

Scanning the IPv6 Internet: Towards a Comprehensive Hitlist

<u>Oliver Gasser</u>, <u>Quirin Scheitle</u>, Sebastian Gebhard, and Georg Carle Louvain-la-Neuve, Belgium, April 8, 2016

Tur Uhrenturm

ПП

IPv6 needs a different scanning paradigm than IPv4

"0/0" approach does not work on IPv6 address space

Active security scans continue to be a valuable tool

- Discover vulnerable devices
- Assess severity and prevalence of security problems

History of IPv4 hit lists

- Opportunistic log file parsing
- Passive taps
- Repeated scans to determine stable IPs
- Scanning it all

Our approach

Create a tailored hitlist of IPv6 addresses for security scanning

Sources for IPv6 addresses

Passive

- Large European IXP
- MWN: uplink of Munich Scientific Network with \approx 100k users
- \rightarrow Evaluate for response rate and stability

Active

- Alexa Top 1M
- Rapid7 IPv4 rDNS
- Rapid7 DNS ANY
- DNS zone files
- CAIDA IPv6 router DNS names
- \rightarrow Evaluate for response rate

Traceroute

 \rightarrow Evaluate additional IPs learned

Passive sources

MWN: less IPs, better AS and prefix coverage, higher response rate

Characteristic	IXP	MWN		
Targets	146,722,097	2,687,679		
ASes	6,783	7,398		
AS coverage	66.61%	72.65%		
ASes unique to source	821	1,436		
Prefixes	12,858	15,478		
Prefix coverage	49.87%	60.04%		
Prefixes unique to source	2,076	4,696		
Combined AS coverage	8,219	8,219 (80.71%)		
Combined prefix coverage	25,781	25,781 (68.09%)		
ICMP response rate $pprox$	13%	31%		

Active sources

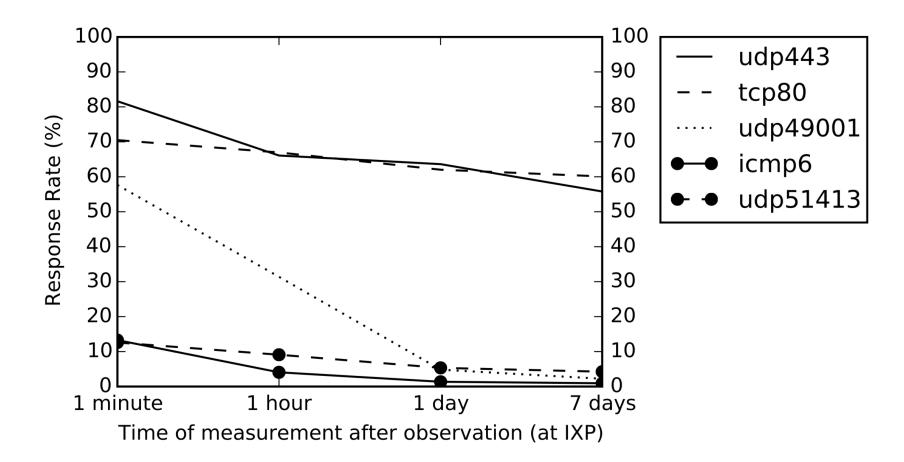
Many unique ASes/prefixes for DNS ANY, ICMPv6 gives higher response rate than TCP/80 for Alexa

	Alexa Top 1M	rDNS	DNS Any	Zone Files		
File size	22MB	56GB	69GB	2.6GB		
Unique addresses	43,822	462,185	1,440,987	424,748		
AS coverage	14.0%	47.1%	56.1%	23.3%		
ASes unique to source	1	30	685	5		
Prefix coverage	6.57%	26.2%	33.0%	11.62%		
Prefixes unique to source	7	65	1,379	11		
ICMPv6 response rate	95.3%	68.8%	72.6%	90.6%		
tcp80 response rate	94.2%	28.4%	51.6%	88.3%		
tcp443 response rate	75.8%	21.2%	27.8%	58.6%		
Combined AS coverage		7,331 (7	1.9%)			
Combined prefix coverage		12,854 (49.8%)				

Temporal stability of IPv6 addresses

How long do observed addresses respond?

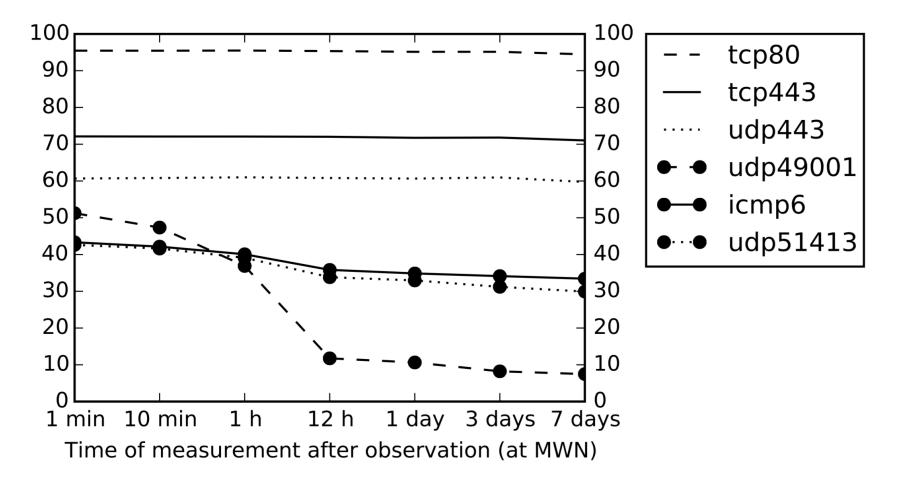
Passive sources:


- Trigger measurement immediately after observation
- · Repeat measurement using exponential back-off
- Measure observed port/protocol and ICMPv6
- zmap extended with IPv6 capabilities for high-volume scans

Active sources:

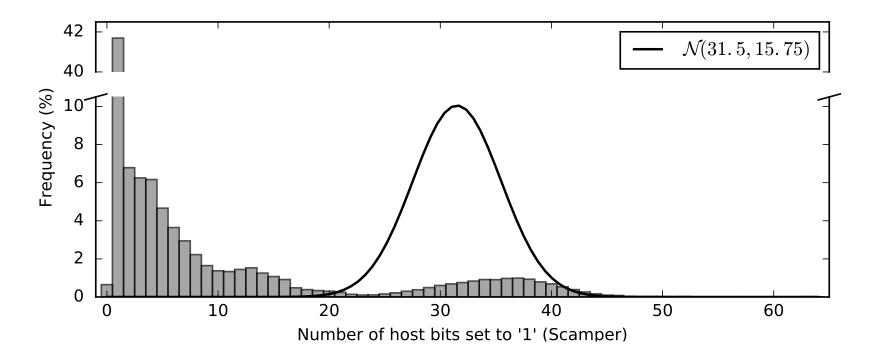
- Scan ICMPv6
- Scan tcp80 and tcp443

IXP response rates


Servers stable, full population with low response rate

MWN response rates

Generally higher and more stable response rate


IXP Hamming weight indicates privacy extensions

- Interface ID: Commonly last 64 bits in IPv6 address
- Privacy extensions (RFC 4941): 6th bit zero, other 63 bits random
- Central limit theorem: 63 independent single-bit distributions \rightarrow normal distribution $\mathcal{N}(31.5, 15.75)$

ТШП

Traceroute Hamming weight indicates managed IP assignements

Analyzing EUI-64 IPs (ff:fe) in data sets

Different vendor types in IXP and traceroute data sets

TABLE IX: Top 5 vendors for EUI-64 IPs.

	Ι	IXP		Scamper	
Position	Vendor	Percentage	Vendor	Percentage	
1	Samsung	30.7%	Arcadyan	28.4%	
2	Apple	11.6%	Huawei	24.4%	
3	Sony	5.8%	AVM	16.0%	
4	Murata	5.1%	Sercomm	10.5%	
5	Huawei	5.1%	Cisco	4.4%	

Sources for an IPv6 hitlist

Characteristic	Active sources	Passive sources	Traceroutes	CAIDA		
Targets	2,699,573	148,631,234	109,554	102,580		
ASes	5,750	8,219	4,170	5,488		
Announced prefixes	8,602	17,554	5,367	9,269		
AS coverage	56.46%	80.71%	41.00%	53.90%		
ASes unique to source	128	1,276	14	147		
Prefix coverage	33.37%	68.09%	20.76%	36.00%		
Prefixes unique to source	346	5,798	53	514		
ICMPv6 response rate	75.5%	13.3%	n/a	42.0%		
Combined unique IPs		149,619,624				
Combined AS coverage	8,531 (83.77%)					
Combined prefix coverage		18,502 (71.77	%)			

Specific approach for your scan type Most efficient sources to focus on

Internet structure finding links and nodes \rightarrow passive, CAIDA, ::1 for missing prefixes Assessing security posture many server hosts \rightarrow active sources Internet routers CAIDA, traceroute to active sources Client protocols passive tap, but be very quick! Finding active prefixes passive sources

Key Contributions

- Extensive evaluation of various hitlist sources
- IPv6 capabilities for zmap
- Regularly created ready-to-use hitlists

ТЛП

Key Contributions

- Extensive evaluation of various hitlist sources
- IPv6 capabilities for zmap
- Regularly created ready-to-use hitlists

Questions?

Oliver Gasser <gasser@net.in.tum.de> Quirin Scheitle <scheitle@net.in.tum.de>

More information, zmap-v6 and data set available under:

https://net.in.tum.de/pub/ipv6-hitlist/

