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Abstract—Traffic policing is the process of ensuring that
network traffic complies with its policies with methods like traffic
shaping. As the distribution of sources involved in a DDoS attack
differs significantly from the typical distribution of customers for
web services, traffic shapers and policers can be used in DDoS
mitigation. In the past, software-based middleboxes, like traffic
shapers, easily became overloaded and therefore a vulnerability
for DDoS attacks. Although recent advances in network stack
design on commodity hardware increased the performance, the
software on top of the network stack also needs to provide
adequate throughput and scalability regarding the number of
limited subnets. Therefore, we build a high-performance and
scalable traffic policer called MoonPol and evaluated it in a
DDoS mitigation scenario. MoonPol runs on any commodity
hardware, takes advantage of the underlying framework, DPDK,
and combines it with appropriate algorithms and data structures.
Data structures for efficient lookups are implemented together
with the token bucket algorithm to police a traffic of fine-grained
IP address ranges. Benchmarking results show that the single
core throughput of the policer running on a 3.2 GHz CPU, is
6.5 Mpps with limiting 1 Million subnets, i.e., 492 CPU cycles
per packet. With 250K subnets of all countries in the world, the
throughput is 6.66 Mpps.

Index Terms—Traffic policing; DDoS mitigation; User space
networking; Lua; DPDK

I. INTRODUCTION

Traffic policing is the act of enforcing a traffic contract,
e.g., via limiting the data rate of a particular traffic. The
traffic under policing can be specified by the 5-tuple of a
flow. Policers can run on network interconnect devices such as
routers or switches. Traffic shaping has a subtle difference in
the process: a traffic policer works as an ingress filter which
limits packets on input ports whereas a traffic shaper accepts
all packets, buffers them as much as buffers allow, and then
applies the limit on the output port.

High-performance traffic policers can be utilised in appli-
cations such as guaranteeing QoS, prioritising particular flows
or enhancing network security. In this paper, we focus on
Distributed Denial-of-Service Attack (DDoS) mitigation. The
idea of using a traffic policer as a DDoS mitigation solution
comes from discouraging illegitimate load (e.g., an attack)
while letting legitimate users continue to use the system. As
an example, a data centre can launch a high-performance
traffic policer that limits data rates of countries or maybe

Fig. 1. Applying traffic policing to mittigate a DDoS attack

even subnets within countries according to the typical access
pattern. Skewed distributions of legitimate access may stem
from services only relevant in certain countries (e.g., a regional
video platform or webshop) or from distributed services where
DNS-based load balancing assigns the closest services. The
origin of DDoS attacks is usually defined by the attacker-
controlled network and therefore follows a different pattern.
As an example, in Figure 1, SubnetA is limited to 1 Mpps. In
case of an attack, the attacker inside this subnet is limited to 1
Mpps and users from other subnets are still served. However,
for this scenario the throughput of the policer becomes an
essential metric. The policer must not cause any bottleneck
by its operational cost on the link.

Example configurations for our use case are limiting data
rates of countries, limiting data rates of all countries except
the target countries, and limiting subnets with different data
rates within countries. Considering there are 250K subnets
owned by the countries in the world [1], the number of subnets
limited by the policer without a significant decrease in the
throughput becomes very important. Existing traffic policers
may struggle because of the high number of subnets and
the increase in the number of subnets creates an operational
bottleneck, which decreases the throughput. Therefore, the
following performance criteria need to be fulfilled by the traffic
policer:

• Capability to limit up to 1 million subnets
• Throughput suitable for the physical connection capacity
• Low memory footprint to serve a high number of limiters978-1-5386-3779-1/18/$31.00 c© 2018 IEEE



II. RELATED WORK

Linux tc tool is a widely used application for traffic control
such as shaping and policing. Research [2] shows that the
throughput drops to zero after 200 IP address ranges which
is a small number of subnets compared to our use case. In
the same research, an algorithm is proposed to overcome the
bottleneck caused by the linear search of tc tool. However,
still, in 1 Gbit link and after 50K subnets, throughput starts to
decrease. While Linux tc can be applied to end hosts as well as
to the Linux routers for different purposes, other approaches
that are designed to be applied for latency control [3] also
exist. These are not applicable for DDoS defence.

Open vSwitch provides rate limiting through shaping or
policing with Quality of Service support [4]. However, consid-
ering its forwarding capabilities under 2 Mpps [5], it does not
fulfil the requirement of high throughput. The optional DPDK
backend of Open vSwitch takes advantage of underlying
DPDK framework, thus reaches up to 10 Mpps data rate in
packet forwarding but without any rate limiting application.
However, DPDK was already used in DDoS defence scenarios;
e.g. Zhao [6] proposed to use DPDK as forwarder wherein
only traffic that passed an anomaly detection is whitelisted.
Rate limiting functionality also exists for less known high-
speed packet IO frameworks. The snabb framework has also
a rate limiter application, claimed to reach 20 Mpps data rate
without any statement about the testing conditions [7]. In own
measurements, we did not even achive line rate forwarding
performance on a single core [8]. Additionally, Snabb only
supports a subset of the NICs that are supported by DPDK.

Finally, Arbor Networks also offers high-performance
DDoS mitigation solutions [9]. Apart from lack of any per-
formance report or analysis, these solutions come as both
hardware and software instalments. Moreover, their hefty price
tag makes them suitable for large enterprises but not for those
looking for small and practical software solutions that can run
on any commodity hardware.

III. APPROACH

For our analysis, we implemented a traffic policer software
as proof of concept and make it available as open source on
GitHub [10].

A. Data Plane Development Kit

Data Plane Development Kit (DPDK) is an Open Source
BSD licensed project by the Linux Foundation for fast packet
processing through a set of libraries and drivers [11]. It
overcomes the bottlenecks caused by the operating system’s
network stack by running the whole network interface card
(NIC) driver in the userspace application. It supports a broad
set of NICs from companies such as Cisco, Intel, and Broad-
com [12]. In previous work we did a comparison of DPDK
with netmap and pfring and analysed the sources for the
performance increase in more detail [13].

B. Libmoon

Libmoon is a wrapper library for DPDK combining flexi-
bility through a Lua scripting API with the packet processing
performance of DPDK [14]. It is designed for prototyping
DPDK applications due to its flexibility and quick turn-around
cycles during development. Libmoon is used as the framework
for our policer. Its packet processing performance is already
proven with applications such as MoonGen [15]. Using Lua
with libmoon as the scripting language for the implementa-
tion, the quick turn-around time between developing an idea,
implementing, and running it without requiring a compilation
step leverages innovation in networking.

C. Data Structures for Faster Lookup

Existing policers like Linux tc tool suffers from a scalability
bottleneck caused by the linear search of policing rules [2].
During the packet processing, the source IP address of the
incoming packet is searched through the list of subnets for
matching. It limits the number of subnets that can be in the
list to around 50-200 [2]. Considering countries having more
than 80K subnets, it is not even possible to limit subnets of
one country. To overcome this bottleneck of linear search, an
algorithm that dedicates a fixed portion of the memory and
uses it for subnet ID lookup is preferred. The use of a fixed
portion of the memory can be negligible by today’s hardware.
It allows using the source IP address of the packet as an index
to the table of subnet IDs.

IV. DESIGN

A. Policing Policy

Considering our use case, policing based only on source IP
addresses of packets is preferred. Therefore, limits are applied
as per subnet.

B. Configuration

The configuration of the policer is done with a list of
subnets with their limits. The hierarchical limiting of subnets is
also possible with appending fine-grained subnets after coarse-
grained subnets in the configuration file. Hence, applying a
different limit to a subnet in a subnet is possible.

Limits are taken as packet per second. The rationale behind
using packet per second instead of bit per second as a unit of
limit is that the number of packets becomes more indicative
metric to determine the size of a DDoS attack, for instance, a
SYN flood, than the volume of the traffic in bits per second.

C. Subnet ID Lookup

Subnet ID lookup is done using a router data structure to
achieve better scalability. DIR-24-8-BASIC [16] is a common
data structure used for routing table lookup in routers. It is
used to find next hop IDs, which are subnet IDs in our context.

The algorithm allocates a fixed amount of memory. In ad-
dition to that, it allocates memory proportional to the number
of subnets having prefix 25 or more in the configuration file.
Therefore, with inefficient and redundant use of two tables, it
needs one memory lookup for the packets in subnets having



a prefix of 24 or less and one more memory lookup for
the packets in subnets having a prefix of 25 or more. This
design choice resolves the main scalability bottleneck caused
by linear search as in Linux tc tool.

D. Limit Enforcement

After determining the subnet ID of the packet, a limit
is enforced according to the traffic contract of the related
subnet. The token bucket algorithm, which is also used in
different policing/shaping applications such as Cisco [17] is
implemented for limit enforcement.

According to the algorithm, a bucket is created for every
subnet in the configuration file. Buckets hold tokens up to the
bucket sizes. If a packet does not belong to any subnet under
a rule, it is directly accepted. Otherwise, the bucket of the
subnet which the packet belongs to is checked, and in case of
no available tokens, the packet is dropped without any error
message. If there is a token in the bucket of the subnet, one
token is removed, and the packet is accepted. After a particular
time, new tokens proportional to the time passed since the last
addition and the limit of the subnet are added to the buckets.

E. Optimized Token Bucket Algorithm

DPDK works with active polling, i.e., during the operation,
packets are polled, and processed in a run-to-completion man-
ner. However, to maintain the token addition of buckets, the
policer has to stop this loop at some point. Say, after polling
n packets, the policer adds tokens to the buckets. Picking the
value of n is critical for the quality and the throughput of the
policer. If n is picked too large, then, some subnets may be
depleted before token addition. This kind of token depletion
causes square-shaped data rate for the subnet which leads to
a poor quality traffic policer since the expected behaviour of
a policer is limiting the data rate of a subnet precisely at the
limit with a horizontal line. If n is picked too small, then,
policer has to spend more time in token addition instead of
polling and processing packets. This inefficient use of time
causes a lower throughput in the policer. Therefore, there is
an optimum value of n which is large enough to maximise the
throughput without causing depletion in any bucket.

This optimum value is determined by several parameters.
Apart from the link capacity, the number of subnets and the
minimum limit in the configuration, the location of the network
device in the network should also be taken into account. By
the location, it is meant that a router is at the core of the
network where packets from different sources are flowing may
have a larger n value than a router at the edge of the network
where packets from a small number of different sources are
flowing. For our experiment and application, we have tested a
couple of values for n and empirically determined 1 million
as optimum value. Therefore, token management is handled,
latest after each millionth packet.

F. Logging

Two different logging levels are possible to observe the
behaviour of the policer wherein the first level, only dropped
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Fig. 3. Throughput w.r.t. to ne number of shaped subnets

packets and in the second level, all accepted and dropped
packets from subnets for a given interval are logged. As a
result, disabling logging decreases memory usage and the
second level logging needs more memory than the first level.

V. EXPERIMENTS & RESULTS

The experiments are conducted on an Intel Xeon E3-1230
CPU with a frequency of 3.2 GHz where Hyper-Threading,
TurboBoost and SpeedStep are disabled to make results re-
producible. In two different experiments, the throughput of
the increasing number of subnets and varying packet size
are observed. The basic setup is shown in Figure 2. Two
hosts, connected with a 10 Gbit/s link, are configured where
one of them is load generator MoonGen, and the other is
the traffic policer. Moongen [18] and the MoonPol [10] are
both available on GitHub. After the policing, the policer host
forwards packets back to the load generator.

A. Number of Subnets

The following experiment is conducted to test the scalability
of the policer. The configuration files having all subnets of
prefixes 2 up to 20 are generated. Thus, each configuration
file contains 2 to 1 million distinct subnets.

The load is generated with packets having random source
IP addresses and minimum sizes (64B). Completely random
source IP address is a worst-case scenario far from reality
since none of the real DDoS attacks can control such a
vast range. However, to stress the implementation as much
as possible, minimum packet size and random source IP
addresses are preferred. Randomizing addresses decreases the
cache utilisation to the minimum and triggers memory lookups
as much as possible. Moreover, minimizing packet size brings
more packets to be processed in a particular duration.

The results of the experiment are shown in Figure 3 where
the data rate is in million packets per second (Mpps). The
average data rate decreases from 7.4 Mpps and to 6.5 Mpps,
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Fig. 5. Cache misses

i.e., CPU cycles per packet increases from 432 to 492, with
the increasing number of subnets up to 1 million.

The decrease in the throughput has a similar trend with L1
cache loads as in Figure 4. Since in a large number of subnets
each packet will fall into different subnet, cache miss rates
increase as in Figure 5.

B. Packet Size

Packets having minimum sizes stress the CPU limit since
the number of packets in a second is higher [19]. Increasing the
packet size relaxes the CPU operation, and after one particular
point, data rate regarding Mpps decreases since the link is
saturated. To the find the crossing point of CPU limit and the
link limit, where the link is saturated, the following experiment
is conducted. The configuration file having 1 million subnets
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Fig. 7. Case study: setting limits to countries

TABLE I
RESULTS OF CASE STUDY

Russia + China All Countries
Number of Subnets 15K 250K
Data Rate [Mpps] 9.22 6.69

Memory [MB] 83 186

(all /20 subnets in IPv4) is given to the policer and a load of
packets having random source IP addresses is generated. The
link of 10 Gbit/s is saturated at around 170 Bytes per packet
which can be seen in Figure 6 .

VI. CASE STUDY

We tested our implementation [10] within two possible case
studies with actual subnets of the countries.

In the first case study, a configuration file having all subnets
of two arbitrarily chosen countries, China and Russia, is
generated. In total, they have 15K subnets. The limits of
subnets arranged so that none of the packets will be discarded
by the limit to see maximum achievable data rate in this use
case.

In the second case study, a configuration file having all
subnets of the world, which is 250 K, is generated. Again,
limits are set so that no packet is discarded by the limit. The
map in the Figure 7 shows the use case of prioritising target
countries.

The subnets are fetched from GeoLite2 [1]. The results of
the experiments are shown in Table I.

There are two crucial differences between the use case and
benchmarking results regarding achieved data rate. First, the
data rate in all subnets (with 250K subnets) is 6.66 Mpps
whereas the data rate of 250K subnets is 7 Mpps according to
benchmarking results. We prepared the configuration file for
the benchmarking so that it covers all /18 subnets. Since none
of the subnets has a prefix above 25, all packets trigger only
one lookup for the subnet ID in the DIR24-8 data structure.
However, naturally, countries have prefixes both above and
below 25, which leads to the second lookup in the memory
for the packets in subnets having a prefix of 25 or more. Thus,
there is a difference between these two results caused by the
second memory lookup in the real-life application. Second, the



data rate in two countries (with 15K subnets) is 9.22 Mpps
whereas the data rate of 16K subnets is around 7.3 Mpps
according to benchmarking results. Again, the configuration
file for 16K subnets in benchmarking tests is generated
with all /14 subnets. Therefore, each packet falls into one
or another subnet which triggers memory lookup and token
bucket algorithm etc. However, in the real-life application,
most of the incoming packets having random source IP do
not even belong to any of the subnets, which means, they
are directly accepted without any need of further lookup. The
lookup is only required for a small number of packets which
randomly falls into subnets of limited ranges. Thus, in this
case, a higher data rate is achieved then benchmarking results.

VII. CONCLUSION

In this study, a scalable and high-performance traffic policer
is designed. It can be used in DDoS mitigation as well as
other use cases of traffic shapers/policers or rate limiters.
Its scalability regarding the number of subnets to be limited
and throughput are analysed. It is shown that high scalability
together with high throughput can be achieved with appropri-
ate algorithm and data structure design combined with high-
performance packet processors like DPDK.

The implemented policer can be launched in any commodity
hardware having a DPDK supported NIC. When a list of
subnets and their limits are given in a configuration file, the
policer runs in the background and limits the traffic. These
subnets can be up to 1 million finely grained limits.

REPRODUCIBLE RESEARCH

The prototype can be found in [10]. To reproduce the
benchmarking results, a configuration file generator is made
available in the repository. Configuration files for both of the
case studies presented in this paper are also available. After
preparing the desired configuration file, the policer can be
launched as explained in the readme file.
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