
Modeling TCP Performance using Graph Neural Networks
Benedikt Jaeger, Max Helm, Lars Schwegmann, Georg Carle

{jaeger|helm|schwegmann|carle}@net.in.tum.de
Chair of Network Architectures and Services, Technical University of Munich, Germany

ABSTRACT
TCP throughput and RTT prediction are essential to model TCP
behavior and optimize network configurations. Flows adapt their
sending rate to network parameters like link capacity or buffer size
and interact with parallel flows. Especially the elastic behavior of
TCP congestion control can vary, even when only slight changes
in the network occur. Thus, existing analytical models for TCP
behavior reach their limits due to the number and complexity of
different algorithms. Machine learning approaches, in contrast, are
often fixed to specific network topologies.

This paper presents a TCP bandwidth and RTT prediction ap-
proach that can handle different algorithms and topologies. For
this, we utilize Gated Graph Neural Networks and simulated net-
work traffic. We evaluate different encodings of the input data into
graphs and how network size, number of flows, and TCP algorithms
influence prediction accuracy. Additionally, we quantify the impact
of different input features on our models. We show that Graph
Neural Networks can be used to model TCP behavior. The resulting
models can predict RTT with a median relative error of 2.29 % and
throughput with an error of 13.31 %.

CCS CONCEPTS
• Networks→ Network performance modeling.

KEYWORDS
TCP modeling, congestion control, throughput, round-trip time,
graph neural networks
ACM Reference Format:
Benedikt Jaeger, Max Helm, Lars Schwegmann, Georg Carle. 2022. Mod-
eling TCP Performance using Graph Neural Networks. In Graph Neural
Networking Workshop (GNNet ’22), December 9, 2022, Roma, Italy. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3565473.3569190

1 INTRODUCTION
The Transmission Control Protocol (TCP) is a widely used proto-
col on the Internet due to its multiple features. Besides offering a
reliable, in-order byte stream, it provides built-in flow and conges-
tion control (CC). The latter results in an elastic behavior of TCP’s
sending rate influenced by network parameters and traffic. Even in
simple dumbbell topologies, this can lead to chaotic behavior when
only one CC algorithm is involved [23], and it becomes even worse
when multiple different ones are in use [13]. This complex behavior
makes modeling and predicting performance metrics like Round-
trip Time (RTT) and rate increasingly challenging. Early analytical

GNNet ’22, December 9, 2022, Roma, Italy
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Graph Neural
Networking Workshop (GNNet ’22), December 9, 2022, Roma, Italy, https://doi.org/10.
1145/3565473.3569190.

approaches [14] have limitations due to newer, more complex algo-
rithms and topologies. However, neural network approaches can
provide solutions to this problem. Unlike analytical models, neural
networks are data-driven, extracting important features from given
data. There exist neural network approaches which utilize the way
input data is structured. For example, convolutional neural net-
works, as used for image recognition, utilize that an input image is
structured in a matrix of pixels. While this approach suits the given
task, it is less applicable to computer networks that contain more
complex structures. Graph Neural Networks (GNNs) have gained
traction over the past years [22], also in the computer network-
ing domain. Conventional neural networks, as applied for image
recognition, use matrices as input, while GNNs operate on graphs.
Graphs are defined as𝐺 = (𝑉 , 𝐸) with nodes 𝑉 and edges 𝐸, where
each can be assigned attributes. This structuring of input data al-
lows a higher expressiveness since not only node attributes are
used as input but also the structure of the graph. For example, the
graph could contain nodes for all end hosts and edges between all
interconnected nodes in a computer network. Besides, the graphs
are not limited to physical nodes or connections but can also con-
tain logical connections. GNNs are based on the message passing
concept. There, each node in the graph is represented by a state
vector which is updated according to the state vectors of adjacent
nodes. Doing this spreads information through the graph, result-
ing in an output matrix that can be used with conventional neural
networks. The possibility of encoding data as graphs also raises
the question of how this should be handled. Furthermore, by using
arbitrary graphs as input, GNNs can generalize even for entirely
new graphs unseen during training.

In this paper, we apply a GNN approach to model two TCP
performance metrics, RTT and sending rate. We generate data
containing different network topologies and CC algorithms using
the ns-3 simulator. We train a GNN and evaluate its accuracy. The
impact of CC algorithms, the network topology, and how data
is modeled as a graph is investigated. Our contributions in this
paper are to provide a baseline for performance prediction of TCP
for arbitrary topologies and CC algorithms using GNNs, compare
different graph encodings, and assess the models’ accuracy and
feature importance.Wewant to provide a baseline of howGNNs can
be used to model TCP CC and, by this, gain a better understanding
of the complex behavior.

This paper is structured as follows. Section 2 covers the basics of
TCP CC and GNNs, and related work in the field of TCP modeling
is presented. Implementation details regarding the generation of
the used dataset and neural network are displayed in Section 3.
Section 4 presents results before Section 5 concludes the paper.

https://doi.org/10.1145/3565473.3569190
https://doi.org/10.1145/3565473.3569190
https://doi.org/10.1145/3565473.3569190

GNNet ’22, December 9, 2022, Roma, Italy Benedikt Jaeger, Max Helm, Lars Schwegmann, Georg Carle

2 BACKGROUND AND RELATEDWORK
In this section, we present background about TCP CC algorithms
and GNNs as well as related work in the performance modeling of
TCP.

2.1 Background
CC was added to TCP to prevent congestion collapse in the net-
work in the early days of the Internet. It is usually done by each
sender and regulates the amount of traffic sent into the network
(e. g., decrease under congestion and increase with spare network
capacity). This elastic behavior of TCP makes modeling and perfor-
mance prediction more complex since network parameters like link
delay, capacity, and loss rate impact the protocol, and particular
algorithms interact differently. End-host-driven CC algorithms rely
on feedback from the network to estimate the amount of traffic to
be sent. Potential feedback mechanisms are packet loss or changing
connection RTTs. Today, several approaches exist to implement-
ing CC, i. e., congestion detection and potential reactions. A broad
overview of TCP CC algorithms is presented by Afanasyev et al. [1].
In the following, different classes of algorithms used in this paper
are briefly summarized.

Loss-based CC: The earliest approach to implementing CC was
based on the assumption that packet loss is only caused by conges-
tion. Whenever packet loss is detected, the amount of inflight data
is reduced and increased otherwise. Inflight data, i. e., data sent but
not acknowledged yet, is limited using a congestion window. Popu-
lar loss-based algorithms are Reno, Bic, and Cubic. Reno increases its
congestion window linearly with the connection’s RTT and reduces
it by 50 % on packet loss. Cubic improves on weaknesses of Reno
and increases its window following a cubic function independent
of the RTT and only decreases the window by 30% [9]. These al-
gorithms always fill up the buffer at the bottleneck link leading
to increased queuing delay and suffer from stochastic packet loss
caused by reasons other than congestion.

Delay-based CC: This class of algorithms relies on the mea-
sured RTT of the connection to estimate congestion. Whenever
a delay increase is detected, the congestion window is reduced.
While this approach allows operating with the minimum possible
RTT, it has fairness problems when operating beside a loss-based
algorithm. Examples of delay-based algorithms are Vegas [2] and
Ledbat. Ledbat is designed to utilize available resources and reduce
its rate when other flows are present. This targets, for example,
background bulk transfers (see RFC 6817).

Hybrid CC: Besides the classes above, hybrid approaches exist,
which utilize packet loss and delay for deciding the congestion
window size. Examples of this class are Veno [7] and Illinois [16].
In general, loss-based algorithms are robust with other flows on
the path but fill buffers, increasing queuing delay. Delay-based
algorithms achieve low rates when running in parallel and can
operate withminimal RTT. The optimal operation point for delivery
rate and RTT is with exactly one bandwidth-delay product (BDP)
of data in flight.

BBR [4] recently introduced a new approach for CC by modeling
the whole network path and setting the congestion window accord-
ingly. We do not use this algorithm in this paper since we could not
produce consistent results with the available ns-3 implementation.

At seemingly random times, the sending rate of BBR flows dropped
to zero for the remaining time of the simulation.

Graph Neural Networks: In general, neural networks are de-
signed to simulate neurons communicating with each other, in-
spired by the human brain. They consist of different layers of neu-
rons, and each layer is fully connected with its adjacent ones. Deep
neural networks consist of multiple such layers, for which training
became faster and more feasible, with the possibility to offload com-
putation to the GPU. Depending on the application, different neural
networks have been proposed, like convolutional neural networks
for image classification and recurrent neural networks for speech
recognition.

A more recent neural network approach are GNNs [21]. They
receive a graph 𝐺 = (𝑉 , 𝐸) as input consisting of a set 𝑉 of nodes
and a set 𝐸 of edges between those nodes. Each node or edge can
be assigned attributes. The input features for the GNN consist of
those attributes as well as the structure of the graph. Computations
and training on this input can then be done as follows.

Each node is initialized with a hidden state vector ℎ, for which
the node attributes can be used. The central concept behind GNNs is
called message passing which considers the graph structure during
computation. Each node’s hidden state vector is updated during
message passing according to functions 𝑓 and 𝑔. For example, the
updated hidden state vector ℎ𝑡+1 can be computed with

ℎ𝑡+1 = 𝑓 (ℎ𝑡 , 𝑔(ℎ𝑡𝑖 , . . . , ℎ
𝑡
𝑗))

using the previous𝐻 of the node and all its adjacent nodes 𝑖, . . . , 𝑗 as
input. However, there exist different approaches to how this update
function can be defined. In this paper, we use a simple sum

∑
for 𝑔

and a Gated Recurrent Unit (GRU) for 𝑓 . Message passing is done for
a fixed number of steps and results in information passing through
the graph. The output of the message passing phase can then be
further processed or directly used for regression or classification. A
more general explanation of the message passing step can be found
in [22].

2.2 Related Work
Modeling latency and transmission rate of TCP in networks has
already been done before. Early analytical approaches for modeling
are usually limited to the simple TCP Reno algorithm. They use
parameters like RTT and loss probability and are typically limited
to simple problem sizes regarding the number of flows and topology
size [5, 11, 14].

Other machine learning approaches exist, utilizing methods like
support vector machines [18], long short-term memory cells [10],
and neural networks [17]. However, all of the above are either
limited to fixed topologies or only applied to basic TCP Reno.

Recent research showed that applying GNNs for network traf-
fic modeling is promising. This paper follows the graph modeling
approach by Geyer [8], who makes throughput predictions on ar-
bitrary topologies with TCP Reno. The current baseline regarding
delay prediction using GNNs is set by RouteNet [6, 20]. There, traffic
is modeled following packet size and inter-arrival time distributions
while we consider the TCP CC behavior. Also, they use link capaci-
ties of up to 100 kbit/s whereas we increase this to up to 100Mbit/s.
An overview on applications of GNNs in the networking domain is
given in [22].

Modeling TCP Performance using Graph Neural Networks GNNet ’22, December 9, 2022, Roma, Italy

Parameter Distribution Unit

Routers U(2, 10)
Link rate U(10, 100) Mbit/s
Link latency U(5, 50) ms
Buffer size U(1, 5) BDP
Flows U(1, 10)
Algorithms Reno, Cubic, Vegas, Bic, Ledbat, Illinois, Veno

Table 1: Parameters for the dataset generation

3 IMPLEMENTATION
This section covers the generation of the used dataset, the encoding
into graphs, and the design of the GNN.

3.1 Dataset Generation
As a dataset for the neural network, we generated network config-
urations and then simulated them using ns-3. Network topologies
are created using a random number of routers. For simplicity, we
restricted the topologies to trees, so we do not need to handle any
routing. However, the approach would allow arbitrary topologies.
A random Prüfer sequence is generated, which can be mapped un-
ambiguously to a tree. Routers in the network topology are linked
according to the generated tree. Each link is assigned a link rate
and link latency as the one-way propagation delay. Then flows are
generated by randomly selecting a source and destination router.
Source and destination servers are connected to the selected routers
for each flow. Eventually, all network nodes not traversed by any
flows are pruned. All components are randomly parameterized as
given in Table 1 with U(𝑥,𝑦), meaning uniform distribution with
minimum 𝑥 and maximum 𝑦.

Based on these parameter distributions, other relevant charac-
teristics of the generated dataset can be derived (cf. Table 2). Path
rate is the minimum link rate on each flow’s path, and path RTT
corresponds to twice the sum of all link latencies on the path. On
average, there are more than two flows on each link between the
routers, i. e., running in parallel.

We simulate the generated topologies using ns-3 [19] for 60 s
and collect metrics. For each socket, we compute the average trans-
mission rate as transmitted bytes

duration and take the average RTT from the
internal RTT estimation of the socket. Based on the number of
simulated flows and the maximum transmission rates for the flows,
the simulation took, on average, 260 s per topology and core on an
AMD EPYC 7542.

We created 100 k data samples for training and another 10 k for
validating using identical parameter distributions. The dataset was
further split during training into 80 % train and 20 % test sets. The
validation dataset was only used for the evaluation of the models.

The dataset is available along with the code [12].
Figure 2 shows the distributions of the simulation results for the

RTT, rate, and queuing delay (as RTT − path latency) split into the
different CC algorithms. Note that the queuing delay contributes
about 10 % to the RTT.

3.2 Graph Representation
The generated data is encoded into a graph to be used as input for
the GNN. This graph contains the topology of the data samples
and all other information used as input features. We refer to this

Parameter min median mean max std

Path rate 10 20 26.10 100 17.28
Path RTT 30 210 223.65 790 88.96
Path length 4 5 5.07 12 1.23
Flows per link 1 2 2.76 10 1.76

Table 2: Properties of the dataset

mapping as Graph Representation (GR). In this paper, we compare
three different GRs.

GR1: Each outgoing interface of a network node (routers and
servers) is modeled as an interface node. For each link in the net-
work topology, two interface nodes are added with the link latency,
rate, and buffer size as attributes. Flows are modeled as flow nodes
connected to each interface node they traverse. This allows the
logical connection between the network nodes and traffic flows to
be incorporated into one graph. Additionally, we assume for this
graph that flows only interfere with each other if they share at least
one outgoing interface. For example, in Figure 1b, 𝐹1 and 𝐹2 are
connected via an interface node, while 𝐹2 and 𝐹3 are unconnected.

GR2: Since TCP features a feedback channel containing the
acknowledgments (Ack), this information should also be modeled
in the graph. This GR contains an additional Ack node for each
flow node connecting all interface nodes from the acknowledgment
path (i. e., the reverse flow path). In Figure 1b, 𝐹1 and 𝐹3 are now
connected via the Ack node even though they do not share any
nodes on the data path.

GR3: In this GR, additional path nodes are added between each
flow and interface node, encoding its position on the path (e. g., first,
second, . . .). This node is then connected to the flow-node /Ack-
node and the interface node. The position on the path is a one-
hot encoded attribute that encodes if the node is the first, second,
. . . network interface on the flow’s path.

Examples for these GRs can be seen in Figure 1b. For simplifica-
tion, Ack nodes are only shown for 𝐹3 and path nodes only for 𝐹1.
We expect the third GR to be the most suitable since it includes the
most information. Input features and output values are encoded as
node attributes (Table 3), while edges only connect nodes and are
otherwise not parameterized.

Matrix Conversion: This graph is then converted into a matrix
of size 𝑁 × 𝐹 , with 𝑁 being the number of nodes in the graph and 𝐹
being the length of the feature vector of each node (see Figure 1c).
Categorical features are one-hot encoded (e. g., the node type, the
CC algorithm, and the position on the path). The length of the
feature vector varies between the different GRs. For GR1, it consists
of 14 values (one for each of link rate, link RTT, queue size, and one-
hot encoded three for the node type, and eight for the CC algorithm.
GR2 increases the vector’s size by one since an additional node
type is added. For GR3, the size is 32, with one additional node type
and the path order as one-hot encoded of length 16. Note that all
rows have the same feature vector dimensions even though not all
features are assigned to each node. These values are set to zero in
the matrix.

This conversion from a graph to a matrix can be applied to all
kinds of graphs and is not limited by network size or the number
of flows.

GNNet ’22, December 9, 2022, Roma, Italy Benedikt Jaeger, Max Helm, Lars Schwegmann, Georg Carle

F1

F2

F3

Server

Router

(a) Network topology with three flows

F1

F2

F3

A3

Flow
Node

Interface
Nodes

Ack
Node

Path
Nodes

(b) Graph Representation of the topology

1 0 0 1 0 0 1

0 1 0 1 0 0 0

0 1 0 0 1 0 0

0 1 0 0 0 1 1

0 0 1 1 0 0 0

0 0 1 0 1 0 1







#Features

#
N
o
d
e
s

Node
Types

Node
Attributes

One
Node

(c) Matrix representation

Figure 1: Conversion of the network data into an input matrix for the GNN

Reno Bic Cubic Illinois Veno Vegas Ledbat
0

200

400

R
T
T

[m
s]

0

20

40

R
ate

[M
b
it/s]

Q
u
eu
in
g
D
elay

[m
s]

RTT Rate Queuing Delay

Figure 2: Simulation results for different algorithms. The
horizontal line denotes the median, ▲ the mean.

Node type Node Attributes

Flow node CC algorithm*, flow RTT, flow rate
Interface node latency, rate, buffer size
Ack node –
Path node position on the path*

Table 3: Node attributes in the Graph Representation (at-
tributes marked with * are one-hot encoded, bold attributes
are used as output for the models)

3.3 Neural Network Design
For modeling, we follow the approach from [8] using a Gated Graph
Neural Network (GGNN) [15] consisting of both a GRU and a Feed-
Forward (FF) network.The input matrix of size (𝑁 × 𝐹) is first fed
into a FF network resulting in an output of size (𝑁 × 𝐻) with 𝐻

being the configurable hidden state size. Then the GRU component
computes the hidden state updates during message passing, which
does not change the shape of the matrix. Like a Long Short-Term
Memory (LSTM) cell, a GRU implements gate mechanisms to store
sequenced data like the message passing steps. Afterward, data is
passed through another FF layer to process the final output, i. e.,
the flow RTT or rate. Eventually, the output matrix has a shape of
(𝑁 ×1), and the output vectors can be interpreted depending on the
row number of the input nodes. We train two independent models
for the RTT and rate. Thus only one output value is provided for
each node.

For training, we use the mean squared error (squared L2 norm) as
the loss function. Only rows containing flow nodes are considered
for predicting the flow RTT and rate by the loss function during
the training process.

GR1 GR2 GR3 BL

0

20

40

60

A
b
s.

E
rr
or

[m
s]

(a) RTT absolute error

GR1 GR2 GR3 BL

0

5

10

15

A
b
s.

E
rr
or

[M
b
it
/s
]

(b) Rate absolute error

GR1 GR2 GR3 BL

0

10

20

30

R
el
.
E
rr
or

[%
]

(c) RTT relative error

GR1 GR2 GR3 BL

0

100

200

300

R
el
.
E
rr
or

[%
]

(d) Rate relative error

Figure 3: Comparison of the prediction error for different
graph representations (GR) and the baseline (BL)

Weuse nni1 with a subset of the training data for hyperparameter
tuning. The implementation is realized using PyTorch and PyTorch
Geometric and is available along with the dataset [12].

4 EVALUATION
This section presents results and insights gained from analyzing
and applying the trained models. For the evaluation, we use the
absolute and absolute relative error:

Abs. error = |𝑦 − 𝑦′ | Rel. error =
|𝑦 − 𝑦′ |

𝑦

with 𝑦 being the actual value and 𝑦′ the prediction. The shown
boxplots contain the median as a horizontal line, the mean as ▲, the
quartiles 𝑄1 and 𝑄3, and the whiskers show the 1.5 interquartile
range (𝑄3 −𝑄1).

4.1 Comparison of Graph Representations
First, we compare the three GRs and assess their prediction quality
for RTT and rate.

1https://github.com/microsoft/nni

https://github.com/microsoft/nni

Modeling TCP Performance using Graph Neural Networks GNNet ’22, December 9, 2022, Roma, Italy

Vegas Reno Veno Cubic Bic Ledbat Illinois

0.0

2.5

5.0

7.5

10.0

R
el
.
E
rr
or

R
T
T

[%
]

0

25

50

75

100

R
el
.
E
rr
or

R
at
e
[%

]RTT Rate

Figure 4: Relative error for different algorithms

As expected, adding more information to the graph decreases
errors for the RTT estimation. However, less improvement is visi-
ble for the bandwidth estimation. This evaluation shows that the
different GRs impact the prediction accuracy depending on how
much information is added as input features. Adding an Ack node,
which includes the return path (GR2), decreases the relative error
for the RTT model, both for the median and quartiles (Figure 3c).
However, it has less impact on the rate model (Figure 3d). We argue
that for the RTT model, the return path must be included in the
input features, i. e., the GR, since the RTT considers both ways on
the network path. Contrary, for the rate model, the reverse path is
less critical since for congestion on the links, mainly the sent data
is responsible and less the acknowledgments.

For comparison, we added simple analytical models as a baseline.
For the rate baseline, we determine the bottleneck link for each flow
as the link with the minimal value for link rate

flows on the link , assuming
that all flows share bandwidth evenly. This model does not include
differences in CC algorithms. The baseline for the RTT model is
simply summing up twice the link latencies on the flow’s path
ignoring the queuing delay. While the RTT baseline’s error roughly
mirrors the queuing delay in the dataset (cf. Figure 2), the rate
baseline is less accurate. The baseline does not include the different
behavior of CC algorithms and their interaction.

4.2 Differences in Algorithms
One contribution in this paper is that we include multiple CC al-
gorithms as input features. Figure 4 shows the models’ prediction
accuracy split into different algorithms. For the RTT model, the
differences are only marginal between the algorithms. One reason
is that queuing delay only has a minor impact on the overall RTT
compared to the propagation delay. As seen in Figure 2, all flows in
the training dataset share a similar RTT distribution independent
of the algorithm. The loss-based algorithms Reno, Cubic, and Bic
have the lowest relative error. Though, the relative error is more
significant for Ledbat and Illinois. This is most likely due to the
more complex behavior of the algorithms. For the rate model, the
same effect can be observed.

4.3 Feature Importance
To better understand the models’ internal behavior, we analyzed
how different input features contribute to the training process and
to the models’ output. We use the permutation feature importance,
which measures how the permutation of one feature in the training
or test data influences the prediction accuracy [3].

We shuffled the columns in the input matrix which belong to the
given feature and leave all other columns untouched. For example,

Buffer
Size

Node Type

Link Rate

Algorit
hm

Link Dela
y

Path
Order

0.00

0.25

0.50

0.75

1.00

F
ea

tu
re

Im
p

or
ta

n
ce

RTT Rate

Figure 5: Feature importance for the models

1 2 3 4 5 6 7 8 9 10

Number of Flows

0

5

10

15

R
el
.
E
rr
or

R
T
T

[%
]

0

30

60

90

R
el
.
E
rr
or

R
at
e
[%

]

RTT Rate

Figure 6: Relative error for different numbers of flows

we shuffled only the column representing the link delay across all
rows for the importance of the link delay. For one-hot encoded
features, all columns used for encoding are shuffled likewise. The
permutation breaks the correlation between this particular feature
and the model’s output. With the permuted data we trained a model
for each input feature and evaluated them against the validation
data. We compare the median relative error of the shuffled data
with the original one as baseline as an indicator for importance –
the larger the difference, the more important the feature.

In Figure 5, the importance of the different features is depicted.
The y-axis shows the shuffled data’s relative error minus the un-
shuffled model’s relative error. For simplicity we min-max normal-
ized the values to [0, 1], with 0 being less important and 1 more.
Thus, the figure only shows qualitative importance for each model
and does not allow a quantitative comparison between them.

For the RTT model, the link delay feature is naturally considered
important. TCP algorithm and the buffer size are less impactful.
We argue that for the used data the queuing delay is considerably
smaller than the propagation delay making both input features less
important for the RTT (cf. Figure 2). The link rate feature is the
second most important feature for the RTT.

The algorithm and link rate features are considerably more im-
pactful for the rate model. It is important for the sending rate of a
TCP algorithm if it has a greedy (e. g. loss-based) or a conservative
(e. g. delay-based) behavior. The same applies to competing flows
on the same network path.

Overall, the feature importances are consistent with our expec-
tations.

4.4 Scalability
This section presents the impact of the number of flows and network
size on the prediction accuracy. The datasets contain between one
and ten flows uniformly distributed. Figure 6 shows the relative
errors for the different number of flows. The RTT model is hardly

GNNet ’22, December 9, 2022, Roma, Italy Benedikt Jaeger, Max Helm, Lars Schwegmann, Georg Carle

4 5 6 7 8 9 10 11 12

Path length

0

5

10

15

R
el
.
E
rr
or

R
T
T

[%
]

0

50

100

150

R
el
.
E
rr
or

R
at
e
[%

]

RTT Rate

Figure 7: Relative error for different path lengths

influenced by the number of flows. Mainly for two reasons: First,
the most significant part of the RTT comes from the propagation
delay, which is independent of the number of flows. Second, flows
sharing the same links have the same RTT when even one loss-
based flow fills the buffer at the bottleneck link. However, the rate
model shows an increase in error with increasing number of flows.
The more flows contained in the network, the higher the chance
that more links are shared by more flows making the behavior more
complex. The topologies in the datasets consist of a tree containing
two to ten routers; each flow has source and destination servers
connected to two different routers. This results in a minimum path
length of four and a maximum of 12.

In Figure 7, the relative errors for flows of different path lengths
are compared. Rate prediction becomes less accurate with increas-
ing path length. Flows on longer paths might share links with more
and different flows resulting in higher rate fluctuations. The RTT
model shows the lowest error for a path length of seven which
increases slightly with shorter and longer paths. Note, for path
lengths larger than ten only a few samples are contained in the
dataset.

5 CONCLUSION
This paper shows how GNNs can be utilized for TCP rate and RTT
prediction. The presented approach can handle arbitrary network
topologies and TCP CC algorithms. We investigate how the encod-
ing into different graphs impacts the prediction accuracy, analyze
how vital the distinct input features are, and check if the network
size, number of flows, or algorithms impact the model results. We
found differences in the prediction accuracy depending on the algo-
rithm, and the feature importance tests showed that the used TCP
algorithm is a significant input feature. With the trained models, we
achieved a median relative error of 2.29 % for the RTT and 13.31 %
for the rate. However, inference with the models can be done within
5ms on a CPU or 7ms on a GPU which can be further accelerated
with batching, while simulating a topology took on average 260 s.
The used datasets, scripts for training, and the trained models are
available along with scripts to reproduce results and plots [12].

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No. 101008468 and No. 101079774. Additionally, we received
funding by the Bavarian Ministry of Economic Affairs, Regional
Development and Energy as part of the project 6G Future Lab
Bavaria. This work is partially funded by Germany Federal Min-
istry of Education and Research (BMBF) under the projects 6G-life
(16KISK001K) and 6G-ANNA (16KISK107).

REFERENCES
[1] Alexander Afanasyev, Neil Tilley, Peter Reiher, and Leonard Kleinrock. 2010. Host-

to-host congestion control for TCP. IEEE Communications surveys & tutorials 12,
3 (2010), 304–342.

[2] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. 1994. TCP Vegas:
New techniques for congestion detection and avoidance. In Proceedings of the
conference on Communications architectures, protocols and applications. 24–35.

[3] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[4] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van

Jacobson. 2016. BBR: Congestion-based congestion control: Measuring bottleneck
bandwidth and round-trip propagation time. Queue 14, 5 (2016), 20–53.

[5] Neal Cardwell, Stefan Savage, and Thomas Anderson. 2000. Modeling TCP latency.
In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies (Cat. No. 00CH37064), Vol. 3. IEEE, 1742–1751.

[6] Miquel Ferriol-Galmés, Krzysztof Rusek, José Suárez-Varela, Shihan Xiao, Xiang
Shi, Xiangle Cheng, Bo Wu, Pere Barlet-Ros, and Albert Cabellos-Aparicio. 2022.
Routenet-erlang: A graph neural network for network performance evaluation.
In IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE,
2018–2027.

[7] Cheng Peng Fu and Soung C Liew. 2003. TCP Veno: TCP enhancement for
transmission over wireless access networks. IEEE Journal on selected areas in
communications 21, 2 (2003), 216–228.

[8] Fabien Geyer. 2017. Performance Evaluation of Network Topologies using Graph-
Based Deep Learning. In Proc. 11th EAI International Conference on Performance
Evaluation Methodologies and Tools. Venice, Italy. https://doi.org/10.1145/3150928.
3150941

[9] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),
64–74.

[10] Desta Haileselassie Hagos, Paal E Engelstad, Anis Yazid, and Carsten Griwodz.
2019. A deep learning approach to dynamic passive RTT prediction model for
TCP. In 2019 IEEE 38th International Performance Computing and Communications
Conference (IPCCC). IEEE, 1–10.

[11] Qi He, Constantine Dovrolis, and Mostafa Ammar. 2005. On the predictability
of large transfer TCP throughput. ACM SIGCOMM Computer Communication
Review 35, 4 (2005), 145–156.

[12] Benedikt Jaeger et al. 2022. Code and Data Publication. https://gitlab.lrz.de/gnnet-
2022/code

[13] Benedikt Jaeger, Dominik Scholz, Daniel Raumer, Fabien Geyer, and Georg Carle.
2019. Reproducible measurements of TCP BBR congestion control. Computer
Communications 144 (2019), 31–43.

[14] Inas Khalifa and Ljiljana Trajkovic. 2004. An overview and comparison of analyt-
ical TCP models. In 2004 IEEE International Symposium on Circuits and Systems
(ISCAS), Vol. 5. IEEE, V–V.

[15] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[16] Shao Liu, Tamer Başar, and Ravi Srikant. 2006. TCP-Illinois: A loss and delay-
based congestion control algorithm for high-speed networks. In Proceedings of
the 1st international conference on Performance evaluation methodolgies and tools.
55–es.

[17] Albert Mestres, Eduard Alarcón, Yusheng Ji, and Albert Cabellos-Aparicio. 2018.
Understanding the Modeling of Computer Network Delays Using Neural Net-
works. In Proceedings of the 2018 Workshop on Big Data Analytics and Machine
Learning for Data Communication Networks (Budapest, Hungary) (Big-DAMA
’18). Association for Computing Machinery, New York, NY, USA, 46–52.

[18] Mariyam Mirza, Joel Sommers, Paul Barford, and Xiaojin Zhu. 2007. A machine
learning approach to TCP throughput prediction. ACM SIGMETRICS Performance
Evaluation Review 35, 1 (2007), 97–108.

[19] George F Riley and Thomas R Henderson. 2010. The ns-3 network simulator. In
Modeling and tools for network simulation. Springer, 15–34.

[20] Krzysztof Rusek, José Suárez-Varela, Paul Almasan, Pere Barlet-Ros, and Albert
Cabellos-Aparicio. 2020. RouteNet: Leveraging Graph Neural Networks for
network modeling and optimization in SDN. IEEE Journal on Selected Areas in
Communications 38, 10 (2020), 2260–2270.

[21] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The Graph Neural Network Model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[22] José Suárez-Varela, Paul Almasan,Miquel Ferriol-Galmés, Krzysztof Rusek, Fabien
Geyer, Xiangle Cheng, Xiang Shi, Shihan Xiao, Franco Scarselli, Albert Cabellos-
Aparicio, et al. 2022. Graph Neural Networks for Communication Networks:
Context, Use Cases and Opportunities. IEEE Network (2022).

[23] Andras Veres and Miklos Boda. 2000. The chaotic nature of TCP congestion con-
trol. In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies (Cat. No. 00CH37064), Vol. 3. IEEE, 1715–1723.

https://doi.org/10.1145/3150928.3150941
https://doi.org/10.1145/3150928.3150941
https://gitlab.lrz.de/gnnet-2022/code
https://gitlab.lrz.de/gnnet-2022/code

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Implementation
	3.1 Dataset Generation
	3.2 Graph Representation
	3.3 Neural Network Design

	4 Evaluation
	4.1 Comparison of Graph Representations
	4.2 Differences in Algorithms
	4.3 Feature Importance
	4.4 Scalability

	5 Conclusion
	Acknowledgments
	References

