
If you cite this paper, please use the IFIP Networking reference: B. Jaeger, J. Zirngibl, M. Kempf, K. Ploch, G. Carle. 2023. QUIC on the Highway:
Evaluating Performance on High-rate Links. In Proc. of IFIP Networking Conference (IFIP Networking). IFIP.

QUIC on the Highway:
Evaluating Performance on High-rate Links

Benedikt Jaeger, Johannes Zirngibl, Marcel Kempf, Kevin Ploch, Georg Carle
Technical University of Munich, Munich, Germany

{jaeger, zirngibl, kempfm, plochk, carle}@net.in.tum.de

Abstract—QUIC is a new protocol standardized in 2021 de-
signed to improve on the widely used TCP / TLS stack. The main
goal is to speed up web traffic via HTTP, but it is also used in
other areas like tunneling. Based on UDP it offers features like
reliable in-order delivery, flow and congestion control, stream-
based multiplexing, and always-on encryption using TLS 1.3.
Other than with TCP, QUIC implements all these features in
user space, only requiring kernel interaction for UDP. While
running in user space provides more flexibility, it profits less from
efficiency and optimization within the kernel. Multiple implemen-
tations exist, differing in programming language, architecture,
and design choices.

This paper presents an extension to the QUIC Interop Runner,
a framework for testing interoperability of QUIC implementa-
tions. Our contribution enables reproducible QUIC benchmarks
on dedicated hardware. We provide baseline results on 10G links,
including multiple implementations, evaluate how OS features
like buffer sizes and NIC offloading impact QUIC performance,
and show which data rates can be achieved with QUIC compared
to TCP. Our results show that QUIC performance varies widely
between client and server implementations from 90 Mbit/s to
4900 Mbit/s. We show that the OS generally sets the default buffer
size too small, which should be increased by at least an order of
magnitude based on our findings. Furthermore, QUIC benefits
less from NIC offloading and AES NI hardware acceleration
while both features improve the goodput of TCP to around
8000 Mbit/s. Our framework can be applied to evaluate the effects
of future improvements to the protocol or the OS.

Index Terms—QUIC, High-rate links, Performance evaluation,
Transport protocols

I. INTRODUCTION

QUIC is a general-purpose protocol that combines transport
layer functionality, encryption through TLS 1.3, and features
from the application layer. Proposed and initially deployed
by Google [1, 2], it was finally standardized by the Internet
Engineering Task Force (IETF) in 2021 [3] after more than
five years of discussion. Like TCP, it is connection-oriented,
reliable, and provides flow and congestion control in its initial
design. An extension for unreliable data transmission was
added in RFC9221 [4].

One goal of QUIC is to improve web communication with
HTTPS, which is currently using TCP / TLS as underlying
protocols. It achieves this by accelerating connection build-
up with faster handshakes, allowing only ciphers considered
secure, and fixing the head-of-line blocking problem with
HTTP/2. The transport layer handshake is directly combined
with a TLS handshake allowing 0- and 1-RTT connection

establishment. To comply with currently deployed network
devices and mechanisms, QUIC relies on the established and
widely supported transport protocol UDP. The usage of UDP
allows to implement QUIC libraries in user space. Thus, QUIC
can initially be deployed without requiring new infrastructure,
and libraries can be easily implemented, updated, and shipped.

On the one hand, this resulted in a variety of imple-
mentations based on different programming languages and
paradigms [5]. On the other hand, previous efforts to optimize
the performance of existing protocols have to be applied to
new libraries, kernel optimizations cannot be used to the same
degree, and the negative impact of encryption on performance
has to be considered. Additionally, the heterogeneity among
the QUIC implementations requires a consistent measurement
environment for a reproducible evaluation. The performance
differences between QUIC and TCP / TLS become more evi-
dent when the implementations are pushed to their limits on
high-speed networks.

In this work, we show the impact of these effects through a
fine-grained analysis of different QUIC implementations. We
extend the existing QUIC Interop Runner (QIR), a framework
for interoperability testing of QUIC implementations [6, 7].
Using Docker containers, it primarily focuses on functional
correctness. Thus, we extend it to allow for performance-
oriented measurements on bare metal.

Our contributions in this paper are:
(i) We develop and publish a measurement framework

based on the existing QIR framework. The measurements
are run on real hardware, and more metrics are collected
allowing an in-depth analysis of performance bottlenecks.
Besides our code, all configurations and the collected data are
published along with this paper. With this, we want to foster
reproducibility and allow other researchers and library main-
tainers to evaluate different QUIC libraries and test potential
performance optimizations.

(ii) We perform a baseline performance evaluation of
different QUIC implementations on a 10G link with the
proposed framework. Tested implementations show a wide
diversity in their configuration and behavior.

(iii) We evaluate impacting factors on the performance
of QUIC-based data transmissions. We analyze the effect of,
e.g., different buffer sizes, cryptography, and offloading tech-
nologies. This shows how goodput can be increased beyond
the default setting.ISBN 978-3-903176-57-7© 2023 IFIP

We explain relevant background regarding QUIC in Sec-
tion II. In Section III, we introduce the implemented mea-
surement framework and used configurations. We present our
findings and evaluations in Section IV. Section V contains an
outline of related work. Finally, we discuss our findings and
conclude in Section VI.

II. BACKGROUND

This section introduces relevant background for various
properties impacting QUIC performance, as shown in Sec-
tion IV. We identify components relevant to the overall
performance and point out the main differences compared to
TCP / TLS. They include the always-on encryption in QUIC,
the different acknowledgment (ACK) handling, the involved
buffers in the network stack, and offloading functionalities
supported by the Network Interface Card (NIC).

A. Encryption

QUIC relies on TLS version 1.3, which reduces available
cipher suites to only four compared to previous TLS ver-
sions. Only ciphers supporting authenticated encryption with
additional data (AEAD) are allowed by the RFC [8]. AEAD
encrypts the QUIC packet payload while authenticating both
the payload and the unencrypted header. Supported ciphers
either rely on Advanced Encryption Standard (AES), a block
cipher with hardware acceleration on most modern CPUs, or
ChaCha20, a stream cipher that is more efficient than AES
without hardware acceleration1.

Considering TLS in combination with TCP, data is en-
crypted into so-called TLS records, which are, in general,
larger than individual TCP segments spanning over multiple
packets. TCP handles packetization and the reliable, in-order
transfer of the record before it is reassembled and decrypted
at the receiver. With QUIC, each packet must be sent and
encrypted individually. On receiving a packet, it is first de-
crypted before data streams can be reordered. Loss detection
and retransmissions are done on packet- and not stream-level
using the packet number similar to TCP’s sequence number.

Additionally, QUIC adds another layer of protection to the
header data, called header protection. Fields of the QUIC
header like the packet number are encrypted again after
packet protection has been applied, leading to twice as many
encryption and decryption operations per packet.

B. Acknowledgments

Since QUIC provides reliability and stream orientation, it
requires a similar ACK process as TCP. QUIC encapsulates
QUIC packets into UDP datagrams, while the packets carry the
actual payload as QUIC frames. Different frame types exist,
such as stream, ACK, padding, or crypto.

An ACK frame contains so-called ACK ranges, acknowl-
edging multiple packets and ranges simultaneously, potentially
covering multiple missing packets. All received packets are
acknowledged. However, ACK frames are only sent after
receiving an ACK-eliciting packet. A QUIC packet is called

1https://datatracker.ietf.org/doc/html/rfc8439#appendix-B

NIC

TX Ring

RX Ring

Network
Driver

UDP
Socket

SNDBUF

RCVBUF

QUIC
Impl.

Kernel

Fig. 1: Simplified overview of available system buffers relevant
for a QUIC implementation.

ACK-eliciting if it contains at least one frame other than ACK,
padding, or connection close.

Other than TCP, QUIC sends ACKs encrypted, inducing
additional cryptographic workload both on sending and re-
ceiving side. Therefore, QUIC must determine how frequently
ACKs are sent. The maximum ACK delay transport parameter
defines the time the receiver can wait before sending an ACK
frame [3]. Determining the acknowledgment frequency is a
trade-off and may affect the protocol’s performance. Fewer
ACKs can lead to blocked connections due to retransmissions
and flow control, while more put additional load on the
endpoints.

Furthermore, sending and receiving ACKs with QUIC is
more expensive than with TCP. With TCP, ACKs do not
take any additional space since they are part of the TCP
header and thus can be piggybacked on sent data. The kernel
evaluates them before any cryptography is performed. We
show the impact of acknowledgment processing and sending
in Section IV.

C. Buffers

Different buffers of the system can impact the performance
of QUIC. Figure 1 shows a simplified schema of buffers
managed by the kernel, which are relevant for the measurement
scenarios of this paper. The NIC stores received frames to the
RX ring buffer using Direct Memory Access (DMA) without
kernel interrupts. Conversely, it reads frames from the TX
buffer and sends them out. The kernel reads and writes to those
ring buffers based on interrupts and parses or adds headers of
layers 2 to 4, respectively. Afterward, the UDP socket writes
the payload to the Receive Buffer (RCVBUF).

However, if the ring buffer or RCVBUF is full, packets are
dropped, and loss occurs from the perspective of the QUIC
implementation. The default size of the receive buffer in the
used Linux kernels is 208 KiB. In contrast, if the Send Buffer
(SNDBUF), which resides between the implementation and the
socket, is packed, the QUIC implementation will be blocked
until space is available. Both scenarios reduce the goodput.
We show the impact of different buffer sizes in Section IV-C.

D. Offloading

The Linux kernel offers different NIC offloading techniques,
namely TCP Segmentation Offload (TSO), Generic Segmen-
tation Offload (GSO), and Generic Receive Offload (GRO).
While the first only affects TCP, the others also apply to UDP
and thus QUIC. The main idea of all offloading techniques is

https://datatracker.ietf.org/doc/html/rfc8439#appendix-B

to combine multiple segments and thus reduce the overhead of
processing packets. Following the ISO / OSI model, data sent
by TCP is supposed to be split into chunks smaller or equal
to the Maximum Segment Size (MSS) and then passed down
to lower layers. Each layer adds its header and passes the data
further. All of this is computed by the kernel. With hardware
offloading, this segmentation task can be outsourced to the
NIC. Offloading can only accelerate sending and receiving of
packets, not the data transfer over the network [9].

So far, most offloading functions are optimized regarding
TCP. QUIC profits less since packetization is done in user
space. Utilizing offloading would require adjustments in the
implementation to offload tasks like cryptography or segmen-
tation [10]. In Section IV-E we compare the impact of different
offloading functions on QUIC and TCP / TLS.

III. MEASUREMENT FRAMEWORK

In this paper, we extend QIR initially proposed by See-
mann and Iyengar [6]. It is designed to test different QUIC
implementations for interoperability and compliance with the
QUIC standard reporting results on a website [7]. Servers and
clients from multiple implementations are tested against each
other, performing various test cases, like handshake, 0-RTT,
and session resumption. The main focus is on the implemen-
tations’ functional correctness and less on performance. Even
though all followed the same RFC drafts during specification,
interoperability between different servers and clients was only
present for some features. Implementations run inside Docker
containers, and the network in between is simulated using
ns-32. Simple goodput measurements are available but only
conducted on a 10 Mbit/s link. As of January 2023, nearly all
tested libraries are close to the possible maximum goodput [7].

QIR orchestrates the measurements by configuring used
client and server applications, creating required directories
for certificates and files, and collecting log files and results
afterward. In the sense of reproducibility, these features make
QIR a powerful tool for QUIC (but not limited to) evaluations.

We extended QIR to enable high-speed network measure-
ments on dedicated hardware servers. Figure 2 shows an
overview of our framework and its features. For this work, we
use different physical servers for the client and server imple-
mentation to prevent them from impacting each other. We add
additional configuration parameters, such that measurements
can be specified with a single configuration file, and include
version fingerprints both from the implementations and QIR
to the output to foster reproducibility. Additionally, we extend
the logging by including several tools which collect data from
different components (e.g., the NIC, CPU, and sockets).

We follow these three requirements in the implementation
of our measurement framework:

Flexibility: Any QUIC implementation can be used as long
as it follows the required interface regarding how client / server
are started and variables are passed to them. We provide
example implementations for the ones given in Section III-D.

2https://www.nsnam.org/

Portability: The framework can be deployed to any hard-
ware infrastructure, as depicted in Figure 2, requiring a link
between the client and server nodes and ssh access from the
management node.

Reproducibility: Experiments are specified in configuration
files and results contain needed information on how they were
generated, e.g., the QIR and QUIC implementation version.
Additionally, results contain a complete description of the used
configuration, versions, and hardware.

Our code, results, and analysis scripts are available:

https://github.com/tumi8/quic-10g-paper

This includes our extension of QIR, all measurement config-
urations, and results shown in the paper, analysis scripts to
parse the results, and Jupyter notebooks for visualization [11].

A. Workflow

We followed a similar workflow as QIR. First, our frame-
work configures the used hardware nodes, especially the used
network interfaces for the measurements. Each measurement
executes four different scripts that the implementation or
configuration can adjust: setup environment, pre-scripts, run-
scripts, post-scripts as shown in Figure 2. The setup script can
be used to install local dependencies like Python environments.
Pre- and post-scripts can be utilized to configure OS-level
properties like the UDP buffer size and reset them after
the measurement. Also, additional monitoring scripts can be
started and stopped accordingly.

Relevant configuration parameters for the client / server im-
plementation, such as IP address, port, and X.509 certificate
files, are passed via environment variables. Then the server
application is started, waiting for incoming connections. Sub-
sequently, the client application conducts a QUIC handshake
and requests a file from the server via HTTP/3. Once the
client terminates, the framework checks whether all files
were transferred successfully and executes post-scripts to stop
monitoring tools and to reset the environment to a clean state
for subsequent measurements. Finally, the framework collects
all logs.

B. Hardware Configuration

We decided to run the client and server applications on
different hardware nodes to prevent interference and to fully
include the kernel and NIC (other than with Docker). The QIR
runs on another host and functions as a management node
orchestrating the measurement. The management node can
access the measurement nodes via ssh, while the others are
connected via a 10 Gbit/s link, as shown in Figure 2. Different
network interfaces and links are used for management and
measurements. If not stated differently, all measurements were
executed on AMD EPYC 7543 32-Core processors, 512 GB
memory, and Broadcom BCM57416 NICs. As an operating
system, we use Debian Bullseye on 5.10.0-8-amd64 for all
measurements without additional configurations. We rely on
live-boot images with RAM disks, drastically increasing I/O
speed to focus on the network aspect.

https://www.nsnam.org/
https://github.com/tumi8/quic-10g-paper

QUIC
Interop
Runner

Client

Server

Collect Data:

- ethtool

- tcpdump

- perf

- . . .

...

pidstat

keylog

ethtool

Results Analysis

1
0
G
b
it/

s

setup env

pre scripts

run client / server

post scripts

W
o
rk

fl
ow

Fig. 2: Hardware architecture, measurement workflow, and analysis pipeline.

C. Collected Data and Analysis

For each measurement, the framework computes the good-
put as the size of the transmitted file divided by the time
it takes to transmit it. To reduce this impact of transmission
rate fluctuations (e.g., caused by congestion control), a large
file size (8 GB) is chosen to enforce a connection duration of
several seconds.

The following monitoring tools are directly integrated into
our framework to collect more data from within the imple-
mentations or from the hardware hosts. tcpdump is used to
collect packet traces which can be decrypted with the exported
session keys. Additionally, implementations can enable qlog
(a schema for logging internal QUIC events [12]) and save
results to a directory set up and collected by the framework.
However, both result in extensive logging that heavily impacts
performance and are only considered for debugging. ifstat,
ethtool, netstat, and pidstat can be started to collect addi-
tional metrics from the NIC and CPU, such as the number
of dropped packets or context switches. Finally, perf can be
used for in-detail client and server application profiling. This
allows to analyze how much CPU time is consumed for tasks
like encryption, sending, receiving, and parsing packets. When
enabled, the output of the used tools is exported along with
the measurement results.

We provide a parsing script for all generated data that
handles all different output formats of the used tools. By
this, it is possible to analyze the change of goodput with
different configurations and get a better understanding of why
this is the case. It is possible to detect client and server-side
bottlenecks as root causes for performance limitations. We
consider this important since we observed multiple different
QUIC components limiting the performance depending on the
configuration. The analysis pipeline parses available result files
and outputs the final results as Python pandas DataFrame.

D. Implementations

Since there is not one widely used implementation for
QUIC (such as Linux for TCP), we evaluate multiple imple-
mentations written in different languages. The implemented
framework currently includes six QUIC libraries namely: aio-
quic [13], quic-go [14], mvfst by Facebook [15], picoquic by
Private Octopus [16], quiche by Cloudflare [17], and LSQUIC
by LiteSpeed Tech [18]. For each implementation, we either

used provided examples for the client and server or made
minor adjustments to be compatible with QIR.

In this paper, we mainly focus on LSQUIC and quiche since
they show the highest goodput rates, as shown in Section IV-A.
They are implemented in Rust and C, respectively, and are
already widely deployed [19]. Furthermore, both libraries rely
on BoringSSL for TLS. Thus, cryptographic operations and
TLS primitives are comparable, and we can focus on QUIC
specifics in the following. We compare them to the remaining
libraries in Section IV-A to put their initial performance into
perspective and further support our selection. We base our
initial client and server on their example implementation and
adapt only where necessary. Additionally, we compare QUIC
with a TCP / TLS stack consisting of a server using nginx
(version 1.18.0) and a client using wget.

IV. EVALUATION

We apply the measurement framework to evaluate the
performance of different QUIC implementations. For every
measurement, the client downloads an 8 GB file via HTTP/3.
Every measurement is repeated 50 times to assure repeata-
bility. The boxplots show the median as a horizontal line,
the mean as icons such as N, and the quartiles Q1 and Q3.
All implementations come with different available Congestion
Control (CC) algorithms. For LSQUIC, we observed unin-
tended behavior with BBR, resulting in several retransmissions
and only between 30 % to 70 % of the goodput of Cubic. We
assume this is related to a known issue with BBR in TCP [20].
To prevent significant impact from different algorithms, we set
each implementation to Cubic if available or Reno otherwise.

A. Baseline Measurements

QIR is designed to test operability between different im-
plementations. As a first baseline, we evaluate the client and
server of the implementations listed in Section III-D. Figure 3
shows the goodput for each client-server pair for all imple-
mentations. It clearly shows that the goodput widely differs
(52 Mbit/s to 3004 Mbit/s) between the implementations.

The Python library aioquic shows the lowest performance,
as expected since it is the only interpreted and not compiled
implementation. It can be considered an implementation suit-
able for functional evaluation or a research implementation.
When it comes to goodput, it can be neglected. The two
best-performing implementations are LSQUIC and quiche.
Regarding picoquic, we are not able to reach similar goodput

aioquic

quic-
go

mvfst

pico
quic

quich
e

LSQUIC

Server

LSQUIC

quich
e

pico
quic

mvfst

quic-
go

aioquic

C
li

en
t

62 1058 1495 1558 2556 3004

59 974 1531 2375 2506 1186

57 1083 978 1530 2293 942

71 1017 1198 52 1200 1623

64 1043 1539 1204 1831 1976

91 164 143 175 155 169

1000

2000

3000

G
o
o
d

p
u

t
in

M
b

it
/
s

Fig. 3: Baseline goodput results for different QUIC libraries
tested against each other on a 10 Gbit/s link. In comparison
TCP / TLS reaches 8010 Mbit/s in the baseline scenario.

as reported by Tyunyayev et al. [21] and were not able to easily
reproduce the required optimizations. Therefore, we stick with
LSQUIC-LSQUIC and quiche-quiche pairs for the following
evaluation since they achieved the highest goodput.

Like interoperability of QUIC features, goodput perfor-
mance widely varies among client-server pairs. We conjecture
that different operation modes, QUIC parameters, and effi-
ciency of the used components result in these fluctuations. The
LSQUIC server achieves the highest rate with the LSQUIC
client while being less performant with clients of other imple-
mentations. Overall, the quiche server achieves decent goodput
with most clients. The picoquic-mvfst measurements achieve
peculiar low rates of only 52 Mbit/s.
Key take-away: The goodput of different QUIC libraries varies
drastically, not only between libraries in general but also
between clients and servers. LSQUIC and quiche perform best
in the baseline scenario. Only in the case of LSQUIC as server
and quiche as client the goodput drops drastically.

B. Performance Profiling

We use perf to analyze LSQUIC and quiche further and
see the CPU time consumption for each component. During
each measurement, perf collects samples for the complete
system. We categorize the samples for both implementations
based on their function names and a comparison to the source
code. Figure 4 shows the results for the respective servers.
Packet I/O covers sending and receiving messages, especially
the interplay with the UDP socket and kernel functionality
(sendmsg and recvmsg). I/O covers reading and writing the
transmitted file by server and client. Crypto describes all
TLS-related en- / decryption tasks. Connection Management
covers packet and acknowledgment processing and managing
connection states and streams. If no function name can be
collected by perf or if we cannot map it to a category, we use
Uncategorized.

We manually created this mapping by assigning each func-
tion occurring in the perf dump to a category. While we could
not assign all functions, a clear trend is visible. The strict
inclusion of TLS is often criticized due to the expectation of a

Uncategorized
Packet I/O I/O

Crypto

Conn. Mgmt

0

20

40

60

80

S
a
m

p
le

s
(%

) LSQUIC

quiche

Fig. 4: Distribution of server perf samples across different
categories. The results are shown in relation to the total
number of samples collected by perf (including idle states).

high overhead [22]. However, Packet I/O takes up a majority of
resources for both libraries. Passing packets from the libraries
in user space to the kernel, the NIC, and vice versa currently
impacts the performance most.

Interestingly, we see differences in performance in the used
programming language or architecture and between the two
client and server combinations of different implementations.
Resulting in the highest difference, the goodput with a quiche
server and LSQUIC client is more than twice as high as vice
versa. During these measurements, both the client and server
are only at around 70 % CPU usage, no loss is visible, and no
additional retransmission occurs. In this case, the bottleneck
seems to be the interaction of the flow control mechanisms
of both libraries in this client / server constellation. Besides
general interoperability tests, our measurement framework can
be used in the future to identify these scenarios and to improve
QUIC libraries, their flow and congestion control mechanisms,
and their interaction.
Key take-away: Our findings show that the most expensive task
for QUIC is Packet I/O. While the cost of crypto operations is
visible, it is not the main bottleneck here. Overall, our results
comply with related work [10], and we share our mappings
so that they can be refined and extended in the future.

C. Buffers

As explained in Section II-C, different system buffers affect
a QUIC connection. The essential buffers are the ring buffers
in-between the NIC and network driver, and the send and
receive buffers from the socket used by the library, as shown
in Figure 1.

To analyze the impact of these buffers, the measurement
framework captures network driver statistics before and after
each data transmission using ethtool and connection statistics
using netstat. It provides the number of sent and received
packets and dropped packets in each of the mentioned buffers.

The baseline measurement shows that the ring buffers
drop no data. However, packets are dropped by the client
receive buffer since both client implementations retrieve pack-
ets slower than they arrive. As a result, retransmissions are
required by the server, and congestion control impacts the
transmission. To analyze the impact on the goodput, we

0.5 1.0 2.0 4.0 8.0 16.0 32.0

UDP receive buffer size in multiples of default size

0

1

2

3

G
o
o
d

p
u

t
[G

b
it

/
s]

LSQUIC

quiche

Fig. 5: QUIC goodput with different UDP receive buffer
sizes. X-axis values are multiples of the default buffer size
of 208 KiB.

increase the default receive buffer (208 KiB). The effect of
this can be seen in Figure 5. It shows the goodput of LSQUIC
and quiche pairs for different buffer sizes as multiple of the
default buffer on the x-axis. The goodput for both libraries
improves with increasing buffer sizes and stabilizes after a
16-fold increase.

Using LSQUIC with the default buffer size results in 11.4 k
dropped packets and a loss rate of 0.2 %. With the largest
tested buffer size, LSQUIC reaches a goodput of 3250 Mbit/s,
an 8.7 % increase compared to the baseline shown in Figure 3.
Besides the reduced loss and retransmissions, the number
of ACKs sent by the LSQUIC client is drastically reduced
from 180 k to 46 k (26 %). This development for all tested
buffer sizes is shown in Figure 6. The reduction of sent
ACK packets also results in reduced CPU usage by the client
while increasing the server CPU usage shifting the bottleneck
further towards the sending of QUIC packets. In all scenarios,
LSQUIC sends fewer ACKs than reported by Marx et al. [23].

Regarding quiche, only 7 k packets are dropped with the
default buffer size, hence a 0.1 % loss rate. Larger buffers
decrease the loss by one order of magnitude and increase
the goodput but only by 3 % to 2530 Mbit/s. In contrast to
LSQUIC, no difference regarding sent ACKs can be seen (see
Figure 6). Reducing the receive buffer further impacts both
libraries, especially quiche. The goodput drops by 40 % and a
more significant deviation is visible. We repeated the baseline
measurements with larger UDP receive buffers for which the
results can be seen in Figure 10.
Key take-away: The default UDP receive buffer size has a vis-
ible impact on QUIC-based data transmission. We recommend
a general increase of the default buffer by at least an order
of magnitude to support widespread deployment of QUIC.

D. Crypto

As explained in Section II-A, QUIC supports TLS using
AES or ChaCha20. Generally, operations to encrypt and de-
crypt are computationally expensive but are widely optimized
in hardware and software today. QUIC and TLS 1.3 only
support AEAD algorithms [24], which can encrypt and sign
data in one single pass. For AES, only three ciphers are avail-
able: AEAD_AES_128_GCM, AEAD_AES_128_CCM, and

0.5 1.0 2.0 4.0 8.0 16.0 32.0

UDP receive buffer size in multiples of default size

0k

200k

400k

#
P

a
ck

et
s

se
n
t

b
y

cl
ie

n
t

LSQUIC

quiche

Fig. 6: Number of sent ACKs by the client. X-axis values are
multiples of the default buffer size of 208 KiB.

AEAD_AES_256_GCM. From them, only GCM ciphers are re-
quired or should be implemented [24], the CCM cipher is rarely
used. Usually, the 128 bit GCM cipher is preferred [19]. For
the following evaluation, we use the default cipher. ChaCha20
always uses the Poly1305 authenticator to compute message
authentication codes.

We evaluated the QUIC implementations in three different
scenarios. Two of them use AES either without or with the
AES New Instruction Set that offers full hardware acceleration
[25] (which is the default in our test environment), and
one scenario uses ChaCha20. For the following, we refer to
the hardware-accelerated AES version as AES-NI. LSQUIC
and quiche automatically fall back to ChaCha20 whenever
hardware acceleration is unavailable. To evaluate AES without
hardware acceleration, we patched the used BoringSSL
library accordingly.

As seen in Figure 7, ChaCha20 achieves the same through-
put as AES-NI for both QUIC libraries. While removing hard-
ware acceleration decreases the goodput with AES by 11 %
for LSQUIC and even by 51 % for quiche. This difference
between the implementations results from the quiche client
sending more than 16 times as many ACKs than LSQUIC.
While the server is the bottleneck in all measurements, more
packets sent by the client add additional load to the server
for receiving and decrypting packets (see Section IV-C). This
decryption is more expensive without hardware acceleration.
Thus, crypto has a higher impact on the overall goodput. Also,
we observe that the client CPU utilization of quiche is 5 %
lower with ChaCha20 than with AES.

With TCP / TLS, the effect changes. While ChaCha20
reaches higher goodput rates than AES without hardware ac-
celeration, AES-NI outperforms ChaCha20 with a three times
higher goodput, almost reaching the link rate. Additionally, for
TCP / TLS we observed that the client CPU bottlenecked the
connection for AES-NI and ChaCha20, while the server was
the bottleneck without hardware acceleration.

Key take-away: While selecting an appropriate cipher suite
drastically impacts TCP / TLS, QUIC reaches similar goodput
for AES-NI and the ChaCha20-based cipher. The main bottle-
neck is still packet I/O and the acceleration effect is further
reduced due to smaller TLS records and encrypted ACKs.

AES w/o AES-NI ChaCha20
0

2

4

6

8
G

o
o
d

p
u

t
[G

b
it

/
s]

LSQUIC

quiche

TCP/TLS

Fig. 7: Impact of different TLS ciphers on QUIC and
TCP / TLS goodput. During the AES measurement without
hardware acceleration, the implementations were forced to use
AES by deactivating ChaCha20 in the respective TLS library
to prevent the fallback.

E. Segmentation Offloading

To reduce the impact of packet I/O, a QUIC library can
combine multiple packets and rely on offloading. Similarly, an
implementation can use sendmmsg3 and recvmmsg4 to reduce
system calls and move multiple packets to/from the kernel
space within a single buffer.

By default, Generic Segmentation Offload (GSO), Generic
Receive Offload (GRO), and TCP Segmentation Offload (TSO)
are activated in Linux. We analyze which offload impacts
QUIC and TCP by incrementally activating different offload-
ing techniques. Figure 8 indicates that all the offloading
techniques hardly influence QUIC goodput, while TCP largely
profits from TSO. The QUIC goodput does not change when
GSO / GRO is enabled. However, the client CPU utilization
increases from 82 % to 92 % for LSQUIC and from 77 % to
84 % for quiche. Turning off all offloads does not decrease
goodput but decreases the client’s CPU utilization and also
power consumption.

While LSQUIC implements functionality to support send-
mmsg and recvmmsg, we were not able to use it as of Jan-
uary 2023. Data transmission with the functionality activated
randomly terminated with exceptions. We expect improved
support for those features also by other implementations and
suggest reevaluating libraries with our framework in the future.
Key take-away: The tested QUIC implementations do not profit
from any segmentation offloading techniques as of January
2023. Compared with TCP, there is much room for improve-
ment to apply the same benefits to UDP and QUIC. Since
QUIC encrypts every packet individually, including parts of
the header, techniques similar to TSO cannot be applied,
which would require that headers can be generated in the
offloading function. However, with adjustments to the protocol
and the offloading functions, speedups can be achieved for
segmentation and crypto offloading [10].

3https://man7.org/linux/man-pages/man2/sendmmsg.2.html
4https://man7.org/linux/man-pages/man2/recvmmsg.2.html

Off GSO/GRO Default
0

2

4

6

8

G
o
o
d

p
u

t
[G

b
it

/
s]

LSQUIC

quiche

TCP/TLS

Fig. 8: Impact of hardware offloading on QUIC and TCP / TLS
goodput. By default, GSO, GRO, and TSO are activated.

TABLE I: Different CPUs used for the measurements. The
default for measurements was AMD-2 if not noted otherwise.

CPU Year max GHz

AMD-1 AMD EPYC 7551P 2017 2.0
AMD-2 AMD EPYC 7543 2021 3.7
Intel-1 Intel Xeon CPU D-1518 2015 2.2
Intel-2 Intel Xeon CPU E5-1650 2012 3.8
Intel-3 Intel Xeon Gold 6312U 2021 3.6

F. Hardware

Even though an implementation in user space comes with
more flexibility, tasks that are done by the kernel for TCP
become more expensive with QUIC. More CPU cycles are
required per packet.

We repeated the final goodput measurements with increased
buffers on five host pairs with different generations of AMD
and Intel CPUs listed in Table I. Client and server hosts
are equipped with the same CPU for each measurement.
Additionally, we optimized LSQUIC and quiche further by
adding compile flags to optimize for the used architecture.
The optimized implementations are referred to as LSQUIC*
and quiche*.

The results in Figure 9 show that quantizing QUIC through-
put highly depends on the used CPU and architecture. Both
QUIC and TCP profit from newer CPUs with more modern
instruction sets. Compile flags improved the LSQUIC goodput
by 14 % to 20 %, while they hardly affected quiche. Also,
QUIC and TCP perform differently among the different ar-
chitectures. For example, when comparing the two newest
CPUs AMD-2 and Intel-3, QUIC performs 27 % better on the
Intel chip, almost reaching 5 Gbit/s. On the other side, TCP
goodput decreases by 3 % compared to the CPU in the AMD-2
host pair. This shows that QUIC (in the user space) and TCP
(in the kernel) profit differently from CPU architectures and
instruction sets.
Key take-away: The used hardware is highly relevant for
evaluating QUIC performance. Newer CPUs lead to a higher
goodput for both QUIC implementations even though their
frequency is slightly lower, e.g., comparing Intel-2 and Intel-
3. While not feasible for all research groups, we suggest
attempting an evaluation of potential improvements to QUIC

https://man7.org/linux/man-pages/man2/sendmmsg.2.html
https://man7.org/linux/man-pages/man2/recvmmsg.2.html

Intel-1 AMD-1 Intel-2 AMD-2 Intel-3
0

2

4

6

8
G

o
o
d

p
u

t
[G

b
it

/
s]

LSQUIC

LSQUIC*

quiche

quiche*

TCP/TLS

Fig. 9: Goodput as measured on different hardware architec-
tures listed in Table I. LSQUIC* and quiche* are built with
compile flags to optimize for the used architecture.

libraries on different CPU generations and frequencies in the
future to better quantify their impact.

V. RELATED WORK

The interoperability of different QUIC implementations has
been tested by research throughout the protocol specification.
Seemann and Iyengar [6], Piraux et al. [26], and Marx et al.
[23] developed different test scenarios and analyzed a variety
of QUIC implementations. Furthermore, Rüth et al. [27],
Piraux et al. [26], and Zirngibl et al. [19] have already
shown a wide adoption of QUIC throughout the protocol
specification and shortly before the release of RFC9000 [3].
They show that multiple large corporations are involved in the
deployment of QUIC, various implementations are used, and
different configurations can be seen (e.g., transport parame-
ters). However, they mainly focused on functionality analyses,
interoperability, and widespread deployments but did not focus
on the performance of libraries.

Different related works analyzed the performance of QUIC
implementations [10, 21, 28–32]. However, they either ana-
lyzed QUIC in early draft stages, e.g., Megyesi et al. [30]
in 2016, or mainly focused on scenarios covering small web
object downloads across multiple streams, e.g., by Sander
et al. [29] and Wolsing et al. [32]. Similar to our work, Yang
et al. [10] orchestrated QUIC implementations to download a
file. With a single stream, they reached a throughput between
325 Mbit/s and even 4121 Mbit/s for Quant. However, they
omit HTTP/3 and only download a file of size 50 MB. There-
fore, the impact of the handshake and cryptographic setup is
higher, and other effects might be missed.

Endres et al. [33] adapted the QIR to evaluate QUIC
implementations similar to the starting point of our framework.
However, they still relied on the virtualization using docker
and network emulation using ns-3 and focused on a different
scenario, namely satellite links.

Tyunyayev et al. [21] combined picoquic with the Data
Plane Development Kit (DPDK) to bypass the kernel. They
compared their implementation to other QUIC stacks and
increased the throughput by a factor of three. They argue
that the speedup is primarily due to reduced I/O but do not
investigate other factors in more detail.

VI. CONCLUSION

In this work, we analyzed the performance of different
QUIC implementations on high-rate links and shed light on
various influence factors. We systematically created a mea-
surement framework based on the idea of the QUIC Interop
Runner. It allows automating QUIC goodput measurements
between two dedicated servers. It can use different QUIC
implementations, automate the server configuration, collect
various statistics, e.g., from the network device and CPU
statistics, and provide means to collect, transform, and evaluate
results.

We applied the presented framework to evaluate the goodput
of mainly LSQUIC and quiche on 10 Gbit/s links and analyzed
what limits the performance. A key finding in this work is
that the UDP receive buffer is too small by default, which
leads to packets getting dropped on the receiver side. This
results in retransmissions and a reduced goodput. We show
that increasing the buffer by at least an order of magnitude is
necessary to reduce buffer limits in high link rate scenarios.
We observed several differences in the behavior of LSQUIC
and quiche, such as differing default parameters, e.g., the UDP
packet size or a diverse approach regarding the acknowledg-
ment sending rate. When comparing different TLS 1.3 ciphers,
QUIC almost reaches the same goodput with ChaCha20 as
with the hardware-accelerated AES ciphers, which behaves
differently with TCP. We could not measure any performance
increase with the support of segmentation offloading features
of the operating system. Finally, we show that evaluating
QUIC highly depends on the used CPU. By applying various
optimizations, we increased the goodput of LSQUIC by more
than 25 % and achieved up to 5 Gbit/s on Intel CPUs.

Even though QUIC has many similarities to TCP and the
specification took several years, our work shows that many
details already analyzed and optimized for TCP are still
limiting QUIC. Furthermore, the variety of implementations
complicates a universal evaluation and yields further chal-
lenges to improve performance in the interplay of libraries,
e.g., the drastically reduced goodput using an LSQUIC server
and quiche client, as shown in Section IV-A.

To allow for an informed and detailed evaluation of QUIC
implementations in the future, we publish the framework
code, the analysis scripts, and the results presented in the
paper [11]. The measurement framework can be applied to
evaluate future improvements in QUIC implementations or
operating systems.

ACKNOWLEDGMENT

The European Union’s Horizon 2020 research and inno-
vation programme funded this work under grant agreements
No 101008468 and 101079774. Additionally, we received
funding by the Bavarian Ministry of Economic Affairs, Re-
gional Development and Energy as part of the project 6G
Future Lab Bavaria. This work is partially funded by Ger-
many Federal Ministry of Education and Research (BMBF)
under the projects 6G-life (16KISK001K) and 6G-ANNA
(16KISK107).

REFERENCES
[1] Jim Roskind. (June 27, 2013) Experimenting with QUIC. Accessed:

2023-02-10. [Online]. Available: https://blog.chromium.org/2013/06/
experimenting-with-quic.html

[2] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport Protocol:
Design and Internet-Scale Deployment,” in Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 183–196.

[3] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://rfc-editor.org/rfc/rfc9000.txt

[4] T. Pauly, E. Kinnear, and D. Schinazi, “An Unreliable Datagram
Extension to QUIC,” RFC 9221, Mar. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9221

[5] I. Q. W. Group. (2023) Implementations. Accessed: 2023-02-
10. [Online]. Available: https://github.com/quicwg/base-drafts/wiki/
Implementations

[6] M. Seemann and J. Iyengar, “Automating QUIC Interoperability Test-
ing,” in Proceedings of the Workshop on the Evolution, Performance, and
Interoperability of QUIC, ser. EPIQ ’20. Association for Computing
Machinery, 2020, pp. 8–13.

[7] ——. (2020) QUIC Interop Runner. Accessed: 2023-02-10. [Online].
Available: https://interop.seemann.io/

[8] M. Thomson and S. Turner, “Using TLS to Secure QUIC,” RFC 9001,
May 2021. [Online]. Available: https://rfc-editor.org/rfc/rfc9001.txt

[9] The kernel development community. (2023) Segmentation Offloads.
Accessed: 2023-02-10. [Online]. Available: https://docs.kernel.org/
networking/segmentation-offloads.html

[10] X. Yang, L. Eggert, J. Ott, S. Uhlig, Z. Sun, and G. Antichi,
“Making QUIC Quicker With NIC Offload,” in Proceedings of
the Workshop on the Evolution, Performance, and Interoperability
of QUIC, ser. EPIQ ’20, 2020, p. 21–27. [Online]. Available:
https://doi.org/10.1145/3405796.3405827

[11] B. Jaeger, J. Zirngibl, M. Kempf, K. Ploch, and G. Carle.
(2023) Code and Data Publication. [Online]. Available: https:
//github.com/tumi8/quic-10g-paper

[12] R. Marx, L. Niccolini, M. Seemann, and L. Pardue, “Main
logging schema for qlog,” Internet Engineering Task Force,
Internet-Draft draft-ietf-quic-qlog-main-schema-04, Oct. 2022, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-quic-qlog-main-schema/04/

[13] aiortc. (2023) aioquic. Accessed: 2023-02-10. [Online]. Available:
https://github.com/aiortc/aioquic

[14] L. Clemente and M. Seemann. (2023) quic-go. Accessed: 2023-02-10.
[Online]. Available: https://github.com/quic-go/quic-go

[15] Facebook. (2023) mvfst. Accessed: 2023-02-10. [Online]. Available:
https://github.com/facebookincubator/mvfst

[16] Private Octopus. (2023) picoquic. Accessed: 2023-02-10. [Online].
Available: https://github.com/private-octopus/picoquic

[17] Cloudflare. (2023) quiche. Accessed: 2023-02-10. [Online]. Available:
https://github.com/cloudflare/quiche

[18] LiteSpeed Tech. (2023) lsquic. Accessed: 2023-02-10. [Online].
Available: https://github.com/litespeedtech/lsquic

[19] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and G. Carle,
“It’s over 9000: Analyzing early QUIC Deployments with the Standard-
ization on the Horizon,” in Proc. ACM Int. Measurement Conference
(IMC), 2021.

[20] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a Deeper Understanding of TCP BBR Congestion
Control,” in 2018 IFIP networking conference (IFIP networking) and
workshops. IEEE, 2018, pp. 1–9.

[21] N. Tyunyayev, M. Piraux, O. Bonaventure, and T. Barbette, “A High-
Speed QUIC Implementation,” in Proceedings of the 3rd International
CoNEXT Student Workshop, ser. CoNEXT-SW ’22, 2022, p. 20–22.

[22] (2020) QUIC IETF Mailinglist. Accessed: 2023-02-
10. [Online]. Available: https://mailarchive.ietf.org/arch/msg/quic/
SBetxLwCq5I7un2tkzFb7tXhJMU/

[23] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementation Di-
versity,” in Proceedings of the Workshop on the Evolution, Performance,

and Interoperability of QUIC, ser. EPIQ ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 14–20.

[24] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://www.rfc-editor.
org/info/rfc8446

[25] S. Gueron. (2010) Intel® Advanced Encryption Standard
(AES) New Instructions Set. Accessed: 2023-02-10. [On-
line]. Available: https://www.intel.com/content/dam/doc/white-paper/
advanced-encryption-standard-new-instructions-set-paper.pdf

[26] M. Piraux, Q. De Coninck, and O. Bonaventure, “Observing the Evo-
lution of QUIC Implementations,” in Proceedings of the Workshop on
the Evolution, Performance, and Interoperability of QUIC, ser. EPIQ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
8–14.

[27] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld, “A First Look at QUIC in
the Wild,” in Proc. Passive and Active Measurement (PAM). Springer
International Publishing, 2018.

[28] A. Yu and T. A. Benson, “Dissecting performance of production quic,”
in Proceedings of the Web Conference 2021, ser. WWW ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 1157–1168.
[Online]. Available: https://doi.org/10.1145/3442381.3450103

[29] C. Sander, I. Kunze, and K. Wehlre, “Analyzing the Influence of
Resource Prioritization on HTTP/3 HOL Blocking and Performance,”
in Proc. Network Traffic Measurement and Analysis Conference (TMA),
2022.

[30] P. Megyesi, Z. Krämer, and S. Molnár, “How quick is QUIC?” in Proc.
IEEE ICC, 2016, pp. 1–6.

[31] T. Shreedhar, R. Panda, S. Podanev, and V. Bajpai, “Evaluating QUIC
Performance Over Web, Cloud Storage, and Video Workloads,” IEEE
Transactions on Network and Service Management, vol. 19, no. 2, pp.
1366–1381, 2022.

[32] K. Wolsing, J. Rüth, K. Wehrle, and O. Hohlfeld, “A Performance
Perspective on Web Optimized Protocol Stacks: TCP+TLS+HTTP/2 vs.
QUIC,” in Proceedings of the Applied Networking Research Workshop,
ser. ANRW ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 1–7.

[33] S. Endres, J. Deutschmann, K.-S. Hielscher, and R. German,
“Performance of QUIC Implementations Over Geostationary Satellite
Links,” 2022. [Online]. Available: https://arxiv.org/abs/2202.08228

APPENDIX

We repeated the baseline measurements presented in Sec-
tion IV-A but with increased UDP buffer size and the opti-
mized implementations for LSQUIC and quiche. As seen in
Figure 10, LSQUIC profits from the optimizations and the
larger buffer while other implementations such as aioquic and
quic-go are limited by other other bottlenecks.

aioquic

quic-
go

mvfst

pico
quic

quich
e

LSQUIC

Server

LSQUIC

quich
e

pico
quic

mvfst

quic-
go

aioquic

C
li

en
t

63 1066 1522 1731 2552 3882

58 972 1545 2494 2590 1616

57 1091 985 1570 2254 1083

70 1023 1251 146 1186 1591

63 1041 1633 1177 1933 2185

86 158 140 177 139 147

1000

2000

3000

G
o
o
d

p
u

t
in

M
b

it
/
s

Fig. 10: Goodput results for all implementations with increased
buffer sizes and optimize compile flags for each implementa-
tion.

https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://rfc-editor.org/rfc/rfc9000.txt
https://www.rfc-editor.org/info/rfc9221
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://interop.seemann.io/
https://rfc-editor.org/rfc/rfc9001.txt
https://docs.kernel.org/networking/segmentation-offloads.html
https://docs.kernel.org/networking/segmentation-offloads.html
https://doi.org/10.1145/3405796.3405827
https://github.com/tumi8/quic-10g-paper
https://github.com/tumi8/quic-10g-paper
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema/04/
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema/04/
https://github.com/aiortc/aioquic
https://github.com/quic-go/quic-go
https://github.com/facebookincubator/mvfst
https://github.com/private-octopus/picoquic
https://github.com/cloudflare/quiche
https://github.com/litespeedtech/lsquic
https://mailarchive.ietf.org/arch/msg/quic/SBetxLwCq5I7un2tkzFb7tXhJMU/
https://mailarchive.ietf.org/arch/msg/quic/SBetxLwCq5I7un2tkzFb7tXhJMU/
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://doi.org/10.1145/3442381.3450103
https://arxiv.org/abs/2202.08228

	Introduction
	Background
	Encryption
	Acknowledgments
	Buffers
	Offloading

	Measurement Framework
	Workflow
	Hardware Configuration
	Collected Data and Analysis
	Implementations

	Evaluation
	Baseline Measurements
	Performance Profiling
	Buffers
	Crypto
	Segmentation Offloading
	Hardware

	Related Work
	Conclusion
	Appendix

