SmartNIC-based Load Management and Network
Health Monitoring for Time Sensitive Applications

Kilian Holzinger”, Franz Biersack”, Henning Stubbe”, Angela Gonzalez Marifio*, Abdoul Kane*
Francesc Fons*, Zhang Haigang®, Thomas Wild", Andreas Herkersdorf’, Georg Carle’
Technical University of Munich, Huawei Technologies Diisseldorf GmbH
“firstname.lastname@tum.de, lastname@tum.de, *firstname.lastname@huawei .com, §zanghaigang@huawei.com

Abstract—Time sensitive network applications, for example in
Intra-Vehicular Networks, aim to give predictable end-to-end
latency guarantees. As a consequence, processing resources of
involved host systems remain partially unused, because they are
reserved for rare worst cases. This circumstance provides the
opportunity to reduce dimensioning overheads by managing the
load on the nodes flexibly within the network. In our proposed
approach, a SmartNIC involving an FPGA-based load balancer
achieves dynamic routing of flows whilst preserving end-to-end
latency guarantees. A flow-oriented online network measurement
component continuously supervises network traffic with regards
to compliance to flow specifications and constraints such as
bounded one-way delay, absence of packet loss, and jitter. We
use the supervisor to enhance forwarding decisions on the data
plane. Initial evaluation yields a saving potential of around 30 %.
We showcase quick dynamic reconfiguration of the FPGA when
triggered by real-time measurement of the one-way delay using
realistic automotive network traffic.

Index Terms—SmartNIC, automotive, load balancing, moni-
toring, networks, vehicular networks, time sensitive networks

I. INTRODUCTION

Currently, there is a trend towards increasingly complex
time-sensitive distributed applications in many areas such
as Advanced Driver’s Assistance Systems (ADASs) or au-
tonomous automotive systems in Intra-Vehicular Networks
(IVNs). The latter requiring self-awareness, which includes
supervising their run-time timing behavior and consecutive
adaption of system configuration in case of deviations from
modelled properties [1]. The complexity in this application do-
main comes from the number of flows with heterogeneous reli-
ability, timing, and high bandwidth requirements as well as the
interactions of the various system layers. Approaches to meet
these mixed-critical requirements include over-provisioning of
resources and introduction of redundancy so that in worst
cases the functionality still is assured. On the other hand,
computation resources remain idle during normal operation.

Here, a SmartNIC architecture is proposed to reduce this
idle overhead by dynamically (re-)assigning network traffic
to a pool of available local and remote processing resources,
using a hardware-based load balancer, coupled with a network
monitoring software. We refer to the load balancer as the Load
Management Layer (LML). It performs a forwarding table
lookup for every incoming packet, and uses the result, along
with a set of locally stored host and flow state parameters,
to perform a resource assignment algorithm in order to direct

978-1-6654-0601-7/22/$31.00 © 2022 IEEE

packets to local or remote processing resources. The flow
states are obtained through passive per-packet network timing
measurement component, referred to as Network Health Mon-
itoring (NHM). Per-CPU core queue fill levels are made avail-
able to the LML. A set of Key Performance Indicators (KPIs)
and threshold values capture many flow-specific constraints
such as one-way delay, jitter, and target packet inter-arrival
time. In case of detected impairments of flows, e.g., queue
fill levels exceeding or falling below a certain threshold, the
LML configuration is updated to take the current network and
host state into account. Thus, the system can address a wide
range of problems such as failures and timing violations. We
showcase specifically how the measurement of experienced
packet delay can be incorporated into load balancing decisions.

SmartNICs, based on a combination of ASICs, FPGAs,
special purpose processing units, and software, are network
interface cards (NICs) with additional functionality, and pro-
grammability [2]. For the architecture, we chose a hybrid
approach consisting of a hardware-based data plane to achieve
fast and deterministic behavior and software using the Data
Plane Development Kit (DPDK) for the monitoring functional-
ity. A prototype implementation of the hardware component is
currently being developed using an FPGA-based development
platform. An ASIC implementation can be considered for
product-grade development. In addition, design space ex-
ploration is done using a network simulation environment.
Usually time-sensitive application domains require custom-
designed hardware, such as IVN gateways. So, we antici-
pate that saved processing resources on host systems over-
compensate the increased complexity in the network.

In this publication, the following contributions are pre-
sented: (1) design, implementation, and evaluation of the
NHM; (2) design, implementation, and evaluation of the LML;
(3) assessment of NHM coupled with LML in an example IVN
scenario. Artifacts are available online [3].

Remainder of this paper is structured as follows. Section II
discusses related work. Afterward, Section III touches on IVNs
and requirements. Section IV elaborates on the design of our
approach. Finally, we evaluate our approach in Section V.
Section VI concludes this paper.

II. RELATED WORK

This work is related to publications addressing fail-over
mechanisms, SmartNICs, and monitoring in time-sensitive

domains as well as load balancing.

a) Fail-Over Mechanisms: [4] suggest a method for fast
fail-over in Ethernet-based networks. Switches detect link or
port failures and report them to a central controller. The exact
functionality of the monitoring is not detailed. Based on the
identified error mode, the controller instructs reconfiguration
of data plane devices to re-establish network connectivity. The
authors argue that the functionality should be implemented in a
performance-optimized form. The evaluation of the approach
yielded a reconfiguration latency of 50 ms using a software
implementation as a demonstrator. A simulated hardware de-
ployment achieved 1 ms.

A proposal by [5] discusses delegation of control plane
functionalities of Time-Sensitive Networking (TSN) domains
to local network elements. Nodes can detect failures or per-
formance degradations of flows in the network. The receiving
node can mitigate the problem by informing nodes on an alter-
native pre-computed backup path between sender and receiver.
As a consequence, the considered Layer 3 routes are updated
on nodes. The alternative configurations are distributed by
a central controller as finite state machines, which take the
error condition as input. The exact functionality of the failure
detection is not described. In an experimental evaluation of
the approach, the recovery time was 254 ms in the best case.

Table I summarizes the comparison of the considered fail-
over mechanisms to this publication.

b) Critical Network Traffic Monitoring: Multiple publi-
cations address the problem of flow-level monitoring [6], [7].

[8] presents a conformity check of IVN traffic and a method
to distribute monitoring workload across the network. Thus, a
communication pattern can be assessed in respect to predefined
constraints. Anomalies that alter the frequency of transmitted
packets can be detected. The proposed method, however, does
not directly address reliability and time requirements of flows.

[9] describes a real-time monitoring solution for time-
sensitive event chains, however, the solution is not directly
applicable to the network layer. The implementation is tightly
integrated into the Robot Operating System which has a
communication model based on message passing. The authors
consider embedded Precision Time Protocol (PTP) synchro-
nized timestamps for measuring propagation delays.

One-way delay is an important metric for time-sensitive
communications. The problem of passively measuring it is
addressed in [10], [11].

An initial design of the NHM was already presented in [12].

c) SmartNICs for Time Sensitive Domains: The vast
majority of reported SmartNIC use-cases focus on data center
applications. Still, there is desirable functionality of a Smart-
NIC presented for an IVN by [13]. The authors propose a
solution, which uses an encapsulation protocol to transport
additional state information, timestamps, and control data.

d) Load Management Layer (LML): Research regarding
implementations of load management is mostly focused on
data center networks [14]-[16]. Maglev [15] and Stratos [16]
are techniques to evenly distribute traffic across a range of
computing instances. Maglev is a software-based load balancer

trying to match incoming packets to virtual IP addresses before
forwarding them to a corresponding service back-end. Stratos
is an orchestration layer for virtual middle-boxes. It collects
metrics like the packet processing time to steer packets through
a chain of middle-boxes. Both techniques are operating at
bigger timescales while we are focusing on efficient resource
utilization in the milli- and microsecond range.

Similar techniques are applied to distribute intra-node work-
loads such as Receive Side Scaling (RSS) [14] or extensions
thereof [17]. Proposed solutions also include Shenango [18]
or Shinjuku [19], both of which represent software-based
solutions instead of a hardware-based mechanism located at
the NIC. They are dedicating one [18] or more [19] CPU
cores for the distribution of packets to worker CPU cores. [20]
presents a combination of intra- and inter-node load balancing
on which our solution is based. It distributes workloads across
local CPU cores on the granularity of bursts of flow bundles,
and can also offload flow bundle bursts to neighboring servers
once all local resources are highly loaded.

III. BACKGROUND AND REQUIREMENTS

IVNs interconnect applications of mixed-criticality. Some of
them have real-time requirements, demanding low and deter-
ministic application latencies. For these applications, a reliable
packet-based communication is crucial to safety-relevant tasks.
Currently, more and more vehicles are equipped with Ethernet-
based on-board networks [21]. The special requirements of
IVNs for time-critical and deterministic communication can
be met using TSN.

To reflect peculiarities of IVNs and improve load distrib-
ution and network performance the SmartNIC solution needs
to fulfil a set of requirements which are listed in Table I.
They are used as guidance for the design in Section IV and
as comparison criteria to related work.

IV. DESIGN

Modern IVNs employ a zonal model, which creates a
mesh-like topology where each node is connected to several
neighboring nodes [24]. The SmartNIC is connected to nodes,
also referred to as host systems, and switches which integrate

[4] [5] this
R1: Integration into IVN TSN data plane [21] v v v
R2: Reduction of end-to-end application latency X X v
R3: Recovery of safety-relevant functions within 100 ms v X v
compliant with AVNU requirements [22]
R4: Fine-grained monitoring of flow requirements to x X v
enable self-awareness of the network stack [1]
R5: Low overhead of additionally required resources v v v
R6: Simple integration into existing architectures v v v
R7: Realization of functionality on the data-link layer X v
for IVN protocols such as [23]
R8: Integration of cross-layer concepts [1], e.g., net- X X v
work changes are caused by host system load
R9: Fail-over without direct control plane interference, x v v
as requests towards control plane entail delay
R10: Evaluation w.r.t functionality and performance v v v

Table I: Comparison to related work and requirements

User and OS

User ‘

| _'—/ 0s |
SmartNIC
* ﬁ TX and RX buffers
De-/EncapsuIalion
»H:Hj Control Flow Bundle 1o NHM f NHM
Flow Table \nterface Table o \ rom
*
N
% :
Flow Bundle Table [Iy
I/F I/F

from Network to Network

(a) Functional BD of the SmartNIC (b) BD of the LML
Figure 1: Block diagrams (BD)

into the zonal topology. TSN support is enabled by the
networking stack of the host system and compatible switches
(R1). Both, the monitoring and load balancing functionality
is meant to be deployed on a SmartNIC device, and, as such,
easy to integrate into existing architectures (R6). Although
there are SmartNICs available enabling deployment of DPDK
applications, e.g., [25], current NHM prototype is running on
the host system. The LML is developed on an FPGA platform.
Figure la depicts the functional architecture of the SmartNIC.
The device has one duplex network connection.

We consider all zonal compute nodes in the IVN to be
equipped with a SmartNIC. The feature set is split between
the LML and NHM. The SmartNIC’s LML component either
forwards incoming packets to the host or offloads them to an-
other destination, contributing to fast recovery of functionality
(R3) and lower end-to-end application latency (R2). There is
no direct interaction with a control plane as it would entail
additional latency (R9). It parses the header fields of every
packet and then accesses a Flow Bundle Table, where the
current resource assignment is stored. A subsequent Resource
Assignment algorithm decides whether to keep the current
assignment or to redirect packets before updating the table. In
order to choose an alternative processing resource, the current
load state of every CPU core is stored in the LML and can be
updated via the Control Interface between the NHM and the
LML. The mechanism operates on Layer 2 (R7).

The NHM passively monitors flows with the objective to
detect violations of timing and reliability requirements, e.g.,
increased delay, using KPIs (R4). There are rules to transform
flow KPIs to dynamic threshold values of node utilization. In
case the node-local resources are too busy to meet end-to-
end deadlines of the underlying network application, the LML
redirects the flow, based on flow match, queue utilization, and
the dynamic threshold value, to an other node where likely the
deadline still can be met. As a result, the network becomes
self-aware and incorporates cross-layer concepts, in this case,
the host load state (RS8).

The realization of the forwarding and load balancing com-
ponent in hardware introduces only a low and deterministic
additional latency. The monitoring operates passively and does
not directly interfere with by-passing traffic (RS). The evalu-

ation results, obtained with simulation and measurements, are
shown in Section V (R10).

A. Load Management Layer (LML)

The LML is a hardware-based data plane component ca-
pable of determining an assignment to available computing
resources at line-rate for every packet entering the node. The
most important components are depicted in Figure 1b.

Upon entering the LML, packets are first parsed to extract
relevant data from protocol header fields. These header fields
are then used to determine the flow the packet belongs to.
Individual flows are defined by their IP destination and source
address, the Layer 4 destinations and source ports as well as
the protocol type. In addition, a hash value is calculated over
these extracted header fields.

For each assignment, an internal forwarding table is con-
sulted. A given number of Least Significant Bits (LSBs) of the
aforementioned hash result acts as an index for the table. As a
result, this mechanism maps the lookup for multiple different
flows to a common table entry, effectively bundling flows
and performing resource assignments as well as offloading
decisions on a per flow bundle basis.

The lookup yields the current assignment of the correspond-
ing flow bundle to either one of the local CPU cores or a
neighboring node in the network. As long as local CPU cores
within the compute node provide sufficient capacity, packets
belonging to a given flow bundle maintain their assignment.

Due to load imbalances and peaks in computing demand,
queues of packets yet to be processed can fill up and may
result in queue lengths exceeding threshold values. To prevent
processing resources from becoming overloaded and, hence,
packets from suffering high queuing latencies, the current load
state (packet queue threshold exceeded or not) of every core on
the host system is communicated to the LML via the Control
Interface between the NHM and LML. If local CPU cores
show the tendency to become highly loaded, they will be
marked as such in the LML. Packets belonging to flow bundles
which, according to the table lookup, shall be forwarded to
highly loaded CPU cores can then proactively be reassigned
to less loaded CPU cores. Should all local CPU cores be highly
loaded, flow bundles can also be offloaded to a neighbor node
in the network, given that these nodes provide the functionality
the affected flows require. Based on the hash result of a packet,
a resource assignment algorithm will first search for an eligible
local CPU core, or pick a neighboring node if all cores are
highly loaded.

To prevent packet reordering, offloading or reassignment
cannot take place for every packet. Sending two subsequent
packets of the same flow bundle along two different paths
might expose them to different forwarding delays and, hence,
lead to packets arriving at their destination in a different order
than they left their source. A way to mitigate this problem, as
shown by [17], is to allow changes in the path packets are sent
along only if no packet of the corresponding flow bundle has
been observed for a given time. [17] define a timeout value 6,
and consider all packets of the same flow whose Intra-Arrival

Time (IAT) is smaller than & to belong to the same packet
burst, or “flowlet”. We set ¢ to the largest difference in latency
two different paths packets can take and allow reassigning or
offloading flow bundles only if this timeout value has expired
for the corresponding bundle. To enable this, every entry of
the flow bundle table also holds the time of when the last
packet of the same flow bundle arrived. After each lookup, the
corresponding table entry is updated with most recent packet
arrival time and currently assigned processing resource.

In case of offloading, a packet is sent to a neighboring node,
depending on the hash value calculated after parsing its header.
It is then forwarded via the egress network interface.

B. Network Health Monitoring (NHM)

Flows in IVNs have end-to-end timing requirements such as
one-way delay, which stem from the underlying applications.
While deterministic network configurations are available with
TSN, there are complex interactions of many involved layers,
e.g., software stacks, to be considered. As an additional way to
improve network performance and to react to unforeseen im-
pairments we add a monitoring component to the automotive
SmartNIC and use it to control the LML.

The NHM component supervises network traffic on a per-
packet and per-flow granularity. It is able to calculate flow-
specific KPIs which capture the current behavior of a flow w.r.t
a specification or common metrics of interest, e.g., one-way
delay. KPI-specific threshold values are used to assess whether
the flow is performing in compliance with the requirements.
In the case of an IVN, we are able to assess safety relevant
properties of network applications such as packet-loss, one-
way delay, and IAT in real-time. In this publication, we focus
on the one-way delay metric to use the flow assessment result
in conjunction with the load balancer.

Main logical functions of the NHM are depicted in the
Network Health Monitoring component of Figure la. In
general, when a new packet is received from the network and
the LML, an high-precision receive timestamp is taken using
capabilities of the network hardware. Then a flow identifier
is calculated, e.g., based on a TSN stream identifier or a
tuple consisting of IP addresses and transport protocol ports.
The implementation is parallelized using RSS [26]. The Flow
Table, a concurrent hash table, stores state information for each
flow. Where the flow identifier acts as a key and the value
is the flow state needed to calculate stateful KPIs. The flow
state is updated on each packet. Afterwards an Assessment
logic is executed which accesses the state information of
each flow and calculates a set of KPIs. Using a rule-based
decision algorithm the LML configuration is updated through
the Control Interface.

One relevant KPI, for example, is the one-way delay of
a packet which is the difference between send and receive
time. The receive time is captured by the NHM. We consider
three ways to obtain the send time of a packet: (1) In IVNs
periodic flows are prevalent. Those are flows which have a
cyclic sending pattern, as it corresponds, e.g., to a sensor
value update. We can leverage observed changes in IAT

Packet Generator 0
Packet Generator 1
Packet Generator 2

Sink J«—]

Switch |

[me) [omc | [me | [v |
’Nodeo‘ ’Node1 ‘ ’Nodez‘ ’Nodes‘

Figure 2: Network simulation model

and, thus, calculate changes in delay. (2) Send time can be
obtained through parsing timestamps embedded in application
protocols such as Audio Video Transport Protocol (AVTP)
or Real-Time Transport Protocol (RTP) which are common
in IVNs. (3) Send timestamps can be embedded into custom
encapsulation protocols. This approach has been discussed,
e.g., in conjunction with Network Service Headers (NSH) [27].
In this case, the SmartNIC performs the De-/Encapsulation
transparently for the host system.

Options (2) and (3) require synchronized clocks to yield
valuable results which can be achieved using PTP. A viable
approach, since the TSN profile for IVNs mandates its use
anyway [28] and reportedly the synchronization error in many
cases is below 1 ps [29]. Using embedded transmit timestamps
for one-way delay measurements has been described in [10].

V. RESULTS AND DISCUSSION

In this section the results of the initial evaluation of the
simulation model and the prototype are presented. At first the
suitability of the LML to save processing resources is shown
using a simulative approach. In this case, NHM is inactive.
Internet backbone traffic from CAIDA [30] was used to show
the effect with a high number of flows and packet rates.

An example one-way delay measurement of a flow in an
IVN using the NHM prototype is presented next. Finally the
behavior of the FPGA implementation is shown when control
messages are sent by the NHM. For those measurements traffic
traces of individual flows were generated synthetically using
scripts. IVN flow properties can thus be obtained which were
described in [24], [31]. Here, a flow is generated resembling
an automotive camera system generating 60 packet bursts per
second, corresponding to camera frames. We set the tolerable
one-way delay to 10 ms, lower than requirements in the draft
TSN automotive profile [32].

A. Load Management Layer (LML)

We evaluate the performance of the LML using a C++-
based network simulation model as shown in Figure 2. The
modelled IVN consists of four compute nodes. As mentioned,
each compute node’s SmartNIC entails a switch to establish
a direct connection among compute nodes. Hence, for our
simulation, we employ the “one big switch” abstraction, as
these switches can be considered to be a single switch.

In our model, four packet generators, each replaying a
PCAP-based packet trace of 15 s at 10 Gbit/s, inject the packets
to be processed. These packets correspond to traffic emitted
by various sensors and actuators in the modelled IVN. The

instructions per packet header payload byte

90 % traffic
10 % traffic

4500 0
1250 50

Table II: Distribution of required instructions per packet (IPP)

500 0.990000 E‘ercentil(\e Latency over Capacity per Node

\ —— Offload disabled
1y Offload enabled

300/ \
200/

1004

0.990000 Percentile Latency [us]

%o 24 e 72 96
Capacity per Node [GIPS]

Figure 3: 99" percentile achievable end-to-end latencies

switching layer then distributes the flows across the compute
nodes, where they will be processed.

For our setup, we assume that each compute node hosts
a multi-core CPU running at a nominal clock frequency of
2.4 GHz. To save power, the frequency can be throttled down
in 0.1 GHz steps. All CPU cores, however, are always running
at the same clock frequency. We further assume an IPC
(finished instructions per clock cycle) value for each CPU of
1, and that a given number of instructions per packet (IPP)
must be performed. The distribution of IPPs to perform is
shown in Table II and based on values from [33]. Combining
variable numbers of available CPU cores with variable CPU
processing frequencies yields a range of different processing
capacities per node (Giga Instruction Per Second, GIPS) [20].
To acquire statistics, e.g., latency values, within the simulation
framework, processed packets are sent to a sink module.

For comparison, we evaluate the 99th percentile of achiev-
able end-to-end latency in two cases: In the first case, the LML
of every SmartNIC is restricted to intra-node load balancing
as described above. In the second case, the LML of every
SmartNIC in addition is capable of offloading workloads to
other nodes. Results are depicted in Figure 3. There, the
blue curve represents the former case, while the orange curve
represents the latter. For lower processing capacities, e.g.,
24 GIPS to 4.8GIPS, our approach can provide valuable
resource savings. For example, when targeting a 99" percentile
end-to-end latency of 300 s, around 4.2 GIPS are necessary
without offloading. In contrast, with offloading enabled, only
2.9 GIPS are required. In other words, around 30 % of compute
resources can be saved for this configuration. Such savings
decline towards higher processing capacities, since more CPU
cores, running at high frequencies, are available. The reassign-
ments of flows to other compute nodes become less frequent.

B. Network Health Monitoring (NHM)

For the evaluation of the NHM, we used the setup depicted
in Figure 4a, inspired by [34]. It consists of three machines.

Control

—
Traffic Generator
|

Load

FPGA

Overload

Receiving Node

(b) Intra-SmartNIC functionality

‘:Traffic Generator}—[—‘: NHM ‘

(a) NHM

Figure 4: Measurement setup used in evaluation experiments;
signals are split using fiber taps

2 15
— []measurement
% F 3 []flow req. exceeded
o] 10 . '-_ flow req. endangered
[a] E flow healthy
>
T 5
=
2
s 0 T T T T
0 2 4 6 8 10

Time [s]

Figure 5: Assessed network delay by NHM; measurement
error is not visible in plotted resolution.

NHM is the device under test. The Traffic Generator produces
packets of an IVN camera flow. A Sniffer node is connected
via passive fiber taps to record all traffic on the wire with high
precision using hardware timestamping capabilities of Intel
X552 NICs. The Sniffer is used to serve as a ground truth
of the scheduled packet dispatch times at the traffic generator
and the measured arrival timestamps at the NHM component.

The traffic is generated and provided to the NHM. An
artificial increase and decrease of delay in the network was
modelled in the generated traffic, which could be an effect
from cross traffic in a real network. Here, case 3 from
Section IV-B was used, so timestamps were embedded in an
encapsulation protocol and the one-way delay can be obtained
by comparing send and receive times. The implementation is
capable to use hardware receive timestamps on the NIC with
a resolution of 12.5ns or to use a software fallback, which
yielded a precision of about +2us compared to timestamps
taken at the Sniffer. Figure 5 shows the measured one-way
delay for each packet over the experiment time. It matches
the modelled properties of the flow in the plotted resolution
and, thus, the results are viable to use for load balancing
improvements. The signal colors mark warning levels which
will affect decisions of the data plane configuration.

C. Intra-SmartNIC Functionality

Previous results highlight the benefits of the SmartNIC’s
individual components for IVN. But the feasibility of com-
bining these components appropriately remains to be shown
and, hence, is tackled subsequently. That is, we adapt the setup
described in Figure 4a to Figure 4b. Plus, the FPGA is pro-
grammed to update its state based on control messages. Which
means, depending on the configuration, received packets are
forwarded via different interfaces. Note that, while commonly
emitted by the NHM, in this setup, Control information is

>
2
—_ NS
E 040 ,_,) ,_,) o load traffic
= , , , , load traffic
] ,¢°\ ! ! ! ! o control traffic
> Q Q Q Q Q
L ° | | | |
‘a'J' 1 1 1 1
1 1 1 1
é ‘@’D\ _ 1 1 1 1
N | T \ T T \
21 21.2 21.4 21.6 21.8 22

Experiment Time [s]

Figure 6: FPGA changes its state as instructed; communication
between FPGA and NHM works

sent along with the automotive camera traffic as actual Load
by the Traffic Generator, to ensure precise timing. Once
forwarded by the FPGA, traffic is received by a Receiving
Node representing the SmartNIC host system for the Normal
operation state and a neighbor node for the Overload operation
state. During the experiment, packets are recorded by the
Receiving Node. Initial evaluation, cf. Figure 6, shows that the
FPGA immediately adheres to control message instructions.
Its state is updated and subsequent packets are processed
following the new rules. Additional experiments, not included
due to space constraints, indicate that the FPGA does not alter
the shape of forwarded traffic in throughput or jitter. Jointly,
results imply that NHM and FPGA can be combined and, thus,
benefit from enhancements of the individual components.

VI. CONCLUSION

A set of requirements for load management and network
monitoring for time-sensitive [VNs was defined, which are
not met by identified related work. Thus, a novel concept of
a custom SmartNIC solution was elaborated and evaluated.
It can be deployed in TSN environments and assures vehicle
safety by supervising time-critical flow properties and recovers
or mitigates requirement violations in real-time. The two main
components are realized as prototypes: The NHM as software
and the LML as an FPGA implementation. The monitoring is
able to assess network traffic in real-time w.r.t. many relevant
KPIs. It is combined with a load balancer which helps to
reduce end-to-end latency, as shown using network simulation.
Using one-way delay as an example flow requirement, the
feasibility of the approach to trigger configuration changes in
the FPGA was assessed. As a consequence, available compute
resources can be better utilized and, thanks to a more dynamic
workload distribution, less over-provisioning is required.

REFERENCES

[1] Schlatow et al., “Self-awareness in autonomous automotive systems,” in
Design, Automation & Test in Europe Conference & Exhibition, 2017.

[2] Deierling, “What Is a SmartNIC,” 2018. [Online]. Available: https:
//blog.mellanox.com/2018/08/defining- smartnic/

[3] “Prototype, Measurement, and Result Artifacts.” [Online]. Available:
https://github.com/tumi8/NOMS-ITAVT22

[4] Kostrzewa et al., “Fast Failover in Ethernet-Based Automotive Net-
works,” in 23rd International Symposium on Real-Time Distributed
Computing. 1EEE, 2020.

[5] Sambo et al., “Enabling Delegation of Control Plane Functionalities for
Time Sensitive Networks,” IEEE Access, 2021.

[6] Zhang et al., “Flowatcher-DPDK: Lightweight line-rate flow-level mon-
itoring in software,” IEEE Transactions on Network and Service Man-
agement, 2019.

[7]
[8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

(33]

[34]

Emmerich et al., “Efficient dynamic flow tracking for packet analyzers,”
in 7th International Conference on Cloud Networking. 1EEE, 2018.
Waszecki et al., “Automotive electrical and electronic architecture secu-
rity via distributed in-vehicle traffic monitoring,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2017.
Peeck et al., “Online latency monitoring of time-sensitive event chains
in ROS2,” 2021.

Shin et al., “Clock synchronization for one-way delay measurement: A
survey,” in Advanced Communication and Networking, 2011.

Chefrour, “One-way delay measurement from traditional networks to
SDN: A survey,” ACM Comput. Surv., 2021.

Holzinger et al., “Precise real-time monitoring of time-critical flows,”
in Proc. of the 17th International Conference on Emerging Networking
EXperiments and Technologies, 2021.

Shreejith et al., “Smart network interfaces for advanced automotive
applications,” IEEE Micro, 2018.

Niu et al., “PostMan: Rapidly Mitigating Bursty Traffic via On-demand
Offloading of Packet Processing,” IEEE Transactions on Parallel and
Distributed Systems, 2021.

Eisenbud et al., “Maglev: A fast and reliable software network load
balancer,” in Proc. 13th USENIX Symp. on Networked Systems Design
and Implementation, 2016.

Gember et al., “Stratos: A network-aware orchestration layer for virtual
middleboxes in clouds,” arXiv:1305.0209, 2013.

Kandula et al., “Dynamic load balancing without packet reordering,”
SIGCOMM Comput. Commun. Rev., 2007.

Ousterhout et al., “Shenango: Achieving high CPU efficiency for
latency-sensitive datacenter workloads,” in Proc. 16th USENIX Symp.
on Networked Systems Design and Implementation, 2019.

Kaffes et al., “Shinjuku: Preemptive scheduling for psecond-scale tail
latency,” in Proc. 16th USENIX Symp. on Networked Systems Design
and Implementation, 2019.

Oeldemann et al., “Inter-Server RSS: Extending Receive Side Scaling
for Inter-Server Workload Distribution,” in 28th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing.
Bello et al.,, “Recent Advances and Trends in On-Board Embedded
and Networked Automotive Systems,” IEEE Transactions on Industrial
Informatics, 2019.

Takeuchi et al., “Requirements for automotive AVB system profiles,”
Whitepaper, Knorrstrasse, 2011.

“IEEE Standard for a Transport Protocol for Time-Sensitive Applications
in Bridged Local Area Networks,” IEEE Std 1722-2016 (Revision of
IEEE Std 1722-2011), 2016.

Pannell et al., “Use cases - IEEE P802.1DG V0.4,” https://www.ieee802.
org/1/files/public/docs2019/dg- pannell-automotive-use-cases-0919-v04.
pdf, 2019.

DPDK Contributors. Data Plane Development Kit — Mellanox
BlueField Board Support Packages. [Online]. Available: http://doc.
dpdk.org/guides/platform/bluefield.html

“Receive Side Scaling (RSS).” [Online]. Avail-
able: https://docs.microsoft.com/en-us/windows-hardware/drivers/
network/ndis-receive-side-scaling2

P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header (NSH),”
RFC 8300, 2018. [Online]. Available: https://tools.ietf.org/html/rfc8300
(2021) P802.1DG — TSN profile for automotive in-vehicle ethernet
communications. [Online]. Available: https://1.ieee802.org/tsn/802-1dg/
“IEEE standard for a precision clock synchronization protocol for
networked measurement and control systems - redline,” IEEE Std 1588-
2008 (Revision of IEEE Std 1588-2002) - Redline, 2008.

“The CAIDA UCSD Anonymized Internet Traces - 2019-01-17 nyc
(dirA).” [Online]. Available: http://www.caida.org/data/passive/passive_
dataset.xml

Migge et al., “Insights on the Performance and Configuration of AVB
and TSN in Automotive Ethernet Networks,” Embedded Real-Time
Software and Systems, 2018.

Gopal. (2021) Text Proposal for section 6: In-vehicle network
topology, 9: Traffic Separation and 11: Latency and congestion loss
in IEEE 802.1DG/D1.3. [Online]. Available: https://www.ieee802.org/
1/files/public/docs2021/dg- gopal-TrafficClass-text- 1021-v02.pdf
Ramaswamy et al., “Analysis of network processing workloads,” Journal
of Systems Architecture, 2009.

Gallenmiiller et al., “5G QoS: Impact of Security Functions on Latency,”
in IEEE/IFIP Network Operations and Management Symposium, 2020.

