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ABSTRACT

The perceptual qualitgf VolP conversations depends tightly on the patiafr packet losses, i.e., the
distribution and duration of packet loss runs. Wider (resp. smaller) the inter-loss gap (resps lgap)
duration, the lower is the quality degradation. btawer, a set of speech sequences impaired usirgatical
packet loss pattern results in a different degre@esceptual quality degradation because droppedevo
packets have unequal impact on the perceived gualiterefore, we consider thwicing feature of speech
wave included in lost packets in addition to packets pattern to estimate speech quality scores. We
distinguish between voiced, unvoiced, and silenaekgts. This enables to achieve better correladioh
accuracy betweelnuman-based subjective andmachine-cal culated objective scores.

This paper proposes nova-reference parametric speech quality estimate models which accountier t
voicing feature of signal wave included in missipgckets. Precisely, we develop separate speecityqual
estimate models, which capture the perceptual teffieemoved voiced or unvoiced packets, usingariztied
simple and multiple regression analyses. A new dpeapiality estimate model, which mixes voiced and
unvoiced quality scores to compute the overall spegiality score at the end of an assessment alfasy
developed following a rigorous multiple linear reggion analysis. The input parameters of proposaiing-
aware speech quality estimate models, namely Padsst Ratio (PLR) and Effective Burstiness Proligbil
(EBP), are extracted based on a ndwalkov model of voicing-aware packet loss which captures properly the
feature of packet loss process as well as the ngiproperty of speech wave included in lost packete
conceivedvoicing-aware packet |oss model is calibrated at run time using an efficient padkes event driven
algorithm. The performance evaluation study shdveg bur voicing-aware speech quality estimate nwdel

outperform voicing-unaware speech quality estimabelels, especially in terms of accuracy over a wathge



of conditions. Moreover, it validates the accuraéythe developed parametric no-reference speeclityqua
models. In fact, we found thairedicted scores using our speech quality models achieve an extelle
correlation withmeasured scores (>0.95) and a small mean absolute deviation (O@5ITU-T G.729 and

G.711 speech CODECs.
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1. Introduction

Over the last few years, VolP (Voice over IP) seevhas reached large popularity because of its
attractive features for consumers and Telecom smrproviders. For consumers, the cheap and even fre
billing, the good perceptual quality, the mobilgypport, and the enriched vocal service capahibitystitute
highly attractive features. For telecom operatthrs,management flexibility and handy service peapation
and upgrading are highly desirable properties Ififact, packetized VolP service increasingly repkand
extends ordinary vocal telephone service in honmes emterprises [2]. To successfully integrate teber
service over IP infrastructure, customers shouldeggnce a good perceptual quality. However, orglina
unmanaged multi-service IP networks impair the flow of voigmckets, which are often carried using the
unreliable UDP transport protocol, by introducirejay, delay jitter, and packet loss, disorder, dumglication
[3]. Several remedies have been reported in tieeatiire to deal with such sources of impairmenisA]3
Basically, there are two schools of thought to iower the perceptual quality of VolP telephony, re@cand

predictive strategies:

— Reactive approaches: They try to reduce introduced IP impairments tigto the well-engineering of
adaptive applications at sender and receiver salascount for service sensitivity to network desad
packet loss. This enables to smartly hide percépiuzoying effects caused by time-varying end-td-en
bandwidth, packet loss, and one-way network delaghout the requirement to upgrade/alter the
operational mode of existing network infrastructuketually, Skype and GoogleTalk represent two well
known distributed adaptive applications widely-usedthe Internet to achievewltimedia and vocal
telephony over IP and hybrid IP/PSTN networks, eetigely [5]. The adaptive behavior of Skype and
GoogleTalk at sender and receiver sides has beaensdxely studied and compared at perceptual leyel

B. Sat et al. [5].



— Predictive approaches: They reduce network IP impairments by smamfnaging network resources to
accommodate services according to their specificirements. The telecom operators can define their
proprietary management policy and network architectto improve the quality of delivered delay-
sensitive services. The intermediate nodes areppedi with suitable QoS mechanisms such as call
admission, packet classification and schedulingyvels as preferential treatment of crossing stregns
7]. This requires upgrading the operational modet#rmediate nodes, which may be difficult in karg

heterogeneous environments.

In practice, to perform VolP conversations, appima layer reactive approaches are usually used by
default. If a predictive approach is presented he transport network, then the intensity of network
impairments will be significantly reduced or eveemoved, which greatly helps end-to-end reactive
approaches to achieve a better perceptual qubldiice the existence of some recent proposals wdiithat
improving the perceptual quality of VolPoW (VolPeswvireless) using cross-layer optimisation strateg
8, 9]. For instance, the source can dynamicallyptdae packet duration according to the channdksta
number of wireless hops, and prevailing access orétwdelay [8]. Moreover, it can dynamically adjulse
number of retransmission attempts and backoff datdink-layer according to the perceptual impoceuof

the outgoing voice packet [9].

In recent years, the performance of proposed adapgiehavior of VolP application and network
management policy is judged according to theiredtle perceptual quality [3, 4, 5, 8, 9, 10]. Tally, the
perceptual quality of an audio processing systequantified in terms of MOS (Mean Opinion Scorehiat
is a real number between 1 (bad quality) and 5dléxat quality) [11]. Normally, the value of MOSae for
a given configuration (application and network)olstained usingubjective trials [12]. Precisely, a set of
human subjects, placed in a lab environment, akedaso vote either a set of heard impaired speech
sequences, which is referred tdiggng quality and termed as MOS-LQS, or a conversational tagkrience,
which is referred to asonversational quality and termed as MOS-CQS. The ITU-T P.800 speciboatf
subjective trials aims primarily at evaluating therceptual effect of potential sources of impairteaturing
vocal conversations oveircuit-switched telephone systems such as loudness, side-tone, noise, echo, signal
attenuation, acoustic features of edge devicesoardvay transit delay [12]. They have been submeityu

adapted and extended by the research communityalaade new sources of impairments experienced over



VolIP systems such as packet loss, low bitrate COH)BEGd delay jitter [4, 13, 14]. Notice that théjsative
approach, especially for large scale testing, igllg judged as time-consuming, expensive, and eugtdme
[13, 14]. Moreover, it is unable to rate at rundimpacket-based voice conversations in order totatiap
application and network behavior, accordingly. That why, objective approaches, which estimate
automatically the perceptual quality usingnachine-executable speech quality measurement (SQM)
algorithms, are preferred and widely-used by tetecoperators [11]. Extensive research effort within
standardization bodies, academic institutions, amtlistry companies has improved the correlation and
accuracy between objective and subjective scores satisfactory degree [11]. Machine-executable SQM

algorithms can be classified into two categories:

—Black box signal strategies: They estimate the perceptual quality by analyadpgech waves without
any knowledge about the features of transport Bystéfhey can be classified as full-reference (or
intrusive) approaches, which have as input thereafee and degraded speech sequences, and no-
reference (non-intrusive or single-ended) approgctich only have as input the degraded speech

sequence.

—Glass box system parameter strategies: They estimate the perceptual quality using ao$edtatistical
measurements gathered from the network such ag, ddtay jitter, echo, and packet loss ratio and
features of edge-devices such as coding schemketplss concealment algorithm, and de-jittering

buffer strategy.

In practice, the glass box system parameter appesaare more preferable for VolP conversations
because they are able to efficiently predict attmne speech quality scores using packet-layeistitl
measurements. However, glass box system paranpgievezhes are relatively less accurate than blagk b
signal approaches in the estimation of the peredmuality scores. The development of a glass lysktem
parameter assessment approach needs the develapfseitable parametric quality models, which tfans
objective network and edge measurements to MOS idorermally, speech quality estimate models are
derived following a regression analysis using a ewidhnge ofsubjective speech quality empirical
measurements [11]. However, the large number ofditons makes large scale subjective testing
unreasonable in terms of cost and time. That is, idiitrreference signal-layer objective approachekich
give a tight estimation of subjective scores, aseduto measure the perceptual quality [13, 14,163,
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Generally, the standard full-reference signal-ldy&-T SQM algorithm, described in Rec. P.862 ardated
as PESQ (Perceptual Evaluation Speech Qualitylséd to gather required SQM for parametric model
development [17]. The produced score is termed @&SMQO (Mean Opinion Score — Listening Quality

Objective).

A well-known glass box parametric speech qualitydelpdenoted as E-Model, has been defined in the
ITU-T G.107. E-Model has been conceived to presligtech quality oveelephone systems [18]. The goal of
E-Model was to give a general picture about theee@f satisfaction of a set of users for a givetwork
configuration. The system characterization pararsedee stratified into simultaneous, delay, andmgant
impairment factors. For the sake of simplicity, ferceptual effect of impairment factors is assuamrditive
on psychological scale [18]. Notice that recentjettive experiences indicate that additive propeaty
impairment factors can lead to inaccurate predictib the conversational perceptual quality undesess
circumstances [19]. This constitutes the major arasf confining the utilisation of ITU-T E-Model fo
planning purposes only [19]. The values of parameté E-Model are measured from the planned/exstin
configuration, then combined using a set of motielsroduce a rating factor, denoted as R and rgnigom
0 to 100. Notice that the rating factor R can lamdformed to MOS scale using standard functionsAd]
such, E-Model is unable to accurately evaluateuattime the perceptual quality on call-by-call lsasi
Moreover, it is unable to evaluate a VolP convéosagiven that input parameters over IP networlestane-
varying. That is why the E-Model has been adaptedupgraded by several researchers to be ablethicpr
on call-by-call basis the perceptual quality of Fotonversations [15, 16, 19, 20, 21, 22]. Accorlging
extended E-Model can act asiagle-ended packet-layer parametric SQM tool of VolP conversations. To do
that, impairment characterization parameters whrehindependent from transport network, such as rad
circuit noises, and the acoustic features of edgcds are set to their default values. Moreovareml delay
impairment models, which accept as input the egpesed mean end-to-end delay, have been rigorously
developed and extensively evaluated in the liteeafd0, 21, 22]. Furthermore, new equipment impairtn
models specific for VolP conversations, which qifgnthe perceptual effect opacket loss and coding
scheme, have been reported in the literature [@422, 22]. Notice that equipment impairment facttanoted
as I, can be transformed to a MOS-LQO score using [sleittunctions [22]. Actually, new extensions of E-

Model are in progress to consider new configuratiand scenarios experienced by customers over next



generation networks such as vertical and horizoméadover over last-hop wireless data networksterou
changes over multi-hop wireless networks (MANETgi)leband and multiple description speech CODEC

schemes, on-line switching of coding scheme are] faatures of loss process, etc.

It is well-recognized that packet loss over wideaalP networks is bursty and time-varying [21]. $hu
using mean packet loss ratio alone as a charaatierizparameter for quality prediction can leadato
inaccurate estimation of experienced quality. Régenesearch work has been reported in the liteeato
accurately quantify the perceptual effect of tineeying bursty packet loss behavior. In [21], autestimates
separately the perceptual quality at high and low packet jpssods and subsume the perceptual artefacts at
transition between high and low loss periods ad aglthe temporal location of high loss period lie t
calculation of the overall equipment impairmenttéacThe parameters of developed equipment impaitme
model such as mean packet loss densities and @hgdtr high and low loss periods are extractethfeofour
state packet loss Markov model which efficientlg dimely captures the global features of packes ju®cess.
The conversational speech quality is calculatedgusine additive effect of impairment factors addpbs
ITU-T E-Model. In [23], the author describes a S@il which calculates a set of “base” parameteitheat
reception of each new voice packet such as paokst fatio, packet delay variation, mean burst durat
maximal burst duration, etc. Each “base” param&tetransformed by a non-linear function to subsume
network impairment factor that influences the pptoal quality in a non-linear way. The transforroati
functions and weighting coefficients are adaptedefach edge-device and CODEC used. The calibrafion
speech quality estimation models is performed ftifinoa large scale training process, which coversde w
range of conditions evaluated using ITU-T PESQ rtlgm. In [14], authors proposed new speech quality
estimation models that account for the bursty matfr packet loss process over IP networks. To dt th
speech quality regression models, which accepaemneters inter-loss and loss durations, are desdland
validated for several CODECSs. At run-time, the petaal quality is estimated for each (inter-losss) pairs,

then linearly combined at the end of an assesspeitd to produce the overall perceptual quality.

The goal of the previously described single-endszket-layer SQM algorithm was to accurately evauat
the speech quality by properly capturing the bunstiyre of packet loss process over IP networkey Eolely
rely on information included in the standard heax@rtent of received packet stream and do not axtdou

the features of payload content. As such, theyraedihat conveyed voice packets have an equal ingract



perceptual quality. However, it has been clearlywahin the literature that voice packets have déffie effect
on the perceptual quality according to their teraptwcation and the content features [4, 24]. Tais result

in an inaccurate estimation of listening perceptuellity, especially when the evaluation processiformed

on a sequence-by-sequence basis. Hence, for teeo$alccuracy improvement, new speech quality nsodel
that account for the features of lost packets éndhiculation of the perceptual quality are needlidice that
the payload content itself is not needed, butdtgifres or characterization information (metadata)crucial
for the evaluation of the perceptual effect of nmggackets.

By considering the voicing feature of wave sigmadluded in lost packets during the assessmentvef li

VolIP conversations, this paper proposes the foligvgiontributions:

(1) The development of new parametric voicing-awaresspejuality estimate models, using a sophisticated
assessment framework and multiple regression a@rsalykich account for both the packet loss location
pattern and the voicing feature of signal wavedunted in dropped voice fragments. The receiver is

notified about the voicing feature of dropped vaieekets by the sender.

(2)The design of a new combination rule, calibrateidgua large number of speech samples and condijtions
in order to quantify in a non-intrusive way the qaptual effect of dropped voiced and unvoiced dpeec

wave fragments simultaneously.

(3)The design of a novel Markov model, which propatgounts for voicing feature of speech wave inaude
in lost packets. The conceived loss model, whiatal#rated at run-time using a computationallyoiht
algorithm, is employed to extract pertinent charazation parameters of packet loss process sutheas

mean loss durations for voiced and unvoiced packetan loss ratios for voiced and unvoiced packets.

(4)The proposal of a new efficient sender-based gatifin strategy used in order to inform the reaedmmut
the voicing feature of sent packets. An analytstady is conducted to accurately quantify the aolak

bandwidth overhead and a practical configuratioe@®mmended.

The performance evaluation study shows that oucingiaware speech quality estimate models
outperform voicing-unaware speech quality estinmadelels in terms of correlation and accuracy oveide

range of conditions. Indeed, we found that our ip@taic models achieve an excellent correlation al®5



and a mean absolute deviation in the order of 6r2'TU-T G.729 and G.711, equipped with a standard

receiver-based Packet Loss Concealment algorithegch CODECs.

The remainder of this paper is organized as folldvestion 2 illustrates the importance of voiciegttire
in speech quality modeling and evaluation. SecBatescribes the voice quality assessment frameusek
to develop and validate voicing-aware speech quafibdels. Section 4 presents how speech sounds are
stratified according to their voicing property adéscribe the methodology used to develop voicingraw
speech models. In Section 5, we introduce a newingiaware packet loss model and present an efficie
algorithm used to extract pertinent parametersSdation 6, we compare the performance of voicingraw

and unaware speech quality models against thesinerdiTU-T PESQ algorithm. We conclude in Section 7

2. Importance of voicing feature on speech quality evaluation

Basically, speech waves can be divided into vosmehds such as ‘a’ and ‘0’, unvoiced sounds such as
‘h” and ‘sh’ or silence, which is referred to\ascing feature [4]. Several studies reported in the liteahave
shown that the voicinfpature of missing packets greatly influences thegptual quality of delivered packet
stream [4, 24, 25]. In accordance, besides thenattf missing voice segments, a single-ended pdajer
SQM algorithm should account for the voicing featuiof lost packets. In [21], A. Clark indicatestire
description of his widely employed SQM tool thest&nce of some outliers which can likely be remoyed
the consideration of the voicing feature of losthzds. Often, the sender checks the vocal souttétaeising
a Voice Activity Detection (VAD) algorithm and cesss temporarily the transmission process upon the
detection of a silence [3, 4]. In such a case, glatibss process can only affect voiced or unvoieaide
segments. Obviously, if the VAD mechanism is disdlthen perceptual effect of lost packets, whiatuoc

during silences, are negligible [4].

For the sake of illustration, we plotted in Figuréghe MOS-LQO calculated using sixteen standard 8s-
speech sequences impaired by dropping either vaicaghvoiced 20ms-speech segments. The patterns of
dropped packets are obtained using a voicing-aarsty packet loss generator, which signifies syatech
frames are dropped selectively according to thedicing feature. The listening quality scores are
automatically estimated using the full-reference ITU-T SQM PE&{@orithm. Two standard speech

CODECs, which are often used as reference, have cmesidered: G.729 (model-based coding scheme) and
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Figure 1: Importance of the voicing feature of dropped 8Bpeech segments on
perceived quality for speech CODEC G.729 and GHIQI

G.711iPLC (sample-based coding scheme), whichgdtethe ITU-T speech CODEC G.711 equipped with
the standard receiver-based Packet Loss Conceal(®&@) algorithm described in ITU-T Rec. G.711
Appendix | [26, 27]. The data rate generated by28.a@nd G.711iPLC are respectively equal to 8 kipyk6
kbps. Further details about performed empiricaldrwill be given later in Section 4. As we can f®en
Figure 1, the voicing feature of dropped voice feansignificantly influences the quality scores rdbgss of

the speech CODEC in use. Moreover, we clearly olesdat dropped unvoiced 20ms-speech segmentsrimpai
much softly the perceptual quality than dropped voiced 20neesp segments. Notice that the packet loss
occur more frequently during voiced segments thavoiced segments because they are statistically mor

frequent than unvoiced ones.

Besides the influence of voicing feature, the darmatand location of loss runs effect notably the
perceptual speech quality. Typically, the largee tturation of loss runs is, the bigger is the dyali
degradation. Moreover, it has been observed faaicemodel-based CODECs such as G.729 that droping
single voiced frame located at the start rathem tha middle or the end of a voiced sound entailshhmore
perceptual quality degradation [4, 24, 25]. In fatibdel-based coding schemes find major difficutty
recover such a missing voiced packet because tkefssuitable information to reconstruct the anagivoice
frame. In addition, such CODECSs entail lengthy epmpagation period, which can lead sometimesair
the whole subsequent voiced sound [25]. That is,v@peech Property-Based (SPB) priority marking and
recovering schemes of speech fragments have bpertaé in the literature to improve the perceptyslity
[4, 25, 28, 29]. This likely avoids losing percegity important voice packets and hence improvesotrerall

perceptual quality.
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Figure 2 : Devation of perceptual quality for a given mda3irtR among sixteen
voice samples using G.711iPLC speech CODEC.

Recently, L. Ding et al. conceived new single-engedket-layer SQM models that account for the
voicing feature of signal wave included in missimice packets [30]. Their voicing-aware SQM modetse
derived following a third-order regression polynaimodel. The sole input parameter of the propesscked
(resp. unvoiced) SQM model, which captures theceféé missing voiced (resp. unvoiced) packetshis t
mean ratio of lost voiced (resp. unvoiced) packéss.such, their SQM models are unable to accurately
capture the effect of bursty packet loss behaWosuch a case, the pattern of missing packets dugation
and distribution of loss instances should be plgpmnsidered to accurately estimate the percemjuality.
This feature is supported by Figure 2, which repmés the measured average of MOS-LQO scores and
standard mean deviation for a given mean voice#tgidoss ratio using G.711iPLC. The SQM are pergm
using sixteen 8s-speech sequences and a voicing-dwuesty packet loss generator. This curve indg#tat
per-sequence speech quality scores can significdetlate from the average score for a given mean packet
loss ratio. Hence, the building of speech qualigdiction models, which only use the mean packes tatio
as predictor, leads likely to an inaccurate esionabf experienced listening speech quality. Touced
inaccuracy, speech quality prediction models shoaltkider the location and duration of missing ggiarts.
Notice that the input parameter and polynomial dedrave been selectaduitively, i.e., without a thorough
statistical analysis investigation. In our opinidhe predictors and regressive model should beoigdy
selected through an elaborated statistical analydeover, L. Ding et al. estimated the overaleegh
quality score of a packet loss impaired-speechesgpuis calculated through a linear combinatiotheftwo
scores produced by developed voiced and unvoicegchp quality models. In our opinion, the linear

combination model can be greatly improved to tigmlimic the behavior rating of users by accountiog
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eventual interaction between voiced and unvoicedesp quality scores. Further, the receiver-based
methodology adopted by authors to detect the vgit@ature of lost packets introduces additionatessing
overhead with a high risk of wrong decisions, egllrcover a burst of packet loss. However, evethvain

additional consumed bandwidth, we believe thatalsebased strategy is more suitable and efficient.

3. Framework for speech quality modeling

The development of parametric speech quality mooetsls to set-up suitable speech quality assessment
(SQA) frameworks. There are several approacheset@ldp a SQA framework, which is dependent on
intended goals, e.g., evaluation of adaptive bemanfi application or transport network policy, taétion and
tuning of speech quality models, measurements icEvuality over existing voice transport systeeats,[11].
Particularly, for speech quality modeling, softwhesed SQA frameworks, rather than emulation-béeste
beds or existing voice transport systems, are rsortable because of their price- and time-effectass and
their ability to generate speech quality measurésnender specific and controlled scenarios. It basn
widely used in the recent few yearsealuate and develop parametric speech quality models over a wide

range of packet-based network impairments [4, 3418, 22, 23, 24].

Figure 3 gives the basic components of a softwased SQA framework which aims at modeling of the
listening speech quality according to a set of aigand packet- layer measurements. Basically,teafse
standard reference speech sequences, that havéicspemperties such as sampling rate, sample pi&t|
content, and duration, are encoded, packetized, deévered through a system under test and thailvas
several sources of impairments such as packet hbasgrror, delay, echoes, and noises. Notice thata
software-based framework, the system under testbearmm generic network simulator such as Network
Simulator (NS2), a dedicated voice transport syssemulator such as Message Automation and Protocol
Simulation (MAPS) tool, or analytical network impaient models [31, 32, 33]. The system output isluse
generate impaired versions of reference speecleregs. In our case, the corresponding relepacket-layer
parameters of delivered packet stream are properly measungdrecorded. The quality of degraded speech
sequences is either evaluated by human subjecem caiccurate signal-layer full-reference vocal dyali
assessment algorithm such as ITU-T P.862 [17]. Astrmaned previously, impractical subjective trialger a
large scale testing are circumvented by using nmacbkecutable speech quality assessment algorittinnsh
accurately mimic users’ behavior rating [4].

11
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Figure 3: Vocal assessment framework for no-reference $pgeality model developement.

In this work, we assume that the system under wdsth is imitated based on a widely-used analitica
Markovian model, only introduces bursty packet lmsthe flow of sent packet stream. As illustrateérigure
3, the potential set of parameters, that likelget the perceived quality, is directly measuredfthe system
under test such as mean loss ratios for voiceduandiced packets, maximal voiced and unvoiced burst
durations, and the set of inter-loss gap and lagstibns. Often, “base” measurements require to be
transformed to precisely reflect human perceptibaxperienced distortions. This helps to precisagount
for the sensitivity of the overall listening pertegl quality score to each single base paramet&tian. The
developed framework enables monitoring and recgrdih characteristic parameters of packet loss gg®c
For certain parameters a single value is retureegl, PLR (Packet Loss Ratio), CLP (Conditional 4.0s
Probability), and maximal burst duration (MaxBD)rFother parameters several values are recordgd, e.
inter-loss gap and burst loss durations. For eachnpeter, we determine, using regression,ddgeee and
fitting coefficients of the polynomial that maximizes tloerrelation between the measured parameter values
and MOS-LQO scores. For multi-value monitored patams, we compute at the first stage thendrm as

follows:

SCORES SO @

where, X(k) is the R measure of the parameter X and M is the total reunolb measured samples over an
examined sequence. Notice thatrlorm has been classically used to model the maatity behavior of
human hearing system [4, 17]. In fact-iorm highlights the effect of parameter variatiom perceived
quality. In this work, the value of p is variedthe set {1/10, 1/9... 1/2, 1, 2 ... 8, 9}. The coat&n factor is

calculated as follows:
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where, R is the correlation coefficient between wandinal-equal sets,; s known value of the measured
quality score, yrepresents a value of the examined parametedy represent, respectively, the mean value
of the two examined sets, and N corresponds toc#indinality of each set. Algorithm 1 summarizes the

transformation process applied to analyzed paramatel included in the developed framework.

Algorithm 1: Determination of optimal polynomial regressiondats for each
potential characterization parameters

OV: matrix which contains the original values obfjized parameters

LPV: matrix which contains j-norm values of analyzed parameters

MOS: array which contains the MOS value of eacleésp sequence, condition) pair
RC: matrix which contains polynomial regressionftioents of analyzed parameters
RCO: matrix which contains optimal regression coefhts of analyzed parameters
OP: matrix which contains for each parameters agitppolynomial degree and p-norm

CM: matrix which stores correlation for each analyparameters

1: for each par belongs to the set of potential parametirs
/* Vary the polynomial degree from 1 to 6 */
2: for m from 1 to 6do
[* Vary the norm */
3: for each p belongs to {1/10, 1/9... 1/2, 1,2 ... 8, 8%
I* Compute and record.tnorm of each analyzed parameter */
4:  LPV[par] = lg-norm (OV[par], p
/* Apply regression process of degreg*in
5:  RCJpar] = polynomial-regression (LPV[pa¥]OS, m)
/* Measure the correlation between estimatedraaedsured scores */
6: CM[m, p] = correlation(regress(LPV[par], RC[par]), MOS)
[* Update the regression model if correlatiohigher than previously founded */
7: if MC[m;, p] > Rmaxthen

8: OP[parf {m;, p};

9: Rax= CM[m;, pJ;

10: RCOlpar] = RCJpatr];
11: end if

12: end for

13: end for

14:end for
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When the optimal-correlated transformations forpaflential parameters (predictors) are determities,
voicing-aware speech quality estimate models, whbimmbines potential transformed parameters, isveri
using multiple linear regression analysis (see f@d) [34]. To do that, a parameter/factor selecfioocedure
should be followed to pick-up the parameters whipthibit a strong dependence with speech quality
measurements. Basically, there are three technigh&h can be used to select suitable parametensafd
regression, backward elimination, and stepwiseession [34]. Thdvackward eimination technique initially
subsumes all parameters and eliminates iteratitredge with negligible fitting coefficients. Therward
regression technique initially selects the parameter that ecds the best correlation factor with the set of
known scores of the measured quality, then, itezbti selects the most correlated one with thevsetsidual
scores of the measured quality after the elimimatibthe effect of selected variables. This progsdsalted
when the returned t-student value (test of sigaifae) of the correlation coefficient between thangixed
parameter and residual subjective scores becordewo Thestepwise regression technique, which has been
used in this work, is a combination of forward doatkward technique. The selection of the suitalidehis
made step-by-step after examination of several guatibns. Note that multicollinearty or dependeacgong
potential parameters should be avoided and remimveldtain stable speech quality models.

In next section, we adopt the described strateggriter to develop parametric voicing-aware quality
estimate models for packetized voice conversatir ¢P networks. The conceived vocal quality estema

models account for both the voicing feature antepatof packet loss.

4. Speech quality models for dropped voiced and unvoiced frames

Obviously, the development of voicing-aware speqallity models needs to discriminate between
voiced and unvoiced speech signals. In this work, uge the simple, yet efficient sender-based SUVING
algorithm to distinguish between speech wave setgri@b]. The SUVING algorithm utilizezero-crossings
(ZC) andsnort-term energy (STE) to identify the type of each examined speeagment [35]. The zero-
crossing metric represents the number of times apeech fragment where the amplitude of sound wave
changes its sign. The short-term energy of a spaghment is calculates as follows:

E,= Y (x(mw(n-m)) @

m=n-N+1
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where, x(m) corresponds to the energy of tHesample, w is a hamming window of size N samplas an
centered between the (n-N¥1and " samples. The energy is higher for voiced than ise¢bspeech, and
should be equal to zero for silent regions in clsa@ech signal recordings. Moreover, the zero-grgsate is
higher for unvoiced speech fragment than voiced dhe standard values of zero-crossing metriclbms

clean voice segment, are roughly equal to 12 arfdrS@iced and unvoiced speech, respectively [35].

TABLE I: Voicing decision rules
Short-Term

Zero-crossings (ZC) Energy (STE) Decision
Rule 1 =0 =0 Silence
Rule 2 HIGH LOW Unvoiced
Rule 3 LOW HIGH Voiced
Rule 4 =0 HIGH Voiced
Rule 5 HIGH HIGH Voiced
Rule 5 LOW LOW Voiced
Rule 6 =0 LOW Unvoiced
Rule 7 LOW =0 Silence
Rule 8 HIGH =0 Background noise
If (ZC < zTh) Then= 0 If (STE < eTh) Then= 0
Else If (ZC< zThy ) Then LOW Else If (STE < eTh Then LOW
Else HIGH Else HIGH
_ Lower threshold of zero- _ 5 Lower threshold of
ZThy =5 crossings eTh=2x10 short-term energy
2Th,= 35 Upper threshold of zero- eTh= 102 Upper threshold of

crossings short-term energy

The presence of unavoidable background noise, wikidipically characterized by high zero-crossing
rate and low short-term energy, induces inaccurnacys/V/U (Silence/Voiced/Unvoiced) discrimination
process. To reliably identify the voicing featufespeech segments, a set of additional rules has tefined
by SUVING developers which are summarized in Tdblehe upper and lower thresholds, given in Table |
are used to classify metric a9, LOW, and HIGH have been tuned and calibratetraling to the properties

of our processed speech materials.

A classical Gilbert/Elliot Markov model (see Figu4¢ has been used to mimic packet loss behavior
experienced by users over a bursty lossy chan@gl Ak illustrated in Figure 4, a Gilbert/Elliot el has 2

states, NON-LOSS and LOSS which represent respdgtey successful and failesbice packet delivering.

1p P ClP=1-q

L&Y 1o

q
Figure 4: Gilbert/Elliot chain Markov loss model.
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The mean sojourn durations under states NON-LOSIS @8S are, respectively, equallipand1/q where

p and g are the transition probabilities from NOR&S to LOSS state, and conversely. Notice that alblym
the value of p + g is less than one [36]. If p = 4 then the Gilbert/Elliot model is reduced to erfoulli
model. The model is calibrated using ULP (Uncowodiil Loss Probability), which represents the PLR
(Packet Loss Ratio), CLP (Conditional Loss Prolighjland EBP (Effective Burstiness Probability)hiah

are calculated as follows:

ULP = . E ; CLP=1-q EBP= ULPxCLP (4)

The EBP metric, which has been initially definedlyHammer et al., is used to introduce packet loss
burstiness in accurate way over a short periothtd {8-20s) [37]. The value of EBP should be lésstULP
according to the definition given in (4). This perty should be considered during the design of SQak to
produce realistic and accurate loss patterns. Eeldped Gilbert/Elliot model, which mimics the tdigion
introduced by the system under test (see Figurba®)as input ULP and EBP, which have been finahed

to cover a wide range of conditions.

TABLE I1: Experimental conditions for packet loss behauging Gilbert Model

Parameters Conditions Instances
CODEC G.711iPLC, G.729 2
Mean Packet loss ratio (PLR) 1, 3,5, 10, 15, )39, 35, 40, 45, 45 % 12
Ratio of burstiness, R (EBP = PLR/R) 2,4,6,8 4
Dropped frame feature Voiced, Unvoiced 2
Audio sample 8 male, 8 female 16
Total number of combinations 2x12x4%2%16 3072

Table 1l summarizes the series of conducted engpispeech quality measurement trials. The speech
materiel contains a total of sixteen standard &eep sequences, spoken by eight male and eighiefema
English speakers. For each speech sequence, wevoiap packets according to Gilbert/Elliot modetdo
generator while considering the voicing speech waature included in removed voice packets. Inifeal
original Gilbert/Elliot model drops media packetgiardless the voicing feature of speech wave iecud
them. To enable a voicing-aware packet loss prosessmonitor the voicing feature of presumed drappe
packets in order to ignore loss instances whichcaftinsuitable packets. The degraded version gfnaii

sample is generated then the MOS-LQO score is ledzl using the ITU-T full-reference SQM PESQ
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algorithm. In addition, theffective ULP, EBP, maximum burst duration (MaxBD), and te¢ssof inter-loss
gap and loss durations are properly recorded fon éspeech sequence, condition) pair. The totalbeurof

evaluated samples and conditions is equal to 3072.

TABLE I11: Best correlation between measured transformeghpeters and

measured speech quality scores of G.711iPLC an29G.7

Voiced Unvoiced
CODEC Parameter
m p R m p R

ULP 2 - 0.952 2 - 0.906
EBP 5 - 0.787 2 - 0.638
G.711iPLC MaxBD 4 - 0.491 2 - 0.540
{inter-loss} 3 0.50 0.900 3 1 0.880
{loss} 5 0.25 0.866 4 0.16 0.905

ULP 3 - 0.965 2 - 0.832
EBP 5 - 0.790 6 - 0.556
G.729 MaxBD 4 - 0.501 2 - 0.466
{inter-loss} 4 0.2 0.924 3 0.5 0.825
{loss} 4 0.11 0.951 1 0.11 0.836

The obtained measurements based on empirical énalstatistically analysed using Algorithm 1. Hoe
sake of illustration, we plot in Figures 5a andtbb result of application of Algorithm 1 to intersls gap
duration metric for G.711iPLC speech CODEC. As wa@ oote, the perceived quality is optimized for a
specific combination, p-norm and polynomial degreewhich is recorded and used during the appboabi
the multiple variable regression analysis. Notibhattsome authors refer to such a process as paamet

linearization with respect to the response varif@sg.

092
0,92 -
——m=2
0,88
E
Q =
= £0,84
= &
- L]
S S 08 -
w
0,76
0,72 T T T T T T T T 1 0,72 T T T T T T T T 1
001 2 3 4 5 6 7 8 9 001 2 3 4 5 6 7 8 9
p-norm p-norm
(a) G.711 voiced ignored (b) G.711 unvoiced rgdo

Figure5: lllustration of theapplication of Algorithm 1 to inter-loss gap ducetimetric.
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Table 1l summarizes the optimal settings for GiPLT and G.729 speech CODECs which achieve the
best correlation factor, R, between examined pameind measured quality scores. As we can see, th
parameter transformation of ULP, EBP, and MaxBIndependent of p-norm because they are single-value
parameters. The transformed ULP, {inter-loss}, finds} exhibit high correlation with MOS-LQO, wheas,

transformed EBP and MaxBD are relatively less dateel with MOS-LQO (see Table IIl).

As outlined in Section 3tepwise regression technique has been adopted to derive suitable speech quality
estimate models for bursty missing voiced and weaipackets. The proposed voicing-aware parametric
speech quality estimate models for G.711iPLC aritl® Speech CODECs, which are given in (5) and (6),
have been selected after examination of severalbit@tions of investigated packet loss process
characterization parameters. In our statisticallysra we found a strong correlation between ULRI an
Lo({inter-loss}) measures. Therefore, to assure tabikty of speech quality model, either the ULPtbe

Lo({inter-loss}) parameter has to be eliminated frthra final model.

MOS, (ULP,{loss}) = 0.80x P2, (ULP) +0.23x P% .., (L 1, ({l0ss))) it CODEC )
MOS,, (ULP, {loss}) = 0.48x P2 . .., (ULP) +0.52x P .. (L 4 ({loss}) = G.711iPLC

MOS,, (ULP, {loss}) = 0.74x P2 .4 (ULP ) + 0.25% B¢ 16 (L 4 ({loss})) If CODEC ®)
MOS,, (ULP, {l0ss}) = 0.31x P2 1, (ULP) +0.68x P 154 (L 1o ({l0ss})) = G729

where, MO$§ and MO$S stand for speech quality estimate models whengossess only affects voiced and
unvoiced packets, respectively, P is the polynortrhsformation applied to each selected paraméier,
exponent of P refers to the polynomial degree. 8 #¥lgives the optimal fitting coefficients of polgmials

used in (5) and (6).

TABLE 1V: Coefficients of polynomial regressive models

ualit Fitting coefficients for each degree
CODEC Q y Parameter g =
model 0 1 2 3 4 5
) ULP 3.992 -26.974 77.053 * * *
Voiced
) Ly({loss}) 4.064 1.224 -7.161 5.832 -1.783 0.186
G.711iPLC
) ULP 4,244 -29.045 166.470 * * *
Unvoiced
Lo({loss}) 4,195 -1.556 3.790 -6.752 3.287 *
) ULP 3.637 -35.898 194.417 -351.605 * *
Voiced
6.729 Ly({loss}) 3.414 -0.841 -3.260 2.931 -0.659 *
) ULP 3.804 -28.789 173.329 * * *
Unvoiced
Lo({loss}) 3.700 -1.300 * * * *
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Figure 6: Accuracy of developed voicing-aware speech quabktimate models.

In order to verify the accuracy of developed modets plot in Figure 6 the scatter-plots which shbe
relation between measured MOS-LQO and predicted M€Bes using models given in (5) and (6). As we
can see, the predicted scores exhibit good cooelatith measured one for all configurations (>0.83

Moreover, we see that our models achieve a veryRoat Mean-Squared Error (RMSE) below 0.25.

After modeling of the effect of packet loss proctéws only affects voiced or unvoiced frames, dttut
is required to develop a speech quality estimatdainavhich quantifies the effect obicing-unaware packet
loss process that drops indifferently voiced andoised packets. To do that, we drop media packets
according to the original Gilbert/Elliot Markov meld which results in the deletion of both voiceddan
unvoiced packets. Three degraded speech sequenecgsreerated for each treated clean speech sahtye.
first (resp. second) degraded speech sequenced@sclanly missing packets that contain voiced (resp.
unvoiced) speech wave. The third degraded speeglesee includes missing packets that contain vaaced

unvoiced speech wave. The quality scores of theetproduced distorted speech sequences are obtesimgd
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Figure 7: Accuracy of developedobal speech quality estimate models.

ITU-T SQM PESQ algorithm. Theverall speech quality estimate model, which capturesetffiect of
missing voiced and unvoiced speech packets, isnaatdollowing a multiple linear regression anagysihe
primary factors of overall speech quality estimaiedel are speech quality scores measured aftetefleéon
of either voiced or unvoiced speech packets favargspeech sequence and loss pattern. After exdianinof
several models, we found that the following expmessichieves an excellent correlation and precisiciine
estimation of overall speech quality scores fortithe considered CODECSs:

MOS,, =w,, xMOS, +w  ,xMOS, +w, , xMOS, +w,xMOS +w, , xMOS, xMOS, (7)
where, w are the weighting coefficients which are obtairbed on the minimisation of RMSE. The
correlation factor, R, the RMSE, and the valuemofiel coefficients are given in Figure 7. The sgaglots
(see Figure 7) prove the suitability of proposedesih quality models to estimate the overall spegehity

scores. Notice that at run-time the values of M@&d MOS are calculated based on (5) and (6).
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Figure 8: Optimized voicing-aware global speech quality eatemmodels.



According to the regression statistical analysie,sge the existence of negligible fitting coeffittein
the proposedeneric speech quality estimate model (< £0.1). Variab¥ih such negligible coefficients can
be dropped, leading to simpler overall speech tgualtimate models. This is illustrated in Figuremich
shows the scatter-plot linking MOS-LQO and predidtéOS score for G.711iPLC, when only M@factor is
considered. As we can see, the obtained overadichpguality estimate model achieves strong coroglatith
an insignificant increase of RMSE. This suggests ithwould be beneficial to seek a simple modeldach

speech CODEC rather than a complex more generiehfiodall CODECS.

5. A sender-based voicing featur e notification strategy

The developed speech quality models need vital stz about the voicing feature of lost packetsddo
that reliably, a sender-based notification scheare lme adopted. This is performed by piggybackiniging
feature of recent sent media packets toward thegpend. Such a voice packet will be referrecieer to
asmedia-voicing-report packet. Three important factors should be consideredptorize the performance of
such a scheme, framing duration (F), inter-delayeen two consecutive sent media-voicing-reporkees;
denoted as T, and temporal window covered by tbeided voicing report (see Figure 9). The framietpgl
refers to the required delay to fill one voice petckvhich is often set between 20 ms and 50 msrdicapto
the one-way network delay, network workload, arkleeverity. The larger the framing delay is, tinalker
is the amount of meta-data information insertedaimedia-voicing-report packet. In fact, an increate
framing delay results in a decrease of total nunatbeent packets. Moreover, the lower (resp. |grtyer inter-
media-voicing-report delay (resp. window durati@®))the greater is the additional consumed bandivielr
the sake of reliability, overlapping windows shoblelused. Notice that the overlapping duratiorejseshdent
on the inter-media-voicing-packet and window dunmagi As such, a missing voicing pattern fragment loa
recovered later at the reception of the next medieing-report packet. If overlapping is disablden the

window duration should be set equal to inter-meaiging-report duration.

le Window o wind

s o Media-voicing-

|:| |:| I |:| I |:|"’|:| I |:| ID I report packet
Framing ‘—d’ .

Inter-media- |:|Med|a packet

voicing report

CBR voice packet stream generated at the source nodelime (s)

Figure 9: Temporal relations of sender-based voicing feanatification strategy.
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Figure 10: Overhead due to sender based notification styategsend voicing
information about sent packet stream.
To properly quantify the additional overhead, weuase for instance that the voicing feature of each
media packet is coded using one bit, where O inelican unvoiced packet and 1 indicates a voicekiepaln

such a case|,(w/F)/g additional bytes are required to tell the receiabout the voicing pattern ¢fn/F|

previous F-sec. voice packets, where W represéetsvindow duration. In Figure 9, the selected terapo
setting enables dropping a single media-voicingrepacket without losing a fragment of voicing tpat
because the window size is equal to twice of imedia-voicing-report packet delay. Generally spegkif
the goal is to tolerate losing X successive mediaing-report packets, then the window durationutthdoe
set to X multiplied by the inter-media-voicing-reppacket delay. Figure 10a shows the additionakioead
in terms of consumed bandwidth under several windoa inter-media-voicing-report packet delay sg#in
As we can see, the supplementary overhead invabtigated situations remains pretty low (<2 kbgsjgure
10b illustrates that a decrease of inter-voicingpre packet delay results in an increase of corisecu
tolerable consecutive lost media-voicing-reportkeés. A good configuration under normal conditioh o
packet loss consists of setting inter-media-voigigport and window durations, respectively, to 66 amd
500 ms, which results in an insignificant overheagial to 0.42 kbps and a good tolerance of sus@essi
media-voicing-report packet losses of as much @&& Figure 10b). Notice that the overhead israsted to

voice source activity. The longer the activity dioa is, the bigger is the consumed bandwidth.

In reality, the value of W and T can be fixed irvadce or adjusted dynamically according to pacbes |
behavior. An optimisation strategy consists of atijig T according to the prevailing channel stakéctv can

be either BAD or GOOD. Under BAD (resp. GOOD) netikvetate the value of T should be decreased (resp.
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increased) properly. To calibrate T at run-time, thean inter-loss gap duration metric is relevianfact, an
increase of mean inter-loss gap duration enabl@gasing T which reduces the additional overheadth®
other hand, a decrease of mean-loss gap duratedsite reduce T. Practically, to avoid losing mediging-
report packets with high probability, the valueToShould be set at least equal to the half of mess-inter
gap. Obviously, a maximal tolerable threshold o&ét to 500 ms for example should be used since the
receiver requires the reception of voicing data@mn as possible. Notice that the receiver endhafses a
non-overlappingassessment window which lies between 9s and 20s. The mean intergapsduration can be
either determined implicitly by monitoring the flowf received packets or explicitly through adequate
feedback formulate and sent from the opposite €hd.implicit strategy is less accurate than thdieikmne
because it assumes that transport routes to dedaeket stream are symmetric, which may be invatider
several scenarios.

Given the redundant distribution of voiced and uoed segments, it is likely possible that classical
statistical lossless compression schemes can relolalcdwidth overhead. Note here that modern speech
CODECs such as G.729, G.726, and iLBC generateysswaall and fixed payload size of as much as 28sy
to encode 20 ms of speech waves. Therefore, tlevezcentity can implicitly identify data packethieh

contain meta-data voicing information by only chiagkthe packet length.

6. Voicing awar e packet loss behavior model

To extract efficiently required voicing-aware mea@su of input parameters of previously developed
speech quality models, we propose using a novekdamodel of packet loss process which accounts for
voicing feature of lost fragments. The developeddehoconstitutes a relevant extension to classical
Gilbert/Elliot model (see Figure 11). It enables #rccurate capturing the characteristic of thealvpacket
loss process over voiced and unvoiced speech wawee$. The conceived model has three states, NON-
LOSS, LOSQices and LOSGoices Which represent, respectively, the successfidpian of a voice packet

and the failed delivering of a voiced and unvoigeite packet.
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Figure 11: Markov model of voicing-aware packet loss process

The packet loss model illustrated in Figure 1labbcated at run-time according to the flow of reed
and dropped media and media-voicing-report packetfficient voicing-aware packet loss driven altion
is developed to update at run-time a set of coansdrich are used at the end of a monitoring petcod
calculate the transition probabilities. Therefquarameters such as mean packet loss ratios and lmoesin
durations for voiced and unvoiced speech wave fsanan be formally computed. Moreover, during the
voicing-aware monitoring period, the set of intesd gap and unvoiced and voiced packet loss dosatice

properly recorded.

Algorithm 2 summarizes the calibration processaétwng-aware loss model and how suitable parameters
are extracted and recorded. In Algorithm 2, statelver 0, 1, and 2 represent respectively NON-LOSS,
LOSSyices and LOSG voiceaStates. Algorithm 2 uses a set of counters deradepwhere indexes i and j refer
to the state number. Basically, the developed dfguortriggers the calibration process upon the pgoa of a
new, in-sequence, media-voicing-report packet. Allgm 2 extracts V/U and loss patterns from theeiesd
media-voicing-report packet and the history of Igstckets (lines 2 and 3). The algorithm updates
measurements from the last processed packet tcutient one identified using their sequence numbers
Moreover, the algorithm determines the maximal @diand unvoiced burst durations using the variabées
and max,, respectively. It keeps track of the inter-losp gand voiced and unvoiced loss durations using

variables ag, ag;, and ag,.
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Algorithm 2: Calibration and parameters estimation at run-tinee t
voicing-aware packet loss model shown in Figure 11

1:if (new media-voicing-report packets is receivin
2: vu = read-vu-pattern(last-seq, cur-seq)

3: rcv = read-loss-pattern(last-seq, cur-seq)

4: for i from last-seq to cur-seq do

5: if (rev[i] = “1") then // voice packet is received
6 if (sate ="0")then

7 6ott, aGett;

8: elsaf(state = “1”)then

9 if (ag; > maxv)then maxv = ag; end if

10: record(ag; c¢gt+, state =“0"; ag = 0;

11: elseif(state = “2")then

12: if (ag, > maxu)then maxu = ag, end if

13: record(ag); Cgt+, state =“0"; ag = 0;

14:  else// voice packet is lost

15: if (vu[i] = “V” and state = “0")then

16: g++, state = “1"record(aepy); aGo = 0; ag; = 1,
17: elsaif (vu[i] = “V” and state = “2")then

18: if (ag, > maxu)then maxu = ag end if

19: record(ag); c,i++; state =“1"; ag, = 0; ag; = 1;
20: esaif (vuli] = “V” and state = “1")then

21: a++; agt++;

22: esaif (vuli] = “U” and state = “0")then

23: g++, state = “2"rrecord(aey); aGo = 0; ag, = 1,
24: elsaif (vu[i] = “U” and state = “1")then

25: if (ag; > maxv)then maxv = ag; end if

26: record(ag; c,o*++; state =“2"; ag =0; ag,=1;
27: dsaf (vu[i] = “U” and state = “2")then

28: g+, agy+t,

29: end if

30: endfor

31l:end if

At the end of a monitoring period, the mean losskparate, ULP, and degree of burstiness, EBP, for

voiced and unvoiced packets can be computed asvsll

ULP = Cor +Cyy +Cy ULP, = Cop tCpr +Cpp (8)
Y nbt nbt
EBP, =ULP, — 4 EBP=ULP— 22 9)
€y +Cyp +Cyp CpotCyt+Cy
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where, ULR and ULR, are mean packet loss ratios for voiced and undopeekets, EBPand EBR are the
effective burstiness probabilities for voiced amaiced packets, and nbt refers to the total nunalbesent
packets during the assessment period. Note tha ¢ontinuous quality assessment purposes, all variables,

counters, and arrays are re-initialized at the sfaa new assessment period.

7. Performance evaluation and models validation

To evaluate the performance of our voicing-awareesp quality estimate models, we set-up the voice
guality assessment framework depicted in Figure TRe framework includes a bursty packet loss sibaul
which follows the Gilbert/Elliot model (see Figu4¢. The reference and resulting degraded voiceesegs
are evaluated using the full-reference signal-ldifés-T PESQ assessment algorithm. On the other ,hand
speech quality is predicted using voicing -unawamd -aware speech quality estimate models. Quinggic
aware speech quality estimate models are compayaish the voicing-unaware models reported in [22].
During these empirical trials, a new set of eighite sequences which are pronounced by four maldaunm
female English speakers are impaired and evaluitezldegree of burstiness is properly parameteusaty
ULP and EBP. Specifically, we varied the ULP valtgan 1% to 30% with an increase step of 3%. Theeal

of EBP is calculated as a ratio of the ULP valuécWiis varied from 2 to 8 with an increase steg.of

Original voice sequence

ITU-T
p.862
Coding and
Packetizing Degraded voice MOS-
sequence LQO
* Statistical
. —>
PLR = Packet losg analysis
i Decoding and 7'y -
EBF — simulator De- ackgtizin Predicted
Flow of voice

Figure 12: Evaluation framework of voicing aware speech dua&stimate models.

26



4,0 u"fﬁr 4,0 o

o5 G71TiPLC .ol i | G729 g‘r&/’

= speech CODEC Ehags S :{f & speech CODEC e

,r’*-r-td'-h‘_.'_*

2 . + 2 .
o 3.0 a 3.0
g g
gly l 5 T (.Ill l 5 4
Q o]
= 2,0 - £ 2,0 A

1.5 - 1,5 A

1.0 d T T T T T 1.0 T T T T T

1,0 1,5 2,0 2.5 3.0 3,5 4,0 1,0 1.5 2,0 2,5 3,0 3.5 4.0
Voicing Aware Speech Quality Models Voicing Aware Speech Quality Models
(a) (b)

Figure 13: Validation of voicing-aware speech quality models.

Table V compares the performance of voicing -avearé -unaware speech quality estimate models for
G.711iPLC and G.729 in terms of correlation anctisien. As we can note, our voicing-aware speediityu
estimate models achieve a better correlation feadbove 0.95 for both considered speech CODECs whkich
pretty satisfactory. Moreover, our voicing-awareegh quality estimate models reduce notably, coatptr
voicing-unaware speech quality estimate modelsyitban absolute deviation between measured MOS-LQO
and predicted MOS scores using our models for bpdgech CODECs. The achieved accuracy is in the orde
of 0.2, which constitutes an excellent precision.

Table V: Performance comparison between voicing aware and

unaware speech quality estimate models

Voicing-Unaware Models [22] Voicing-Awar e M odels

G.711iPLC G.729 G.711iPLC G.729
Correlation 0.927 0.910 0.954 0.961
Absolute mean deviation 0.61 0.92 0.22 0.17

Histograms shown in Figures 14 illustrate the thistion of predicted MOS scores with respect to
measured MOS-LQO scores for the G.729 and G.711iBph€ech CODECs. These histograms prove the
accuracy of our voicing-aware speech guality motieksstimate MOS scores. Indeed, 75% of estimat&&M
score for G.729 and 70% for estimated MOS scone&fé11iPLC falls in the range [-0.2, 0.2] whichggite
satisfactory in practice given parametric, nontisive, and low complexity features of our developpdech

guality models.
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Figure 14 Distribution of deviation between MOS-LQO measuard voicing aware model-based

estimates of speech quality.

8. Conclusion

This paper extends conventional parametric no-eefs speech quality models by accounting for the
voicing feature of signal wave included in missipgckets. An adequate software-based speech quality
assessment framework has been set-up to develming@ware speech quality models that enable to
accurately quantify the effect of lost packets agditm to the feature of included signal wave in fagload.
The overall speech quality model, which estimabesstore at the end of an assessment intervalpnepsrly
developed following a multiple regression analydisio input parameters are used by the overall $peec
quality models to estimate the final score, whioh the perceptual scores estimated when packeptossss
affects either voiced or unvoiced media packetg ifiput set of parameters of speech quality estimmetdels
were efficiently calculated based on a new Markadet of voicing-aware packet loss process calilrate
run-time. The performance evaluation study proves bur voicing-aware speech quality estimate nsodel
outperform voicing-unaware speech quality estimaiedels in terms of correlation and mean absolute
deviation with MOS-LQO scores. Moreover, they exhitigh correlation and accuracy in the estimatidn

voice quality.
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