
Building a Low Latency Linux Software Router
Alexander Beifuß1, Torsten M. Runge1, Daniel Raumer2, Paul Emmerich2, Bernd E. Wolfinger1, Georg Carle2

1Universität Hamburg, Department of Computer Science, Telecommunications and Computer Networks
{beifuss|runge|wolfinger}@informatik.uni-hamburg.de

2Technische Universität München, Department of Computer Science, Network Architectures and Services
{raumer|emmericp|carle}@in.tum.de

Abstract—Packet processing (e.g. routing, switching, firewall)
with commodity hardware is a cost-efficient and flexible alter-
native to specialized networking hardware. On commodity hard-
ware the CPU typically becomes the bottleneck in packet process-
ing. However, in well-known QoS mechanisms (e.g. DiffServ), the
outgoing link is assumed to be the bottleneck. This limitation is
unfavorable, in particular for latency-sensitive applications (e.g.
VoIP, video conferencing, online gaming). Thus, we propose and
implement a QoS concept for a Linux software router to prioritize
latency-sensitive traffic at the incoming network interface. Our
testbed measurements show that our prototype implementation
improves the packet processing w.r.t the latency of latency-
sensitive traffic even under high traffic loads.

Keywords— commodity hardware; packet processing; quality
of service; low latency; NIC driver

I. INTRODUCTION AND RELATED WORK

Since decades, packet processing with specialized network-
ing hardware like hardware routers has been the state of the art.
Nowadays, cost-efficient commodity hardware has benefited
from many optimizations (e.g. multi-core CPUs, multi-queue
NICs, DCA, DMA, PCIe) to exploit parallelism in the packet
processing with software [1], [2]. By this way, the packet
processing software like the network interface card (NIC)
drivers and the operating systems (OS) also received several
enhancements like interrupt moderation for saving CPU cy-
cles in high-load situations. Thus, so-called software routers
became a potential replacement for specialized networking
hardware in many cases (e.g. campus networks). In contrast
to hardware routers, software routers are more cost-efficient
and more easy to extend, which allows for fast adaptation and
introduction of new features.

Many research projects show that the CPU constitutes the
bottleneck in the packet processing with commodity hard-
ware [1]–[4]. However, there is only limited support for differ-
entiated ingress traffic treatment regarding the packet process-
ing by the CPU bottleneck. For instance, Linux only supports
packet filtering but no class-based traffic differentiation at the
ingress. Unfortunately, the well-known QoS approaches like
DiffServ [5] and IntServ [6] are only applicable as queuing
disciplines (Qdisc) at the egress because the outgoing link is
assumed to be the bottleneck. Consequently, the absence of
ingress traffic classification and prioritization might have a
negative impact on applications which have specific quality of
service (QoS) requirements (e.g. high bandwidth, low latency,
low jitter). Additionally, this problem is strengthened by the

increase of real-time traffic such as voice over IP (VoIP), video
conferencing, video on demand (VoD) or online gaming.

We argue that QoS-sensitive traffic should also be prioritized
at the ingress network interface to achieve QoS-aware packet
processing with commodity hardware. In this manner, we
presented and evaluated a new QoS concept in our previous
work [7], [8], in which we simulated the ingress QoS packet
processing and showed improvements for QoS-sensitive traffic.
In our QoS concept, the ingress traffic is classified by the NIC
into dedicated receive queues (Rx rings). By this way, the
traffic classification is offloaded from the CPU to the NIC.
Then, QoS-sensitive traffic can be prioritized according to a
configurable scheduling strategy. This QoS concept is also
applicable for other packet processing systems (e.g. switches,
load balancers, firewalls, end systems).

Furthermore, optimized networking frameworks like
netmap [9] or DPDK [10] were proposed to bypass the Linux
networking stack. These approaches achieve high throughputs
with batching of multiple packets and process them more
efficiently in the user space (e.g. preallocation, zero-copy).
However, these approaches usually show the drawback of
insufficient packet latency. To support low latency packet
processing, Ueda et al. [11] introduce dedicated interrupt
requests (IRQ) for the reception of real-time traffic. But
this additional IRQ overhead leads to a strong decrease in
the overall system performance (e.g. maximum throughput).
Furthermore, Cummings and Tamir [12] propose a busy poll
based concept for network interfaces which can be set by the
application. Their approach is designed for end systems but
it causes high CPU utilization and prevents the CPU from
energy saving, even at low traffic loads.

In this paper, we present and evaluate a prototype imple-
mentation of our QoS concept for a Linux software router. As a
proof of concept, the testbed measurements show that with our
prototype the packet latency of latency-sensitive traffic remains
very low, even under high traffic loads. This is accomplished
without significant performance degradation, e.g. in terms of
the achievable maximum throughput.

The remainder of the paper is structured as follows. First,
the Linux packet processing is described in Section II. We
present our QoS concept in Section III. In Section IV, we
explain important aspects of our prototype implementation.
In Section V, we evaluate our prototype based on testbed
measurements. Finally, we summarize the paper in Section VI.



II. LINUX-BASED PACKET PROCESSING

Before version 2.6, the Linux kernel followed an interrupt-
driven approach for receiving network data, so that each
received packet causes an IRQ. However, the throughput
collapses with high offered loads due the high IRQ effort.
This is known as the receive livelock state [13], in which
the CPU is only utilized with IRQ handling and has no
CPU cycles left for the actual packet processing or other
processes. Therefore, Salim et al. [14] presented a new packet
reception approach, the so-called NAPI (New API) which
was introduced with Linux kernel version 2.6. Today, the
NAPI is still a fundamental part of the Linux kernel network
subsystem. The NAPI is a hybrid mechanism which combines
the advantages of interrupt-driven and poll-driven approaches.
In case of a low offered load, the system behaves like an
IRQ-driven system whereat each packet causes an IRQ. Thus,
the waiting-time of a packet is rather low which implies
low packet latency. At high offered loads, the system rather
behaves like a poll-driven system where IRQs are disabled and
multiple packets are served in batches. Therefore, CPU cycles
are mainly spent for the packet processing at high offered loads
which maximizes the achievable throughput. This behavior of
the NAPI is achieved as described in the following.

Each network device (aka. QVector, cf. Sec. IV) uses a
dedicated IRQ line per CPU core. By default, there is a one-
to-one relationship between a device and a packet reception
queue (Rx ring). An IRQ which is generated by a device will
cause the execution of the interrupt service routine (ISR). A
NAPI-compliant driver performs the following tasks:

• The IRQ line of the device is disabled in order to ensure
that no further IRQs are generated if packets arrive in the
corresponding Rx ring. Nevertheless, received packets are
still transferred into main memory via DMA.

• The corresponding device is enqueued in a so-called
poll list and further packet processing is scheduled for
later execution (by generating a so-called Soft-IRQ), so
that the ISR quickly returns. Later, if the Soft-IRQ is
handled, the poll list is served by the NAPI in FIFO
manner. This means that packets are polled from the
enqueued device and are passed to the IP stack for the
actual packet processing (e.g. routing).

The polling of a device terminates due to one of the
following reasons:

• All backlogged packets of the device have been pro-
cessed. Then, the device is removed from the poll list
and the IRQ line that corresponds to this device is re-
enabled.

• A maximum number of packets that corresponds to the
device budget (aka. poll size) has been processed but
there are still further packets backlogged in the Rx ring
of the device, which are waiting for being processed.
Then, the IRQ line of this device remains disabled and
the device entry is moved to the tail of the poll list again.

III. CONCEPTION OF LOW LATENCY SUPPORT

The NIC drivers and also the Linux NAPI [14], [15] do
not support traffic classes. However, this is important for the
differentiated treatment of QoS-sensitive traffic. Therefore, in
our QoS concept the received packets are classified into traffic
classes and accordingly directed into the dedicated waiting
queues (Rx rings) of an device. Finally, the packet processing
of these Rx rings with QoS-sensitive traffic can be prioritized
by the corresponding CPU core. An example of such a low
latency (LL) software router with the two traffic classes Real-
Time (RT) and Best Effort (BE) is depicted in Fig. 1. In the
following, our QoS concept is described in detail.

A. Traffic Classification

Modern network cards have various features to offload
specific packet processing tasks from the CPU to the NIC.
For example, the Intel Ethernet NIC controller X540 [16]
supports multi-queuing (MQ) and receive-side scaling (RSS)
to efficiently distribute incoming packets among the available
CPU cores. Especially, the Flow Director is a specific NIC
hardware filter which allows traffic classification based on
MAC or IP header fields, TCP/UDP ports, VLAN tags and
even flexible 2 Byte tuples in the first 64 Byte of a packet.
Based on this information the NIC is able to classify received
packets and sort them into multiple dedicated Rx rings which
in turn can be assigned to specific CPU cores via the RSS
feature. If a received packet does not match any of the NIC
filter rules, then the NIC will direct it into the Rx ring of the
traffic class with the lowest priority (e.g. BE). Thereafter, the
packets are transferred by Direct Memory Access (DMA) into
the main memory without any involvement of the CPU. As a
consequence, an IRQ to the appropriate CPU core is signaled
if the corresponding IRQ line of the device is enabled.

In our QoS concept, these NIC features are exploited by a
packet processing system for traffic classification (Classifier).
Each device provides a dedicated Rx ring per traffic class. A
device uses only one IRQ line. Therefore, this IRQ line is
shared between multiple Rx rings to save IRQ overhead and
thus CPU cycles.

Deri et al. [17] also used NIC hardware filters to accelerate
a traffic analysis framework by reducing the number of packets
to the relevant ones only. Their case study showed that
although the configuration may increase the complexity of a
system, it can improve performance of CPU-based sampling
approaches. Tanyingyong et al. described an OpenFlow switch
where some matches were offloaded to the NIC [18]. In 2012,
they also proposed a fast processing path for a router, where
the routing decision for a limited number of flows (typically
those with high packet rates) is offloaded to the NIC by using
the Flow Director [19].

B. Traffic Prioritization

Well-known QoS mechanisms for differentiated packet
treatment (e.g. DiffServ, IntServ) are only supported as a Qdisc
on the outgoing network interface. On the ingoing network
interface, multiple Rx rings (which are associated with the



Fig. 1: Ingress and egress QoS support of a multi-core software
router with dedicated Rx rings for RT and BE traffic

same CPU core) are simply served in a round-robin manner.
So, traffic prioritization on the ingoing network interface is
not supported. However, the Rx rings with QoS-sensitive
traffic of the ingoing network interface should be preferred
to support differentiated packet treatment. Thus, our QoS
concept introduces Ingress QoS. By this way, a scheduling
strategy (cf. Sec. III-C) is applied for the ingress traffic to
prefer RT Rx rings w.r.t. the actual packet processing by the
CPU core. Additionally, a Qdisc can be applied on the egress
network interface to prioritize the RT traffic (Egress QoS). The
extensions are highlighted in Fig. 1.

In the following our QoS concept, as illustrated in Fig. 2, is
described in detail. Firstly, the Linux NAPI checks the poll list
whether devices were added for packet processing. Multiple
devices in the poll list are served in a round robin manner
corresponding to the device budget. The device budget (usually
64 packets for GbE adapters) limits the number of packets
which can be processed in a row by a device.

As mentioned in Section II, there is a one-to-one relation-
ship between a network device and an Rx ring. Instead of
a single Rx ring per device and per CPU core, our concept
provides a dedicated Rx ring per traffic class. Consequently, a
specific device uses a dedicated Rx ring per traffic class. The
packet processing of such a device is controlled by the device
budget and dedicated ring budgets. While the device budget
still defines the number of packets that may be consecutively
polled from the device, the ring budget specifies the number
of packets per Rx ring that can be processed at maximum
before switching to another Rx ring of the same device. In
our concept, the ring budget is dependent on the scheduling
strategy (cf. Section III-C) and can be adapted according to
the priority of the associated traffic class.

Finally, it is checked whether all Rx rings are empty. If this
is true, then the NAPI removes this device entry from the poll
list and the IRQ line is re-enabled. Otherwise, if any of the Rx
rings still contains packets, it is checked whether the device
budget was exhausted. If the device budget is not exhausted,

From NAPI: select next
dev from head of poll list

select first ring
Rx ring of device

poll packets from Rx
ring w.r.t. ring budget

all Rx rings polled?

all Rx rings empty?

To NAPI: remove
device from poll list

select next Rx
ring of device

device budget
reached?

To NAPI: move device
to tail of poll list

N

Y

N

Y

N

Y

Fig. 2: Ingress QoS support

all Rx rings are served again. Otherwise, if the device still has
packets to be processed then the NAPI moves the device to
the tail of the poll list for later processing.

In principle, our QoS concept supports an arbitrary number
of traffic classes. Through the differentiated packet treatment
at the ingoing network interface, we expect that the latency of
latency-sensitive applications is significantly reduced. In Sec-
tion V, the effects of our QoS concept with two traffic classes
(RT, BE) are evaluated based on real testbed measurements.

C. Scheduling Strategies

In this paper, we consider the following scheduling strate-
gies for our ingress QoS concept (cf. Table I).
• Single Queue (SQ): The incoming packets are not clas-

sified but directed to one Rx ring per device. Thus, all
packets are served in a FIFO manner which represents
the state of the art without traffic classification and
priorization.

• Round-Robin (RR): The incoming packets are classified
by the NIC and directed into the Rx ring of a dedicated
device. This represents the state of the art with NIC-based
traffic classification but without traffic prioritization.

• Low Latency Round Robin (LL-RR): The incoming pack-
ets are classified by the NIC into dedicated Rx rings per
device. Each device has a dedicated Rx ring per traffic
class. All Rx rings have the same ring budget, thus, this
represents our QoS concept without prioritization.

• Low Latency Weighted Fair Queuing (LL-WFQ): Similar
to LL-RR, but the budget of an Rx ring corresponds to
the traffic class priority.

TABLE I: Scheduling strategies

SQ RR LL-RR LL-WFQ
Traffic classification × X X X
Shared IRQ × × X X
Traffic prioritization × × × X



D. Theoretical Considerations

In this section we estimate the worst case latency of our
QoS concept by means of an elementary queueing model. The
model consists of a server (CPU core) which processes two
queues in an alternating manner (namely, the RT ring and
the BE ring) as illustrated in Fig. 3. A specific ring budget
exists for serving each of both queues. After reaching this
ring budget the server passes over to the other queue, if the
current queue has not been emptied already before reaching
the ring budget. Anyway, we assume that the ring budget is
only relevant for the BE ring because the ring budget to serve
the RT ring is chosen sufficiently large to make sure that the
RT ring is always empty when the server switches to serving
of the BE ring. So, the ring budget of the RT ring is never
exhausted. In the following, we use the variables depicted in
Table II.

CPU
core

RT ring
λRT

BE ring
λBE

Fig. 3: Queueing model of ingress QoS

TABLE II: Used variables and relations

b constant BE ring budget b ≥ 1 , b ∈ N
x constant packet service time x > 0 , x ∈ R
r ratio of RT packets w.r.t. all packets 0 ≤ r ≤ 1
λ total packet arrival rate λ = λRT + λBE

λRT RT packet arrival rate λRT = rλ
λBE BE packet arrival rate λBE = (1− r)λ
ρRT system utilization by RT packets ρRT = xλRT

Now, we can determine a (slightly conservative) upper
bound for the latency of RT packets. As we assume the RT
ring to be empty when the CPU core switches to BE ring, the
latency of a packet in the RT ring is bounded by the sum of
the following times:
• The waiting time for the CPU core to return after serving

the BE ring within one service cycle using its complete
ring budget b corresponds to bx.

• The time needed to serve the backlog of packets in the RT
ring, which accumulated during the time the CPU core
spent at for serving BE ring; this first backlog consists
of at bxλRT packets in mean, leading to a mean service
time requirement of a first backlog of bxλRTx.

• The time needed to serve the second backlog of packets
in the RT ring, which accumulated during the time the
CPU core spent at for serving the first backlog; the service
time requirement of a second backlog of bx(λRTx)

2.
So we can sum all single portions of delays to get the

desired bound Tmax for the packet latency in RT ring:

Tmax = bx+

∞∑
i=1

bx(λRTx)
i = bx

∞∑
i=0

ρiRT =
bx

1− ρRT
(1)

If we assume the system is not overloaded by RT traffic,
then this geometric series converges because ρRT < 1.
Evidently, the first term of the sum in the middle of Eq. (1),
i.e. bx, represents the maximum waiting time for the CPU
core to return to serving the RT ring after a complete service
cycle of the BE ring. The second term of the sum, namely
the geometric series, represents the maximum duration of a
complete service cycle of the RT ring, cf. similarity of this
result to the expected length of the busy period in M/M/1
queuing systems [20].

It should be noted that the important assumption used to
derive Eq. (1), namely that, in an interval of length T , we
can expect that TλRT packets will arrive at the RT ring, may
not be fulfilled for small values of T . Nevertheless, if the
traffic arriving at the RT ring is rather smooth (e.g., no large
bursts exist) our assumption should be sufficiently valid. Now,
Eq. (1) also allows us to determine an appropriate value for
the budget b if, e.g., we want to bound the maximum latency
in the RT ring by a value T ∗ which is a multiple m of x,
i.e. T ∗ = mx,m ∈ N. This requirement is fulfilled if the
following equation holds.

bx

1− ρRT
≤ T ∗ = mx ⇔ b ≤ m(1− ρRT ) (2)

As a specific example, let us determine an acceptable value
for b if m = 6 and ρRT ≤ 0.3. In this situation, b ≤ 6 · 0.7 =
4.2 holds and this means that we could choose b = 4, because
we want to have b as large as possible in order to minimize
the switching overhead between the RT ring and the BE ring.
Analogously, for ρRT ≤ 0.5 (and still m = 6) we could choose
b = 3. Determining the value of the ring budget to serve the
RT ring is trivial, because it is sufficient to take a value which
is large enough so that the budget is nearly never reached in
order to completely serve the RT ring in an RT service cycle.

IV. IMPLEMENTATION OF LOW LATENCY SUPPORT

In this section we give an overview of the modifications that
we applied to the Linux driver module of a 10 GbE adapter
in order to realize our prototype implementation. Since our
testbed is equipped with 10 GbE NICs from Intel, we imple-
mented the proof of concept prototype for the corresponding
ixgbe driver (version 3.22.3).

Within the ixgbe driver, Intel provides a data structure which
is wrapped into the NAPI device structure to be compatible
to the NAPI. This data structure is called QVector (short
for Queue Vector) and it is responsible to store information
about Rx rings. Fig. 4(a) shows a schematic view of how
such a QVector is structured. Each QVector holds two distinct
containers. One container for Tx rings and another one for Rx
rings. The main purpose for this data structure is to save IRQs,
as all referenced rings of a QVector share the same IRQ line.
For instance, this is exploited by a technique called virtual
machine device queues (VMDq) where the NIC sorts packets
into specific receive queues (Rx rings) which are then grouped
by a QVector and thus share an IRQ line. Therefore, a single
IRQ causes the virtual machine monitor (VMM) to handle



QVector

Tx ring container Rx ring container

Tx ring 1

· · ·

Tx ring n

Rx ring 1

· · ·

Rx ring m

(a) General structure

QVector

Tx ring container Rx ring container

Tx ring Rx ring

(b) Default RSS setups

QVector

Tx ring container Rx ring container

Tx ring RT Rx ring

BE Rx ring

(c) Our ingress QoS concept

Fig. 4: Schematic view of Intel’s Queue Vector (QVector) data structure

multiple Rx rings (for different VMs) in batch and provide
the VMs with bulks of packets to improve I/O performance.
A standard RSS setup without VMs also benefits from IRQ
mitigation due to QVectors. For each NIC and for each CPU
core a dedicated QVector mitigates Rx and Tx IRQs while it
also avoids locking in case of parallel processing. Compared
to the general VMDq case with multiple Rx and Tx rings per
ring container (i.e. as many as VMs are hosted), each of both
ring containers now references exactly one ring (cf. Fig. 4(b)).

The purpose of our modifications is to extend the ixgbe
driver to provide QVectors within RSS setups that has two Rx
rings, as illustrated in Fig 4(c), since our QoS concept (cf.
Sec. III) requires one Rx ring for RT traffic and another one
for BE traffic. In the following, we describe the extensions
that we applied to the standard ixgbe driver in order to realize
our QoS concept prototype implementation (cf. Section III).

A. Grouping of Multiple Rx Rings

The first part of our driver modification refers to group two
Rx rings per QVector (cf. Fig. 4(c)). We extended the driver
to provide a new module parameter which we named per ring
buffer (PRB). PRB accepts an arbitrary long array of integers
(cf. Listing 1), whereby each integer causes the driver to add
an Rx ring to each created QVector. Thus, an arbitrary number
of traffic classes is supported by the QVectors. The PRB values
refer to the ring budgets (cf. Sec. III-B).

B. Polling with Ring Budgets

Our second driver modification refers to the poll function
ixgbe_poll which is called by the NAPI and which is
responsible to fetch the queued packets from the Rx rings and
pass them to the IP stack, one by one. For this purpose, the
NAPI provides ixgbe_poll with a reference device from
the poll list. Based on this device, ixgbe_poll determines
the associated QVector and starts to free packets buffers of
already sent packets that reside in the Tx rings within Tx ring
container. Afterwards, the poll function will process the pack-
ets from the Rx rings. For VMDq, the standard implementation
of ixgbe_poll will equally distribute the device budget
between all Rx rings that remain in the Rx ring container.
For example, if the device budget is 64 (default) and if there
are two Rx rings, then, up to 32 packets from the first Rx ring
are processed before up to 32 packets from the second Rx
ring are processed. Afterwards, the driver returns to the NAPI

which switches to the next device. However, this behavior is
not suitable for QoS-sensitive packet processing because an
RT poll might be interrupted for up to 32 · 0.6µs ≈ 19µs if
we assume a packet service x = 1

1.75Mpps = 0.6µs according
to the maximum throughput (cf. Sec. V-B1). Therefore, we
propose to apply smaller per ring budgets for the BE Rx ring
in order to improve the latency of RT traffic (cf. Sec. III-D).
Additionally, we also want to exploit the device budget of 64
due to efficient usage of the CPU resource. For this purpose,
we extended ixgbe_poll by an additional loop that allows
both Rx rings to be polled alternately with small ring budgets
until the poll size is exhausted (cf. Fig. 2).

C. Usage of Modified Driver

Listing 1 shows an example for loading our modified
driver1. The PRB parameter defines two ring budgets, thus, the
QVector groups two Rx rings. The order of the PRB values
from left to right refers to the Rx rings with increasing traffic
class priority. Therefore, the ring budget of the BE Rx ring
refers to 4, whereas the RT Rx ring gets a ring budget of 60.
Furthermore, the driver arranges one QVector for our ingress
NIC (RSS=1) and the interrupt throttling is disabled (ITR=0).

1 root@DuT ˜ / # modprobe i x g b e PRB=4 ,60 RSS=1 ITR=0

Listing 1: Loading of ixgbe driver with the PRB parameter

V. EVALUATION

Our goal is to investigate whether our QoS concept has
positive effects on the latency of real-time traffic and whether
the throughput, which is potentially decreased due to the
overhead of our implementation, is still acceptable for practical
usage. Thus, we measure and evaluate the performance of
our ingress QoS driver (LL-RR, LL-WFQ) and compare it
to the performance of the state-of-the-art driver (SQ, RR).
The measurements were conducted in our testbed wherein we
already performed various other performance tests [21], [22].

A. Measurement Setup

1) Hardware Configuration: The device under test (DuT)
which serves as the software router is equipped with a
SuperMicro X9SCL/X9SCM motherboard, a 3.20 GHz Intel
Xeon CPU E31230, 16 GB RAM, and an Intel X540-T2 NIC.

1publicly available at: http://www.informatik.uni-hamburg.de/memphis



All measurements were performed with Linux kernel version
3.16.7 and ixgbe version 3.22.3. We deactivated features
like Intel Turbo Boost and Hypertheading as they introduce
unpredictable behavior. Additionally, we configured the CPU
to run at a fix rate of 3.20 GHz. Furthermore, we deactivated
the interrupt throttling (ITR) which would increase the packet
latency. Ethernet flow control was disabled to conduct mean-
ingful measurements even in overload situations.

2) Software Configuration: For comparison, our set of
measurements was performed on four differently configured
DuTs (cf. Section III-C). For all configurations the Rx ring
size is 512 (default) and the device budget is 64 (default).

In our previous work, we showed that the maximum
throughput of the packet processing scales nearly linearly
with the number of CPU cores [23]. Thus, we simplified the
measurements and configured the DuT to utilize only one CPU
core for Linux IP packet processing.

The first two scenarios (SQ, RR) represent the state-of-the-
art case and are conducted with the original ixgbe driver. With
the SQ scheduling strategy, all traffic (RT, BE) is sorted into
the same Rx ring. With RR, RT and BE traffic is distributed
to the corresponding Rx rings of two different devices. These
devices are served according to the NAPI, which is some kind
of round robin polling (cf. Section III).

The other scenarios (LL-RR, LL-WFQ) are performed with
our modified ixgbe driver. For LL-RR we configured the ring
budget to be 4 (as deduced in Section III-D) for both Rx
rings. Thus, the CPU is equally shared between the traffic
classes if both rings are sufficiently utilized. We assume that
the offered load to the RT ring is at most 30 % of the maximum
throughput. Therefore, we expect in case of 4 arrived BE
packets 4 · 0.3/(1 − 0.3) ≈ 1.7 RT packets in mean. Thus,
an RT ring budget of 4 is slightly oversized which has the
advantage that backlogs, due to small bursts (e.g. if the short-
period real-time percentage is above 30%), decrease faster.

With LL-WFQ the RT ring budget is 60 while the BE ring
budget remains 4. Thus, the RT ring budget is sufficiently large
(as assumed in Section III-D) but not that large that the poll
size of 64 is exceeded. Otherwise the BE traffic potentially
might starve in overload situations.

3) Methodology: Although, we are preliminary interested
in throughput and latency, we also recorded DuT internal
meters like CPU utilization and IRQ rates, that help to explain
several performance related effects. The IRQ counts and the
CPU utilization of the DuT are obtained via the process file-
system (/proc/interrupts) and perf (a performance evaluation
infrastructure/tool for Linux), respectively. Throughput and
latency is sampled by our packet generator MoonGen [21],
which is packet source and sink at the same time. The DuT
and the packet generator are directly connected.

4) Network Load: We measured the throughput for one
CPU core of the DuT at different packet rates ranging from
0.05 Mpps to 2.0 Mpps in steps of 0.05 Mpps and different
real-time percentages of the overall traffic ranging from 0%
to 100% in steps of 5%. Each measurement took 60 s during
which test traffic based on a Poisson traffic was applied.

In our previous work [23], we showed that the CPU consti-
tutes the bottleneck in a software router for small packet sizes.
Hence, we prevent that Ethernet links become the bottleneck
by limiting the packet size to 128 Byte (10 GbE links are
theoretically able to cope with approx. 8.45 Mpps of this size).

B. Measurement Results

1) Throughput: Firstly, we analyzed the maximum through-
put achieved by one CPU core of the DuT for all scheduling
strategies, in order to compare whether the throughput of
the RR and LL strategies deviate too much from SQ which
would be unsuitable for the practical usage. Therefore, for
each strategy and for each RT ratio, we determined the max-
imum offered load that is achieved. This is done by stepwise
increasing the offered load until packet loss is encountered.
Since we are not interested in a very fine-grained rendering of
the maximum throughput, we chose a step size of 0.05 Mpps
in order to reduce the efforts for measurements.

Fig. 5(a) illustrates the maximum throughput of the different
strategies at RT ratios from 0% to 100%. SQ is our baseline
and achieves nearly a constant maximum throughput of about
1.75 Mpps, as the RT and BE traffic share the same Rx ring,
whereby the throughput is independent from the RT ratio.
Additionally, it is to mention that SQ reaches the highest
maximum throughput we observe for RT ratios from 0% to
85%. From 90% to 100% it might be suggested that LL-WFQ
reaches a much higher throughput than SQ. However, this is
an artifact that results from the coarse step size. In contrast to
that, RR has the worst maximum throughput which is between
1.6 Mpps and 1.65 Mpps. LL-RR and LL-WFQ show a slightly
worse behavior than SQ but are still better than RR and also
reach a high maximum throughput of at least 1.65 Mpps.

In summary, we observe that all strategies cope with an
offered load of 1.5 Mpps. Hence, a software router, which is
equipped with 10 CPU cores, will be able to satisfy the line
rate of a 10 GbE adapter (14.8 Mpps for 64 Byte packets).

In order to be able to equitably compare all strategies, we
further focus on two specific measurements. (1) We evaluate
measurements at an offered load of 1.5 Mpps in experiments
where the offered load is fixed. (2) We investigate measure-
ments with a fixed RT ratio of 30%, since we assume that
todays RT traffic in the Internet is 30% at most.

2) CPU Utilization: Fig. 5(b) illustrates the CPU utilization
of the DuT for offered loads, ranging from 0.05 Mpps to
2.0 Mpps at a fixed RT ratio of 30% in steps of 0.05 Mpps.

We observe that LL-RR, and LL-WFQ basically exhibit the
same behavior as SQ. Between offered loads of 0.05 Mpps and
0.2 Mpps we see a steep increase in the CPU utilization, which
is caused by IRQ handling. Then, from 0.2 Mpps to 0.7 Mpps
the CPU utilization is nearly constant, as the IRQ rate gets
throttled by the NAPI. Afterwards, the CPU utilization starts
to increase linearly with growing offered load until 100% is
reached at approx. 1.7 Mpps.

Compared to all other strategies RR behaves differently,
since RR reveals an increased CPU utilization at offered
loads above 0.7 Mpps. Interestingly, RR reaches 100% CPU



0 0.2 0.4 0.6 0.8 1

1.5

1.55

1.6

1.65

1.7

1.75

Real-Time Ratio

M
ax

im
um

T
hr

ou
gh

pu
t

[M
pp

s]

SQ RR
LL-WFQ LL-RR

(a) Maximum Throughput

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1

Offered Load [Mpps]

C
PU

U
til

iz
at

io
n

[%
]

SQ RR
LL-WFQ LL-RR

(b) CPU utilization at an real-time ratio of 30%

Fig. 5: Maximum throughput and CPU utilization for different scheduling strategies

0 0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

Real-Time Ratio

IR
Q

ra
te

[#
IR

Q
/s
·1
03

] SQ RR
LL-WFQ LL-RR

(a) Interrupt rate at an offered load of 1.5 Mpps

0 0.5 1 1.5 2
0

25

50

75

100

125

150

175

Offered Load [Mpps]

IR
Q

ra
te

[#
IR

Q
/s
·1
0
3
] SQ RR

LL-WFQ LL-RR

(b) Interrupt rate at an real-time ratio of 30%

Fig. 6: Interrupt rate for different scheduling strategies

utilization earlier than the other strategies (i.e. at 1.55 Mpps),
which explains the decreased throughput we observed before.
Hence, for an offered load of 1.5 Mpps, which we previously
chose for experiments with fixed offered loads, we observe
that all strategies lead to nearly full CPU utilization but not
to overload, which is a reasonable and fair operating point to
compare the QoS characteristics of all strategies.

3) IRQ Rate: Fig. 6(a) illustrates the IRQ rate of the DuT
for different RT ratios, at a fixed offered load of 1.5 Mpps.
The IRQ rate is averaged over the 60 s interval.

For SQ we observe a nearly constant IRQ rate for all RT
ratios, which is approx. 32k IRQ/s. Compared to that, we see
a behavior of RR that is dependent from the RT ratio. The
IRQ rate of RR starts with approx. 20k IRQ/s and increases
to approx. 58k IRQ/s until a RT ratio of approx. 50% is
reached. Afterwards, the IRQ rate decreases. This effect is
a consequence of the two separate devices that are used by
this strategy (cf. Section III-C), whereby both devices generate
IRQs independently but according to the offered load. Thus,
the RT device generates as much IRQs at an RT ratio of 30%
as the BE ring generates at an RT ratio of 70%. As the IRQ

rates of both devices sum up, we observe a symmetric IRQ
rate which is in worst case (at 50% RT ratio) approx. two times
higher than the IRQ rate of SQ. For LL-RR and LL-WFQ, we
observe roughly the same behavior of the IRQ rate, which is
nearly constant at approx. 20k IRQ/s. Interestingly, the IRQ
rate of both LL strategies is 10k IRQ/s lower than the IRQ
rate of SQ, which corresponds to a decrease of approx. 30%.

Fig. 6(b) illustrates the IRQ rate for offered loads, ranging
from 0.05 Mpps to 2.0 Mpps, at a fixed RT ratio of 30%.

For SQ we see an interesting effect at offered load from
0.8 Mpps to 1.0 Mpps. First, the IRQ rate drops to 25k IRQ/s
before it increases to 32k IRQ/s where it remains until an
offered load of approx. 1.6 Mpps is reached. At an offered
load of 1.7 Mpps the IRQ rate drops to zero, as the the NAPI
prevents from the reactivation of the IRQ line.

For RR we observe that the IRQ rate is generally higher
than for SQ at all offered loads larger than 0.15 Mpps, which
is again due to the two devices that are used. The more men-
tionable effect is, that RR still generates approx. 17,000 IRQ/s
in case of overload (1.7 Mpps to 2.0 Mpps). These IRQs
are generated by the RT device, as RR allows to spend



0 0.2 0.4 0.6 0.8 1
10

15

20

25

30

Real-Time Ratio

Pa
ck

et
L

at
en

cy
[µ

s]
SQ/RT SQ/BE
RR/RT RR/BE
LL-RR/RT LL-RR/BE
LL-WFQ/RT LL-WFQ/BE

(a) Paket latency at an offered load of of 1.5 Mpps

0 0.5 1 1.5 2
10

15

20

25

30

Offered Load [Mpps]

Pa
ck

et
L

at
en

cy
[µ

s]

SQ/RT SQ/BE
RR/RT RR/BE
LL-RR/RT LL-RR/BE
LL-WFQ/RT LL-WFQ/BE

(b) Packet latency at an real-time ratio of 30 %

Fig. 7: Packet latency for different scheduling strategies

50% of CPU resource for RT packet processing. Therefore,
RR is theoretically able to reliably process an RT load of
1.6Mpps · 0.5 = 0.8Mpps which is above the actual RT load
at an offered load of 2.0 Mpps with 30% RT traffic which is
2.0Mpps · 0.3 = 0.6Mpps. Hence, it is very likely that the
IRQ line of the RT device is often re-enabled since the device
budget is not exhausted.

For both LL strategies we observe the same behavior of the
IRQ rate with an exception at an offered load of 1.0 Mpps
where LL-RR has a higher IRQ rate than LL-WFQ. LL-RR
and LL-WFQ only differs in the budget of their RT Rx rings
(cf. Section III-C). Thus, we conclude that in case of LL-RR
the low per ring budget of both rings ensures a fair distribution
of the device budget, which helps to avoid backlogs in any of
both rings in case of bursts, as caused by the Poisson traffic
pattern. LL-WFQ has a much higher RT Rx ring budget and in
turn the probability for BE backlogs is high if RT bursts arrive.
Thus, it is plausible that the IRQ line is less often re-enabled
with LL-WFQ. As SQ does not differentiate between RT and
BE, the IRQ re-enabling is less complicated and SQ reaches
higher IRQ rates at offered loads larger than 1.05 Mpps.

4) Latency: As latency optimization is the major objective
of our QoS concept we discuss our latency related measure-
ment results in-depth. In Fig. 7(a) the average packet latency is
plotted against the RT ratio at a fixed offered load of 1.5 Mpps.

For SQ, we see that the latency is constant at approx. 11.7µs
and therefore independent of the RT ratio, since a traffic
classification is missing. Thus, each packet experiences the
same mean waiting time in the Rx ring before it is processed.

Obviously, the RR strategy has poor real-time properties, as
all measured latencies for both traffic classes are above that of
SQ, which is again due to the numerous IRQs (cf. Fig. 6(a)).
Also, we observe that the RT latency is above the BE latency
at RT ratios below 50%, as the RT Rx ring will suffer from
the long poll phase as caused by the highly utilized BE Rx
rings.

Compared to RR, the LL-RR implementation behaves sim-
ilar regarding the effect that RT and BE latencies cut across

at an RT ratio of 50%. However, as the per ring budget is
relatively low (i.e. 4 for both traffic classes), even highly
utilized BE Rx rings will not interrupt RT Rx rings for longer
than the processing of 4 packets. Thus, we observe a low RT
latency of approx. 10.4µs, which is approx. 11% better than
the latency of SQ (11.7µs). However, this improvement comes
on cost of the BE latency, which is notably higher than for
SQ at RT ratios below 50%.

For LL-WFQ we observe nearly the same low latency of RT
traffic as for LL-RR (10.4µs) but LL-WFQ is able to provide
lower RT latencies than SQ for RT ratios between 50% and
80%. This is due to of the high per ring budget of 60 for
the RT ring compared to the BE ring budget of 4. Another
effect is that both LL strategies suffer from higher latencies
(compared to SQ) in the extreme cases where we load the
DuT with 0% or 100% RT traffic, respectively. We refer this
increase of latency to the overhead that is introduced by our
modifications.

Fig. 7(b) illustrates the packet latency at different offered
loads, ranging from 0.05 Mpps to 2.0 Mpps, at the specific RT
ratio of 30%. Regarding SQ we see two interesting effects. The
first one is, that the latency increases significantly between
0.75 Mpps and 1.0 Mpps. We refer this effect to the NAPI,
as we observe IRQ throttling within this range of offered load
(cf. Fig. 6(b)). Special attention should be drawn to the second
effect, which is that the latency of SQ will abruptly increase
at an offered load of 1.65 Mpps as bursts cause backlogs in
the Rx ring and thus increase the waiting time of packets.

RR shows higher RT than BE latency at all offered loads, as
RT packets are not prioritized and therefore suffer from long
waiting times. Thus, we conclude that RR is not acceptable
for latency-sensitive applications.

Regarding LL-RR and LL-WFQ we observe that RT laten-
cies are quite similar at all offered loads. Thus, we conclude
that a BE and RT ring budget of 4 is sufficient for RT ratios of
30% and less. For LL-RR and LL-WFQ we also see that the
RT latency increases between 0.05 Mpps and 0.75 Mpps while
it decreases between 0.75 Mpps and 1.7 Mpps. This behavior



might not be obvious on the first sight, but due to a low and
stable IRQ rate (cf. Fig. 6(b)) we conclude that the NAPI
is mostly in polling mode. Thus, the packet latency is not
that much impaired by the time it takes to handle an IRQ.
Instead, the packet processing basically behaves as explained
in Section III-D, where we stated that new RT packets might
arrive while others are processed. Such packets will have small
waiting times, thus, the mean latency is low at high offered
loads and even in overload situations.

In contrast, we observe that the BE latency for LL-RR and
LL-WFQ is notably higher than for RT and like for SQ it
also increases significantly in case of overload. However, for
LL the RT latency remains low, even in case of overload.
This improvement of the RT latency comes on the cost of
the BE latency, but we argue that BE traffic has no real-time
requirements and high delays are acceptable.

In conclusion, we found that RR has no benefits compared
to SQ. More IRQs burden the CPU and as a consequence
less packets are processed whereby the throughput decreases
(1.6 Mpps). Additionally, RR provides poor RT latency, as
highly utilized BE Rx rings in combination with large ring
budgets cause long waiting times for RT packets. In contrast,
our LL driver exploits separate ring budgets to provide low RT
latencies (approx. 11.4µs), even in case of overload. Since the
design of our LL driver minimizes additional IRQ and packet
reception overhead, it achieves almost the same throughput as
SQ (1.7 Mpps), which is the upper limit that is given by the
CPU speed and the networking module of Linux itself.

VI. SUMMARY

Over the last years we face the trend of growing real-
time traffic which has to share the limited resources of the
Internet with other traffic classes. Thus, we see the demand for
mechanisms that efficiently allocate these resources to these
traffic classes in order to provide QoS. While QoS is not a
new topic, all previous concepts assume the outgoing link to
be the bottleneck. However, seeing the trend towards flexible
CPU based data plane devices where general purpose hardware
in combination with software serves arbitrary needs, we argue
that more routers will be CPU bounded in future.

As traffic prioritization behind the bottleneck (i.e. CPU)
introduces avoidable latency, we proposed a new QoS concept
for software routers that prioritizes traffic before being served
by the CPU (ingress QoS). Based on our concept we extend
the driver code of a common 10GbE NIC. Afterwards, we
conducted extensive real-world measurements to compare the
performance of our new QoS concept with the state-of-the-art.
An in-depth analysis regarding throughput and latency showed
that our QoS concept improves the latency of real-time traffic
while the throughput is nearly unaffected. These satisfying and
meaningful results demonstrate that software routers are able
to cope with real-time traffic, even at high offered loads.

ACKNOWLEDGMENT

This research has been supported by the German Research
Foundation (DFG) as part of the MEMPHIS project. We thank

our colleagues Florian Wohlfart and Sebastian Gallenmüller
for their valuable feedback.

REFERENCES

[1] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting Par-
allelism To Scale Software Routers,” in ACM Symposium on Operating
Systems Principles (SOSP), October 2009.

[2] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward Predictable
Performance in Software Packet-Processing Platforms,” in USENIX
Conference on Networked Systems Design and Implementation (NSDI),
April 2012.

[3] R. Bolla and R. Bruschi, “PC-based Software Routers: High Perfor-
mance and Application Service Support,” in ACM SIGCOMM Work-
shop on Programmable Routers for Extensible Services of Tomorrow
(PRESTO), August 2008, pp. 27–32.

[4] S. Han, K. Jang, K. Park, and S. Moon, “Building a Single-Box 100
Gbps Software Router,” in IEEE Workshop on Local and Metropolitan
Area Networks (LANMAN), May 2010, pp. 1–4.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services,” RFC 2475, 1998.

[6] J. Wroclawski, “The Use of RSVP with IETF Integrated Services,” RFC
2210, 1997.

[7] T. M. Runge, D. Raumer, F. Wohlfart, B. E. Wolfinger, and G. Carle,
“Towards Low Latency Software Routers,” Journal of Networks, vol. 10,
no. 4, pp. 188–200, 2015.

[8] T. M. Runge, A. Beifuß, and B. E. Wolfinger, “Low Latency Network
Traffic Processing with Commodity Hardware,” in International Sympo-
sium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS), July 2015.

[9] L. Rizzo, “Netmap: A Novel Framework for Fast Packet I/O,” in
USENIX Annual Technical Conference, April 2012.

[10] Data Plane Development Kit: Programmer’s Guide, Rev. 6, Intel Cor-
poration, January 2014.

[11] K. Ueda, T. Kikutani, and T. Yakoh, “Parallel Implementation of
Real-Time Communication and IP Communication by Using Multiple
Ring Buffers,” in IEEE Workshop on Factory Communication Systems
(WFCS), May 2014, pp. 1–8.

[12] J. Cummings and E. Tamir, “Open Source Kernel Enhancements for Low
Latency Sockets Using Busy Poll,” http://www.intel.de/content/www/de/
de/ethernet-controllers/open-source-kernel-enhancements-paper.html,
2013, Intel Corporation.

[13] J. C. Mogul and K. Ramakrishnan, “Eliminating Receive Livelock in
an Interrupt-driven Kernel,” ACM Transactions on Computer Systems,
vol. 15, no. 3, pp. 217–252, 1997.

[14] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond Softnet,” in Annual
Linux Showcase & Conference, vol. 5, 2001, pp. 18–18.

[15] J. H. Salim, “When NAPI Comes to Town,” in Linux Conference, 2005.
[16] Intel Ethernet Controller X540 Datasheet Rev. 2.7, Intel Corporation,

March 2014.
[17] L. Deri, J. Gasparakis, and F. Fusco, “Wire-Speed Hardware Assisted

Traffic Filtering with Mainstream Adapters,” in NEMA, 2010.
[18] V. Tanyingyong, M. Hidell, and P. Sjodin, “Using Hardware Classi-

fication to Improve PC-based OpenFlow Switching,” in International
Conference on High Performance Switching and Routing (HPSR), July
2011, pp. 215–221.

[19] ——, “Improving Performance in a Combined Router/Server,” in In-
ternational Conference on High Performance Switching and Routing
(HPSR), June 2012, pp. 52–58.

[20] J. Sztrik, “Basic Queueing Theory,” University of Debrecen, Faculty of
Informatics, vol. 193, 2012.

[21] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in Internet
Measurement Conference, 2015.

[22] A. Beifuß, D. Raumer, P. Emmerich, T. M. Runge, F. Wohlfart, B. E.
Wolfinger, and G. Carle, “A Study of Networking Software Induced
Latency,” in International Conference on Networked Systems (NetSys),
March 2015.

[23] T. Meyer, F. Wohlfart, D. Raumer, B. E. Wolfinger, and G. Carle,
“Validated Model-Based Performance Prediction of Multi-Core Soft-
ware Routers,” Praxis der Informationsverarbeitung und Kommunikation
(PIK), vol. 37, no. 2, pp. 93–107, 2014.


