
Forward Error Correction and Weighted Hierarchical
Fair Multiplexing for HTTP/3 over QUIC

Kilian Holzinger, Daniel Petri,
Stefan Lachnit, Marcel Kempf, Henning Stubbe, Sebastian Gallenmüller, Stephan Günther, Georg Carle

Technical University of Munich, Germany
{holzinger, petriroc, lachnit, kempf, stubbe, gallenmu, guenther, carle}@net.in.tum.de

Abstract—Web applications are ubiquitous and increasingly
use HTTP/3. Their performance is affected by the underlying
QUIC transport protocol. An important performance metric
is the transmission delay impacted by the standardized loss
recovery and resource prioritization. To improve the robustness
against packet loss, we extend QUIC’s recovery mechanism by
the convolutional Forward Error Correction scheme Tetrys. For
better control over the order of sent data, we use a round-robin
scheduler that provably ensures hierarchical max-min fairness
of the multiplexed streams at a byte-granular level. We extend
its functionality to support strict priorities within a scheduling
tree of weighted classes, integrating it into the Extensible Pri-
oritization Scheme for HTTP/3. Measurements of a prototype
implementation demonstrate that transmission delays improve
under common web workloads and that the scheduler delivers
important assets earlier with the newly specified parameters.

Index Terms—QUIC, Forward Error Correction, Multiplexing

I. INTRODUCTION

HTTP/3, which uses QUIC as a transport protocol, is
increasingly adopted, e. g. in modern real-time multimedia web
applications. For such use cases, transmission delays are a
crucial performance metric. Among others, they are impacted
by network characteristics and the transport protocol as well as
its implementation. Factors, such as network paths properties,
are beyond the control of endpoints. In contrast, the upper
layers, i. e. the transport and application protocols, can be
changed. This flexibility has been one of the core rationales
leading to QUIC’s design [1]. The standardized reliability
mechanism and the scheduling of multiplexed streams are a
source of delay [2], [3]. In this work, we propose additional
approaches for loss recovery and stream prioritization to
demonstrate benefits for common web application workloads.

QUIC offers parallel streams to avoid head-of-line (HOL)
blocking. HTTP/3 uses the Extensible Prioritization Scheme
(EPS) to send priority signals. Suitable EPS parameters in-
dicate web browsers to increase parallelism. However, in
practice, due to limited flexibility of the resource prioritization,
QUIC cannot yield significant advantages in parallel stream
scenarios [3], [4]. Though parallelism has proven beneficial
in scenarios with high random loss, bursty loss, affecting
several streams at once, has led to detrimental effects [5].
Related work suggests that there is no prioritization scheme
that performs best in all use cases and that new priority
metadata need to be discussed, such as clients recommending

ISBN 978-3-903176-72-0 © 2025 IFIP

their preferred order of information delivery [6] and a more
granular control over the prioritization [7].

Forward Error Correction (FEC) is an alternative loss recov-
ery method. It transmits redundant information, so receivers
can restore original data, as long as enough linear independent
information has arrived, avoiding costly retransmissions. FEC
was considered early in QUIC’s development but has not
been standardized yet. However, there is ongoing scientific
discussion to include FEC recovery mechanisms within QUIC
over the past years [8]–[12].

In this paper, we show that Application Data Unit (ADU)
transmission times for HTTP/3 over QUIC can be improved
by introducing new priority signals, a FEC-based reliability
mechanism, and a flexible stream scheduler. We use an ex-
perimental protocol extension for the FEC-based reliability
mechanism. Through additional EPS parameters, endpoints
indicate reliability properties and the desired position within a
hierarchical priority tree for each HTTP/3 request. A mix-
ture of strict priority and weighted round-robin scheduling
enables simultaneous sequential, incremental, and weighted
parallel transmission of stream data while remaining fallback-
safe to EPS. We propose, implement, and evaluate an ac-
cording scheduling algorithm with proven max-min fairness
guarantees. The approach is assessed using web application
workloads and measurements of a prototype implementation
in an emulated network environment. There, the results show
improved delays for non-incremental and incremental transfers
under lossy path conditions and earlier completion of relevant
resources through more flexible stream prioritization. The
source code of our prototype is available online [13].

The remainder of this work is structured as follows: Sec-
tion II describes the FEC coding scheme and its integration
into QUIC. Afterward, Section III shows the integration of the
hierarchical weighted round-robin scheduler into the stream
multiplexing. In Section IV, new HTTP/3 priority signals are
introduced that enable to leverage the flexibility of the new
mechanisms in HTTP/3 applications. Section V assesses the
impact of the improved recovery and scheduling on typical
web workloads. Finally, before the concluding Section VII,
related work is summarized in Section VI.

II. FORWARD ERROR CORRECTION

Over the past years, several studies have experimented with
FEC in QUIC, investigating different coding schemes. A thor-



ough overview of related works is provided in Section VI-A.
A recent publication on that topic, QUIRL, identified a coding
scheme called Tetrys as the most suitable for use within the
QUIC protocol [12]. Thus, our work uses a Tetrys coding
scheme, and derives the protocol modification from the RFC
draft published by the QUIRL authors [14].

This section provides background on the Tetrys coding
scheme and its integration into QUIC. We explore suitable
scheduling of redundant information for common HTTP/3
web workloads. Different approaches for bulk transfers and
incremental or streaming ADUs are needed. In this paper,
we use the terminology suggested by the Coding for efficient
NetWork Communications Research Group (NWCRG) [15].

A. Tetrys Coding Scheme

Tetrys is a systematic rateless convolutional random linear
erasure coding scheme for unicast communication [16]. The
concept was published as an experimental RFC by the IRTF,
too [17]. It includes a back channel for symbol acknowledg-
ments from the decoder to the encoder. At the encoder, it uses a
dynamic encoding buffer which holds unacknowledged Source
Symbols, referred to as the encoding window. Interspersed
with the Source Symbols (SSs), Repair Symbols (RSs) are
transmitted. They are computed, using Galois Arithmetic, as a
linear combination of the encoding window with coefficients
being randomly drawn from a Galois Field. To avoid trans-
mitting the coefficients, the authors advise to transmit the
seed for a pseudo-random number generator and use it to
reconstruct them at the decoder. The decoder keeps arriving
SSs and RSs in a decoding window. To reconstruct missing
symbols, the decoding window is arranged into a matrix
of coefficients and the system of linear equations is solved
with Gaussian elimination. The original authors provide an
extensive simulation-based study on the behavior of the coding
scheme in a wide range of network path properties. They
find that Tetrys can achieve loss recovery independently from
Round Trip Time (RTT) and is robust against bursty loss—a
common loss pattern on Internet paths [16].

B. Implementation of Tetrys

In this work, we implemented the Tetrys scheme as a
Rust module, split into encoder and decoder functionality.
For necessary Galois Field arithmetic operations, we use the
hardware-accelerated open-source library libmoepgf [18] and
bindgen0 to generate bindings for Rust. We choose the field
GF (256), as it matches well with available vector instruc-
tions and offers a sufficiently large coefficient space. The
SIMD instructions expect aligned data structures so we use
aligned vec1 for memory-aligned byte vectors. In contrast to
the original Tetrys proposal, for simplicity, no selective symbol
acknowledgments are supported. The coefficients are derived
from a seeded Pcg64Mcg pseudorandom number generator.

0https://github.com/rust-lang/rust-bindgen
1https://docs.rs/aligned-vec/latest/aligned vec/

C. Integration into QUIC

The used FEC extension is compliant with QUIC and based
on a standards draft by the authors of QUIRL [14]. New
transport parameters are used, so only compatible endpoints
will use the FEC functionality. In contrast to the protocol
draft [14], several modifications, based on requirements of
this work and experiences during development, were made.
FEC protected frame types, such as STREAM frames, are
encapsulated in SOURCE_SYMBOL frame headers. We extend
those, like all additional frame types, with a fec_session
field, to enable multiple distinct FEC contexts within a single
connection to reflect differentiated reliability requirements.
Also, we add a length field and a Source Symbol identifier
(SID), which is incremented for each sent frame and is used
to detect missing SSs at the decoder and is referenced by RSs
headers. The REPAIR frame header includes the smallest and
largest SID to enable reconstruction of the encoding window at
the receiver. The seed used to derive the coefficient vector, in
our implementation, equals the largest SID plus an additional
seed offset field. So generating multiple RSs from the same
encoding window yields different linear combinations. We add
a lower bound to the SYMBOL_ACK frame, telling the decoder
the current lowest SID in the encoding window. This proved
to be a necessary information to keep the decoding window
small in situations where not many RSs are sent. We follow
the recommendation to treat reconstructed information as lost
in the congestion controller [19] and implemented our changes
in the Cloudflare quiche library2.

D. Scheduling of Repair Symbols

RS scheduling decides when to send repair information. In
general, SSs are preferred over RSs, to avoid additional delay,
and to offer full path capacity if required by the application.
We anticipate that not all HTTP transactions require FEC.

1) Transmission delay and value of information: Web ap-
plications create ADUs of different sizes and with varying
frequency. Some ADUs, e. g. file downloads, cannot be used
partially. They are not useful until they are fully available at
the destination. Thus, the time to completion (TTC), measured
from request to a completely received reply, is a suitable
metric to minimize. Other ADUs can be used incrementally.
For example, many web browsers can parse and render partial
HTML documents. This is reflected in the i parameter of the
EPS. Similarly, streaming data, such as real-time multimedia
content, transfers smaller ADUs in quick succession. In these
cases, a suitable metric to minimize is the byte-wise one-way
delay (OWD). It measures the time from when a particular
offset position in the data stream is created at the sending
application to the time of arrival at the receiving application.

2) Repair delay tolerance (RDT): We introduce the RDT
as a parameter to the RS scheduler. It expresses the additional
tolerable waiting time for all data to arrive when loss recovery
is necessary. In general, neglecting processing overhead, coded
repair information is necessary only if the RDT is smaller

2https://github.com/cloudflare/quiche/



than the time needed for retransmission. The QUIC loss
detection timeout is 9

8RTT [20]. Assuming a symmetric path,
a retransmitted stream segment travels 1

2RTT . This makes
automatic repeat request (ARQ) based recovery sufficient if
the recovery delay tolerance is greater than 13

8 RTT . In other
cases, FEC based recovery can improve the end-to-end OWD.
Besides deciding whether FEC-based recovery is beneficial,
the RDT parameter expresses a certain flexibility to the timing
of the recovery, which can be used to improve robustness.
Many loss effects, e. g. on Internet paths, are bursty, typically
caused by short overloads in the network. The RDT allows
to separate the transmission of RSs from the SSs, reducing
the chance that they are affected by the same burst loss event.
Thus, we trade increased repair delay with an increased chance
that either the SSs or corresponding RSs arrive successfully.

3) Burst loss tolerance (BLT): The second parameter for
RS scheduling is the BLT. It describes how many RSs should
be sent on each occasion, likely allowing the decoder to
recover from that amount of lost SSs.

4) Bulk transfers: We optimize the TTC of non-incremental
assets by sending RSs in application limited phases. Those are
initiated either by a FIN stream flag or when the stream send
buffer is flushed, i. e. all stream data have been sent, and the
application does not provide new data. When detecting loss,
the standard QUIC recovery mechanism is used. Thus, during
large transfers, there is little additional overhead in the form of
SS frame headers. Losses of the last stream segment in flight
are protected by RSs and, thus, download times can potentially
be reduced by avoiding retransmissions. The approach works
similar to previous works [11], [12].

5) Incremental assets: Incremental or streaming assets
should be optimized for the byte-wise OWD. When an in-
cremental stream sends an SS, a timer is started waiting for
the RDT. After the timer has expired and no SYMBOL_ACK
for that SS has arrived, RSs are sent.

6) Adaption of FEC parameters: In this work, we do not
provide algorithms to adapt the BLT parameter dynamical-
ly. Endpoints may request changes to the coding parameters
with PRIORITY_UPDATE frames based on some estimation,
heuristic, or algorithm. We refer to related work, that provides
approaches that could be considered [12], [21], [22].

III. QUIC MULTIPLEX SCHEDULING WITH WEIGHTED
HIERARCHICAL MAX-MIN FAIR ROUND-ROBIN

The standard prioritization scheme for QUIC is the EPS,
based on strict priorities. With only two parameters (u, i),
its flexibility is limited [6], [7]. This section describes a new
fallback-safe approach which provides more control what is
sent when, motivated by the need of modern web applications.
It adds capabilities to arrange streams in hierarchical trees,
fitting to the hierarchical structure of web documents. and
introduces weighted round-robin scheduling. It enables more
parallelism, avoiding HOL blocking, and incorporates the
state-of-the-art algorithm Hierarchical Link Sharing (HLS)
offering max-min fairness guarantees.

HTML
u=0, i

CSS
u=1, i

JS
u=2, i

Font
u=3, i

LCP Image
u=3, i

Image A
u=3, i

Image B
u=3, i

Image C
u=5, i

Image D
u=5, i

(a) Standard EPS parameters in a flat priority tree

HTML
u=0, i, w=0.2

Web assets
u=0, i, w=0.8

CSS
u=1, i

JS
u=2, i

Font
u=3, i

Images
u=1, i

LCP Image
u=3, i, w=0.6

In viewport
u=3, i, w=0.4

Image A
u=3, i

Image B
u=3, i

Not in viewport
u=5, i

Image C
u=5, i

Image D
u=5, i

(b) Experimental EPS parameters in a priority tree

Fig. 1: Example scheduling scenario

A. The Hierarchical Link Sharing Packet Scheduler

HLS is a classful packet scheduler for granular and hier-
archical traffic control. Designed as a weighted round-robin
scheduler, it is optimized for high throughputs. While the
edges of an HTTP/2 priority tree imply dependencies between
vertices [23], HLS classes fairly isolate how link bandwidth
is distributed over multiple aggregation levels [24]. Only the
leaves of the hierarchy are assigned traffic. Given a constrained
resource at the hierarchy’s root, such as an Ethernet link
with limited capacity (e. g. 1 Gbit/s), HLS applies the max-
min fairness to each parent such that they can subdivide the
capacity made available to them using computed fair shares.
This hierarchical max-min (HMM) fair allocation accounts for
the children’s relative weights and how much of the resource
they request (e. g. a rate of 200 Mbit/s). Since children of
the same parent allocate bandwidth relative to their weights,
starvation is prevented. In fact, classes have a minimum rate
guarantee derived from the root’s capacity and the weighted
hierarchy. The guarantee is only exceeded when other classes
request less bandwidth than they are entitled to, freeing
capacity that the HMM principle re-distributes to classes with
unmet demands. The process is strategy-proof. Misrepresented
requests cannot game allocations to obtain an advantage.

B. EPS-based HMM scheduling for QUIC

Our scheduler differs from the HLS design in these aspects:
1) Byte-granular stream scheduling: Implemented as a

qdisc for the Linux kernel, HLS schedules packets. Classes
keep track of a balance in bytes that can be spent to emit
traffic; a leaf class only transmits if it has enough balance to
cover the packet size at the head of the queue. When porting
the approach to QUIC, we have no such limitation: each leaf
class is a QUIC stream whose balance is consumed by the
length of QUIC frames.

2) Relative weights: The HLS authors use the terms weight
w and guarantee g interchangeably, as they show how ratios at
the sibling level can be converted into rate guarantees when the
link capacity is known. The analog for the link capacity in our
scenario is the connection bandwidth, which is not necessarily
known, e. g. by the web developers. For ease of use, exp_w
is specified relative to its siblings with a default value of one.



Internally, it is recomputed into a weight ranging from 0 to
1 for the root, from which the guarantees and round robin
quantum are computed. By doing so, we aim to make our
prioritization scheme more intuitive, by resembling HTTP/2
weights, and abstracting away the scheduler’s intricacies.

3) Round size: A scheduling round visits a set of leaf
classes Ls in a round-robin fashion. The determination of the
schedule Ls from a tree with leaf classes L is detailed in the
next paragraph. When a leaf is visited for the first time, its
parent calculates a fair share used to give children balance
accounting for their weights. The round-robin is advanced
either once the stream has no available balance left or it
backlogs no more data and returns the excess balance to
the parent for redistribution. Since the determination of the
fair shares is a recursive process, the root node is eventually
reached. The guarantee in bytes groot that the root can distribute
is the round robin’s quantum Q∗. The larger Q∗, the longer
the duration of a scheduling round. HLS chooses the quantum
such that at least one packet can provably be sent in a round,
which considers the maximum packet size Lmax of a class
and prevents the scheduler from iterating without transmission.
Our ported implementation, in contrast, emits as long as
the balance is positive since a single byte can be sent in
a QUIC stream frame albeit with significant overhead. To
prevent that, we aim for a Q∗ that still gives the stream
with the lowest absolute weight enough balance to fill the
remaining space of a frame’s payload. We set Lmax to 1350 B
to approximate that value, which is the maximum outgoing
UDP payload size of our quiche client. Our heuristic is:
groot = Q∗ = Lmax · (1 +∑

i∈Ls

wi

wmin
)

4) Incorporation of strict priorities: We can think of stan-
dard EPS scheduling as a special case of HLS where all
classes are incremental, have the same weight, and urgency.
The incorporation of weights can be achieved using the HLS
scheduling strategy alone; it is the integration of strict priori-
ties inside classes that requires a new scheduling strategy. For
this more general stream scheduler, we first determine which
classes should be scheduled next using the hierarchy and active
streams as input. The standard HLS scheduler takes the set
of active leaves Lac ⊆ L as input for scheduling decisions.
These are the streams ready to emit buffered data. Similarly,
an internal class in Iac is active if any children are. To account
for the EPS strict priority signaling, we filter Lac further.
Our scheduling strategy traverses the tree starting at the
root using a modified Breadth-First-Search (BFS) algorithm
to compute the schedule Ls ⊆ Lac. The BFS queue B is
initialized with the root. While there is a first element b1 to
dequeue, we reveal its n active children classes v. We combine
them into a tuple of vertices V , sorted by EPS priority:
V := ⟨v1, . . . , vn|v ∈ child(b1)∩(Lac ∪ Iac), v1 ≥ . . . ≥ vn⟩.
Note that the ≥ relation refers to ≥EPS , i. e. the first element
in V has the highest priority as long as it is not empty. For a
total order enabling class comparisons, we use internal class
IDs that reflect the request sequence instead of solely relying
on the stream ID. With the function u(v) returning the urgency
of a class, we then only retain classes at the highest contained

Parameter Type Description

exp_p Inner List List of parents in ascending order
exp_b Integer Burst loss tolerance (BLT)
exp_d Integer Repair delay tolerance (RDT) in ms
exp_w Decimal Hierarchical max-min (HMM) relative weight

TABLE I: Additional experimental EPS parameters
urgency level: V := ⟨vk | u(vk) = u(v1)⟩ Elements in V
are processed in the following manner, breaking after the first

non-incremental class:

{
vk ∈ Lac =⇒ Ls := Ls ∪ {vk}
vk /∈ Lac =⇒ enqueue(vk, B)

5) Dynamic hierarchy: HLS uses a static, pre-defined hier-
archy for scheduling. In dynamic web environments, however,
streams are added, removed, and re-prioritized ad hoc. We
build the hierarchy as HTTP/3 requests arrive, considering new
streams for scheduling once the current round completes. Since
high-priority streams should transmit as soon as possible, we
try to keep round sizes as small as possible. A preemptive
solution could expense HMM fairness for the round instead.
We reprioritize on-the-fly, which can come with a tractable
fairness penalty for the round. Streams that finish are idly kept
in the hierarchy until the round’s completion. Hierarchies are
stored per endpoint at the connection level, e. g. Figure 1b
illustrates the state of a server-side weighted class hierarchy
populated with EPS parameters when all assets of a sample
webpage have been requested but not yet fully delivered. Each
endpoint stores their own hierarchy.

IV. NEW HTTP/3 PRIORITY PARAMETERS

The following section describes EPS and priority signals
that an HTTP/3 endpoint can send. As the name suggests,
it allows to extend the parameter set used for resource
scheduling. Our implementation allows to express desired FEC
configurations and HMM parameters in HTTP/3 requests. We
use the prefix exp_ to indicate the experimental nature of our
new parameters (recommended by RFC [25]).

A. Extensible Prioritization Scheme (EPS) for HTTP/3

The EPS indicates request priorities by two parameters. The
integer urgency parameter u indicates a strict priority, with 0
as the highest and 7 as the lowest priority. The incremental
parameter i is a boolean. Incremental requests of the same
urgency are transmitted in a equally weighted round-robin
manner. In case non-incremental requests of the same urgency
need to be sent, the scheduling follows the request order [25].
The priority parameter is a string in the Structured Field Values
(SVF) format [26]. It can be included in the priority field
of an HTTP/3 request header. An alternative way to indicate
the priority is the PRIORIY_UPDATE HTTP/3 frame. The
latter can be used to reprioritize a request already sent.

B. Experimental Parameters for FEC and HMM Fairness

Table I lists the new parameters which can be used in
addition to the u and i parameters. The weight parameter is
relative and is normalized by the scheduler.

The exp_p parameters is an Inner List, whose elements,
in accordance with SVF, are separated by white spaces. The



0 1,000 2,000
0

1

2

·10−3

window size

ti
m
e
[s
]

(a) Encoding time
for a single repair
symbol

0 1,000 2,000
0

0.5

1

1.5

·10−1

window size

ti
m
e
[s
]

(b) Decoding time
with 5% of source
symbol loss at the
begin of the window

0 1,000 2,000
0

1

2

·10−4

window size

ti
m
e
[s
]

(c) Decoding time
with 5% of source
symbol loss at the
end of the window

Fig. 2: Benchmark results for encoding and decoding

elements of the list are strings with SVF parameters joined by
semicolons. The string acts as an identifier for the parent node,
used to match different requests within the same connection to
the tree structure. Initially the tree is empty, just containing the
root node and is populated by subsequent requests. If requests
have disagreeing priority values of internal nodes, then the
latest request takes precedence. The FEC parameters exp_b
and exp_d are only relevant for leaf nodes and ignored
by internal nodes. Requests without an exp_p parameter
are placed under the root—therefore remaining fallback-safe.
Since endpoints may not support and, thus, ignore priority
information beyond the urgency parameter and the incremental
flag, sensible fallback-safe defaults should be supplied [25].
As an example, a valid EPS priority field value of Image A
in Figure 1b could look like: priority = u=3, i, exp_b=3,

↪→ exp_d=80, exp_p=("ivp";u=3;i;exp_w=0.4 "img";u=1)

V. EVALUATION

A. Forward Error Correction Coding Performance

Micro benchmarks of our modified QUIC library analyze
the performance of the Tetrys implementation. A key factor is
the size of the encoding and decoding windows. We use the
Criterion.rs3 benchmarking library and define several bench-
mark groups, investigating window sizes between 10 and 2000
SSs. The encoding window size corresponds to the number
of in-flight symbols. To help setting the presented numbers
into relation, the following datapoint is provided: with MTU
sized SSs, an RTT of 100 ms, and a throughput of 100 Mbit/s
roughly 833 symbols would be in flight. Each benchmark is
split into an initialization phase which is excluded from the
execution time measurement, an phase where necessary data
structures are initialized according to the input parameters,
and a (cache) warmup phase whose output is discarded.
Subsequently, the actual measurements are performed. The
benchmarking library repeats the measurements until stable
results are achieved. We report the mean times of these results.
0

1) Encoding: The benchmark of the encoding process
uses an encoding window as an initialized data structure.
This window consists of 1500 B vectors with random data.
The benchmarked function generates a single RS from the
encoding window. Figure 2a shows the average encoding time

3https://bheisler.github.io/criterion.rs/book/index.html

QUIC and iperf3 server
QUIC and iperf3 client

◀▶
◀▶ Emulator

◀▶
◀▶

Fig. 3: Experiment setup for the evaluation

for the benchmark results on an Intel Xeon D-1518 CPU. For
the window size 1000, the encoding time stays well below
1 ms, for 2000 below 3 ms.

2) Decoding: The variable in the decoding benchmark
group is the decoding window size. The coding library is
initialized by populating an encoding window with random
SSs, and then providing 95% of the SSs to the decoder along
with 5% RSs. We distinguish between early loss, close to the
front of the window, and late loss, during the last few SSs
of the window. The results show a significant difference. For
early losses, at a window size of 1000, it takes around 35 ms to
restore all lost symbols, as depicted in Figure 2b. In contrast,
for late losses at the same window size, it takes less than
0.1 ms (cf. Figure 2c).

3) Discussion: The presented encoding and decoding times
are sufficient for many web workloads. Decoding with early
losses has increased runtime, requiring more operations during
the Gaussian elimination. We think that our decoding solver
can be improved, e. g. by reducing the number of operations
performed on Symbol data. Still, we deem the performance of
the Tetrys implementation as viable for many web scenarios as
we expect only a fraction of requests needing FEC protection.

B. Transmission with Forward Error Correction

In this subsection, experiments of the prototype FEC im-
plementation are evaluated. First, a measurement campaign
to assess the transfer completion time of non-incremental
web assets is presented. Then, the observed OWD during the
transmission of incremental web workloads are studied in an
experimental setting.

1) Setup: To obtain the results in a reproducible environ-
ment, we created an experimental setup consisting of two
nodes with two network interfaces each, depicted in Figure 3.
Both machines run Linux (Debian Bookworm). The Emulator
node uses a Linux software bridge to connect the two inter-
faces. We emulate network path properties such as available
bandwidth, delay, and loss, on the egress link with netem.
We decided to place both, the QUIC client and server of
the prototype implementation, on the same physical machine
depicted on the left. So, timestamps can be taken from the
same physical clock source.

We want to emulate random burst loss that is not caused by
self-induced congestion, as experienced, e. g. on Internet paths
with cross traffic. The stochastic process of netem’s stateful
loss models is advanced by packets. Therefore, we apply
continuous background traffic to advance the loss process
independently from the count of packets that are sent in the
QUIC connection. For that purpose, we run the network test
tool iperf3 alongside the modified quiche application. We use
it as a packet generator sending UDP cross traffic with a rate
of 10 Mbit/s continuously and bidirectionally through the same
links as the QUIC connection.



0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

completion time [s]

C
D
F

b= 0
b= 8
b=32

(a) File size: 32 kB

1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

completion time [s]

C
D
F

b= 0
b= 8
b=32

(b) File size: 1 MB

Fig. 4: Cumulative distribution of transfer completion times of
non-incremental HTTP/3 transactions

2 90 99 99.9 99.99
0

0.05

0.1

0.15

percentiles [%]

b
y
te

w
is
e
o
n
e-
w
ay

d
el
ay

[s
]

b=0 b=3, d=5 b=3, d=25
b=3, d=0 b=3, d=10

Fig. 5: HDR plot showing the statistical distribution of the
measured byte-wise delay of a streaming web resource with a
logarithmic horizontal axis

2) Network path parameters: All network path parameters
are emulated bidirectionally with the same parameter set. We
set the OWD to 50 ms and the path capacity to 10 Mbit/s. For
the loss emulation, we use the Gilbert-Elliot loss model with
the probabilities of 0.005 to enter the bad state, 0.25 to exit
it, a probability to drop a packet of 0.95 in the bad state, and
0.005 in the good state respectively. The values are within
the range studied in [12]. We limit the path parameter space
to a single configuration, as Tetrys has already been studied
with a wide range of path parameters [12], [16]. To make
the congestion control less sensitive to loss, we use BBR2 as
congestion control algorithm.

3) Non-incremental web assets: To assess the benefit of
FEC for non-incremental web assets, we repeat file transfers
1000 times for each configuration and measure the TTC.
We chose the file sizes 32 kB and 1 MB, corresponding to
common workloads of web applications [27]. The measure-
ment results are visualized in Figure 4. A general conclusion,
which confirms previous assessments [12], is that FEC has
a larger relative impact on smaller transactions. For those,
the transfer time is within a similar range as the RTT. In
our measurements, this effect can be seen when we compare
Figure 4a and Figure 4b. Almost 40% of transfers without
FEC (b = 0) need one retransmission, reflected by the knee at
0.2 s. A share of about 5% requires a second retransmission.
With FEC protection, the number of retransmissions is halfed.
The count of sent repair symbols only has a minor impact.

4) Incremental web assets: Previously, the byte-wise end-
to-end OWD was identified as a key metric to assess the
quality of incremental web transactions. Instead of transferring
actual web ADUs, in the evaluation, we generate data in the
server application with a custom binary format. It includes
timestamps in the HTTP/3 response body. Thus, the HTTP/3
client application can measure the time a particular data
segment took to arrive from the server application.

We mimic a streaming workload which continuously pro-
duces small ADUs. In the experiment, we generate 5 kB
chunks at a rate of 60 Hz, and transfer 100 MB in total for each
configuration. The results of the measurement campaign are
plotted as an HDR plot in Figure 5. It shows that the delays for
all studied configurations remain roughly at the path delay for
99.1% of the arriving bytes. Without FEC, values gradually
increase. The theoretical time for a successful ARQ-based
recovery is 13

8 RTT , which corresponds to about 160 ms. 0.1%
of the data arrives after that. The delays of the data segments
belonging to the percentiles in between partially are attributed
to Fast Retransmit, i. e., when the receiving endpoint detects
gaps in the packet numbers and sends duplicate ACKs, which
leads to shortened loss detection.

When BLT is set to 3, the delay remains at the 50 ms path
delay for 99.8% of the transferred bytes. From there on, there
is a gradual increase. For higher RDT settings, e.g., 25 ms,
there is an initial raise in delay, exceeding that of the curves
with smaller RDTs. A step at 75 ms is visible, corresponding to
the additional waiting time caused by the delayed RSs. For the
higher percentiles, higher RDT settings begin to outperform,
likely attributed to the increased temporal separation from
protected SSs.

5) Discussion: The results show a improvement in the
studied loss scenario. For non-incremental workloads the TTC
is improved, especially for smaller transfers, commonly found
in web applications. Incremental workloads profit from FEC.
Almost ten times as many stream segments arrive within no
substantial delay, compared to the path’s OWD. The RDT only
has little influence on the delay. Albeit additional complexity is
introduced by FEC, there are significant benefits. We anticipate
that those are transferable to other relevant use cases, such as
Media over QUIC or WebSockets [28], [29].

C. Hierarchical Link Sharing in QUIC

In this subsection, we compare our extended scheduling
strategy against EPS’ standard one. We model a sample web
page and let a client retrieve it from a server on our testbed.

1) Example web site: Webpages may load hundreds of
resources upon access: The New York Times, for instance,
loads more than 150 [5]. With such a large number of parallel
requests, illustrating the operation of our experimental EPS
scheduler becomes more challenging. To ease understanding
and show how finer scheduling control can be advantageous,
we modeled a sample website consisting of an Hypertext
Markup Language (HTML) document (148 kB), Cascading
Style Sheets (CSS) (260 kB), JavaScript (JS) code (620 kB),
font (116 kB), and five image files (177 kB each). One of



0 1 2 30

2

4

6

st
ac
ke
d
go

od
pu

t[
M
bp

s]

standard EPS

HTML CSS JS Font LCP
A B C D

0 1 2 3

experimental EPS

1
(a) Theoretical scheduling order at 5 Mbit/s goodput

0 1 2 30

2

4

6

st
ac
ke
d
go

od
pu

t[
M
bp

s]

0 1 2 3
connection time [s]

1
(b) Goodput measured at the client with emulated path properties of
5 Mbit/s capacity, 10 ms RTT; the bin width is 50 ms

Fig. 6: Scheduling order using standard EPS parameters (Fig-
ure 1a) and experimental hierarchical extensions (Figure 1b)

these images represents the Largest Contentful Paint (LCP)
element, whose ADU completion time we want to expedite
for better end-user experience. The listed file sizes are at the
90th percentile for desktop web browsing in 2024 [27] only
the JS resource has a median size.

2) Standard vs. experimental EPS scheduling: The prior-
ities shown in Figure 1a are based on EPS signals that the
Safari browser uses for each resource type and its behavior of
always setting the incremental flag [4]. Despite that, the server
does not leverage QUIC’s stream multiplexing capabilities
since the HTML, CSS, and JS files are on separate urgency
levels. Only the remaining assets are sent in parallel and share
the connection bandwidth equally. The expected scheduling
order is illustrated on the left side of Figure 6a. It can be
obtained from the consecutive application of algorithm III-B4
to determine Ls. With the flat hierarchy as input and assuming
all streams are active, Ls = {HTML} is returned as it has
urgency 0. This remains so until it is fully transmitted and
removed from the hierarchy, at which point the strategy begins
returning the CSS file. More than one incremental stream is
tied at the third urgency level, Ls becomes {Font,LCP,A,B}.

Usage of the exp_w and exp_p parameters, in contrast,
enables resources to be conceptually grouped and assigned
weights. In Figure 1b, we introduce parent classes for Web

assets and Images, further making a distinction between ele-
ments In viewport and those that are not. Figure 6a shows the
expected outcome on the right after applying the scheduling
algorithm. Real measurements in Figure 6b closely match the
intended outcome. Unlike before, we see that the HTML file
is being loaded in parallel to Web assets at a 1 : 4 ratio. The
CSS and JS files, in turn, are strictly loaded sequentially within
their class. Per HMM fairness, the Web assets class is allocated
the excess bandwidth once the HTML file completes. In a
production environment, where the client is not making all
requests simultaneously, the HMM principle would ensure the
HTML file receives the full bandwidth until one of the other
requests are made despite its low weight. Likewise, by giving
the LCP image a larger weight, we ensure more of it arrives
earlier than other images in the viewport.

3) Discussion: QUIC’s RFC does not specify a general-
purpose stream scheduler explicitly stating that priority signals
ought to come from the application [1]. HTTP/3 requires
QUIC, but it does not specify a prioritization mechanism
either [30]. While EPS provides a minimal, tailor-made in-
terface to control how streams are multiplexed, its usage in
various browsers is still far from optimal [4]. Our proposed
extensions to the EPS parameter set address the latent demand
for weighted incremental streams and generalize HMM-fair
scheduling for compatibility with EPS. This enables arbitrarily
deep, classful stream traffic divisions where some of the
nested classes follow strict priorities while other classes emit
data incrementally. Although HTTP/2 dependency trees were
deprecated due to their complexity and low adoption [25], we
are confident that aggregating web resources by conceptual
classes in lieu of dependencies is simpler. The performance
of Core Web Vital metrics such as LCP is heavily influenced
by how streams are multiplexed, so more levers to pull can
aid in approaching optimal behavior. As the proof of concept
implementation was done in QUIC, it is applicable beyond
HTTP/3 applications.

VI. RELATED WORK

Related work can be found in several active research areas.
First, an overview of the state of integrating FEC in QUIC
is provided. Next, we summarize research activity on HMM
scheduling. Finally we list works on HTTP prioritization.

A. QUIC with Forward Error Correction

There exist RFC drafts and research articles discussing FEC
extensions for QUIC.

1) Internet standard drafts: There are suggested extensions
to the QUIC protocol that modify its packet header and divide
its payload into chunks of SSs [31], [32]. Additionally, they
introduce mechanisms to transmit RSs. Those methods do
not allow frame-specific FEC mechanisms as they operate
on the packet level. In contrast to those, the recent QUIRL
paper and the related Request for Comments (RFC) draft do
not modify the packet header [14]. Instead, they specify new
transport parameters and additional frames. As a result, the
protocol extension allows the use of the Tetrys coding scheme



which requires symbol acknowledgments to update the coding
window of the encoder.

2) Research articles: A first study about the integration
of FEC into QUIC focuses on the video streaming use case.
The results show that Reed-Solomon and sliding window con-
volutional codes in particular are beneficial to decrease loss,
improve OWD, and avoid rebuffering of video streams [8].
The paper rQUIC assesses bulk and website load times with
QUIC extended with an XOR coding scheme. The main result
is that especially website load times improve in case of lossy
paths [9]. In QUIC-FEC, additional contributions are made.
The authors measure the impact of QUIC with XOR, Reed-
Solomon, and sliding window codes on file transfers of various
sizes. They conclude that in particular short downloads profit
from FEC in lossy communications in high-delay paths [10].
In FlEC, application-specific RS schedulers are suggested
for bulk transfers, buffer-limited devices, and small mes-
sages. A Random Linear Code (RLC)-based coding scheme
is used [11]. The recent work QUIRL evaluates benefits of
FEC in QUIC for video streaming and file transfer workloads.
The Tetrys coding scheme is used. The number of sent RSs
relies on the detected median burst loss event size or a default
value if the measurement is not yet available. A custom
scheduler is introduced with the goal of protecting key video
frames only, reflected as bigger SS bursts. The MaxJitter
parameter expresses the delay between the burst and sending
of the RSs. The RS scheduler for HTTP/3 is focused on non-
incremental workloads and schedules RS when in application
limited phases. The approach yields improvements of down-
load completion times, especially under last flight losses, and
video playback QoE. The evaluation of bulk transfer assesses
the time-to-completion of transfers [12].

3) Comparison: The approach to embed FEC into QUIC
presented in this work integrates many concepts from related
works. The protocol extension and the coding scheme are
similar to the one used by QUIRL [12]. Our work addresses
incremental and non-incremental HTTP/3 workloads, while
QUIRL is focused on the latter. The RS scheduling of non-
incremental workloads is similar to the one presented in FlEC
and QUIRL: RSs are sent in application limited phases [11],
[12]. Due to the optimization for video streaming codecs, the
RS scheduler from QUIRL is not universally applicable to
other streaming applications. Still, our incremental workload
scheduler is similar by sending RSs in application limited
phases. Inspired by the MaxJitter parameter, we introduce
the RDT, with the additional rationale of gaining statistical
independence from correlated loss events showing a small
positive effect in our evaluation. In QUIRL, the count of repair
symbols is adapted with path statistics. Whereas in this work,
we suggest extensions to the HTTP/3 priority signaling scheme
to include RS scheduling parameters. They can be updated
by PRIORITY_UPDATE frames, e. g. based on path charac-
teristics, too. The FEC configuration is specific to streams,
enabling heterogeneous workloads within a single connection.
We assess the non-incremental case using typical transfer sizes
found in web applications; QUIRL presents results for files of

50 kB and larger. In the QUIRL paper, improvements to the
streaming performance are assessed using real applications and
QoE metrics, whereas in this approach we present statistics
of measured byte-wise OWD under synthetic workloads. For
better reproducibility, we chose to use network emulation and
a controlled testbed environment. In contrast, QUIRL partially
uses Starlink for measurements. Only a subset of its source
code is available. We intend to release the full code with the
final version of this paper.

B. HMM Scheduling

Fair bandwidth allocation schemes similar to HMM find
applications beyond HLS’ qdisc. HLS was implemented in the
INET framework for the OMNet++ discrete event simulator,
yielding significantly less jitter when excess bandwidth is re-
distributed than in Linux’s Hierarchical Token Bucket (HTB).
In overloaded networks, the delay introduced by HTB was
2
3 larger than HLS’ [33]. Programmable hierarchical packet
scheduling at the switch level was achieved on a single
physical queue [34]. Similarly, for software-defined networks,
an HMM-fair scheduler has been created [35]. HTB-like traffic
shaping, on which HLS improves upon, appears promising for
the slicing of 5G networks [36].

C. EPS-based HTTP Prioritization

Although established browsers use EPS signals disparately,
they do adopt the scheme, even if coarsely and with room for
optimizations [4]. Other protocols, too, such as HTTP Live
Streaming, require this scheme. Investigations reveal its effec-
tiveness for low-latency content delivery [37]. The weighted
incremental scheduling is shown to improve LCP [37]. In
another approach, different EPS-based schedulers that are
dynamically chosen based on the network conditions reduce
webpage load times [38]. Further ambitious approaches use
reinforcement learning techniques [39].

VII. CONCLUSION

In this paper, we investigate ways to make QUIC faster.
FEC is used to improve transmission delay caused by the re-
covery of lost packets and a hierarchical weighted round-robin
scheduler enables finer control over the order of sent data.
The mechanisms can be controlled by HTTP/3 applications
with experimental EPS signals. The FEC mechanism relies
on the Tetrys coding scheme, which is robust, in particular,
to bursty loss patterns. For the redundant information, we
provide suitable scheduling strategies and distinguish between
non-incremental and incremental web workloads. The stream
multiplexing algorithm, while remaining fallback-safe with
existing EPS, supports weighted round-robin prioritization and
introduces hierarchical scheduling classes. It is designed to be
HMM fair on a byte-granular level.

We implemented the extended functionalities in the Cloud-
flare quiche library and assess their impact in a testbed envi-
ronment. A benchmark shows that the FEC implementation is
fast enough for many use cases. Using emulated network prop-
erties, we evaluate that significant timing improvements are



achievable for non-incremental and incremental web transfers.
We defined an example website workload with realistic priority
parameters and compare the download behavior between stan-
dard EPS and suggested experimental EPS. We found that the
new scheduling approach improves stream parallelism, which
makes HOL blocking less likely. The gained flexibility enables
earlier completion of important web resources, reflected, for
example, in an improved LCP metric.

In this work, concepts found in literature on FEC and stream
scheduling are integrated into the web HTTP/3 stack and
hereby achieved results demonstrate substantial improvements
of transmission times. The source code is available online [13]
to encourage additional research.

ACKNOWLEDGMENTS

We thank Michael Hackl for his help.
This work was supported by the EU Horizon Europe pro-

gramme, projects SLICES-PP (10107977) and GreenDIGIT
(101131207), by the German Federal Ministry of Education
and Research (BMBF), projects 6G-life (16KISK002) and 6G-
ANNA (16KISK107), by the German Research Foundation,
project HyperNIC (CA595/13-1), and by the Bavarian Ministry
of Economic Affairs, Regional Development and Energy,
project 6G Future Lab Bavaria.

REFERENCES

[1] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[2] F. Bulgarella et al., “Performance measurements of QUIC commu-
nications,” in Proceedings of the 2019 Applied Networking Research
Workshop, 2019, pp. 8–14.

[3] A. Yu and T. A. Benson, “Dissecting performance of production QUIC,”
in Proceedings of the Web Conference 2021, 2021, pp. 1157–1168.

[4] J. Herbots et al., “HTTP/3’s Extensible Prioritization Scheme in the
Wild,” in IRTF-ANRW, 2024, pp. 1–7.

[5] C. Sander, I. Kunze, and K. Wehrle, “Analyzing the Influence of
Resource Prioritization on HTTP/3 HOL Blocking and Performance.”
in TMA, 2022.

[6] R. Marx., T. De Decker., P. Quax., and W. Lamotte., “Of the Utmost
Importance: Resource Prioritization in HTTP/3 over QUIC,” in WEBIST.
INSTICC, 2019, pp. 130–143.

[7] meta.ai, “HTTP Prioritization for Product Performance,” 2024. [Online].
Available: http://bit.ly/3YjsMzK

[8] F. Michel, Q. D. Coninck, and O. Bonaventure, “Adding Forward
Erasure Correction to QUIC,” CoRR, vol. abs/1809.04822, 2018.
[Online]. Available: http://arxiv.org/abs/1809.04822

[9] P. Garrido, I. Sanchez, S. Ferlin, R. Aguero, and O. Alay, “rQUIC:
Integrating FEC with QUIC for robust wireless communications,” in
GLOBECOM. IEEE, 2019, pp. 1–7.

[10] F. Michel, Q. De Coninck, and O. Bonaventure, “QUIC-FEC: Bringing
the benefits of Forward Erasure Correction to QUIC,” in 2019 IFIP
Networking Conference (IFIP Networking). IEEE, 2019, pp. 1–9.

[11] F. Michel, A. Cohen, D. Malak, Q. De Coninck, M. Médard, and
O. Bonaventure, “FlEC: Enhancing QUIC with application-tailored
reliability mechanisms,” IEEE/ACM Transactions on Networking, 2022.

[12] F. Michel and O. Bonaventure, “QUIRL: Flexible QUIC Loss Recovery
for Low Latency Applications,” IEEE/ACM Transactions on Networking,
2024.

[13] “QUIC FEC EPS,” 2025. [Online]. Available: https://github.com/
holzingk/quic-fec-eps

[14] F. Michel and O. Bonaventure, “Forward Erasure Correction for QUIC
loss recovery,” 2023. [Online]. Available: https://datatracker.ietf.org/
doc/draft-michel-quic-fec/01/

[15] B. Adamson et al., “Taxonomy of Coding Techniques for Efficient
Network Communications,” RFC 8406, 2018. [Online]. Available:
https://www.rfc-editor.org/info/rfc8406

[16] P. U. Tournoux et al., “On-the-fly erasure coding for real-time video
applications,” IEEE Transactions on Multimedia, vol. 13, no. 4, 2011.

[17] J. Detchart, E. Lochin, J. Lacan, and V. Roca, “Tetrys: An On-the-Fly
Network Coding Protocol,” RFC 9407, 2023. [Online]. Available:
https://www.rfc-editor.org/info/rfc9407

[18] S. M. Günther, N. Appel, and G. Carle, “Galois Field Arithmetics for
Linear Network Coding using AVX512 Instruction Set Extensions,” in
arXiv: cs.DC; cs.NI, 2019.

[19] V. Roca, M. Watson, and A. C. Begen, “Forward Error Correction
(FEC) Framework,” RFC 6363, 2011. [Online]. Available: https:
//www.rfc-editor.org/info/rfc6363

[20] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion
Control,” RFC 9002, 2021. [Online]. Available: https://www.rfc-editor.
org/info/rfc9002

[21] T. T. Thai, J. Lacan, and E. Lochin, “Joint on-the-fly network cod-
ing/video quality adaptation for real-time delivery,” Signal Processing:
Image Communication, vol. 29, no. 4, pp. 449–461, 2014.

[22] A. Ali et al., “Bandwidth efficient adaptive forward error correction
mechanism with feedback channel,” Journal of communications and
networks, vol. 16, no. 3, pp. 322–334, 2014.

[23] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer
Protocol Version 2 (HTTP/2),” RFC 7540, 2015. [Online]. Available:
https://www.rfc-editor.org/info/rfc7540

[24] N. Luangsomboon and J. Liebeherr, “HLS: A Packet Scheduler for
Hierarchical Fairness,” in 2021 IEEE 29th International Conference
on Network Protocols (ICNP). IEEE, pp. 1–11. [Online]. Available:
https://ieeexplore.ieee.org/document/9651972/

[25] K. Oku and L. Pardue, “Extensible Prioritization Scheme for HTTP,”
RFC 9218, 2022. [Online]. Available: https://www.rfc-editor.org/info/
rfc9218

[26] M. Nottingham and P.-H. Kamp, “Structured Field Values for HTTP,”
RFC 8941, 2021. [Online]. Available: https://www.rfc-editor.org/info/
rfc8941

[27] HTTP Archive, “2024 Web Almanac: HTTP Archive’s annual state
of the web report,” 2024, accessed: 2025-03-04. [Online]. Available:
https://almanac.httparchive.org/en/2024/

[28] L. Curley et al., “Media over QUIC Transport,” Internet Engineering
Task Force, Internet-Draft draft-ietf-moq-transport-10, 2025. [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-moq-transport/10/

[29] R. Hamilton, “Bootstrapping WebSockets with HTTP/3,” RFC 9220,
2022. [Online]. Available: https://www.rfc-editor.org/info/rfc9220

[30] M. Bishop, “HTTP/3,” RFC 9114, 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9114

[31] V. Roca et al., “Sliding Window Random Linear Code (RLC)
Forward Erasure Correction (FEC) Schemes for QUIC,” Informational
Draft, 2020. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-roca-nwcrg-rlc-fec-scheme-for-quic-03

[32] D. Moskvitin et al., “Forward Erasure Correction for
Short-Message Delay-Sensitive QUIC Connections,” Standard
Draft, 2023. [Online]. Available: https://www.ietf.org/archive/id/
draft-dmoskvitin-quic-short-message-fec-00.html

[33] A. Iyidogan, M. Bosk, and F. Rezabek, “Hierarchical Resource Sharing
and Queuing in OMNeT++ and INET Framework,” in OMNeT++
Community Summit, 2022.

[34] Z. Zhang et al., “vpifo: Virtualized packet scheduler for programmable
hierarchical scheduling in high-speed networks,” ser. ACM SIGCOMM
’24, 2024. [Online]. Available: https://doi.org/10.1145/3651890.3672270

[35] D. Ran et al., “HSDBA: a hierarchical and scalable dynamic bandwidth
allocation for programmable data planes,” Frontiers of Information
Technology & Electronic Engineering, vol. 25, no. 10, 2024.

[36] P. Raussi et al., “Prioritizing protection communication in a 5G slice:
Evaluating HTB traffic shaping and UL bitrate adaptation for enhanced
reliability,” The Journal of Engineering, vol. 2023, no. 9, 2023.

[37] A. Gupta et al., “Improving HTTP/3 Quality of Experience with
Incremental EPS,” 2024. [Online]. Available: https://arxiv.org/abs/2403.
04074

[38] Y. Sasaki and K. Sato, “Reducing Web Page Load Time by Using a
Dynamic Scheduling Method Based on Network Environment,” IEICE
Communications Express, vol. 13, no. 4, pp. 122–125, 2024.

[39] K. Wong and L. Cui, “Fine-grained HTTP/3 prioritization via reinforce-
ment learning,” Computer Networks, vol. 233, p. 109880, 2023.


