
BrowsEm: Model-based Web Site Loading Emulation
Kilian Holzinger

holzinger@net.in.tum.de
Technical University of Munich

Germany

Florian Klein
kfl@net.in.tum.de

Technical University of Munich
Germany

Daniel Petri
petriroc@net.in.tum.de

Technical University of Munich
Germany

Stefan Lachnit
lachnit@net.in.tum.de

Technical University of Munich
Germany

Sebastian Gallenmüller
gallenmu@net.in.tum.de

Technical University of Munich
Germany

Georg Carle
carle@net.in.tum.de

Technical University of Munich
Germany

Abstract
Continuous research and engineering efforts aim to improve
the performance of web networking protocols, such as TCP,
QUIC, TLS, and HTTP. Performance measurements are con-
ducted to assess the impact of changes to these protocols,
their implementations, or the underlying network infrastruc-
ture. However, this is a challenging task due to the increasing
complexity of web site deployments and browser and server
software. In this work, we introduce BrowsEm, a web site
loading emulator capable of reproducing page loading work-
loads. Its underlying model is based on data scraped from
real web sites and takes network path characteristics, pro-
tocols, dependencies between HTTP transactions, and their
individual timing aspects into account. Modularly structured
and using wide-spread libraries like libcurl, it allows for test-
ing a wide range of emulation parameters such as network
conditions or protocol implementations and obtaining re-
producible results. Our evaluation shows that the emulation
introduces a relative error smaller than ± 0.25 for 80% of
observed page load times. In a measurement campaign, we
find that the model shows suitable robustness for artificially
changed parameters.

CCS Concepts
• Networks → Network performance modeling; Network
experimentation; Network performance analysis; Net-
workmeasurement;Application layer protocols;Trans-
port protocols.

Keywords
web, browsers, emulation, measurement, protocols

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ANRW ’25, Madrid, Spain
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2009-3/2025/07
https://doi.org/10.1145/3744200.3744759

ACM Reference Format:
Kilian Holzinger, Florian Klein, Daniel Petri, Stefan Lachnit, Sebas-
tian Gallenmüller, and Georg Carle. 2025. BrowsEm: Model-based
Web Site Loading Emulation. In Applied Networking Research Work-
shop (ANRW ’25), July 22, 2025, Madrid, Spain. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3744200.3744759

1 Introduction
Web performance is important for the user experience and
the success of web applications. The demand for improve-
ments has led to the development of new protocols such
as QUIC and HTTP/3 or extensions to the web stack such
as transaction multiplexing, multipath transport protocols,
prioritization schemes, or post-quantum cryptography. Engi-
neering and research efforts continuously assess the impact
of new developments, identify limitations, and provide proof-
of-concept implementations. However, accurately evaluat-
ing the influence of changes to the network stack on web
applications remains challenging. Modern browsers are com-
plex software systems, making it hard to add functionality
as proof of concepts to network subsystems such as the
transport or HTTP protocol implementation. Additionally,
reproducibility of in-browser measurements is a challeng-
ing endeavour. In contrast to that, fully synthetic evaluation
approaches fail to reflect realistic workload patterns.

There is a methodological gap to enable experimentation
with the web network stack while still being able to im-
pose realistic and reproducible application workloads. An
approach is needed to emulate the browser behavior while
giving researchers the flexibility to experiment with under-
lying transport and application protocol implementations.
In this work, we introduce BrowsEm, an emulator for

web application workloads that gives network researchers a
flexible and adjustable tool to assess the impact of changes
under realistic conditions while avoiding intractable com-
plexity. For the emulation, we derive a model of the page
loading process, capturing meta-data of HTTP transactions.
The approach reduces the complexity of client and server
web applications in that the actual content is not interpreted

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744200.3744759
https://doi.org/10.1145/3744200.3744759


ANRW ’25, July 22, 2025, Madrid, Spain Kilian Holzinger, Florian Klein, Daniel Petri, Stefan Lachnit, Sebastian Gallenmüller, and Georg Carle

or rendered, but replaced with timing and dependency in-
formation. We identify model parameters by extracting and
storing information from the website loading behavior of
web browsers and the network stack. This scraping process
is fully automated. The resulting file is used by the emulator
which replicates the loading behavior on the transport and
HTTP layer without the need to set up complex infrastruc-
ture or to modify live websites.

The resulting emulation helps in understanding the impact
of changed network path characteristics and modifications
to the transport or application layer on the loading time of
websites. Users can either modify model parameters, such as
changing the HTTP version of requests, or experiment with
client or server side protocol features, e. g., added new HTTP
priority signals or multipath connections. The emulator is
designed in a modular way such that different implementa-
tions on client and server side are possible. The evaluation
shows that BrowsEm is capable of replicating realistic web
workloads with remarkable accuracy, achieving a relative
page load time (PLT) error of ± 0.25 for 80% of sampled sites.
The remainder of the paper is structured as follows: The

next section provides an overview of related work. Section 3
defines the scope of the system model of BrowsEm. The
implementation is explained in Section 4. In Section 5, we
evaluate and discuss results of performed measurements.
Finally, after explaining the limitations of the approach in
Section 6, a conclusion summarizes the main findings.

The code of the tool is available online1.

2 Related Work
The demand for the realistic and reproducible application
of web traffic models dates back to the early versions of
HTTP. Barford and Crovella [2] state that either analyti-
cal or trace-based approaches can be used to generate syn-
thetic web workloads. Their Scalable URL Reference Generator
(SURGE) tool was employed to investigate web performance
in Internet-wide measurements, whose traffic adhered to
mathematical models mimicking HTTP request properties
of users interacting with a web page [1].

SURGE’s analytical model has similarities with Mah’s [10]
and Choi and Limb’s [7]. It accounts for statistically rep-
resentative file and request sizes, their relative popularity
to other server resources, re-request likelihood, how they
are referenced in a page, reference count, and traffic bursti-
ness. These values were derived from data sets [4] which
empirically captured web user behavior. SURGE’s synthetic
traffic matched the variability of real traffic and put a more
realistic load on servers than other benchmarking tools at
the time. Per Barford and Crovella’s definition, BrowsEm is
trace-based as it emulates realistic workloads through the

1https://github.com/holzingk/BrowsEm

playback of pre-recorded samples. According to them, such
an approach has the tendency to become a black box that
obscures system behavior and is hard to adapt to new re-
quirements. We believe to have addressed such shortcomings
through the use of a flexible and configurable model format.

Noting significant web developments since the late 1990s,
such as the rise of video streaming applications, Lee and
Gupta [9] proposed a traffic generator recognizing that users
may change pages before embedded objects are fully down-
loaded or be using multiple browsers at once. Pries et al. [15]
compared Lee’s, Chois’, Barford’s, and Ihm’s [8] measure-
ments with a traffic model based on the top million accessed
web sites and identified the retrieval of large multimedia
content spread across the globe as a trend. Their HTTP
traffic model was experimentally integrated into the ns-3
QUIC module [14]. Web page load times over HTTP/1.1,
SPDY, and QUIC were evaluated with the Mahimahi frame-
work [12], which can accurately record and replay HTTP
traffic locally using fully isolated, composable UNIX shells
that emulate multi-server applications and network condi-
tions. The Mahimahi-supported finding that the serialization
of requests underutilizes links led to improving HTTP appli-
cation performance over long-delay links.

3 Scope of Emulation Model
The scope of the emulation model is shaped by the needs
of protocol researchers and web site operators investigating
the continuously evolving web stack.

Modern web browsers are sophisticated software systems.
Their complexity is driven by web standards and the need to
interpret, execute, render, and display multimedia content.
When loading a website, the requested document often in-
cludes other assets, such as images, JavaScript, or stylesheets.
If a referenced asset is hosted on a different web server, this
can lead to information traveling on a different network path
with different properties and additional overhead due to the
establishment of a new connection.
In the networking-focused BrowsEm model, all interpre-

tation of content is abstracted at the client and replaced with
inter-transaction dependencies and timing information. The
timing of individual HTTP transactions are further divided
into several phases, namely blocked, dns, connect, tls, send,
wait, and receive. The path between client and server is mod-
eled with capacity, delay, and loss properties. Server-side
web applications also introduce application limited phases.
We model those by delaying HTTP responses by a specific
time. Figure 1 depicts a simplified drawing of the model.

https://github.com/holzingk/BrowsEm


BrowsEm: Model-based Web Site Loading Emulation ANRW ’25, July 22, 2025, Madrid, Spain

Client

◀▶
◀▶
◀▶

Server 1◀▶

Server 2◀▶
. . .

Server n◀▶

Figure 1: Simplified emulation model

4 Approach
The BrowsEm workflow consists of four main parts. To build
realistic emulation models, we first derive model parame-
ters by observing the page load process of a web browser,
referred to as data scraping. Then, the collected data are
postprocessed and converted into the workload data model
file. Since BrowsEm users typically want to assess the impact
of modifications in the web stack, manual edits can be made
there. Moreover, alternate versions of components such as
web servers or QUIC libraries can be deployed inside the em-
ulator. The workload data model is subsequently provided as
input to the page load emulation, which replicates the HTTP
and transport layer workload. Finally, users can inspect the
resulting performance metrics.

4.1 Data Scraping
In order to emulate page load behavior, sample data are
needed. To be as realistic as possible, we chose to observe
and record the behavior of a web browser while loading
web sites and use the scraped data as input to the emulator.
For now, our tool is limited to the Chromium browser but
since the used interface is also offered by other browsers, we
anticipate that they can be supported as well. To automate
the recording of the page loading process, BrowsEm pro-
vides a Python tool. It extracts information from the browser
and from traffic captures. It uses the Chrome DevTools Pro-
tocol (CDP)2 and PyShark3, a Python interface to interact
with the Wireshark network packet analyzer. HTTP Archive
(HAR) files, transaction dependencies, and traffic sniffing are
available data sources. qlog, a structured logging format for
QUIC, would be an additional option [11]. However, it is not
supported by Chromium.

HAR. All major browsers have built-in developer tools
that record network activity and page load times. A de-facto
standard for those data are HAR files which include all re-
quests the browser made while loading a page [13]. It is a
structured JSON log, containing detailed subtimings for each
resource: The blocked time of a request is the delay caused
by the browser, e. g., due to a reached connection limit. Also,

2https://chromedevtools.github.io/devtools-protocol/
3http://kiminewt.github.io/pyshark/

the duration of a potential DNS lookup is encoded (dns),
along with the time for connection establishment (connect),
duration of the Transport Layer Security (TLS) handshake
(tls) and time to send the request to the server (send). In ad-
dition, the wait time indicates the time from the completed
request to the first byte of the response, i. e., the time to
first byte (TTFB). Finally, the receive time measures the time
to complete the request. We use the CDP to initiate page
loading with HAR file recording and write a TLS key log file,
allowing to decrypt recorded packet traces.

Transaction dependencies. HAR files include initiator fields.
They reference an other transaction that triggered this par-
ticular one, which we use to infer a transaction dependency
tree. Although this information sometimes is missing, an
initiator can clearly be identified through manual inspection.
To address this problem, we created a dependency tree in-
ference heuristic. We assume that child requests typically
start shortly after the parent began receiving its response.
We identify the parent transaction by finding the request
with the smallest positive delta between its response start
time and the child’s request start time bounded by a specific
threshold. Although by nature this approach is not free of
errors, evaluation yielded sufficient accuracy.

Traffic sniffing. Because not all relevant data are included
in the HAR file, some data are extracted from recorded traffic
traces. PyShark decrypts TLS and QUIC packets with the
key log file, enabling us to match relevant flows to HTTP
requests and to provide additional insights into HTTP usage.
We assess crucial path characteristics per server IP adress.We
use several mechanisms to assess the path round-trip time
(RTT). In the case of TCP, we use the median RTT obtained
by matching the timestamp value and timestamp echo reply,
if available. As fallbacks, in the following order, handshake
timestamps or ICMP echo request and reply as estimate are
used respectively. The QUIC spin bit is an additional RTT
estimation source that is not yet used by the Chromium
browser. Another option would be to track QUIC packet and
TCP segment numbers and correlating acknowledgements.

For the path capacity, we integrate the passive estimation
approach PPrate [5] for which an open-source implementa-
tion has been provided [3]. Some connections only exchange
a limited number of packets, likely never leaving the slow
start phase of congestion control. As a consequence, some
results are erroneous.

4.2 Workload Data Model
The data model describes the emulated workload and is se-
rialized as JSON. It combines input from the HAR file and
analyzed sniffed traffic recorded during web scraping. The

https://chromedevtools.github.io/devtools-protocol/
http://kiminewt.github.io/pyshark/


ANRW ’25, July 22, 2025, Madrid, Spain Kilian Holzinger, Florian Klein, Daniel Petri, Stefan Lachnit, Sebastian Gallenmüller, and Georg Carle

main content is a list of HTTP transactions. Connection iden-
tifiers distinguish connections in case of multiplexed pro-
tocols such as HTTP/2 and HTTP/3. Absolute timestamps
indicate the start and end times of the request and response.
Relative request timings taken from the HAR file provide
additional information. We append the request and response
body length and the depending and dependant transaction
identifiers obtained from the initiator field or dependency
heuristic. The data model contains network path information
in the form of loss percentage, RTT and estimated capacity.
The structured file allows for easy modification of the

workload model. Users, for instance, can change the HTTP
version of individual requests, adjust RTT or bandwidth con-
straints, vary the number of parallel connections, or add
additional requests. This makes it possible to simulate alter-
native versions of a web site’s behavior under different web
stack configurations, while still preserving the realism of the
original workload.

4.3 Page Loading Emulation
The page loading emulation uses the Tokio4 asynchronous
Rust runtime. BrowsEm includes network path behavior in
its data model. It uses Linux network namespaces in con-
junction with the NetEm network emulator to imitate the
behavior of distinct paths between the client and the servers
on a single node [6].
For each separate server in the model, a dedicated Tokio

task is spawned. The server is defined as an abstract be-
haviour using a Rust trait, so new or modified servers can
be added by users that provide implementations for that in-
terface. Currently, there are three example implementations.
We implemented the trait, for one, using Actix Web5 which
is a Rust web framework that supports HTTP/1.0, HTTP/1.1,
and HTTP/2. For another, using quinn as an HTTP/3 server.
Last, we support using nginx as an example for a general
purpose web server. The trait defines two asynchronous
functions. The first is a request callback which takes the
workload model as input to initialize the server, the second
is a callback that handles the actual emulated requests.

The client uses libcurl which is a widely used and flexible
HTTP client library. It was chosen because it provides a
single API for several HTTP versions and also supports five
QUIC implementations: Cloudflare quiche, ngtcp2, OpenSSL
3.2 QUIC, msquic and the experimental Linux Kernel QUIC.
For our evaluation we use ngtcp2. As an initializing step,
before the actual workload emulation is performed, the client
sends the workload model to the servers. At the client, each
connection is handled by a Tokio task which itself spawns
tasks for the individual transactions which are started in

4https://tokio.rs/
5https://actix.rs/

0 20 40 60 80
100

101

102

server count

re
q
u
es
t
co
u
n
t

(a) Request and server
count per loaded web site

102 104 106
0

0.2

0.4

0.6

0.8

1

response size [B]

C
D
F

(b) HTTP response body
sizes of all web sites

Figure 2: Statistics of scraped sites

accordance with the timing information found in the load
model data. The wait time in the model data includes the
network path RTT and additional delays caused by the server
application. In the emulation, we subtract the RTT from the
wait time, since we apply network path emulation, allowing
to change network path characteristics. Before a request is
made in the emulator, the dependency tree is respected by
considering the delay from the finalization of the parent
response to the request of the child. Depending on the model
data, either a new connection to the server is initiated, or an
existing connection is reused. Similar to most browsers, the
TCP nodelay option is set.

5 Evaluation
We start this section with a data driven motivation, advo-
cating for the need of a tool such as BrowsEm. The primary
goal of our evaluation is to quantify the error it introduces
while reproducing the loading behavior of web sites. We
compare emulation results to measurements from recorded
browser sessions. In addition, we assess the model stability
by modifying emulation parameters such as the RTT and
investigate whether results are consistent with real-world
page loads under similar conditions.

5.1 Motivation
To perform the evaluation, we use the top 1000 web sites
from the DomCop List of Top 10 Million Domains6 for scrap-
ing. Some web sites caused issues, e. g., due to the use of
WebSockets which we do not yet support or because head-
less user agents are blocked. The following data are based on
922 sampled sites. We only record the loading process of the
start page and do not perform any interactions with the site.
We use a fast connection within a national science network.

In Figure 2a, we provide an overview of the number of
servers involved and requests count for each page load. It can
be seen that loading most web sites establishes connections
to several different servers and make tens or hundreds of
6https://www.domcop.com/top-10-million-domains

https://tokio.rs/
https://actix.rs/
https://www.domcop.com/top-10-million-domains


BrowsEm: Model-based Web Site Loading Emulation ANRW ’25, July 22, 2025, Madrid, Spain

0 200 400 600
0

0.2

0.4

0.6

0.8

1

time [s]

C
D
F

blocked

HTTP/1.0 (#18) HTTP/1.1 (#2259) HTTP/2 (#37077) HTTP/3 (#10156)

0 50 100 150 200

time [ms]

dns

0 200 400

time [ms]

connect

0 50 100 150 200

time [ms]

tls

0 20 40 60

time [ms]

send

0 100 200

time [ms]

wait

0 20 40 60 80 100

time [s]

receive

(a) Distribution of transaction phases measured in browser from scraped data

−0.1−0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

ϵblocked

C
D
F

−0.1−0.05 0 0.05 0.1
ϵdns

−10 −5 0
ϵconnect

0 0.2 0.4 0.6 0.8 1
ϵtls

−4 −2 0
ϵsend

−40 −20 0
ϵwait

−4 −2 0
ϵreceive

(b) Relative differences of transaction phases between measurements of real web sites and emulation

Figure 3: Duration of transaction phases as CDFs of all requests separated by HTTP version; different x-axis scales

requests. Figure 2b shows the distribution of response body
sizes across all 49510 transactions in the scraped data set.
The vast majority are transfers of smaller than 100 kB.

Figure 3a depicts cumulative distribution functions (CDFs)
of the duration of all phases for each HTTP version. They in-
clude all requests extracted from HAR files generated while
loading the 922 web sites. The dataset includes 18 HTTP/1.0,
2259 HTTP/1.1, 37077 HTTP/2, and 10156 HTTP/3 transac-
tions. It shows that major contributors to the transaction
duration are the blocked, wait, and receive times.
From these statistics, we conclude that web sites have a

very mixed loading behavior, leading to a huge variety of
workloads imposed on the HTTP and transport layer. To
reproduce those outside of a web browser, while accounting
for the timing of transaction phases, a tool such as BrowsEm
is needed — a purely synthetic approach is not sufficient.

5.2 Metrics
To quantify the emulation quality of BrowsEm we introduce
two metrics. For the first, we define the relative difference
between the scraped page load time 𝑠𝑃𝐿𝑇 and emulated page
load time 𝑒𝑃𝐿𝑇 as the PLT error 𝜖𝑃𝐿𝑇 =

𝑠𝑃𝐿𝑇 −𝑒𝑃𝐿𝑇
𝑠𝑃𝐿𝑇

. It cap-
tures how well the overall loading behavior and request
dependency structure are reproduced. The second metric,
𝜖𝑃 =

𝑠𝑃 −𝑒𝑃
𝑠𝑃

, measures the relative difference of individual
phases of HTTP transactions. It can help to identify the root
cause of emulation deviations.

5.3 Emulation Error
Figure 3b shows relative differences of transaction phase
durations 𝜖𝑃 over all observed transactions. For reference,
see also Figure 3a, which shows the absolute distribution of
scraped transaction phase times. The sample counts can be

found in the legend of Figure 3. Due to a limited number of
HTTP/1.0 transactions, related results need to be interpreted
with care. The blocked time is always met by the tool, since
as the name suggests, no operations are performed. Similarly,
BrowsEm replaces DNS lookups with wait time. The shown
connect times largely matches the browser behavior. There
is a small fraction of HTTP/3 transactions with large relative
differences. Since HTTP/3 transactions have a very short
absolute connect time, we deem those outliers as insignifi-
cant. We model TLS and encryption for our servers as well.
HTTP versions greater than HTTP/1.0 reuse connections,
resulting in a large number of transaction with tls time of
0ms. The emulation tends to complete the TLS handshake
faster. Possible reasons for the deviations could be the use of
different encryption libraries at the client and server com-
pared to the real-world measurement, or influences of an
erroneous RTT estimate. The absolute durations of the send
time are typically very short. In the emulation it tends to
be even shorter than in the browser. There, it could be af-
fected by additional application or congestion limitations not
covered in our model, hinting towards wrong path capacity
estimations. The wait time is mostly met by BrowsEm. It is
realized in the emulated server by waiting for the measured
time, whereby the path RTT is deduced (see Section 4.3) — a
possible cause of differences. The receive time, albeit being
generally longer due to larger transfer sizes, shows similar
behavior as the send time and the same explanations apply. In
conclusion, while deviations from the observed browser tim-
ings exist, the emulation represents individual transaction
phases reasonably well.

Next, we assess the relative difference of the PLT, shown
in Figure 4a. The PLT metric 𝜖𝑃𝐿𝑇 indicates whether the
loading behavior of a web page, particularly the dependency



ANRW ’25, July 22, 2025, Madrid, Spain Kilian Holzinger, Florian Klein, Daniel Petri, Stefan Lachnit, Sebastian Gallenmüller, and Georg Carle

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

ϵPLT

C
D
F

(a) Distribution of rela-
tive differences between
scraped and emulated total
page load times

0 50 100 150 200
0

2

4

6

additional RTT delay [ms]

p
a
ge

lo
a
d
ti
m
e
[s
] measured

emulated

(b) Absolute differences
of PLT between measure-
ments of real web site and
emulated scenario

Figure 4: Page load time and study of model robustness

tree of requests and their timings is accurately emulated. We
find that about 80% page loads have less than ±0.25𝜖𝑃𝐿𝑇 .

5.4 Stability
Using the model file, users can modify emulated request pa-
rameters such as path properties or the HTTP version. To
evaluate the reliability of results, we assess the model stabil-
ity by comparing those emulations against measurements
taken directly in a browser under the same conditions.
For that purpose, we take the model derived from scrap-

ing a web site under baseline conditions, i. e., without intro-
ducing any additional delay. To study the effect of network
latency, we run the emulation repeatedly, with manually
increased path RTT properties, keeping all other aspects
constant. For each configuration, we compare the emulated
results against ground-truth measurements obtained from
actual browser sessions under the same added delay. This
allows us to evaluate the robustness of our emulation model.
The results of this experiment are shown in Figure 4b.

We can observe that the overall PLT is steadily increasing
with the added RTT, as expected. The emulated PLT closely
follows the trend of the real browser measurements, indi-
cating that our model is capable of accurately capturing the
impact of network latency on web page loading times. In
terms of the relative error 𝜖𝑃𝐿𝑇 , we can observe an increase
with added RTT.

6 Limitations
Ourmodel is inherently limited by which data is measureable
in the browser and the network stack. Thus, we only implic-
itly capture browser-specific behaviors such as client-side
rendering, JavaScript execution, or CSS rendering through
the timing of requests and responses. Therefore, some web
Quality of Experience (QoE) metrics like Time to First Paint
are not captured, but could be explored in future work. The
use of static network conditions limits realism, as real-world
conditions vary significantly. Also, we do not directly cover

application limited phases in neither server nor client. The
network path estimation showed to be a source of errors.
While request dependency modeling performs well in many
cases, it may not fully capture the behavior of all web applica-
tions. Additionally, parts of the model rely on data reported
by Chromium and may not generalize to other browsers
such as Safari or Firefox, which use a different networking
stack. Future work could enhance the model by adding more
complexity, such as including priority signals and evaluating
the impact on the accuracy of the emulation.

7 Conclusion
To improve the web network stack, protocol researchers,
network engineers, and site operators are interested in mea-
suring performance of web applications while having full
flexibility of underlying implementation details, network pa-
rameters, and configurations. To achieve that, replicating
deployments in reproducible testbed setups is tedious be-
cause the deployment, modification, and orchestration of
involved browser and server software is complex. BrowsEm
addresses this gap by providing a flexible and extensible
measurement framework, capable of replicating network
workloads of web applications with a focus on network path
properties, transport and HTTP application layer.

The tool includes an automated data scraper to extract the
workload model from browser behavior. We use HAR files
and traffic traces as data sources. Gathered information is
collected into a model file. It contains detailed information
on the order and dependency of HTTP transactions and the
timing of their individual phases as well as inferred network
path properties such as delay and path capacity.

The emulator replicates the page loading process by replac-
ing processing time spent with generating or interpreting
web payload content with wait time. It strives to meet the du-
ration of all relevant transaction phases. Based on the model
information, network paths are emulated on a single node
using Linux network namespaces. The client uses libcurl as
a flexible and extensible HTTP library, which has multiple
backends for HTTP/3. We provide three implementations
for the server. All standard HTTP versions are supported.
We evaluate BrowsEm on a sample of 922 popular web

sites. We compare the time difference of individual transac-
tion phases between browser measurements and the emula-
tion. Results show that, despite some deviations, the emula-
tion approximates real behavior sufficiently well. The total
PLT has less than ±0.25 relative error in 80% of emulated
page loads. In an additional measurement campaign, the em-
ulator was assessed for robustness and yielded good stability
towards changed network path parameters.

The code of the tool is available online1.



BrowsEm: Model-based Web Site Loading Emulation ANRW ’25, July 22, 2025, Madrid, Spain

Acknowledgments
This work was supported by the EU Horizon Europe pro-
gramme, projects SLICES-PP (10107977) and GreenDIGIT
(101131207), by the German Federal Ministry of Education
and Research (BMBF), projects 6G-life (16KISK002) and 6G-
ANNA (16KISK107), by the German Research Foundation,
project HyperNIC (CA595/13-1), and by the Bavarian Min-
istry of Economic Affairs, Regional Development and Energy,
project 6G Future Lab Bavaria.

References
[1] Paul Barford and Mark Crovella. 1999. Measuring Web performance

in the wide area. 27, 2 (1999), 37–48. doi:10.1145/332944.332953
[2] Paul Barford and Mark Crovella. 1998. Generating representative

Web workloads for network and server performance evaluation. In
Proceedings of the 1998 ACM SIGMETRICS Joint International Con-
ference on Measurement and Modeling of Computer Systems (Madi-
son, Wisconsin, USA) (SIGMETRICS ’98/PERFORMANCE ’98). Asso-
ciation for Computing Machinery, New York, NY, USA, 151–160.
doi:10.1145/277851.277897

[3] Simon Bauer, Janluka Janelidze, Benedikt Jaeger, Patrick Sattler, Patrick
Brzoza, and Georg Carle. 2023. On the Accuracy of Active Capacity
Estimation in the Internet. In 2023 IEEE/IFIP Network Operations and
Management Symposium (NOMS 2023). Miami, USA.

[4] Carlos R Cunha, Azer Bestavros, and Mark E Crovella. 1995. Character-
istics of WWW client-based traces. Technical Report. Boston University
Computer Science Department.

[5] Taoufik En-Najjary and Guillaume Urvoy-Keller. 2006. Pprate: A pas-
sive capacity estimation tool. In 2006 4th IEEE/IFIP Workshop on End-
to-End Monitoring Techniques and Services. IEEE, 82–89.

[6] Stephen Hemminger et al. 2005. Network emulation with NetEm. In
Linux Conf AU, Vol. 5. 2005.

[7] Hyoung-Kee Choi and J.O. Limb. 1999. A behavioral model of Web
traffic. In Proceedings. Seventh International Conference on Network
Protocols (Toronto, Ont., Canada, 1999). IEEE Comput. Soc, 327–334.
doi:10.1109/ICNP.1999.801961

[8] Sunghwan Ihm and Vivek S Pai. 2006. Towards understanding modern
web traffic. (2006).

[9] Jeongeun Lee, Maruti Gupta, and Intellon Corp. 2007. ANEWTRAFFIC
MODEL FOR CURRENT USER WEB BROWSING BEHAVIOR. https:
//api.semanticscholar.org/CorpusID:14057598

[10] Bruce A. Mah. 1997. An empirical model of HTTP network traffic.
In Proceedings of INFOCOM ’97, Vol. 2. 592–600 vol.2. doi:10.1109/
INFCOM.1997.644510

[11] Robin Marx, Luca Niccolini, Marten Seemann, and Lucas Pardue. 2025.
QUIC event definitions for qlog. Internet-Draft draft-ietf-quic-qlog-quic-
events-10. Internet Engineering Task Force. https://datatracker.ietf.
org/doc/draft-ietf-quic-qlog-quic-events/10/ Work in Progress.

[12] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-
and-Replay for HTTP. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15).

[13] Jan Odvarko, Arvind Jain, and Andy Davies. 2012. HTTP Archive
(HAR) Format. https://w3c.github.io/web-performance/specs/HAR/
Overview.html

[14] Umberto Paro, Federico Chiariotti, Anay Ajit Deshpande, Michele
Polese, Andrea Zanella, and Michele Zorzi. 2020. Extending the ns-3

QUIC Module. In Proceedings of the 23rd International ACM Confer-
ence on Modeling, Analysis and Simulation of Wireless and Mobile Sys-
tems (Alicante Spain, 2020-11-16). ACM, 19–26. doi:10.1145/3416010.
3423224

[15] Rastin Pries, Zsolt Magyari, and Phuoc Tran-Gia. 2012. An HTTP
web traffic model based on the top one million visited web pages. In
Proceedings of the 8th Euro-NF Conference on Next Generation Internet
NGI 2012 (Karlskrona, Sweden, 2012-06). IEEE, 133–139. doi:10.1109/
NGI.2012.6252145

https://doi.org/10.1145/332944.332953
https://doi.org/10.1145/277851.277897
https://doi.org/10.1109/ICNP.1999.801961
https://api.semanticscholar.org/CorpusID:14057598
https://api.semanticscholar.org/CorpusID:14057598
https://doi.org/10.1109/INFCOM.1997.644510
https://doi.org/10.1109/INFCOM.1997.644510
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-quic-events/10/
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-quic-events/10/
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://doi.org/10.1145/3416010.3423224
https://doi.org/10.1145/3416010.3423224
https://doi.org/10.1109/NGI.2012.6252145
https://doi.org/10.1109/NGI.2012.6252145

	Abstract
	1 Introduction
	2 Related Work
	3 Scope of Emulation Model
	4 Approach
	4.1 Data Scraping
	4.2 Workload Data Model
	4.3 Page Loading Emulation

	5 Evaluation
	5.1 Motivation
	5.2 Metrics
	5.3 Emulation Error
	5.4 Stability

	6 Limitations
	7 Conclusion
	Acknowledgments
	References

