par], MOS, mi) 

   /* Measure the correlation between estimated and measured scores */  

6:      CM[mi, pj] = correlation(regress(LPV[par], RC[par]), MOS) 

   /* Update the regression model if correlation is higher than previously founded */ 

7:         if MC[mi, pj] > Rmax then 

8:            OP[par] = {mi, pj};  

9:            Rmax = CM[mi, pj];  

10:          RCO[par] = RC[par]; 

11:          end if 

12:    end for 

13:  end for 

14: end for 

(2) 
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When the optimal-correlated transformations for all potential parameters (predictors) are determined, the 

voicing-aware speech quality estimate models, which combines potential transformed parameters, is derived 

using multiple linear regression analysis (see Figure 3) [34]. To do that, a parameter/factor selection procedure 

should be followed to pick-up the parameters which exhibit a strong dependence with speech quality 

measurements. Basically, there are three techniques which can be used to select suitable parameters: forward 

regression, backward elimination, and stepwise regression [34]. The backward elimination technique initially 

subsumes all parameters and eliminates iteratively those with negligible fitting coefficients. The forward 

regression technique initially selects the parameter that achieves the best correlation factor with the set of 

known scores of the measured quality, then, iteratively, selects the most correlated one with the set of residual 

scores of the measured quality after the elimination of the effect of selected variables. This process is halted 

when the returned t-student value (test of significance) of the correlation coefficient between the examined 

parameter and residual subjective scores becomes too low. The stepwise regression technique, which has been 

used in this work, is a combination of forward and backward technique. The selection of the suitable model is 

made step-by-step after examination of several combinations. Note that multicollinearty or dependence among 

potential parameters should be avoided and removed to obtain stable speech quality models. 

In next section, we adopt the described strategy in order to develop parametric voicing-aware quality 

estimate models for packetized voice conversation over IP networks. The conceived vocal quality estimate 

models account for both the voicing feature and pattern of packet loss. 

4. Speech quality models for dropped voiced and unvoiced frames 

Obviously, the development of voicing-aware speech quality models needs to discriminate between 

voiced and unvoiced speech signals. In this work, we use the simple, yet efficient sender-based SUVING 

algorithm to distinguish between speech wave segments [35]. The SUVING algorithm utilizes zero-crossings 

(ZC) and short-term energy (STE) to identify the type of each examined speech fragment [35]. The zero-

crossing metric represents the number of times in a speech fragment where the amplitude of sound wave 

changes its sign. The short-term energy of a speech fragment is calculates as follows: 

( ) ( )( )∑
+−=

−=
n

1Nnm

2
n mnwmxE   (3) 
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where, x(m) corresponds to the energy of the mth sample, w is a hamming window of size N samples and 

centered between the (n-N+1)th and nth samples. The energy is higher for voiced than unvoiced speech, and 

should be equal to zero for silent regions in clean speech signal recordings. Moreover, the zero-crossing rate is 

higher for unvoiced speech fragment than voiced one. The standard values of zero-crossing metric, for 10 ms 

clean voice segment, are roughly equal to 12 and 50 for voiced and unvoiced speech, respectively [35].  

TABLE I: Voicing decision rules 

 Zero-crossings (ZC) Short-Term 
Energy (STE) Decision 

Rule 1 ≈ 0  ≈ 0 Silence 
Rule 2 HIGH LOW  Unvoiced 
Rule 3 LOW HIGH Voiced 
Rule 4 ≈ 0 HIGH Voiced 
Rule 5 HIGH HIGH Voiced 
Rule 5 LOW LOW Voiced 
Rule 6 ≈ 0 LOW Unvoiced 
Rule 7 LOW ≈ 0 Silence 
Rule 8 HIGH ≈ 0 Background noise 

If (ZC < zTh1) Then ≈ 0 If (STE < eTh1) Then ≈ 0 

Else If (ZC ≤ zTh2 ) Then LOW Else If (STE < eTh2 ) Then LOW 

Else HIGH Else HIGH 

zTh1 = 5 
Lower threshold of zero-

crossings eTh1 = 2×10-5 
Lower threshold of 
short-term energy 

zTh2 = 35 
Upper threshold of zero-

crossings eTh2= 10-2 
Upper threshold of 
short-term energy 

The presence of unavoidable background noise, which is typically characterized by high zero-crossing 

rate and low short-term energy, induces inaccuracy in S/V/U (Silence/Voiced/Unvoiced) discrimination 

process. To reliably identify the voicing feature of speech segments, a set of additional rules has been defined 

by SUVING developers which are summarized in Table I. The upper and lower thresholds, given in Table I, 

are used to classify metric as ≈ 0, LOW, and HIGH have been tuned and calibrated according to the properties 

of our processed speech materials. 

A classical Gilbert/Elliot Markov model (see Figure 4) has been used to mimic packet loss behavior 

experienced by users over a bursty lossy channel [13]. As illustrated in Figure 4, a Gilbert/Elliot model has 2 

states, NON-LOSS and LOSS which represent respectively a successful and failed voice packet delivering. 

 

Figure 4: Gilbert/Elliot chain Markov loss model. 

p 

q 

1-p CLP = 1 - q 

NON-
LOSS 

 

LOSS 
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The mean sojourn durations under states NON-LOSS and LOSS are, respectively, equal to p1 and q1  where 

p and q are the transition probabilities from NON-LOSS to LOSS state, and conversely. Notice that normally 

the value of p + q is less than one [36]. If p + q = 1 then the Gilbert/Elliot model is reduced to a Bernoulli 

model. The model is calibrated using ULP (Unconditional Loss Probability), which represents the PLR 

(Packet Loss Ratio), CLP (Conditional Loss Probability), and EBP (Effective Burstiness Probability), which 

are calculated as follows: 

qp

p
ULP

+
=  q1CLP −=  CLPULPEBP ×=   (4) 

 

The EBP metric, which has been initially defined by F. Hammer et al., is used to introduce packet loss 

burstiness in accurate way over a short period of time (8-20s) [37]. The value of EBP should be less than ULP 

according to the definition given in (4). This property should be considered during the design of SQM trials to 

produce realistic and accurate loss patterns. The developed Gilbert/Elliot model, which mimics the distortion 

introduced by the system under test (see Figure 3), has as input ULP and EBP, which have been finely varied 

to cover a wide range of conditions.  

TABLE II: Experimental conditions for packet loss behavior using Gilbert Model 

Parameters Conditions Instances 

CODEC G.711iPLC, G.729  2 

Mean Packet loss ratio (PLR) 1, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 45 % 12 

Ratio of burstiness, R (EBP = PLR/R) 2, 4, 6, 8 4 

Dropped frame feature Voiced, Unvoiced 2 

Audio sample 8 male, 8 female 16 

Total number of combinations 2×12×4×2×16 3072 

Table II summarizes the series of conducted empirical speech quality measurement trials. The speech 

materiel contains a total of sixteen standard 8s-speech sequences, spoken by eight male and eight female 

English speakers. For each speech sequence, we drop voice packets according to Gilbert/Elliot model loss 

generator while considering the voicing speech wave feature included in removed voice packets. In reality, 

original Gilbert/Elliot model drops media packets regardless the voicing feature of speech wave included in 

them. To enable a voicing-aware packet loss process, we monitor the voicing feature of presumed dropped 

packets in order to ignore loss instances which affect unsuitable packets. The degraded version of original 

sample is generated then the MOS-LQO score is calculated using the ITU-T full-reference SQM PESQ 
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algorithm. In addition, the effective ULP, EBP, maximum burst duration (MaxBD), and the sets of inter-loss 

gap and loss durations are properly recorded for each (speech sequence, condition) pair. The total number of 

evaluated samples and conditions is equal to 3072.  

TABLE III: Best correlation between measured transformed parameters and 

measured speech quality scores of G.711iPLC and G.729 

CODEC Parameter 
Voiced Unvoiced 

m p R m p R 

G.711iPLC 

ULP 2 - 0.952 2 - 0.906 

EBP 5 - 0.787 2 - 0.638 

MaxBD 4 - 0.491 2 - 0.540 

{inter-loss} 3 0.50 0.900 3 1 0.880 

{loss} 5 0.25 0.866 4 0.16 0.905 

G.729 

ULP 3 - 0.965 2 - 0.832 

EBP 5 - 0.790 6 - 0.556 

MaxBD 4 - 0.501 2 - 0.466 

{inter-loss} 4 0.2 0.924 3 0.5 0.825 

{loss} 4 0.11 0.951 1 0.11 0.836 

The obtained measurements based on empirical trials are statistically analysed using Algorithm 1. For the 

sake of illustration, we plot in Figures 5a and 5b the result of application of Algorithm 1 to inter-loss gap 

duration metric for G.711iPLC speech CODEC. As we can note, the perceived quality is optimized for a 

specific combination, p-norm and polynomial degree, m, which is recorded and used during the application of 

the multiple variable regression analysis. Notice that some authors refer to such a process as parameter 

linearization with respect to the response variable [38]. 

  

(a) G.711 voiced ignored    (b) G.711 unvoiced ignored 

Figure 5: Illustration of the application of Algorithm 1 to inter-loss gap duration metric. 
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Table III summarizes the optimal settings for G.711iPLC and G.729 speech CODECs which achieve the 

best correlation factor, R, between examined parameters and measured quality scores. As we can see, the 

parameter transformation of ULP, EBP, and MaxBD is independent of p-norm because they are single-value 

parameters. The transformed ULP, {inter-loss}, and {loss} exhibit high correlation with MOS-LQO, whereas, 

transformed EBP and MaxBD are relatively less correlated with MOS-LQO (see Table III). 

As outlined in Section 3, stepwise regression technique has been adopted to derive suitable speech quality 

estimate models for bursty missing voiced and unvoiced packets. The proposed voicing-aware parametric 

speech quality estimate models for G.711iPLC and G.729 Speech CODECs, which are given in (5) and (6), 

have been selected after examination of several combinations of investigated packet loss process 

characterization parameters. In our statistical analysis, we found a strong correlation between ULP and 

Lp({inter-loss}) measures. Therefore, to assure the stability of speech quality model, either the ULP or the 

Lp({inter-loss}) parameter has to be eliminated from the final model.  

{ }( ) ( ) { }( )( )
{ }( ) { }( )( )





×+×=

×+×=

− lossLP0.52(ULP)P0.48loss ULP,MOS
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4
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3
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where, MOSV and MOSU stand for speech quality estimate models when loss process only affects voiced and 

unvoiced packets, respectively, P is the polynomial transformation applied to each selected parameter, the 

exponent of P refers to the polynomial degree. Table IV gives the optimal fitting coefficients of polynomials 

used in (5) and (6).    

TABLE IV:   Coefficients of polynomial regressive models 

CODEC 
Quality 
model 

Parameter 
Fitting coefficients for each degree  

0 1 2 3 4 5 

G.711iPLC 

Voiced 
ULP 3.992 -26.974 77.053 * * * 

Lp({loss}) 4.064 1.224 -7.161 5.832 -1.783 0.186 

Unvoiced 
ULP 4.244 -29.045 166.470 * * * 

Lp({loss}) 4.195 -1.556 3.790 -6.752 3.287 * 

G.729 

Voiced 
ULP 3.637 -35.898 194.417 -351.605 * * 

Lp({loss}) 3.414 -0.841 -3.260 2.931 -0.659 * 

Unvoiced 
ULP 3.804 -28.789 173.329 * * * 

Lp({loss}) 3.700 -1.300 * * * * 

 If CODEC 
= G.711iPLC  

If CODEC  
= G.729 

(5) 

(6) 
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(a) Voiced          (b) Unvoiced 

   
(c) Voiced         (d) Unvoiced 

Figure 6: Accuracy of developed voicing-aware speech quality estimate models. 

In order to verify the accuracy of developed models, we plot in Figure 6 the scatter-plots which show the 

relation between measured MOS-LQO and predicted MOS scores using models given in (5) and (6). As we 

can see, the predicted scores exhibit good correlation with measured one for all configurations (>0.83). 

Moreover, we see that our models achieve a very low Root Mean-Squared Error (RMSE) below 0.25.  

After modeling of the effect of packet loss process that only affects voiced or unvoiced frames, actually it 

is required to develop a speech quality estimate model which quantifies the effect of voicing-unaware packet 

loss process that drops indifferently voiced and unvoiced packets. To do that, we drop media packets 

according to the original Gilbert/Elliot Markov model, which results in the deletion of both voiced and 

unvoiced packets. Three degraded speech sequences are generated for each treated clean speech sample. The 

first (resp. second) degraded speech sequence includes only missing packets that contain voiced (resp. 

unvoiced) speech wave. The third degraded speech sequence includes missing packets that contain voiced and 

unvoiced speech wave. The quality scores of the three produced distorted speech sequences are obtained using



   
(a) G.711            (b) G.729 

Figure 7: Accuracy of developed global speech quality estimate models. 

 ITU-T SQM PESQ algorithm. The overall speech quality estimate model, which captures the effect of 

missing voiced and unvoiced speech packets, is obtained following a multiple linear regression analysis. The 

primary factors of overall speech quality estimate model are speech quality scores measured after the deletion 

of either voiced or unvoiced speech packets for a given speech sequence and loss pattern. After examination of 

several models, we found that the following expression achieves an excellent correlation and precision in the 

estimation of overall speech quality scores for the two considered CODECs:  

VUuv
2
uu2

2
vv2Uu1Vv1UV MOSMOSwMOSwMOSwMOSwMOSwMOS ××+×+×+×+×=  

where, wi are the weighting coefficients which are obtained based on the minimisation of RMSE. The 

correlation factor, R, the RMSE, and the values of model coefficients are given in Figure 7. The scatter-plots 

(see Figure 7) prove the suitability of proposed speech quality models to estimate the overall speech quality 

scores.  Notice that at run-time the values of MOSU and MOSV are calculated based on (5) and (6). 

 

Figure 8: Optimized voicing-aware global speech quality estimate models. 
 

(7) 
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According to the regression statistical analysis, we see the existence of negligible fitting coefficients in 

the proposed generic speech quality estimate model (< ±0.1). Variables with such negligible coefficients can 

be dropped, leading to simpler overall speech quality estimate models. This is illustrated in Figure 8, which 

shows the scatter-plot linking MOS-LQO and predicted MOS score for G.711iPLC, when only MOSV factor is 

considered. As we can see, the obtained overall speech quality estimate model achieves strong correlation with 

an insignificant increase of RMSE. This suggests that it would be beneficial to seek a simple model for each 

speech CODEC rather than a complex more generic model for all CODECs.  

5. A sender-based voicing feature notification strategy  

The developed speech quality models need vital meta-data about the voicing feature of lost packets. To do 

that reliably, a sender-based notification scheme can be adopted. This is performed by piggybacking voicing 

feature of recent sent media packets toward the opposite end. Such a voice packet will be referred hereafter to 

as media-voicing-report packet. Three important factors should be considered to optimize the performance of 

such a scheme, framing duration (F), inter-delay between two consecutive sent media-voicing-report packets, 

denoted as T, and temporal window covered by the included voicing report (see Figure 9). The framing delay 

refers to the required delay to fill one voice packet, which is often set between 20 ms and 50 ms according to 

the one-way network delay, network workload, and loss severity. The larger the framing delay is, the smaller 

is the amount of meta-data information inserted in a media-voicing-report packet. In fact, an increase of 

framing delay results in a decrease of total number of sent packets. Moreover, the lower (resp. larger) the inter-

media-voicing-report delay (resp. window duration) is, the greater is the additional consumed bandwidth. For 

the sake of reliability, overlapping windows should be used. Notice that the overlapping duration is dependent 

on the inter-media-voicing-packet and window durations. As such, a missing voicing pattern fragment can be 

recovered later at the reception of the next media-voicing-report packet. If overlapping is disabled then the 

window duration should be set equal to inter-media-voicing-report duration.  

 

Figure 9: Temporal relations of sender-based voicing feature notification strategy.   

Inter-media-
voicing report  

Window 
Window 

Framing 

Time (s) 

Media-voicing-
report packet 

CBR voice packet stream generated at the source node 

Media packet 



22 

 

   

(a)                                                                               (b) 

Figure 10: Overhead due to sender based notification strategy to send voicing 

information about sent packet stream. 

To properly quantify the additional overhead, we assume for instance that the voicing feature of each 

media packet is coded using one bit, where 0 indicates an unvoiced packet and 1 indicates a voiced packet. In 

such a case,  F)/8(W  additional bytes are required to tell the receiver about the voicing pattern of  FW  

previous F-sec. voice packets, where W represents the window duration. In Figure 9, the selected temporal 

setting enables dropping a single media-voicing-report packet without losing a fragment of voicing pattern 

because the window size is equal to twice of inter-media-voicing-report packet delay. Generally speaking, if 

the goal is to tolerate losing X successive media-voicing-report packets, then the window duration should be 

set to X multiplied by the inter-media-voicing-report packet delay. Figure 10a shows the additional overhead 

in terms of consumed bandwidth under several window and inter-media-voicing-report packet delay settings. 

As we can see, the supplementary overhead in all investigated situations remains pretty low (<2 kbps).  Figure 

10b illustrates that a decrease of inter-voicing-report packet delay results in an increase of consecutive 

tolerable consecutive lost media-voicing-report packets. A good configuration under normal condition of 

packet loss consists of setting inter-media-voicing-report and window durations, respectively, to 60 ms and 

500 ms, which results in an insignificant overhead equal to 0.42 kbps and a good tolerance of successive 

media-voicing-report packet losses of as much as 7 (see Figure 10b). Notice that the overhead is also related to 

voice source activity. The longer the activity duration is, the bigger is the consumed bandwidth.  

In reality, the value of W and T can be fixed in advance or adjusted dynamically according to packet loss 

behavior. An optimisation strategy consists of adjusting T according to the prevailing channel state which can 

be either BAD or GOOD. Under BAD (resp. GOOD) network state the value of T should be decreased (resp. 
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increased) properly. To calibrate T at run-time, the mean inter-loss gap duration metric is relevant. In fact, an 

increase of mean inter-loss gap duration enables increasing T which reduces the additional overhead. On the 

other hand, a decrease of mean-loss gap duration needs to reduce T. Practically, to avoid losing media-voicing-

report packets with high probability, the value of T should be set at least equal to the half of mean-loss inter 

gap. Obviously, a maximal tolerable threshold of T set to 500 ms for example should be used since the 

receiver requires the reception of voicing data as soon as possible. Notice that the receiver end often uses a 

non-overlapping assessment window which lies between 9s and 20s. The mean inter-loss gap duration can be 

either determined implicitly by monitoring the flow of received packets or explicitly through adequate 

feedback formulate and sent from the opposite end. The implicit strategy is less accurate than the explicit one 

because it assumes that transport routes to deliver packet stream are symmetric, which may be invalid under 

several scenarios.  

Given the redundant distribution of voiced and unvoiced segments, it is likely possible that classical 

statistical lossless compression schemes can reduce bandwidth overhead. Note here that modern speech 

CODECs such as G.729, G.726, and iLBC generate a very small and fixed payload size of as much as 20 bytes 

to encode 20 ms of speech waves. Therefore, the receiver entity can implicitly identify data packets which 

contain meta-data voicing information by only checking the packet length. 

6. Voicing aware packet loss behavior model 

To extract efficiently required voicing-aware measures of input parameters of previously developed 

speech quality models, we propose using a novel Markov model of packet loss process which accounts for 

voicing feature of lost fragments. The developed model constitutes a relevant extension to classical 

Gilbert/Elliot model (see Figure 11). It enables the accurate capturing the characteristic of the overall packet 

loss process over voiced and unvoiced speech wave frames. The conceived model has three states, NON-

LOSS, LOSSvoiced, and LOSSunvoiced, which represent, respectively, the successful reception of a voice packet 

and the failed delivering of a voiced and unvoiced voice packet.  
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Figure 11: Markov model of voicing-aware packet loss process. 

The packet loss model illustrated in Figure 11 is calibrated at run-time according to the flow of received 

and dropped media and media-voicing-report packets. An efficient voicing-aware packet loss driven algorithm 

is developed to update at run-time a set of counters which are used at the end of a monitoring period to 

calculate the transition probabilities. Therefore, parameters such as mean packet loss ratios and mean burst 

durations for voiced and unvoiced speech wave frames can be formally computed. Moreover, during the 

voicing-aware monitoring period, the set of inter-loss gap and unvoiced and voiced packet loss durations are 

properly recorded. 

Algorithm 2 summarizes the calibration process of voicing-aware loss model and how suitable parameters 

are extracted and recorded. In Algorithm 2, state number 0, 1, and 2 represent respectively NON-LOSS, 

LOSSvoiced, and LOSSunvoiced states. Algorithm 2 uses a set of counters denoted as cij where indexes i and j refer 

to the state number. Basically, the developed algorithm triggers the calibration process upon the reception of a 

new, in-sequence, media-voicing-report packet. Algorithm 2 extracts V/U and loss patterns from the received 

media-voicing-report packet and the history of lost packets (lines 2 and 3). The algorithm updates 

measurements from the last processed packet to the current one identified using their sequence numbers. 

Moreover, the algorithm determines the maximal voiced and unvoiced burst durations using the variables maxv 

and maxu, respectively. It keeps track of the inter-loss gap and voiced and unvoiced loss durations using 

variables ac00, ac11, and ac22. 
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Algorithm 2: Calibration and parameters estimation at run-time the 
voicing-aware packet loss model shown in Figure 11 

1: if (new media-voicing-report packets is received) then  
2: vu = read-vu-pattern(last-seq, cur-seq) 

3: rcv = read-loss-pattern(last-seq, cur-seq) 

4:    for i from last-seq to cur-seq do  

5:          if (rcv[i] = “1”) then // voice packet is received 

6:              if (sate = “0”) then 

7:              c00++,  ac00++; 

8:              elseif(state = “1”) then 

9:              if (ac11 > maxv) then maxv = ac11 end if 

10:            record(ac11);  c10++, state = “0”; ac11 = 0; 

11:            elseif(state = “2”) then 

12:            if (ac22 > maxu) then maxu = ac22 end if  

13:            record(ac22);  c20++, state = “0”; ac22 = 0;        

14:       else // voice packet is lost 

15:            if (vu[i] = “V” and state = “0”) then 

16:            c01++, state = “1”; record(ac00); ac00 = 0; ac11 = 1; 

17:            elseif (vu[i] = “V” and state = “2”) then 

18:            if (ac22 > maxu) then maxu = ac22 end if  

19:            record(ac22);  c21++; state = “1”; ac22 = 0;  ac11 = 1; 

20:            elseif (vu[i] = “V” and state = “1”) then 

21:            c11++;  ac11++; 

22:            elseif (vu[i] = “U” and state = “0”) then 

23:            c02++, state = “2”; record(ac00); ac00 = 0; ac22 = 1; 

24:            elseif (vu[i] = “U” and state = “1”) then 

25:            if (ac11 > maxv) then maxv = ac11; end if  

26:            record(ac11);  c12++; state = “2”; ac11 = 0;  ac22 = 1; 

27:           elseif (vu[i] = “U” and state = “2”) then 

28:           c22++; ac22++; 

29:        end if 

30:     end for 

31: end if 

At the end of a monitoring period, the mean loss packet rate, ULP, and degree of burstiness, EBP, for 

voiced and unvoiced packets can be computed as follows: 
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where, ULPv and ULPU are mean packet loss ratios for voiced and unvoiced packets, EBPV and EBPU are the 

effective burstiness probabilities for voiced and unvoiced packets, and nbt refers to the total number of sent 

packets during the assessment period. Note that for a continuous quality assessment purposes, all variables, 

counters, and arrays are re-initialized at the start of a new assessment period. 

7. Performance evaluation and models validation 

To evaluate the performance of our voicing-aware speech quality estimate models, we set-up the voice 

quality assessment framework depicted in Figure 12.  The framework includes a bursty packet loss simulator 

which follows the Gilbert/Elliot model (see Figure 4). The reference and resulting degraded voice sequences 

are evaluated using the full-reference signal-layer ITU-T PESQ assessment algorithm. On the other hand, 

speech quality is predicted using voicing -unaware and -aware speech quality estimate models. Our voicing-

aware speech quality estimate models are compared against the voicing-unaware models reported in [22]. 

During these empirical trials, a new set of eight voice sequences which are pronounced by four male and four 

female English speakers are impaired and evaluated. The degree of burstiness is properly parameterized using 

ULP and EBP. Specifically, we varied the ULP value from 1% to 30% with an increase step of 3%. The value 

of EBP is calculated as a ratio of the ULP value which is varied from 2 to 8 with an increase step of 2. 

 

Figure 12: Evaluation framework of voicing aware speech quality estimate models. 
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(a)            (b) 

Figure 13: Validation of voicing-aware speech quality models. 

Table V compares the performance of voicing -aware and -unaware speech quality estimate models for 

G.711iPLC and G.729 in terms of correlation and precision. As we can note, our voicing-aware speech quality 

estimate models achieve a better correlation factor above 0.95 for both considered speech CODECs which is 

pretty satisfactory. Moreover, our voicing-aware speech quality estimate models reduce notably, compared to 

voicing-unaware speech quality estimate models, the mean absolute deviation between measured MOS-LQO 

and predicted MOS scores using our models for both speech CODECs. The achieved accuracy is in the order 

of 0.2, which constitutes an excellent precision. 

Table V: Performance comparison between voicing aware and 

unaware speech quality estimate models 

 Voicing-Unaware Models [22] Voicing-Aware Models 

 G.711iPLC G.729 G.711iPLC G.729 

Correlation 0.927 0.910 0.954 0.961 

Absolute mean deviation 0.61 0.92 0.22 0.17 

Histograms shown in Figures 14 illustrate the distribution of predicted MOS scores with respect to 

measured MOS-LQO scores for the G.729 and G.711iPLC speech CODECs. These histograms prove the 

accuracy of our voicing-aware speech quality models to estimate MOS scores. Indeed, 75% of estimated MOS 

score for G.729 and 70% for estimated MOS scores for G.711iPLC falls in the range [-0.2, 0.2] which is quite 

satisfactory in practice given parametric, non-intrusive, and low complexity features of our developed speech 

quality models. 
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(a)                (b) 

Figure 14: Distribution of deviation between MOS-LQO measures and voicing aware model-based 

estimates of speech quality. 

8. Conclusion 

This paper extends conventional parametric no-reference speech quality models by accounting for the 

voicing feature of signal wave included in missing packets. An adequate software-based speech quality 

assessment framework has been set-up to develop voicing-aware speech quality models that enable to 

accurately quantify the effect of lost packets according to the feature of included signal wave in the payload. 

The overall speech quality model, which estimates the score at the end of an assessment interval, was properly 

developed following a multiple regression analysis. Two input parameters are used by the overall speech 

quality models to estimate the final score, which are the perceptual scores estimated when packet loss process 

affects either voiced or unvoiced media packets. The input set of parameters of speech quality estimate models 

were efficiently calculated based on a new Markov model of voicing-aware packet loss process calibrated at 

run-time. The performance evaluation study proves that our voicing-aware speech quality estimate models 

outperform voicing-unaware speech quality estimate models in terms of correlation and mean absolute 

deviation with MOS-LQO scores. Moreover, they exhibit high correlation and accuracy in the estimation of 

voice quality. 
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